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The studies carried out on adhesion by the group “Modeling in Contact Mechanics” at
the LMA are reviewed in this paper and recent applica-tions are presented. Based on
the introduction of the adhesion intensity variable developed by M. Fr´emond,
different forms of a model coupling adhesion to unilateral contact and friction have
been developed. The formulations are given either under the form of implicit
variational in-equalities or the one of complementarity problems. Both quasi-static and
dynamic formulations are considered.

The model is non smooth because we do not use any regularization for the unilateral
conditions and for the friction, i.e. Signorini conditions and strict Coulomb law are
written. In the thermodynamics analysis, the state and the complementarity laws are
then written using sub-differentials and differential inclusions because of the non
convexity and non differentiability of the potentials. For the dynamics, the formulation
is given in term of differential measures in order to deal with the non continuity of the
velocities that may occur in the solutions.

This work therefore owes much to the theories and the numerical scheme
developed by J. J. Moreau and M. Jean.

Keywords: Unilateral contact, friction, adhesion, non smooth dynamics

Introduction

In order to describe the smooth transition from a completely adhesive
contact to a usual unilateral contact (Signorini conditions) with Coulomb
friction, a model based on interface damage has been first developed for
quasi-static problems in (Raous et al, 1997, Cangémi, 1997, Raous et al,
1999, Raous, 1999). Using a dynamic formulation, the model was then
extended to account for the brittle behaviour occurring when a crack
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interacts with fiber-matrix interfaces in composite materials in (Raous-
Monerie, 2002, Monerie, 2000). More recently, the model has been used
to study metal/concrete interfaces in reinforced concrete in civil engi-
neering (Karray et al, submitted), delamination of coated bodies (Raous
et al, 2002), delamination of glued assembling in civil engineering (Raous
et al, 2004), cohesive masonry (Jean et al, 2001, Acary, 2001) and pro-
duction of wear particles in bio-engineering (Baudriller, 2003).

The quasi-static formulation was extended to deal with hyperelastic-
ity in (Bretelle et al, 2001). Mathematical results about the existence
of the solutions were given in (Cocou-Rocca, 2000) without using any
regularization on the contact conditions.

1. The model

The RCC model (Raous-Cangémi-Cocou) has been first given in (Ra-
ous et al, 1997, Cangémi, 1997) and then extensively presented in (Raous
et al, 1999). It has been extended to the present form including progres-
sive friction with the term (1 − β) in (Monerie, 2000, Raous-Monerie,
2002). Adhesion is characterized in this model by the internal variable β,
introduced by Frémond (Frémond, 1987, Frémond, 1988), which denotes
the intensity of adhesion. The introduction of a damageable stiffness
of the interface ensures a good continuity between the two models dur-
ing the competition between friction and adhesion. The behaviour of
the interface is described by the following relations, where (9.1) gives
the unilateral contact with adhesion, (9.2) gives the Coulomb friction
with adhesion and (9.3) gives the evolution of the adhesion intensity β.
Initially, when the adhesion is complete, the interface is elastic as long
as the energy threshold w is not reached. After that, damage of the
interface occurs and consequently, on the one hand, the adhesion inten-
sity β and the apparent stiffness β2CN and β2CT decrease, and on the
other hand, friction begins to operate. When the adhesion is completely
broken (β = 0), we get the classical Signorini problem with Coulomb
friction.

−Rr
N

+ β2CN uN ≥ 0 , uN ≥ 0 ,
(
−Rr

N
+ β2CN uN

)
. uN = 0, (9.1)

Rr
T

= β2CT uT , Rr
N

= RN ,
‖RT − Rr

T
‖ ≤ µ(1 − β)

∣∣RN − β2CN uN

∣∣ , (9.2)

with

if ‖RT − Rr
T
‖ < µ(1 − β)

∣∣RN − β2CN uN

∣∣ ⇒ u̇T = 0,
if ‖RT − Rr

T
‖ = µ(1 − β)

∣∣RN − β2CN uN

∣∣ ⇒ ∃λ ≥ 0, u̇T = λ(RT − Rr
T
),
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β̇ = −
 [(

w − β (CN u2
N

+ CT ‖uT‖2) − k∆β
)
−/

b

]1/p

if β ∈ [0, 1[,

β̇ ≤ −
[(

w − β (CN u2
N

+ CT ‖uT‖2) − k∆β
)
−/

b

]1/p

if β = 1 .

