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Abstract

We formulate a Yang-Mills action principle for noncommutative connections on
an endomorphism algebra of a vector bundle. It is shown that there is an influence of
the topology of the vector bundle onto the structure of the vacuums of the theory in a
non common way. This model displays a new kind of symmetry breaking mechanism.
Some mathematical tools are developed in relation with endomorphism algebras and
a new approach of the usual Chern-Weil homomorphism in topology is given.
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Introduction

We generalize the theory of noncommutative connections and noncommutative Yang-Mills
action developed in [1, 2, 3] on the algebra C∞(M) ⊗ Mn(C) to the situation of non
trivial fiber bundles, i.e. the situation where the algebra C∞(M) ⊗ Mn(C) is replaced by
the endomorphism algebra of a non trivial vector bundle. The present work is a direct
continuation of the work made in [4, 5] where the key notions of the noncommutative
geometry of endomorphism algebras where introduced. The present article contain also
non-published results obtained in [6].

The goal of the three first sections is to define the mathematical notions necessary to
write and define correctly a Yang-Mills action principle for a noncommutative connection
on a projective module over an endomorphism algebra.

In the first section, we give an introduction to the notion of endomorphism algebra and
we illustrate the idea initiated in [5] that all notions which are defined in the framework of
principal fiber bundles can be formulated in a completely algebraic language using endo-
morphism algebras. We introduce the notion of associated projective module corresponding
to the notion of associated vector bundle and we generalize the notion of tensorial form.
At the end of this sectiion, we develop a new approach of the Chern-Weil homomorphism
using endomorphism algebras.

In the second section, we introduce the notion of noncommutative connection which
is essential to the formulation of a Yang-Mills action principle. We see that ordinary
connections play a particular role and are useful to decompose the degrees of freedom of a
noncommutative connection in a “covariant” way.

In the third part, we introduce the notion of metric and of integration for endomorphism
algebras.

In the last part, we formulate the Yang-Mills action principle and we perform an analysis
of the vacuums of the theory. We compare the results with the trivial situation and observe
that the topology of the vector bundle can modify the structure of this vacuums in a very
particular way.

In the appendix, we develop the notion of Levi-Cità connection in relation to the notion
of metric introduced in section 3.

1 Endomorphism algebra v.s. principal fiber bundle

1.1 Endomorphism algebras

1.1.1 Definition

We consider a vector bundle E over a smooth manifold M which is associated to a principal
fiber bundle P with structure group SL(n) (or SU(n)).

We denote E = F(M, E) the space of smooth section of E. This space is isomorphic
to the space of equivariant maps from P to V E , the vector space on which E is modeled.
The group SL(n) acts on V E with a representation RE . We will denote E∗ the dual vector
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bundle of E and E∗ its space of sections. Then the bundle of endomorphisms of E is
End(E) ≃ E ⊗ E∗.

The space of sections of End(E) is an algebra that we will denote AE. We will call AE

the endomorphism algebra of E and we have:

AE = Γ(End(E)) ≃ Γ(E ⊗ E∗) .

1.1.2 Properties

The center Z(AE) of the algebra AE is isomorphic to C∞(M). The isomorphism is given
by the embedding:

C∞(M) → AE

f 7→ f · 1l

We can also define the maps Tr and det from AE to C∞(M) which generalize the trace
and determinant maps on matrices. On has then a natural splitting of the algebra AE as
a Z(AE)-module:

AE = AE
0 ⊕ Z(AE)

where AE
0 = sl(AE) is the sub-Z(AE)-module of elements of AE without trace. It has

naturally a structure of Lie algebra, with the commutator of the algebra as Lie bracket.
The algebra AE is Morita equivalent to the algebra C∞(M). This equivalence can be

explicitely shown by considering the C∞(M) − AE-bimodule E∗ and the AE − C∞(M)-
bimodule E . Then one has:

AE ≃ E ⊗C∞(M) E
∗ and C∞(M) ≃ E∗ ⊗AE E

Hence, we have an equivalence between the categories of (right) modules MAE and MC∞(M).
As a consequence, we have that every right (resp. left) AE-module M is isomorphic to a
F ⊗C∞(M) E

∗ (resp. E ⊗C∞(M) F) with F a module over C∞(M).

1.2 The algebra corresponding to a principal fiber bundle

For a given principal fiber bundle P whit structure group SL(n), we can consider the
canonical associated vector bundle E = P ⋉SLn(C)

Cn corresponding to the fundamental
representation of SL(n) on Cn. We will consider the algebra of endomorphism which
correspond to this vector bundle as the algebra of endomorphism canonically associated to
the principal fiber bundle P . We will denote it A.

We will see that see that this algebra is a better candidate than the algebra C∞(P ) to
represent in the category of algebras the principal fiber bundle P . Obviously, the fact that
P has a non abelian structure group is encoded in the noncommutativity of the algebra
A. In fact, it can be shown [5] that A and P are related by the following relation:

A ≃ (C∞(P ) ⊗ Mn(C))SL(n)−invariant .
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with the SL(n) action given by the right multiplication on P and the conjugation on
Mn(C). It is useful to introduce the bigger algebra B = C∞(P ) ⊗ Mn(C). So A is an
invariant subalgebra of B. We can remark that the algebra C∞(P ) is also an invariant
subalgebra of B but with a different action (just on matrices) of SL(n).

1.3 Derivations of the algebra

We will now analyze the structure of derivations of the algebra A. We have the canonic
short exact sequence of Lie algebras and Z(A)-modules:

Int(A) �

�

// Der(A)
ρ

// // Out(A) (1)

where Der(A) are derivations , Int(A) are internal derivations and Out(A) are outer deriva-
tions of the algebra. Here, one has Out(A) = Γ(TM), the Lie algebra of vector fields on
M and the map ρ consist to the restriction of derivations on the center of the algebra.

