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CHARACTERIZATION OF THE OPTIMAL PLANS FOR THE

MONGE-KANTOROVICH TRANSPORT PROBLEM

CHRISTIAN LÉONARD

Abstract. We present a general method, based on conjugate duality, for solving a con-
vex minimization problem without assuming unnecessary topological restrictions on the
constraint set. It leads to dual equalities and characterizations of the minimizers without
constraint qualification.
As an example of application, the Monge-Kantorovich optimal transport problem is
solved in great detail. In particular, the optimal transport plans are characterized with-
out restriction. This characterization improves the already existing literature on the
subject.
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1. Introduction

Although the title highlights Monge-Kantorovich optimal transport problem, the aim
of this paper is twofold.

• First, one presents an “extended” saddle-point method for solving a convex mini-
mization problem: It is shown how to implement the standard saddle-point method
in such a way that topological restrictions on the constraint sets (the so-called con-
straint qualifications) may essentially be removed. Of course, so doing one has to
pay the price of solving an arising new problem. Namely, one has to compute the
extension of some function; this may be a rather difficult task in some situations,
but it will be immediate in the Monge-Kantorovich case. This method is based
on conjugate duality as developed by R.T. Rockafellar in [7]. Dual equalities and
characterizations of the minimizers are obtained without constraint qualification.

• Then, these “extended” saddle-point abstract results are applied to the Monge-
Kantorovich optimal transport problem. In particular, the optimal plans are char-
acterized without any restriction. This characterization improves the already ex-
isting literature on the subject.
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2 CHRISTIAN LÉONARD

Other applications of the extended saddle-point method are investigated by the author
in [4] in connection with entropy minimization.

The Monge-Kantorovich transport problem. Let us take A and B two Polish (sep-
arable complete metric) spaces furnished with their respective Borel σ-fields, a lower
semicontinuous (cost) function c : A×B → [0,∞] which may take infinite values and
two probability measures µ ∈ PA and ν ∈ PB on A and B. We denote PA,PB and PAB
the sets of all Borel probability measures on A, B and A×B. The Monge-Kantorovich
problem is

minimize π ∈ PAB 7→
∫

A×B

c(a, b) π(dadb) subject to π ∈ P (µ, ν) (MK)

where P (µ, ν) is the set of all π ∈ PAB with prescribed marginals πA = µ on A and
πB = ν on B. Note that c is measurable since it is lower semicontinuous and the integral∫
A×B

c dπ ∈ [0,∞] is well-defined since c ≥ 0.
For a general account on this active field of research, see the books of S. Rachev and
L. Rüschendorf [6] and C. Villani [10, 11].

Definition 1.1 (Optimal plan). One says that π ∈ P (µ, ν) is an optimal plan if it
minimizes γ 7→

∫
A×B c dγ on P (µ, ν) and

∫
A×B c dπ <∞.

It is well-known that there exists at least an optimal plan if and only if there exists some
πo ∈ P (µ, ν) such that

∫
A×B

c dπo <∞; this will be recovered at Theorem 3.2. Definition

1.1 throws away the uninteresting case where
∫
A×B

c dπ = ∞ for all π ∈ P (µ, ν). Note also
that, since Monge-Kantorovich problem is not a strictly convex problem, infinitely many
optimal plans may exist.

Already existing optimality criteria. Some usual criteria are expressed in terms of cyclical
c-monotonicity.

Definition 1.2 (Cyclically c-monotone plan). A subset Γ ⊂ A×B is said to be cyclically
c-monotone if for any integer n ≥ 1 and any family (a1, b1), . . . , (an, bn) of points in Γ,∑n

i=1 c(ai, bi) ≤
∑n

i=1 c(ai, bi+1) with the convention bn+1 = b1.
A probability measure π ∈ PAB is said to be cyclically c-monotone if it is concentrated on
a measurable cyclically c-monotone set Γ, i.e. π(Γ) = 1.