(9.3)

RN and uN are the algebraic values of the normal components of the con-
tact force and those of the relative displacement between the two bodies
(occupying domains Ω1 and Ω2) defined on the contact boundary Γc,
and RT and uT are the tangential components of this contact force and
those of this relative displacement. Subscript r denotes the reversible
parts. The constitutive parameters of this interface law are as follows:
CN and CT are the initial stiffnesses of the interface (full adhesion), µ is
the friction coefficient, w is the decohesion energy, p is a power coefficient
(p = 1 in what follows) and k = 0 in what follows.
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Figure 9.1. Normal behaviour of the interface

Fig. 9.1 and Fig. 9.2 give the normal and tangential behaviour of
the interface during loading and unloading (CN = CT = C, u0 =

√
ω/C

and R0 =
√

ωC) . It should be noted that the Signorini conditions are
strictly imposed when compression occurs. References on other mod-
els can be found in (Raous, 1999, Raous et al, 1999) and a comparison
between some of them is made in (Monerie et al, 1998) (models devel-
oped by Tvergaard-Needleman, Girard-Feyel-Chaboche, Michel-Suquet,
Allix-Ladevèze). Using penalization and augmented Lagrangian on a
similar model to the RCC one, Talon-Curnier have solved the quasi-
static problem using generalized Newton method (Talon-Curnier, 2003).
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Figure 9.2. Tangential behaviour of the interface

2. The thermodynamics

In the framework of continuum thermodynamics, the contact zone
is assumed to be a material surface and the local constitutive laws
are obtained by choosing two specific forms of the free energy and the
dissipation potential associated to the surface. The following thermo-
dynamic variables are introduced: the relative displacements (uN n,uT)
and the adhesion intensity β are chosen as the state variables, and the
contact force R and a decohesion force G, as the associated thermody-
namic forces. The thermodynamic analysis given for the RCC model in
(Raous et al, 1999) has been extended to the present model in (Monerie,
2000, Raous-Monerie, 2002) in order to obtain relations (9.1) to (9.3),
where friction is progressively introduced in the form of the term (1−β)µ
into (9.2).

Expressions (9.4) and (9.5) are adopted for the free energy Ψ(uN, uT, β)

and the potential of dissipation Φ
(
u̇T, β̇

)
. In (9.4), the indicator func-

tion I
K̃

(where K̃ = {v / v ≥ 0} ) imposes the unilateral condition
uN ≥ 0 and the indicator function IP (where P = {γ / 0 ≤ γ ≤ 1})
imposes the condition β ∈ [0, 1]. In (9.5), the indicator function IC−(β̇)
(where C− = {γ / γ ≤ 0}) imposes that β̇ ≤ 0: the adhesion can only
decrease and cannot be regenerated (it is irreversible) in the present
model.

Ψ(uN, uT, β) =
1

2
β2 CN u2

N
+

1

2
β2 CT ‖uT‖2−w β +I

K̃
(uN)+IP (β) (9.4)

Φ
(
u̇T, β̇

)
= µ(1−β)

∣∣RN − β2 CN uN

∣∣ ‖u̇T‖+
b

p + 1

∣∣∣β̇
∣∣∣
p+1
+ IC−(β̇) (9.5)
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Ψ has a part which is convex but not differentiable and another part
which is differentiable but not convex with respect to the pair (u, β). Φ
is convex but has a part which is not differentiable. The state laws and
the complementarity laws are then written as follows in order to obtain
the contact behaviour laws given in section 1 (Raous et al, 1999).

⎧
⎪⎨
⎪⎩

Rr
T = ∂Ψd

∂[uT ] Rr
N − ∂Ψd

∂[uN ] ∈ ∂I
K̃

([uN ])

−Gβ − ∂Ψd

∂β ∈ ∂I[0,1](β)

(9.6)

RN = Rr
N (Rir

T , Gβ) ∈ ∂Φ( ˙[uT ], β̇) (9.7)

3. The quasi-static formulation

The formulation and the approximation of quasi-static frictional prob-
lems given in (Cocou et al, 1996) have been extended to adhesion prob-
lems in (Raous et al, 1997, Raous et al, 1999, Raous, 1999). The problem
can be here set as the coupling between two variational inequalities (one
of which is implicit) and a differential equation.

