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problems ∗

Pierre Béal
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Abstract

We present a mesh adaptation method by node movement for two-

dimensional linear elasticity problems with unilateral contact. The adap-

tation is based on a hierarchical estimator on finite element edges and the

node displacement techniques use an analogy of the mesh topology with

a spring network. We show, through numerical examples, the efficiency

of the present adaptation method.
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1 Introduction

In contact mechanics the determination of the contact region is often a chal-
lenging issue. This one generally depends on the algorithm of contact detection
and its accuracy closely depends on the mesh size. For these reasons, it seems
natural to consider very fine meshes in the neighborhood of this unknown region
by making use of mesh adaptation techniques.
The aim of this paper is to present an algorithm of topology preserving mesh
adaptation. This one is based on node movement rather than mesh classical
refinement/coarsening techniques. The choice of this so-called r–adaptation
strategy is motivated at least by two reasons : node movement techniques pre-
serve matrix structure and are then well suited for large size computations,
e.g., three-dimensional and/or nonlinear cases. Moreover, these ones are well
adapted for differentiation with respect to node positions in order to calculate
sensitivities like for shape optimization for instance.
r–adaptation techniques are not new but are not so popular in the numerical
analysis literature. The reason for this is their lack of flexibility and their ability
to generate unesthetic meshes with a risk of degeneracy. We show in the present
work that much accuracy can be recovered by slightly concentrating the mesh
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in the regions where “something happens”, for instance in the contact region
and especially in the vicinity of its boundary where contact pressure fails to be
smooth. It turns out that one can mainly distinguish in the literature two types
of r–adaptation formulations.
The first one consists in formulating the mesh adaptation problem as an en-
ergy minimization one, the optimization parameters being the solution of the
boundary value problem as well as the position of mesh nodes. This approach
is clearly possible only if the boundary value problem is equivalent to a mini-
mization one which is the case for frictionless contact elasticity problems. Such
a method was studied in Haslinger et al. [1992] where mathematical results of
existence of an optimal mesh are proved. In Tourigny – Hülsemann [1998], the
authors give an iteration procedure to obtain the optimal mesh. The method is
essentially based on a Gauss-Seidel like method. Our tests show that although
the method is attractive since well adapted for the problem formulation, the
iteration algorithm seems to diverge in situations and even in the cases where it
converges, edge swapping of the triangles is required. This constraint obviously
alters the mesh topology. Let us note that, in addition, that all optimization
approaches contain a difficulty related to the fact that the nondegeneracy of the
triangulation must be imposed as a constraint in the problem and that this con-
straint must be satisfied at each iteration of the optimization process. This issue
requires than the use of interior penalty method which significantly complicates
the setting of the mesh adaptation problem.
We have adopted, in the present work, an adaptation technique based on hierar-
chical estimators. In other words, we use higher order interpolation to evaluate
local errors. It is noteworthy that edge based errors are well suited for contact
problems for their ability to generate anisotropic meshes. These ones have been
introduced mainly in Habashi et al. [1996], D’azevedo [1991] and D’azevedo
and Simpson [1991]. We have formulated these techniques the case of a mesh
r–adaptation procedure. It turns out that, with some restrictions that will be
outlined in the paper, the adaptation allows using a moderately coarse mesh
with an acceptable accuracy.
The paper is organized as follows : in the following section, we present a model
linear plane strain elasticity problem with a Signorini’s contact condition. We
define a standard finite element approximation of the problem and an itera-
tion procedure to solve the discretized contact problem. Section 3 is devoted
to the presentation of the mesh adaptation procedure. In particular, an im-
portant issue is the recovery of the hessian of the approximate solution. The
mesh movement algorithm is also described. Section 4 presents some numerical
tests to confirm the validity and efficiency of the method. Finally, Section 5
draws some conclusions about the described method and some possible future
developments.