Internal derivations are in the image of the adjoint map:

ad : A // Int(A)

γ �

// adγ : a 7→ [γ, a]

Now, if we restrict this map to the subalgebra of A0 = sl(A), we have an isomorphism
which inverse given by the map:

iθ : Int(A)
≃

// A0

adγ
�

// γ

Now, we can rewrite the exact sequence (1) in the following way:

0 // A0
ad

// Der(A)
ρ

// Γ(TM) // 0

X
�

// ρ(X )

γ �

// adγ

(2)

1.4 Derivation based differential calculus

One can introduce a natural differential calculus on A which is the differential calculus
based on derivations introduced in [7]. This calculus is a direct generalization of the
de Rham differential calculus on the smooth manifold M , where vector fields are replaced
by derivations of the algebra.

We first define the differential calculus (ΩDer(A), d̂), where

Ω∗
Der(A) =

( ∗∧

Z(A)

Der(A)

)⋆A
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is the set of Z(A)-multilinear anti-symmetric applications from Der(A) to A, and d̂ the
differential define by the Koszul formula:

d̂ω(X1, . . . ,Xn+1) =

n+1∑

i=1

(−1)i+1Xiω(X1, . . .
i
∨. . . . ,Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj], . . .
i
∨. . . .

j
∨. . . . ,Xn+1) . (3)

for all ω ∈ Ωn
Der(A).

It is also natural to define the differential calculus (ΩDer(A), d̂) where ΩDer(A) is the
sub-graded differential algebra of ΩDer(A) generate by A.

For an endomorphism algebra, it can be show that ΩDer(A) ≃ ΩDer(A).

1.5 The role of ordinary connections

1.5.1 Splitting of exact sequence

One can split the exact sequence of derivations (2) as an exact sequence of Z(A)-modules
with the help of an ordinary connection on E. Let us consider a connection ∇E on E.
We define a connection ∇ = ∇E ⊗ ∇E∗

on End(E) which is an application of Z(A)-
modules from Γ(M) to Der(A). Then, the map ∇ ◦ ρ is a projector in End(Der(A)) and
it split the space Der(A) into an horizontal part (Der(A))Hor ≃ Γ(M) and a vertical part
(Der(A))Ver ≃ Int(A) ≃ A0. Finally, one can easily construct a Z(A)-module homomor-
phism α from Der(A) to A0:

α = −iθ ◦
(
IdDer(A) −∇ ◦ ρ

)
,

which define an element of Ω1
Der(A). This expression make sense because the projector

IdDer(A) − ∇ ◦ ρ has its image in Ker(ρ) ≃ Int(A). This construction can be resumed in
the following diagram:

A0 Der(A)
−α

oo Γ(TM)
∇

oo

∇X X
�

oo

iθ(X −∇ρ(X )) = − α(X ) X
�

oo

(4)

This mean that any derivation can be decomposed in the following way:

X = ∇X + adγ , (5)

with X = ρ(X ) ∈ Γ(M) and γ = −α(X ) ∈ A0.
We can also consider the dual exact sequence of Z(A)-modules:

0 // Ω1(M, End E)
ρ∗

// Ω1
Der(A)

ad∗
// A⊗Z(A) A

∗
0

// 0

a �

// a ◦ ρ

ω �

// ω ◦ ad
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where Ω1(M, End E) = A ⊗Z(A) Γ(TM) are End(E)-valued tensorial 1-forms over M .
We can split this exact sequence with an ordinary connection on E as we have done for
derivations:

Ω1(M, End E) Ω1
Der(A)

∇∗

oo A⊗Z(A) A
∗
0

−α∗

oo

ω ◦ ∇ ω�oo

−ωInt ◦ α ωInt
�

oo

Then we can decompose any 1-form ω ∈ Ω1
Der(A) in the following way:

ω = ρ∗ωM − α∗ωInt (6)

with ωM = ∇∗ω ∈ Ω1(M, End E) and ωInt = ad∗ ω ∈ A⊗Z(A) A
∗
0. We can remark that the

space A ⊗Z(A) A
∗
0 is a space of sections of a vector bundle over M with fibers Mn ⊗ sl

∗
n.

This decomposition can be easily generalize to the space ΩDer(A).

1.5.2 Covariant differential and ordinary curvature

The 1-form α associated to any ordinary connection ∇ can be fully characterized by the
property:

α(adγ) = −γ ∀γ ∈ A0. (7)

We can also characterize the space of horizontal derivations by (Der(A))Hor ≃ Ker(α).
From this properties, α can be compared with the connection 1-form on a principal fiber
bundle. We will see that this noncommutative 1-form play here exactly the same role.
Let’s first introduce the following definition.

Definition 1.1 (Covariant derivative) Let ω ∈ Ωp
Der

(A) and X1, . . . ,Xp+1 ∈ Der(A).
The covariant differential of ω is defined by:

D : Ωp
Der

(A) −→ (Ωp+1
Der

(A))|Hor

ω 7−→ Dω : (X1, . . . ,Xp) 7→ d̂ω(∇ρ(X1), . . . ,∇ρ(Xp+1)) ,
(8)

with (Ωp+1
Der

(A))|Hor the horizontal sub-space of Ωp+1
Der

(A) for the action of Int(A).

We define the curvature noncommutative 2-form Ω to be the covariant derivative of the
noncommutative connection 1-form α. With the vertical property (7) of α, we have:

Ω = Dα = d̂α + α2 = ρ∗F . (9)

where F ∈ Ω2
dR(M, ad(P )) is the tensorial 2-form defined by:

F (X, Y ) = Ω(∇X ,∇Y )

= Dα(∇X ,∇Y ) = −α([(∇X ,∇Y ])

for all X, Y ∈ Γ(TM). This equation can be interpreted as the obstruction to construct a
Lie algebra with horizontal derivations.

Naturally, the tensorial 2-form F coincide with the tensorial 2-form associated to the
connection ∇.

7



1.5.3 Ordinary gauge transformations

It is natural to use the algebra A associate to the principal fiber bundle P to describe
the gauge group G and its Lie algebra Lie(G). Obviously, elements of G are sections of
the associated fiber bundle P ×Ad SL(n) which are exactly elements of SL(A), the group1

composed of determinant 1 elements of A. So we have G = SL(A). We have also that
Lie(G) = Γ(P ×ad sl(n)) = sl(A) = A0 ≃ Int(A).