Problem (P1): Find (ũ, β) ∈ W 1,2(0, T ;V ) × W 1,2(0, T ; H) such that
ũ(0) = ũ0 ∈ K, β(0) = β0 ∈ H

⋂
[0, 1[ and for ∀t ∈ [0, T ], ũ(t) ∈ K, and

∀v ∈ V a(ũ, v − ˙̃u) + j(β, uN, vT) − j(β, uN, u̇T) +∫

ΓC

β2 CTuT . (vT − u̇T)ds ≥ (F̃ , v − ˙̃u) − 〈RN, vN − u̇N〉, (9.8)

−〈RN, z − uN〉 +

∫

ΓC

β2 CNuN.(z − uN)ds ≥ 0 ∀z ∈ K, (9.9)

β̇ = −1/b
[
w − (CN u2

N
+ CT ‖uT‖2)β

]
−

a.e. on ΓC , (9.10)

where:
- ũ = (u1, u2) where u1 and u2 define the displacements in Ω1 and Ω2,

- V = (V 1, V 2), V α =
{

vα ∈
[
H1(Ωα)

]3
; vα = 0 a.e. on Γα

U

}
, α = 1, 2,

- H = L∞(Γc),
- K =

{
v = (v1, v2) ∈ V 1 × V 2; vN ≥ 0 a.e. on Γc

}
, where Γc is the

contact boundary between the two solids Ω1 and Ω2,
- a(. , .) is the bilinear form associated to the elasticity mapping,

- j(β, uN, vT) =

∫

ΓC

µ(1 − β)
∣∣∣RN − β2CNuN

∣∣∣ ‖vT‖ds ,

- F̃ = (F 1, F 2) are the given force densities applied to solid 1 and to
solid 2 respectively.
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By using an incremental approximation, it has been established in
(Raous et al, 1997, Raous et al, 1999) that the numerical solutions can
be obtained by adapting the methods that we have developed for dealing
with classical frictional unilateral contacts (Raous, 1999). The solutions
have mainly been obtained as follows:

- either by taking a fixed point on the sliding threshold and solving a
sequence of minimization problems with the choice between a projected
Gauss-Seidel method (accelerated by relaxation or Aitken processes) and
a projected conjugate gradient method (Raous-Barbarin, 1992),
- or by taking a complementarity formulation, using a mathematical
programming method (Lemke’s method).
With the adhesion model, these solvers are coupled with the numerical
integration of the differential equation on β by using θ-methods (θ = 1
is often chosen). Implementation of the algorithms has been conducted
in our finite element code GYPTIS90 (Latil-Raous, 1991).

4. The dynamics

Depending on the characteristics of the interface, especially when b
tends towards zero (no viscosity for the evolution of the intensity of ad-
hesion), brittle behaviour can be obtained and the inertia effects have to
be taken into account. A 3D dynamic formulation has been developed
(Raous-Monerie, 2002, Monerie-Raous, 1999, Monerie-Acary, 2001). Be-
cause of the non smooth character of these interface laws, the dynamics
is written in terms of differential measures as follows (where q denotes
the displacement and r the contact force):

M(q, t)dq̇ = F (q, q̇, t)dt − rdν , (9.11)

where dq̇ is a differential measure associated with q̇(t):

∫ t2

t1

dq̇ = q(t+2 ) − q(t−1 ) ∀t2 > t1 , (9.12)

and hence:
∫ t2

t1

M(q, t)dq̇ =

∫ t2

t1

F (q, q̇, t)dt −
∫

]t1, t2]
rdν, (9.13)

q(t2) = q(t1) +

∫ t2

t1

q̇(τ)dτ. (9.14)

The Non Smooth Contact Dynamics method developed by (Moreau,
1998, Moreau, 1994, Moreau, 1999, Jean, 1999) has been extended to the
treatment of the RCC model. A solver for dealing with adhesion has been
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implemented in the finite element code LMGC (Jean, 1999, Monerie-
Acary, 2001). Another solver based on complementarity formulation
(Lemke’s method) dealing with non smooth dynamics problems has been
implemented in the finite element code SIMEM3 at the LMA (Vola et
al, 1998).