This notion goes back to the seminal paper [8] by L. Rüschendorf where the standard
cyclical monotonicity of convex functions introduced by Rockafellar has been extended in
view of solving Monge-Kantorovich problem.
While completing this paper, the author has been informed of the recent work [9] by
W. Schachermayer and J. Teichman who have improved previous characterization criteria
in several directions. The following definition introduced in [9] is useful to state [9]’s
results in a concise way.

Definition 1.3 (Strongly c-monotone plan). A transport plan π ∈ P (µ, ν) is called
strongly c-monotone if there exist two measurable functions ϕ and ψ on A and B taking
their values in [−∞,+∞) such that

{
ϕ⊕ ψ ≤ c everywhere
ϕ⊕ ψ = c π-almost everywhere.

(1.4)

Here and below, we denote ϕ⊕ ψ(a, b) = ϕ(a) + ψ(b).
One easily shows that a strongly c-monotone plan is cyclically c-monotone.
The main results of [9] are collected in the next two theorems.
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Theorem 1.5 ([9]). Let c be a lower semicontinuous nonnegative finitely-valued function.
If there exists some πo ∈ P (µ, ν) such that

∫
A×B c dπ

o <∞, then for any π ∈ P (µ, ν), the
following three statements are equivalent:

(i) π is an optimal plan;
(ii) π is cyclically c-monotone;
(iii) π is strongly c-monotone.

This result significantly improves an already existing criterion (see [11], Chapter 5)
where the same conclusion holds with a finitely-valued function c under the following
constraint qualification: There exist two nonnegative measurable functions cA and cB on
A and B such that

c ≤ cA ⊕ cB,

∫

A

cA dµ <∞ and

∫

B

cB dν <∞. (1.6)

Note that (1.6) implies that
∫
A×B

c dπ < ∞ for all π ∈ P (µ, ν). It also improves a result

of L. Ambrosio and A. Pratelli [1] who have shown that, when c is finitely-valued and
under the moment condition

µ
({
a ∈ A;

∫
B
c(a, b) ν(db) <∞

})
> 0

ν
({
b ∈ B;

∫
A
c(a, b)µ(da) <∞

})
> 0

(1.7)

which is weaker than (1.6), any cyclically c-monotone π in P (µ, ν) is both an optimal and
a strongly c-monotone plan. For (1.7) to hold, it is enough that

∫
A×B

c dµ⊗ ν < ∞. It is

also proved in [1] that the functions ϕ and ψ in (1.4) can be taken such that ϕ ∈ L1(A, µ)
and ψ ∈ L1(B, ν).

The next result is concerned with cost functions c which may take infinite values.

Theorem 1.8 ([1, 9]). Let c be a lower semicontinuous [0,∞]-valued function.

(a) Any optimal plan is cyclically c-monotone.
(b) If

µ⊗ ν({c <∞}) = 1, (1.9)

then any optimal plan is strongly c-monotone.
(c) If there exists some πo ∈ P (µ, ν) such that

∫
A×B

c dπo < ∞, then any strongly c-

monotone plan in P (µ, ν) is an optimal plan.

Statement (a) is proved in [1], while statements (b) and (c) are taken from [9].

Examples 1.10.

(1) An interesting example of a cyclically c-monotone plan which is not optimal is ex-
hibited in [1], in a situation where c takes infinite values and an optimal plan exists.
This is in contrast with Theorem 1.5 and emphasizes that cyclical c-monotonicity
isn’t the right notion to consider in the general case.

(2) Take A = B = [0, 1], µ(da) = da, ν(db) = db the Lebesgue measure on [0, 1] and
c(a, b) = 0 if a = b and +∞ otherwise. Condition (1.9) is restrictive enough to
rule this basic situation out. In the present paper, this restriction is removed.

A new optimality criterion. Our main results about the optimal plans are Theorems 3.3
and 3.5. Next theorem sums them up.

Theorem 1.11. Let c be a lower semicontinuous [0,∞]-valued function and let π ∈
P (µ, ν) satisfy

∫
A×B c dπ <∞.
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(a) π is an optimal plan if and only if there exist two finitely-valued functions ϕ ∈ RA
and ψ ∈ RB such that{

ϕ⊕ ψ ≤ c everywhere and
ϕ⊕ ψ = c π-almost everywhere.