2 Position of the Problem

In this section, we recall the setting of a unilateral contact Signorini’s problem
for linear elasticity.
We consider a deformable body occupying in its reference configuration a domain
Ω of R

2 with boundary Γ divided into three disjoined subsets ΓD, ΓN and ΓC .
We consider furthermore a rigid obstacle described by the curve x2 = φ(x1).
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We assume that the domain, in its reference configuration, is located “above”
the obstacle, i.e.

x2 ≥ φ(x1) for all x = (x1, x2) ∈ Ω.
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Figure 1: A unilateral contact problem (φ(x1) = 0)

Let d denote the contact distance function defined by

d(u)(x) := φ(x1) − x2 − u2(x),

where u(x) = (u1(x), u2(x)) is the displacement of the point x. The set of
admissible displacements is defined by

V := {v ∈ H1(Ω; R2); v = 0 on ΓD, d(v) ≤ 0 on ΓC},

where H1(Ω; R2) is the space of vector valued functions v such that
∫

Ω

(
|v|2 +

∣∣∣
∂v

∂x1

∣∣∣
2

+
∣∣∣
∂v

∂x2

∣∣∣
2)

dx < +∞.

Here above, we have imposed to the deformed domain to be above the obstacle.
Moreover, we have imposed a Dirichlet boundary condition on ΓD and a traction
free boundary condition on ΓN . We assume moreover that the boundary ΓD

does not interact with the obstacle in the deformed configuration. The energy
functional is given by

W : v ∈ V 7→ W (v) =
1

2
a(v, v) −

∫

Ω

f · v dx −

∫

ΓN

g · v ds ∈ R,

where a is the bilinear symmetric form defined by the linear elasticity problem.
Namely,

a(u, v) =

2∑

i,j,k,l=1

∫

Ω

cijklεij(u)εij(v) dx, (2.1)

and f (resp. g) is a smooth function that stands for the applied body (resp.

boundary) force. In (2.1), (cijkl) is the tensor of elastic coefficients and

εij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
1 ≤ i, j ≤ 2
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is the symmetric tensor of infinitesimal deformations. We choose here the case
of an isotropic and homogeneous material, i.e. (cijkl) is given by

cijkl = µ(δikδjl + δilδjk) + λδijδkl 1 ≤ i, j, k, l ≤ 2,

the real numbers λ ≥ 0 and µ > 0 denoting Lamé coefficients of the material, and
δij is the Kronecker delta. These coefficients are related in plane deformations
to the Young modulus E and Poisson coefficient ν by relationships :

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

The equilibrium problem consists in seeking a minimum of the functional W :

Find u ∈ V such that W (u) ≤ W (v) for all v ∈ V . (2.2)

It is well known (cf. Kikuchi – Oden [1988]) that the solution of Problem (2.2)
satisfies the variational inequality :





u ∈ V ,

a(u, v − u) ≥

∫

Ω

f · (v − u) dx

+

∫

ΓN

g · (v − u) ds for all v ∈ V .

2.1 The discrete problem

Let us consider now a finite element approximation of Problem (2.2). We assume
that the domain Ω is polygonal and we consider a triangulation Kh of Ω into
triangles of diameters ≤ h. We define the space

X h = {v ∈ C0(Ω; R2); v|K ∈ (P1)
2 for all K ∈ Kh, v = 0 on ΓD},

where P1 is the space of affine polynomials. Let (ai)1≤i≤I denote the set of
nodes on ΓC . We define furthermore, for v ∈ X h the contact distance at nodes
ai of ΓC by di(u) := d(u)(ai), 1 ≤ i ≤ I. We define the set :

Vh := {v ∈ X h; di(v) ≤ 0, 1 ≤ i ≤ I}.

Notice that here, the set Vh is not included in V . This feature is at the origin
of some numerical difficulties in contact problems.
For each function v ∈ X h, we define a function dh(v) on ΓC , continuous, piece-
wise linear and that coincides with di(v) at node ai, for all i ∈ {1, . . . , I}.
The discrete problem is defined by :

Find uh ∈ Vh such that W (uh) ≤ W (v) for all v ∈ Vh. (2.3)

2.2 A penalty solution method

In order to solve the constrained optimization problem (2.3), we use a standard
external penalty method. For this, we define for ε > 0 the penalized energy
functional

Wε(v) := W (v) +
1

2ε

∫

ΓC

(dh(v)+)2 ds.
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The penalized problem is defined by :

Find uh ∈ X h such that Wε(u
h) ≤ Wε(v) for all v ∈ X h. (2.4)

It is well known and easy to prove that the unique solution of Problem (2.4)
converges, in the energy norm, to the solution to Problem (2.3) when ε → 0.
Here, the principal interest of the penalized problem (2.4) is that the nonpene-
tration constraint is removed. It can be also shown that the solution to Problem
(2.4) solves the variational problem :






uh ∈ X h,

a(uh, v) +
1

ε

∫

ΓC

dh(uh)+v2 ds =

∫

Ω

f · v dx +

∫

ΓN

g · v ds

for all v ∈ X h.