5. Applications

Delamination benchmarks
Various benchmarks for simulating delamination have been devel-
oped in the framework of a joint project with the Laboratoire
Central des Ponts et Chaussées (Raous et al, 2004) focusing on
adhesion and gluing in civil engineering.

(a) Deformation
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Figure 9.3. Delamination of two layers submitted to vertical traction

Micro-indentation of a single fiber in a composite material
This model was first developed in order to describe the behaviour of
the fiber-matrix interface of composite materials (Cangémi, 1997,
Raous et al, 1999). The parameters of the model were identified on
micro-indentation experiments performed at the ONERA on sin-
gle fibers. Physical and mechanical considerations are taken into
account in the identification procedure: for example, the values of
the initial interface stiffness CN, CT are taken to be in the range
corresponding to the elastic properties of the oxides located at the
interfaces. The viscosity parameter b is particularly difficult to
identify: experiments with different loading velocities are required
for this purpose. The validity of the model was then confirmed
by taking various kinds of loadings (especially cyclic loadings) and
comparing experimental results with those obtained in the numer-
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Figure 9.4. Shear delamination of a block submitted to horizontal loading

ical simulation whith the same interface parameters. Details of
these studies can be found in (Cangémi, 1997, Raous et al, 1999)
and later in (Monerie, 2000).

Interaction between cracks and fiber/matrix interfaces in
composite materials
Again in collaboration with ONERA, during the thesis (Monerie,
2000), the RCC model has been used to investigate the different
ways in which cracks propagate through a composite material and
how they depend on the interface properties. The adhesion model
has been used to account both the crack propagation (decohesive
crack with no viscosity, i.e. b = 0) and the interface behaviour.
Crack bridging, crack trapping and fiber breaking can be observed
depending on the interface characteristics (Raous-Monerie, 2002,
Monerie, 2000). On Fig. 9.5 adhesion is broken in the black zones.

Metal/concrete interfaces in reinforced concrete
In civil engineering, we are now testing the RCC model for the
adhesive contact between steel and concrete in reinforced concrete.
Pull-out tests of a steel shaft are being simulated in the framework
of a joint project between LMA and ENIT in Tunisia (Karray et al,
submitted). In that case, a variable friction coefficient (depending
on the sliding displacement) has been used in order to take into
account the wear of the surface which occurs during the sliding
which seems to be quite significant with concrete. Another version
of the way used to introduce friction has been used: (1−β2) instead
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Figure 9.5. Interaction of a crack and a fiber/matrix interface

of (1 − β). Results with CT = CN=16N/mm3 , µ varying from
0.45 to 0.3 and f(β) = (1 - β2) are given in Fig. 9.6.
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Figure 9.6. Simulation of a pull-out test on reinforced concrete

Delamination of a coated body
A simplified approach to the delamination of a coated body has
been conducted to simulate the indentation of a thin Chrome layer
adhering to a metal body (Raous et al, 2002).

Cohesive masonry
The RCC model has been used in (Jean et al, 2001, Acary, 2001)
to simulate the behaviour of a cohesive dome. In Fig. 9.8, the
deformation of a dome let on pillars and submitted to gravity is
shown.
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Figure 9.7. Indentation of a coated surface

+1.77E+04

+9.20E+04

+1.66E+05

+2.41E+05

+3.15E+05

+3.89E+05

+4.64E+05

+5.38E+05

+6.12E+05

+6.87E+05

+7.61E+05

+8.35E+05

+9.10E+05

+9.84E+05

Figure 9.8. Behaviour of a cohesive dome

Wear in biomechanics
In order to simulate the wear occurring in biomaterials and espe-
cially the production of wear particles, H. Baudriller (Baudriller,
2003) has used the RCC model in a volumic sense. The adhesive
model is used on all the interfaces between the finite elements. Fig
9.9 gives an example of production of fragments.

Figure 9.9. Fragmentation of a block
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