Then, the gauge group act infinitesimally on a connection on P by Lie derivatives in
the direction of internal derivations on the affine space of noncommutative 1-forms which
satisfy the vertical condition (7). An element ξ ∈ A0 act on a noncommutative 1-form α

which represent a connection ∇ by:

α 7→ αξ = −Ladξ
α = d̂ξ + [α, ξ] = Dξ ,

and αξ represent the connection ∇ξ.
We will now introduce the concept of noncommutative tensorial forms which will per-

mits us to generalize the action of G on tensorial forms.

1.6 Noncommutative tensorial forms

1.6.1 Associated vector bundles and representations of Der(A)

In this section, we will see that it is possible to construct a representation of the Lie algebra
Der(A) from any vector bundle F = P ×R V associated to P for a representation R. We
will consider the module F = Γ(F ) over C∞(M) and the action of Der(A) given by:

R(X ) · m = ∇F
ρ(X )m − R(α(X )) · m ∀m ∈ F (10)

where ∇ is a connection on P and ∇F its representation on sections of F . This expression
make sens because α, which is the noncommutative 1-form canonically associated to ∇,
takes its values in A0 which naturally acts on F by infinitesimal gauge transformations.
This representation generalize in fact the decomposition obtained in the formula (5) that
we could rewrite:

X = ∇
End(E)
ρ(X ) − adα(X )

On can check that the action of derivations describe in formula (10) is a representation
of Lie algebra:

R([X ,Y ]) = [R(X ), R(Y)] .

and that it is independent of the choice of the connection ∇.

1For a SU(n) principal fiber bundle, the gauge group is isomorphic to U(A), the group of unitary
elements of A.
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1.6.2 Generalization of tensorial forms

From the representation R of Der(A) on sections of a module F associated to P , we can
construct a differential graded complex (ΩDer(A,F), d̂F ). We define ΩDer(A,F) as the set
of Z(A)-multilinear applications from Der(A) to F and the differential d̂F by a Koszul
formula:

d̂Rω(X1, . . . ,Xn+1) =

n+1∑

i=1

(−1)i+1R(Xi) · ω(X1, . . .
i
∨. . . . ,Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj], . . .
i
∨. . . .

j
∨. . . . ,Xn+1) . (11)

As usually, we can also define Cartan operations i and LR on this complex.
We can obviously define a notion of horizontal forms and of covariant derivation on

ΩDer(A,F), with the same definitions than in section 1.5. The covariant derivation that
we obtain is related to the usual covariant derivative on tensorial forms by the formula:

ρ∗Dω = ∇F ρ∗ω ∀ ω ∈ ΩDer(A,F)

We can also extend the action of Lie(G) on F to an action on ΩDer(A,F) by the formula:

ωγ = −LR
adγ

ω , (12)

for γ ∈ A0 and ω ∈ ΩDer(A,F). This action is obviously compatible with the action of
Lie(G) on tensorial form in the sens that for an element ω ∈ Ω(M, F ), we have:

(ρ∗ω)γ = −LR
adγ

(ρ∗ω)

= −iadγ
d̂R(ρ∗ω) = −R(adγ) · ρ

∗ω = R(γ) · ρ∗ω

= ρ∗ωγ

(13)

where ωγ denotes the usual infinitesimal gauge transformation on tensorial forms and we
have used definitions (12), (11) and (10) .

1.6.3 Decomposition of noncommutative tensorial forms

When we have a connection ∇ on End(E), we can decompose any tensorial 1-form into
vertical and horizontal part as we have done in section 1.5.1. Hence, an element ω ∈
ΩDer(A,F) can be decomposed in the following way:

ω(X ) = a(ρ(X )) − ϕ(α(X )) (14)

with a ∈ Ω1(M, F ) and ϕ ∈ F ⊗Z(A) A
∗
0. It can be written ω = ρ∗a−α∗ϕ and a and ϕ are

characterize by the relations:

a = ω ◦ ∇ = ∇∗ω

ϕ = ω ◦ ad = ad∗ ω

9



With this decomposition, we can establish a relation between de differential d̂R and the
covariant derivative on Ω1

Der(A,F).

d̂F ω = Dω − [α, ω] − (ad∗ ω) ◦ α2 + ρ∗∇(ad∗ ω) ◦ α (15)

= Dω − [α, ω] − ϕ ◦ α2 + ρ∗(∇ϕ) ◦ α (16)

where ∇ϕ means the usual covariant derivative on ϕ seen as a section on the vector bundles
F ⊗End∗

0(E) (End∗
0(E) is the dual bundle of the bundle of traceless endomorphisms). This

relation will be useful in section 2 for the calculation of the noncommutative curvature of
a noncommutative connection.

Remark 1 From the definition given in 1.1.1, we can associate to every associated vector
bundle F an endomorphism algebra AF which is a Der(A) module and we can consider the
differential graded algebra ΩDer(A,AF ) as a differential calculus for the algebra AF .

1.7 Chern-Weil homomorphism

We have seen that the exact sequence of derivations (2) can always be split as a sequence
of Z(A)-modules with an ordinary connection but that there is an obstruction to spilt it as
an exact sequence of Lie algebras. This obstruction is characterize by the curvature of this
connection. We will show in this section that this exact sequence can be used to construct
a Chern-Weil homomorphism using the construction presented in [8] adapted to the short
exact sequence:

0 //A0
ad

//Der(A)
ρ

//Γ(TM) //0 , (17)

First, we can remark that the Lie algebra A0 is a Der(A)-module and a Z(A)-module.
Thus we can consider the complex of Z(A) multilinear symmetric applications from A0 to
Z(A) which we denote:

Cq = S
q
Z(A)A

⋆Z(A)
0 ,

where ⋆Z(A) is the operation which acts on the category of Z(A)-modules described in
[9]. We have a natural action of Der(A) on this complex which is given by a Lie derivative.

So it is natural to consider the invariant sub-complex (Sq
Z(A)A

⋆Z(A)
0 )Der(A)−Inv. An element

f of this complex, is a Z(A) multilinear symmetric applications from A0 to Z(A) which is
invariant under the action of Der(A):

LXf = 0 ∀ X ∈ Der(A) , (18)

where LX is the Lie derivative naturally defined on multilinear applications. This space is
isomorphic to the space of invariant polynomials on sl(n). To show that, we can introduce
an ordinary connection ∇ which split the short exact sequence (17). then the invariant
condition (18) can be split into a vertical and horizontal part and we have:

{
L∇X

f = 0

Ladγ
f = 0

∀X ∈ Γ(M), γ ∈ A0 .