(1.12)

(b) If π is an optimal plan, there exist two finitely-valued functions ϕ ∈ RA and ψ ∈ RB
such that ϕ ∈ L1(A, µ), ψ ∈ L1(B, ν),{

|ϕ⊕ ψ| ≤ c everywhere and
ϕ⊕ ψ = c on supp π

⋂{c <∞}. (1.13)

Remarks 1.14. These results improve previous literature on the subject in several aspects.

a. No restriction is imposed on c, µ and ν. In particular, (1.9) is removed.
b. For the optimality criterion (a), the so-called Kantorovich potentials ϕ and ψ are

finitely-valued and are not required to be a priori measurable. This is in contrast with
the definition of strongly c-monotone plans.

c. The analogue of (b) is usually stated as follows: If π is an optimal plan, there exist two
[−∞,∞)-valued functions ϕ ∈ L1(A, µ) and ψ ∈ L1(B, ν) such that (1.12) holds, even
in the case where c is required to be finite. The improvements carried by (1.13) are:

- The equality ϕ ⊕ ψ = c holds on supp π ∩ {c < ∞} rather than only π-almost
everywhere;

- The Kantorovich potentials ϕ and ψ are finitely-valued;
- We obtain |ϕ⊕ ψ| ≤ c rather than ϕ⊕ ψ ≤ c.

As an immediate consequence of Theorem 1.11, we obtain the following

Corollary 1.15. Any π ∈ P (µ, ν) satisfying
∫
A×B

c dπ < ∞ is an optimal plan if and
only if it is strongly c-monotone.

But the sufficient condition of Theorem 1.11 is weaker than the strong c-monotonicity,
while its necessary condition is stronger.

Finally, let us indicate why considering cost functions c possibly achieving the value +∞
is a significant extension. In the finite-valued case, the domain of c is the closed rectangle
A×B. If one wants to forbid transporting mass from A to B outside some closed subset
S of A×B and only consider the finitely-valued lower semicontinuous cost function c̃ on
S, simply consider the extended cost function c on A×B which matches with c̃ on S and
is +∞ outside. In this case, c has a closed effective domain. But there are also lower
semicontinuous functions c whose domain is an increasing union of closed subsets.

An abstract convex problem and related questions. Monge-Kantorovich problem
is a particular instance of an abstract convex minimization problem which we present
now.

Let U be a vector space, L = U∗ its algebraic dual space, Φ a (−∞,+∞]-valued convex
function on U and Φ∗ its convex conjugate for the duality 〈U ,L〉. Let Y be another vector
space, X = Y∗ its algebraic dual space and T : L → X is a linear operator. We consider
the convex minimization problem

minimize Φ∗(ℓ) subject to Tℓ ∈ C, ℓ ∈ L (P )

where C is a convex subset of X . As is well known, Fenchel’s duality leads to the dual
problem

maximize inf
x∈C

〈y, x〉 − Φ(T ∗y), y ∈ Y (D)

where T ∗ is the adjoint of T.
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What about Monge-Kantorovich problem? We denote CA, CB and CAB the spaces of
all continuous bounded functions on A, B and A×B; C∗

A, C
∗
B and C∗

AB are their algebraic
dual spaces. Taking L = C∗

AB the algebraic dual of U = CAB, T will be the marginal
operator Tℓ = (ℓA, ℓB) ∈ X := C∗

A × C∗
B which in restriction to those ℓ’s in L which

are probability measures gives the marginals ℓA on A and ℓB on B and C will simply be
{(µ, ν)}. Choosing Φ(ϕ, ψ) = 0 if ϕ⊕ψ ≤ c and Φ(ϕ, ψ) = +∞ otherwise, will lead us to
Monge-Kantorovich problem.

The usual questions related to (P ) and (D) are

• the dual equality: Does inf(P ) = sup(D) hold?
• the primal attainment: Does there exist a solution ℓ̄ to (P )? What about the

minimizing sequences, if any?
• the dual attainment: Does there exist a solution ȳ to (D)?
• the representation of the primal solutions: Find an identity of the type: ℓ̄ ∈
∂Φ(T ∗ȳ).