The obtained problem is thus a nonlinear one due to the nonlinearity of the
boundary integral in the variational formulation (2.5). It remains then to build
an iterative scheme to solve the nonlinearity.

2.3 An iteration procedure

In order to solve the nonlinear problem (2.5), we consider the following simple
iteration scheme :






Given (uh)n ∈ X h,

Find (uh)n+1 ∈ X h such that

a((uh)n+1, v) +
1

ε

∫

ΓC

αndh((uh)n+1)v2 ds =

∫

Ω

f · v dx +

∫

ΓN

g · v ds

for all v ∈ X h,

for n = 0, 1, 2, . . . , where

αn =

{
1 if dh((uh)n) > 0,

0 otherwise.

Hence, the iteration procedure consists, for each iteration step, in detecting
contact for each node by using displacements at the previous iteration.
Numerical experiments have shown good properties of this iteration process :
in all cases convergence is achieved in some iterations.

Remark 2.1. Although the penalty term involves integrals of polynomials of
degree 2, we use to evaluate it the trapezoidal rule in order to avoid well known
numerical locking.

3 Mesh r-Adaptation

Let us define our r–adaptation method. This one uses, like most of mesh adap-
tation algorithms, an a posteriori error estimator. The estimator here is said
to be hierarchical in the sense that it is based on a P2–approximation of the
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solution. The presented method was developed by Peraire et al. [1992], Habashi
et al. [1996], D’azevedo and Simpson [1991], and Fortin [1998]. This one is of-
ten used for an h–adaptation method, i.e. adaptation by mesh refinement of
coarsening. We use it here for an r–adaptation.
Let us present the method as briefly as possible, the details can be found in
papers by Peraire et al. [1992], Habashi et al. [1996], D’azevedo and Simpson
[1991], Fortin [1998]. Consider a triangle K and a polynomial ũh of degree 2
on K. In practice, ũh will stand for the restriction to K of a piecewise P2

approximation of the solution of the problem. We consider furthermore the P1–
interpolate of ũh, denoted by uh. let eh = ũh − uh. It can be shown (D’azevedo
and Simpson [1991]) that the error function e is proportional to the hessian H

of ũh. Using this property, we adopt the following adaptation criterion : We
seek a mesh that achieves an equidistribution of the error eh on the edges of the
triangulation. Therefore, if E is an edge of the triangulation and if τE is the
unit tangent to E, the second derivative along the τE–direction is given by

∂2u

∂τ 2
E

= τT
EHτE .

Let xk and xℓ denote the two vertices of the edge E. If the (constant) matrix
H is semi–positive definite, we define the error estimator on E by

ekℓ = (aT
kℓHakℓ)

1

2 .

Note that, in the case where H is positive definite, this error defines a new metric
on the edge E. In this case, error equidistribution on the edges is equivalent to
prescribe the all edges have the same length in the metric associated to H .

3.1 Practical computation of the estimator

The calculation of the error ekℓ can be achieved in the following way : We have
if g is the gradient of ũh and if we note that this one is an affine vector on the
edge E :

Ha =




aT
kℓ

∂g

∂x1

aT
kℓ

∂g

∂x2


 =

∂g

∂akℓ

= gk − gkℓ,

where gk = g(xk).
When the matrix H is not semi-positive definite, we consider (as in Fortin
[1998]) the spectral decomposition of H :

H = RT
ΛR,

where Λ is the diagonal matrix of eigenvalues of H. Let us denote by |Λ| the
matrix obtained from Λ by replacing the eigenvalues by their absolute values
and by |H| the matrix

|H| = RT |Λ|R.