10



We deduce from this relations that f is a constant application on the base manifold M

and that it define an invariant polynomial on sl(n).
Then, the curvature 2-form F associated to ∇ permit to associate to f an element:

f∇ = f(F ∧ · · · ∧ F ) ∈ Ω2q(M) ,

We then recover the usual construction of the Chern-Weil homomorphism and so we have
that f∇ is a closed form and that its cohomology class is independent of ∇. In conclusion,
we have construct a linear application:

PI(sl(n)) ≃ (SZ(A)A
⋆Z(A)
0 )Der(A)−Inv −→ Heven(M)

f 7−→ [f∇]

which associate to every invariant polynomial on sl(n) an element of the even de Rham
cohomology of M . Obviously, this application correspond to usual Chern-Weil homomor-
phism.

We can notice that usually, this homomorphism can be obtain from the Weil complex
which use the finite dimensional Lie algebra corresponding to the structure group. Here
we didn’t use this Lie algebra but we have worked directly with the Lie algebra Int(A) ≃
A0 which can be identify with the Lie algebra of infinitesimal gauge transformations.
This Lie algebra is infinite dimensional and we have surprisingly extract from it invariant
polynomials by imposing an invariance condition with respect to the (infinite dimensional)
Lie algebra Der(A).

This construction raise new questions. For an endomorphism algebra A, it could be
interesting to see if this construction could be relate to other homological constructions
for algebras like the basic cohomology introduced in [10], where it is shown that basic
cohomology of the algebra Mn(C) is isomorphic to the set of invariant polynomials on
Mn(C). There is also an other approach [11] of the Chern-Weil theory in noncommutative
geometry which use Hopf algebra actions and cyclic cohomology. This context is more
general then the one considered here in the sens that it can be adapt to foliations or to
pure algebras with an Hopf algebra action. The algebra which was considered in [11] to
construct the Chern-Weil map is the convolution algebra of the holonomy groupoid of a
foliation. In the case of a principal fiber bundle, this algebra is Morita equivalent to the
space of functions on the base manifold. It could be interesting to make a contact with
this approach of the Chern-Weil theory and the one presented here. This could be done by
taking into account the Lie algebroid structure of Der(A) and its relation with the Atiyah
Lie algebroid remarked in [4].

We can also remark that this construction can be easily transposed to any associative
algebra A, using the short exact sequence of derivations:

0 //Int(A) //Der(A)
ρ

//Out(A) //0 .

This would lead to interesting results if the space of internal derivations is not too small.
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2 Noncommutative connections

In the previous section, we have introduce a notion of “ordinary connection” where the
notion of connection referred to splittings of short exact sequences of Lie algebras and
Z(A)-modules. We will now introduce an other notion of connection for endomorphism
algebras.

For a right A-module M, we consider the following definition of connection:

Definition 2.1 We call a ΩDer(A)-connection, an application:

∇̂ : M → M⊗A Ω1
Der

(A)

which satisfies:

∇(mb) = ∇(m)b + md̂b .

Such a connection can naturally be extended to an application:

∇̂ : Ωn
Der(A,M) −→ Ωn+1

Der (A,M)

using a Koszul formula:

∇̂ω(X1, . . . ,Xn+1) =

n+1∑

i=1

(−1)i+1∇Xi
ω(X1, . . .

i
∨. . . . ,Xn+1) (19)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj], . . .
i
∨. . . .

j
∨. . . . ,Xn+1) . (20)

2.1 Reference connection

For an endomorphism algebra A, we can deduce from Morita equivalence that any finite
right A projective module can be put through the form M = Γ(F ⊗ E∗) where F is an
arbitrary vector bundle over the base manifold M . Locally one has M ≃ C∞(M)⊗Mk,n(C),
where Mk,n(C) are k × n complex matrices.

We can remark that any ordinary connection ∇F⊗E∗

on F ⊗ E∗ can be used to define
a reference connection:

∇̃Xm = ∇F⊗E∗

ρ(X ) m + m · α(X ).

where α is the noncommutative 1-form associate to the connection ∇E∗

on E∗.

2.2 Associated modules

We can specialize to the case where the vector bundle F is associated to the principal fiber
bundle P . We will then say that the module F = Γ(F ) is associate to P . Specialization to

12



such modules will be necessary in order to have a natural action of Der(A) onto elements
of A-module M. We will write F = P ×RF V where RF is a representation of SLn on the
vector space V . Then, using the fact that the space of connections is an affine space, we
can write any noncommutative connection:

∇̂Xm = ∇̃m + B(X ) · m. (21)

with B ∈ ΩDer(A,AF ) and AF ≃ EndA(M) ≃ Γ(End F ) is the endomorphism algebra
associated to the vector bundle F .

Because M is now a Der(A)-module, we can introduce the differential module (ΩDer(A,M), d̂)
and also write a noncommutative connection:

∇̂Xm = d̂m + ω(X ) · m (22)

with ω ∈ ΩDer(A,AF ). We can remark that, using the formula (10), the differential d̂ is
here defined by:

d̂m(X ) = ∇F⊗E∗

ρ(X ) m − RF (α(X ))m + m · α(X ) .

Then ω and B are relate by the formula:

ω = B + RF (α)

Hence, we have two possible decompositions of a noncommutative connections. We will
see that the decomposition (22) is well adapted to do algebraic computations. It will be
more convenient to use the decomposition (21) when we will write a Yang-Mills action
(cf. section 4) for noncommutative connections. Indeed, with an ordinary connection ∇
on P , the decomposition B = ρ∗a − α∗ϕ with a ∈ Ω1(M, End F ) a tensorial 1-form and
ϕ ∈ AR ⊗A∗

0 a section of a vector bundle over M , will permit us to distinguish Yang-Mills
fields and scalar fields in a noncommutative connection.

It is also interesting to describe the gauge group associate to a noncommutative connec-
tion. The group Aut(M) of automorphism of M acts on the affine space of connections:

∇̂ 7→ ∇̂U = U−1 ◦ ∇̂ ◦ U .

Because M has an hermitian structure, it is natural to restrict us to the action of unitaries
of Aut(M). So, we will call the “noncommutative gauge group” Ĝ = U(AR). The action of
Ĝ can be transposed to the noncommutative 1-form ω defined in formula (22). The 1-form

ωU which represent ∇̂U is related to ω by the formula:

ωU = U−1ωU + U−1d̂U (23)

One can also consider infinitesimal transformations:

ω 7→ d̂γ + [ω, γ] , for γ ∈ sl(AR) . (24)

13



It is important to notice that elements of Ĝ are sections of a bundle associated to P

(with structure group SLn or SU(n)) and with fibers U(k). Hence, this group has nothing
to do with the “geometric gauge group” G = SL(A) introduced in section 1.6.2 which is
associated to the principal fiber bundle P . We have see in section 1.5.3 that this group acts
naturally on noncommutative tensorial forms in a way that its action extend the action
on ordinary tensorial forms. Its infinitesimal action corresponds to Lie derivatives in the
direction of internal derivations, as in formula (12). So, for an element ω ∈ Ω1

Der(A,M),
it corresponds to the action:

ω 7→ −LR
adγ

ω for γ ∈ sl(A) . (25)

We can remark that the action (25) and (24) coincide when AR = A and when ω is
a noncommutative 1-form which represent an ordinary connection, so which satisfies the
vertical condition ω(adγ) = −γ. We can also remark that the action (25), correspond to
what we usually call “active” gauge transformation on tensorial objects and that it has a
“passive” counterpart which is the fact that the transformation (25) have local expressions
similar to changes of trivializing charts.

2.3 Noncommutative curvature

In the case of a P associated module, we can characterize the curvature by a noncommu-
tative 2-tensorial form Ω by posing:

(∇̂2m)(X ,Y) =
(
[∇̂X ,∇Y − ∇̂[X ,Y ]

)
m = Ω(X ,Y) · m (26)

with Ω ∈ Ω2
Der(A,AF ). Then if we use the decomposition

B = ρ∗a − ϕ ◦ α

associated to a connection ∇, a direct calculation show that:

Ω = ρ∗

(
R(F ) − ϕ(F ) + ∇a + a2

)
−α∗ρ∗

(
∇ϕ + [a, ϕ]

)
+

+
1

2

(
[ϕ ◦ α, ϕ ◦ α] − ϕ ◦ [α, α]

)
. (27)

where F is the curvature tensorial 2-form associated ∇.
We can also calculate the curvature Ω with the N.C. tensorial form ω defined in equa-

tion (22), and so, from (26), we have:

Ω = d̂ω + ω2

where d̂ is here the differential defined on ΩDer(A,AF ). Now, if we the decomposition
associate to a connection ∇:

ω = RF (α) + ρ∗a − ϕ ◦ α

14



we obtain that:

Ω = d̂ω + ω2

= Dω − [α, ω] + (1 − ϕ) ◦ α2 − ρ∗∇ϕ ◦ α + +[α, ω] − α2 + ρ∗a2 + (ϕ ◦ α)2 − [ρ∗a, ϕ ◦ α])

= Dω + ρ∗a2 − (ρ∗∇ϕ ◦ α + [ρ∗a, ϕ ◦ α]) + (ϕ ◦ α)2 − ϕ ◦ α2

This result is the same than in the formula (27), thanks to the relations:

DRF (α) = ρ∗RF (F )

Dρ∗a = ρ∗∇a

D(ϕ ◦ α) = ϕ ◦ RF (F )

It is interesting to give local expressions of the curvature. Locally, in the basis of
derivations {∇µ, adEa

} where ∇µ = ∇∂µ
and {Ea} is an hermitian basis of sln(C), on has:

Ωµν = Ω(∇µ,∇ν) = R(Fµν) − ϕ(Fµν) + ∇µaν −∇νaµ + [aµ, aν ]

Ωµb = Ω(∇µ, adEb
) = ∇µϕb + [aµ, ϕb]

Ωab = Ω(adEa
, adEb

) = [ϕa, ϕb] − ϕcC
c
ab

where:
ϕa = ϕ(Ea) , ∇µϕb = ∂µϕb + [R(Aµ), ϕb] − Cc

abA
a
µϕc

aµ = a(∂µ) , ∇µaν = ∂µaν + [R(Aµ), aν ]

and A is the local gauge potential associated to ∇.
Now, we would be interested into write a Yang-Mills-like action for this noncommutative

connection. In order to do that, we need before to introduce a notion of metric and of
integration.

3 Integration and Riemannian structure

3.1 Riemannian structure

It is possible to introduce a notion of metric on Der(A) and on ΩDer(A) which generalize
the notion of metric on vector fields on M and on de Rham differential forms. We will
need this notion to be able to construct a Yang-Mills type action for noncommutative
connections.

We will see that this notion of metric will produce a mechanism similar to the one
encounter in Kaluza-Klein theories over principal fiber bundles.

3.1.1 Metrics

Definition 3.1 We will call a (pseudo-)metric on Der(A), a symmetric Z(A)-bilinear
application (i.e. an element of (S2

Z(A)Der(A))⋆Z(A) ):

g : Der(A) ⊗Z(A) Der(A) −→ Z(A)

15



We will say that this metric is non degenerate if:

g♭ : Der(A) −→ Ω1
Der

(A)

X 7−→ [Y 7→ g(X ,Y)]

is injective and Ω1
Der

(A) is span by its Z(A)-submodule (Im g♭).