Using the inequality

|bT H b| ≤ bT |H | b for all b ∈ R
2,

6



we replace the hessian matrix H by |H |. We now want to calculate the error

ekℓ = (aT
kℓ|H|akℓ)

1

2

using ũh. We have, if âij = Raij and ĝ = Rg :

aT
kℓ|H |akℓ = aT

kℓR
T |Λ|akℓ

= aT
kℓR

T (|ĝk| − |ĝℓ|)

= aT
kℓR

T (|Rgk| − |Rgℓ|). (3.1)

It remains now to calculate the hessian. The difficulty resides in the fact that,
since the approximate solution uh is only continuous, its second partial deriva-
tives are Dirac distributions on element edges. To approximate these distribu-
tions we proceed as follows : A continuous approximation of the hessian matrix
entries is obtained by the following projection :

Hij(xk) ≈

∫

Ωk

∂2uh

∂xi∂xj

φk dx

∫

Ωk

φk dx

, (3.2)

where φk is the basis function associated to node xk and Ωk is the union of trian-
gles that share this node. Let us point out that the above integrals are actually
duality brackets since, as previously mentioned, the second order derivatives
of the approximate solution are only distributions. Effective calculation of the
above expression is then obtained by use of the Green’s formula :

Hij(xk) ≈

∫

Γk

∂uh

∂xi

φknj ds −

∫

Ωk

∂uh

∂xi

∂φk

∂xj

dx

∫

Ωk

φk dx

,

where Γk is the union of boundaries of triangles of Ωk, and n = (ni) is the
outward unit normal to the edges Γk.

3.2 Node displacement Procedure

Let us now define an algorithm to move the nodes according to the computed
edge errors. We have adopted for this a classical technique that considers the
finite element mesh as a network of elastic springs with stiffness coefficients
that depend on the error estimator on each edge (cf. Habashi et al. [1996]).
In this technique, node positions are interpreted as the solution of an energy
minimization problem. The Hooke’s law for this spring network is given by

n∑

ℓ=1

(xℓ − x)κℓ(x) = 0. (3.3)

where κℓ(x) is the constant of spring with ends x and xℓ. The dependency of
this one on the estimator is empirically chosen as

κℓ(x) =
eℓ(x)

‖xℓ − x‖
,

7



where eℓ(x) is the metric of the edge of vertices x and xℓ ; in particular, eℓ(xk) =
akℓ = xk−xℓ. In order to solve the nonlinear equation (3.3), we use a relaxation
procedure, i.e., we update node positions by the iteration procedure :

xp+1 = xp + ω

n∑

ℓ=1

(xℓ − xp)κℓ(x
p)

n∑

ℓ=1

κℓ(x
p)

, p = 0, 1, . . .

where ω is the relaxation parameter. In practice, we do not iterate until com-
plete convergence, i.e., we iterate until an acceptable discrepancy (10−3, say) is
obtained.

Remark 3.1. The case of boundary nodes is treated separately. Here we project
the computed new position of each boundary node on the actual boundary. Let
us note that another difficulty is related to the fact that boundary nodes define
the actual boundary of the domain. Any displacement of these nodes modifies
hence this boundary.

3.3 Remarks

1. Numerical experimentation of this method shows that this one is a priori

only valid for structured meshes, i.e., meshes with a constant node con-
nectivity. This difficulty can be explained by the fact that error equidis-
tribution on the edges does not coincide with energy minimization of the
spring network in the unstructured case. Numerical tests have shown poor
behavior in the unstructured case.

2. In practice, convergence of the iteration process depends on the relaxation
parameter ω. Obviously, a small value of ω ensures convergence but with
a large number of iterations. Moreover, a limitation on the node displace-
ments must be included in the procedure in order to prevent elements from
degeneracy. This constraint is simply implemented by prescribing relative
upper and lower bounds on edge lengths.

3.4 Numerical tests

In order to validate the previously described adaptation method, we first present
a simple test on an explicitly given function and then give two elasticity contact
problems.

3.4.1 A validation test

Consider the domain Ω = (0, 1)× (0, 1) of R
2. We construct a uniform mesh by

dividing each edge of Ω into 10× 10 sub-intervals. The adaptation of this mesh
for the function

f(x) = e−10 x1+x2 .

is given in Fig. 2. The number of iterations was 51 for a value of ω = 0.8.
We have also tested the behavior of the node movement procedure when using
quadrilateral Q1 elements, the obtained mesh is plotted in Fig. (3). We note

8



Figure 2: Adapted mesh (case P1)

here that the orthogonality of the mesh is preserved after adaptation. This is
due to the separation of variables in the tested function f . For this example,
the number of iterations was 49 for a value of ω = 0.8.

Figure 3: Adapted mesh (case Q1)

3.4.2 A cantilever beam

We consider a cantilever beam defined by the domain Ω = (0, 4) × (0.05, 1)
clamped at its end x1 = 0 and submitted at its top side x2 = 1 to a normal
traction p. The beam is furthermore in potential contact with a rigid horizontal
obstacle defined by the line x2 = 0. We choose the data :

p = −100, E = 2 000, ν = 0.3.
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Figure 4 presents a uniform coarse mesh of the beam.