It is known that Der(A) ≃ (Ω1
Der(A))∗A = HomA

A(Ω1
Der(A),A) and then, Der(A) can be

consider as a sub module of Hom
Z(A)
Z(A)(Ω

1
Der(A),A). In this sense, we can see Der(A) as a

A−A bimodule, which is here isomorphic to A⊗Z(A) Der(A). We can easily extend g to
an homomorphism of A-bimodule2:

g : Der(A) ⊗A Der(A) −→ A ,

by imposing g(a·X ·b, c·Y ·d) = a·b·c·d·g(X ,Y) for all a, b, c, d ∈ A and all X ,Y ∈ Der(A),
with g(X ,Y) ∈ Z(A). Then the non degeneracy condition on g is equivalent to say that
g♭ is a A bimodule homomorphism which is bijective. We will call h# its inverse. Then we
can define a notion of metric on Ω1

Der(A) by considering the A-bimodule homomorphism:

h : Ω1
Der(A) ⊗A Ω1

Der(A) −→ A

(ω, η) 7−→ g(h#(ω), h#(η))

This notion of metric can easily be extend to a notion of metric on ΩDer(A) as an homo-
morphism of A-bimodule:

h : ΩDer(A) ⊗A ΩDer(A) −→ A

For that, we pose for elements of ΩDer(A) of the form ω = Πiω
(i) with ω(i) ∈ Im(g♭) ⊂

Ω1
Der(A):

h(ω, η) =

{
O if deg(ω) 6= deg(η)

det((h(ω(i), η(j)))i,j∈[1,N ]) for n = deg(ω) = deg(η)

We then extend this definition to all elements of ΩDer(A) by linearity and action of A.
We will say that h is the metric inverse of g and that g and h define on A a (pseudo-)

Riemannian structure.

3.1.2 Decomposition of the metric and reference connection

We will show the following proposition:

Proposition 3.1 For a Riemannian structure on A given by a metric g on Der(A), such
that gInt = ad∗g is non degenerate, then there exist a unique connection ∇ on End(E) such
that:

g(∇X, adγ) = 0 ∀X ∈ Γ(M), γ ∈ A (28)

2In order to simplify the notation, will use the notation Der(A) for the A-bimodule generate by Der(A).
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Demonstration :

The application gInt is a Z(A)-bilinear application from A0 to Z(A) and we can as-

sociate to it an application: g♭
Int : A0 → A

⋆Z(A)
0 . We will denote h

#
Int its inverse. As we

have done for h#, we can extend h
#
Int to an homomorphism A⊗Z(A) A

⋆
0 → A⊗Z(A) A0 and

define the inverse metric hInt of gInt. Then it make sens to consider the application:

α(X ) = −g(X , ad◦h#
Int(IdA0)) = −hInt(ad∗g♭(X ), IdA0)

where the element ad ◦ h
#
Int(IdA0) is in the A bimodule generate by Int(A). We can check

by a simple calculation that α(adγ) = −γ for all γ ∈ A0. Then α define a connection ∇
on End(E) which is given by the formula:

∇ρ(X ) = X + ad(α(X )) ∀X ∈ Der(A) .

This connection satisfies the relation (28) and the non degeneracy of gInt shows its unique-
ness. �

From the previous proposition, we deduce the following property on every metric on
Der(A) which is non degenerate along fibers, i.e. for which the metric ad∗ g is non degen-
erate.

Property 3.2 If g is a metric non degenerate along fibers, then it can be decomposed as:

g = ρ∗gM + α∗gInt , with gM = ∇∗g and gInt = ad∗ g .

We can remark that this decomposition is similar to the one previously encounter for
noncommutative 1-forms.

We also have the following property:

Property 3.3 For a metric g as in proposition 3.1 and with inverse metric h, we have
that:

gM♭ = ∇∗ ◦ g♭ ◦ ∇ has for inverse hM# = ρ ◦ h# ◦ ρ∗

h
#
Int

= α ◦ h# ◦ α∗ has for inverse g♭
Int

= ad∗ ◦g♭ ◦ ad

The equation (28) has its equivalent for h, which is:

h(ρ∗µ, α∗η) = 0 ∀µ ∈ Ω(M, End(E)), ∀η ∈ A⊗Z(A) A
∗
0 .

Finally, we have that the metric h on Ω1
Der

(A) can be decomposed in the following way:

h = ∇∗h
M + ad∗ hInt , with hM = ρ∗h and hInt = α∗h .

Remark 2 We can remark that it is possible to construct a metric from an ordinary metric
gM on M and a connection ∇ on P and a non degenerate symmetric bilinear form on A0.

Remark 3 The Killing form on sln define a particular internal metric which has the
particularity to being invariant through the action of Der(A). We can compare this internal
metric as an equivalent of the internal 1-form iθ which is also Der(A)-invariant.
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3.1.3 Local expressions of the metric

We will give local expressions of a metric satisfying the conditions of proposition 3.1. We
will work over an open chart U with coordinates xµ and a basis Ea of hermitian matrices
of sln. In this basis, we can describe the metric gloc by its components:

gloc(∂µ, ∂ν) = gµν gloc(∂µ, adEb
) = gµb

gloc(adEa
, ∂ν) = gaν gloc(adEa

, adEb
) = gab

If we denote B = (∂µ, adEa
) the local basis of derivations, we will denote the components

of the metric by:

(gloc)B =

(
gµν gµb

gaν gab

)

Now, from the previous proposition, we can define a noncommutative 1-form α which
will have for local expression:

αloc = Eaα
a = Ea(A

a − iθa)

We denote B⋆ = (dxµ, iθa) the dual basis of B, and Aa is a local 1-form in Ω(U) ⊗ sln,
called the gauge potential. It is defined by:

Aa
µ = −hab

Intgbµ and (hab
Int) = (gab)

−1 .

A more appropriate basis to describe the metric is obviously the basis B′ = (∇µ, adEa
),

with ∇µ = ∇∂µ
= ∂µ + adAµ

, for derivations, and the dual basis B′⋆ = (dxµ,−αa) for
1-forms. We have in this basis:

(gloc)B′ =

(
gM

µν 0
0 gab

)
, with gM

µν = gloc(∇µ,∇ν) = gµν − Aa
µAb

νgab .

We denote the components of hloc in the dual basis B⋆ = (dxµ, iθa):

hloc(dxµ, dxν) = hµν hloc(dxµ, iθb) = hµb

hloc(iθ
a, dxν) = haν hloc(iθ

a, iθb) = hab

We have the property that:

Aa
µ = gM

µνh
aν and (gM

µν) = (hµν)−1 ,

and in the dual basis B′⋆ = (dxµ,−αa), hloc take the diagonal form:

(hloc)B′⋆ =

(
hµν 0
0 hab

Int

)
with hab

Int = hab − hµνAa
µAb

ν

If we return to the basis B and B′, the metric g and h have the following form:

(gloc)B =

(
gµν −Aa

µgab

−gabA
b
ν gab

)
(hloc)B =

(
hµν hµνAb

ν

Aa
µh

µν hab

)
.