0 1 2 3 4

Figure 4: Cantilever beam : A uniform mesh

The adaptation algorithm produces the mesh plotted in Figure 5.

0 1 2 3 4

Figure 5: Cantilever beam : Adapted mesh

We have compared the contact pressure at the bottom x2 = 0 with the one
obtained with the coarse mesh (Fig. 6) and with a fine mesh (320 triangles).
Figure 5 shows that, on the one hand, the mesh is displaced in the neighborhood
of the boundary of the contact region. On the other hand, the contact pressure
is, as expected, more accurate for the adapted mesh than for the initial one.
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Initial mesh  
Adapted mesh  
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Figure 6: Cantilever beam : Comparison of contact pressures
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3.4.3 The Hertz test

A classical test in the numerical simulation of contact mechanics is the Hertz
contact problem. Let us recall that this one consists in a disk in contact with a
horizontal obstacle. The disk is submitted along its radius to a uniform pressure
f . The details can be found in Kikuchi – Oden [1988] for instance. It is shown
that if the radius is “large enough” then the half width of the contact region is
given by

b = 2

√
fR(1 − ν2)

πE

and the contact pressure is given by

p(x) =
2f

πb2

√
b2 − x2

1, x ∈ ΓC .

Computations are carried out using a half disk with radius R = 8. Figure 7
illustrates the initial mesh of the domain in its reference configuration while
Figures 8 and 9 illustrate the adapted mesh in the reference and deformed
configurations respectively. We can note that the adaptation process has refined
the mesh in the contact region and particularly at the boundary of this region
where the contact pressure admits a discontinuity of the gradient. This was
clearly the main goal of the present study.

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Figure 7: Hertz Test : Initial mesh

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Figure 8: Hertz Test : Adapted mesh

The efficiency of the method appears more clearly when one considers the cal-
culated contact pressures and the determination of the contact region (Fig. 10).
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Figure 9: Hertz Test : Adapted mesh (Deformed configuration)

This one is numerically identified as the set of nodes where the boundary trac-
tion is not vanishing.
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Figure 10: Hertz Test : Comparison of contact pressures

3.4.4 A disk test

We present here a test inspired by the contact of a car wheel on a rigid obstacle
standing for a road. The tire is idealized by an elastic disk Ω of radius 0.5. The
obstacle is materialized by the line x2 = 0. Elastic properties are given by

E = 107, ν = 0.45.

Finally, the “wheel” is assumed to be submitted to a vertical displacement at
its center equal to u2 = −0.05. This singular condition ideally models the
connection between the wheel and other parts of the vehicle.
Figures 11 and 12 show respectively the initial and adapted mesh of the reference
configuration.
Clearly, the mesh concentrates about the center where a singularity occurs due
to the prescribed vertical displacement. In addition, as expected, a refinement
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Figure 11: Disk Test : Initial Mesh
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Figure 12: Disk Test : Adapted Mesh

occurs in the contact region as well as around the singularity that occurs at the
disk center. We can also note that the mesh symmetry around the axis x1 = 0 is
almost perfectly preserved. Further calculation with a nonsymmetric mesh has
given bad results. Figure 13 shows a comparison of contact pressures at contact
nodes. We have compared the solution obtained for the initial and adapted
meshes (made of 1184 elements) and a reference solution obtained with a very
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fine mesh (the disk is partitioned into 200 sectors and 50 layers, yielding 39400
elements). This figure shows that, except for the maximal pressure point, the
obtained adapted pressure is very close to the reference one and, as for the Hertz
test, the result is more spectacular for contact detection. It is also noticeable
that this result is obtained for a very coarse mesh.
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Figure 13: Disk Test : Comparison of contact pressures

4 Conclusion

We have developed an r–adaptation mesh method that enabled solving with
sufficient accuracy a unilateral contact elasticity problem. This method has
as an advantage its simplicity and its modularity since this one is completely
independent of the solver (the method actually works for all elliptic linear and
nonlinear problems). Its main drawback is its limitation to structured meshes
(triangular and quadrilateral). We can conjecture this is mainly due to the
analogy of the finite element mesh with a spring network. A promising issue is
the replacement of this analogy with the solution of a boundary value problem.
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