Remark 4 The expressions that have obtain are similar to expressions that we could have
obtain by the formulation of a Kaluza-Klein theory on the principal fiber bundle P .
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3.2 Integration

It is possible to define(see [5]) an integration “along fibers”:

∆nc : ΩDer(A) −→ Ω(M)

In [5], the metric used to define this integration was the Killing metric. The construction
was based on the cycle, in the sens of [12], introduced in [13] for matrix algebras. For an
algebra of endomorphisms with an arbitrary Riemannian structure, we can generalize this
construction by considering a cycle on “fibers” which is not necessary invariant. Then it
easy to construct a cycle (ΩDer(A), Ø) on A by considering the application:

Ø : ΩDer(A) −→ C

ω 7→ ∆M ◦∆nc ω

with ∆M the usual integration on the manifold M and ∆nc the integration along fibers. One
can construct this cycle in a similar way than in [5] using the metric gab = gloc(adEa

, adEa
)

(in local coordinates) instead of the Killing metric on matrices.

3.2.1 Hodge operation

As in the commutative case, when A comes with a Riemannian structure, it is then natural
to define a Hodge operation:

⋆ : Ωk
Der(A) → Ωd+n2−1−k

Der (A) , (29)

with d the dimension of the manifold M and n the rank of the fibers of E.
Locally, an element ω ∈ Ωr

Der(A) can be write ωloc = ωµI ,rJ
dxµI αrJ , with I and J

multi-indices. Then the Hodge operation is define locally by the formula:

(⋆ω)loc =
(−1)|J |(d−|I|)

(d − |I|)!(n2 − 1 − |J |)!
ωµI ,rJ

hµIνI ǫM
νIνK

hrJsJ

Int ǫsJsL
dxνKαsL ,

with ǫM and ǫ the tensors:

ǫM
ν1···νd

=
√

det(gM
µν) δ1··· d

ν1···νd

ǫs1···sn2−1
=

√
det(gab) δ1··· n2−1

s1···sn2−1
.

where the symbol δ1 ··· N
A1···AN

is the totally anti-symmetric Krönecker symbol (the determinant
of the matrix (δI

AJ
)I,J∈[1,N ], whith δ the usual Krönecker symbol).

One check easily that this form is of degree (d+n2−1−r) and that the Hodge operation
satisfies:

⋆⋆ = (−1)r(d+n2−1−r)
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on forms of degree r.
Now, we can write the metric in the following way:

h(ω, η) = ⋆−1(ω ⋆ η) if ω and η have the same degree

= 0 elsewhere

with ω, η ∈ ΩDer(A).
One can also easily extend the Hodge operation to ΩDer(A,F), the differential complex

construct for any P -associate module F defined in section 1.6.

3.2.2 Hermitian structure and scalar product on N.C. tensorial forms.

Let F a right A-module. We call an hermitian structure on a F an application:

〈 , 〉 : F ⊗C∞(M) F −→ A

We can obviously extend it on the complex ΩDer(A,F) to an application:

〈 , 〉 : ΩDer(A,F) ⊗C∞(M) ΩDer(A,F) −→ ΩDer(A)

With such an hermitian structure and a hodge operation on ΩDer(A,F), we can define
a scalar product on ΩDer(A,F) which is defined for two elements ω, η ∈ ΩDer(A,F) by:

(ω, η) = Ø〈ω, ⋆η〉

4 The noncommutative Yang-Mills model

4.1 Yang-Mills action

In this section, we will construct an action for an arbitrary noncommutative connection ∇̂
on a right module M over an endomorphism algebra A and which is associated to P .

We will consider a Riemannian structure on A, given by a non-degenerate metric g

on Der(A) and a metric h on Ω1
Der(A) as define in section 3.1. We have seen that this

Riemannian structure naturally define an ordinary connection ∇ on End E. Then, this
connection can also be used to decomposed the degrees of freedom of the N.C. connection
∇̂ in term of a tensorial form a and scalar fields as introduce in the section 2. We can
associate to this connection a curvature noncommutative 2-form and consider the minimal
action principle based on the functional:

S[∇̂] = ‖Ω‖2 = (Ω, Ω) = Ø〈Ω, ⋆Ω〉 .

If we use the ordinary connection coming from the metric to decompose the curvature into
an horizontal and a vertical part, than this action split into three terms:

S[ω] = ‖R(F ) + ∇a + a2 − ϕ(F )‖2

+ ‖∇Aϕ + [ã, ϕ]‖2 + ‖(ϕ ◦ α)2 − ϕ ◦ α2‖2 . (30)
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We can remark that it is essential to use the ordinary connection coming from the metric
to decompose the degrees of freedom of the noncommutative connection ∇̂, otherwise the
decomposition of the action would have been a lot more complicated.

This action generalize the action obtain in [14] for the algebra C∞(M)⊗Mn(C), which
can be consider as the endomorphism algebra associated to a trivial fiber bundle. So, we
can recover the action found in [14] by taking a trivial fiber bundle E and a gauge potential
Aµ = 0. The principal difference with the trivial situation correspond to the introduction
of a reference connection coming from a Riemannian structure over A. This connection
is necessary in order to decompose correctly the different local expressions. However, we
must notice that global effects can arise due to the topology of the vector bundle E. So,
a careful analysis of the equations of motion and of the vacuums must be perform in this
case.

4.2 Analysis of the vacuums

For the Euclidian action (with positive signature), the vacuums are given by the following
solutions:





[ϕ(Ea), ϕ(Eb)] = ϕ([Ea, Eb])

∇ϕ + [a, ϕ] = 0

R(F ) + ∇a + a2 = ϕ(F )

⇒






ϕ = Ri representation of sun(C)

dϕ + [(R − ϕ)(A) + a, ϕ] = 0

(R − ϕ)(F ) + ∇a + a2 = 0

where A is the local gauge potential of ∇.
We can try to resolve this system of equations. We can first remark that there always

exists a good global solution which is ϕ = R and a = 0. We can remark that for this
solution, ϕ is constant.

The existence of other global solutions may depends of the structure of the vector
bundle E. To characterize this fact, we can first remark that the potential, the third
term in the formula (30), vanish when ϕ is a representation of the Lie algebra A0. In the
trivial situation, it was shown in [14] that all this solutions correspond to vacuums and
can be map to constant representations of sln by a gauge transformations. Hence, gauge
inequivalent vacuums were classified by inequivalent classes of representations of sln. In
the case of a non trivial fiber bundles, we can see that when ϕ is a general representation
of A0, it can no longer be mapped to a constant representation in general (for ϕ 6= R and
ϕ 6= 0). This simply mean that a gauge transformation on a noncommutative connection
can not compensate the variations of fields due to changing of charts. This phenomenon
also mean that general configurations which have a zero potential energy will be necessary
non constant and so, most of the time, they will not describe vacuums. We have yet
to discuss the case of the trivial representation ϕ = 0, a = 0. We can see that this
configuration correspond to a vacuum if and only if the reference curvature 2-form F is
zero. So, if the fiber bundle E does not admit connections with vanishing curvature, this
configuration will not correspond to a vacuum.

We can conclude from this analysis that in the case of a non trivial fiber bundle, it
can happen that some vacuums of the trivial situation disappear. The only vacuum of the
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trivial situation which remain to be a vacuum is the configuration ϕ = R, a = 0 which
correspond to the massive sector in the Higgs mechanism picture. We can so naively say
that the topology of the space-time manifold M seems disturb the Higgs mechanism in
such a model of symmetry breaking and that the non trivial structure of the vector bundle
furnish a kind of selection rule in the vacuums.
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Appendix

A Levi-Cività connection

A.1 Definitions

It is possible to introduce the concept of linear connection [15] on Der(A) and to associate
to any Riemannian structure a unique linear connection without torsion which left the
metric invariant. We call such a connection a Levi-Cività connection.

We precise this notions in the following definitions:

Definition A.1 (Linear connection) A linear connection is a connection on the Z(A)-
module Der(A), i.e. an application:

Der(A) → End(Der(A))

X 7→ DX

which satisfy

DX (fY) = X (f)Y + fDX (Y) DfX (Y) = fDX (Y) ∀X ,Y ∈ Der(A), ∀f ∈ Z(A) .

The application D can also be view as an application

Der(A) → ΩDer(A,Der(A))

Definition A.2 (Torsion) The torsion TD associate to a linear connection D is the non-
commutative tensorial 2-form TD ∈ Ω2

Der
(A,Der(A)) defined by the formula:

TD(X ,Y) = DX (Y) − DY(X ) − [X ,Y ] .

Definition A.3 (Levi-Cività connection) The Levi-Cività connection associated to a
metric g on Der(A) is the unique linear connection without trosion (TD = 0) which left
the metric g invariant:

X (g(Y ,Z)) = g(DXY ,Z) + g(Y , DXY) ,

Then, the Levi-Cività connection is defined by the following relations:

2g(DXY ,Z) = X (g(Y ,Z)) + Y(g(X ,Z)) −Z(g(X ,Y))

+ g([X ,Y ],Z) + g([Z,Y ],X ) + g([Z,X ],Y) . (31)
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A.1.1 Local expressions and Christoffel symbols

We consider a metric g on Der(A) and a metric h on ΩDer(A) which define a Rieman-
nian structure on A. Let D be the Levi-Cività connection canonicaly associated to it.
The expressions of the Levi-Cività connection in the local basis of derivations (∇µ, adEa

)
will define the Christoffel symbols. With the notations take in section 3.1.3, we find the
following expressions for the covariant derivatives:

D∇µ
∇ν =

1

2
adFµν

+Γσ
µν∇σ + Γd

µν adEd

D∇µ
adEb

= ad∇µEb
+Γσ

µb∇σ + Γd
µb adEd

DadEa
∇ν = Γσ

aν∇σ + Γd
aν adEd

DadEa
adEb

=
1

2
ad[Ea,Eb] +Γσ

ab∇σ + Γd
ab adEd

.

where the coefficients ΓC
AB are the Christoffel symbols. They are defined by the following

formulas:

Γσ
µν =

1

2
hσρ(∂µgM

νρ + ∂νg
M
µρ − ∂ρg

M
µν) Γd

µν = 0

Γσ
µb =

1

2
hσρgebF

e
ρµ Γd

µb =
1

2
hdc

Int∇µgbc

Γσ
aν =

1

2
hσρgeaF

e
ρν Γd

aν =
1

2
hdc

Int∇νgac

Γσ
ab = −

1

2
hσρ∇ρgab Γd

ab =
1

2
hdc

IntLadEc
gab

where we have used the notations:

LadEc
gab = (LadEc

gInt)(Ea, Eb) = −Ce
cageb − Ce

cbgae

∇µEa = [Aµ, Ea] = Ab
µC

c
baEc

∇µgab = (L∇µ
gInt)(Ea, Eb) = ∂µgab − Ae

µCf
eagfb − Ae

µC
f
ebgaf

Fµν = [∇µ,∇ν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] .

This linear connection has the same decomposition than the Levi-Cività connection
defined in a Kaluza-Klein theory on a principal fiber bundle with structure group SU(n)
(see [16, 17, 18]) and the calculations of quantities like curvature are identical than in the
present context. The scalar curvature can be used to define an Einstein-Hilbert action
for the algebra A. This action can be decomposed into three parts, corresponding to
vertical and horizontal degrees of freedom, as we have done for the Yang-Mills type action
for noncommutative connections. One part will be the ordianry Einstein-Hilbert action
associated to the metric gM on the base manifold. An other part will be a Yang-Mills
action for the ordinary connection ∇ associated to the metric (see section 3.1.2). The last
part is an action with a quartic potential for scalar fields. This scalar fields correspond
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to the vertical degrees of freedom of the metric. We don’t reproduce here the calculations
because they are identical to the one made in [16, 17, 18] in the context of a Kaluza-Klein
theory.
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[7] M. Dubois-Violette, “derivations and noncommutative differential calculus,”.
LPTHE-ORSAY-88-19.

[8] P. B. Lecomte, “Sur la suite exacte canonique associée à un fibré principal,” Bulletin
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