We are going to answer them in terms of some extension Φ̄ of Φ under the weak assumption

T−1(C) ∩ diffdom Φ∗ 6= ∅ (1.16)

where
diffdom Φ∗ = {ℓ ∈ L; ∂L∗Φ∗(ℓ) 6= ∅}

is the subset of all vectors in L at which Φ∗ admits a nonempty subdifferential with
respect to the algebraic dual pairing 〈L,L∗〉 where L∗ is the algebraic dual space of L.
Note that by the geometric version of Hahn-Banach theorem, the intrinsic core of the
effective domain of the objective function Φ∗ : icordom Φ∗, is included in diffdom Φ∗.
Hence, a useful criterion to get (1.16) is

T−1(C) ∩ icordom Φ∗ 6= ∅. (1.17)

The drawback of such a general approach is that one has to compute the extension Φ̄.
In specific examples, this might be a difficult task. The extension Φ̄ is made precise at
Section 3 for Monge-Kantorovich problem. Another important example of application
of our general results is the problem of minimizing an entropy functional under a convex
constraint. This is worked out by the author in [4] with probabilistic applications in mind;
it is based on the explicit expression of the corresponding function Φ̄.

The restriction (1.17) seems very weak since icordom Φ∗ is the notion of interior which
gives the largest possible set. As T−1(C)∩dom Φ∗ = ∅ implies that (P ) has no solution, the
only case where the problem remains open when icordom Φ∗ is nonempty is the situation
where T−1(C) and dom Φ∗ are tangent to each other. This is used in [4] to obtain general
results for convex integral functionals.
Nevertheless, the Monge-Kantorovich optimal transport problem provides an interesting
case where the constraints never stand in icordom Φ∗ (see Remark 3.18) so that (1.17) is
useless and (1.16) is the right assumption to be used.

The strategy. A usual way to prove the dual attainment and obtain some representation
of the primal solutions is to require that the constraint is qualified: a property which
allows to separate the convex constraint set T−1(C) and the level sets of the objective
function. The strategy of this article is different: one chooses ad hoc topologies so that
the level sets have nonempty interiors. This also allows to apply Hahn-Banach theorem,
but this time the constraint set is not required to be qualified. We take the rule not to in-
troduce arbitrary topological assumptions since (P ) is expressed without any topological
notion. Because of the convexity of the problem, one takes advantage of geometric easy
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properties: the topologies to be considered later are associated with seminorms which are
gauges of level sets of the convex functions Φ and Φ∗. They are useful tools to work with
the geometry of (P ).
It appears that when the constraints are infinite-dimensional one can choose several dif-
ferent spaces Y without modifying the value and the solutions of (P ). So that for a small
space Y the dual attainment is not the rule. As a consequence, we are facing the problem
of finding an extension of (D) which admits solutions in generic cases and such that the
representation of the primal solution is ℓ̄ ∈ ∂Φ̄(T ∗ȳ) where Φ̄ is some extension of Φ.
We are going to

• use the standard saddle-point approach to convex problems based on conjugate
duality as developed by Rockafellar in [7]

• with topologies which reflect some of the geometric structure of the objective
function.

These made-to-measure topologies are associated with the gauges of the level sets of Φ
and Φ∗.

Outline of the paper. The abstract results are stated without proof at Section 2. Their
proofs are postponed to Section 4. Section 3 is devoted to the application of the abstract
results to the Monge-Kantorovich optimal transport problem. Finally, basic results about
convex minimization and gauge functionals are recalled in the Appendix.

Notation. Let X and Y be topological vector spaces. The algebraic dual space of X is
X∗, the topological dual space of X is X ′. The topology of X weakened by Y is σ(X, Y )
and one writes 〈X, Y 〉 to specify that X and Y are in separating duality.
Let f : X → [−∞,+∞] be an extended numerical function. Its convex conjugate with
respect to 〈X, Y 〉 is f ∗(y) = supx∈X{〈x, y〉−f(x)} ∈ [−∞,+∞], y ∈ Y. Its subdifferential
at x with respect to 〈X, Y 〉 is ∂Y f(x) = {y ∈ Y ; f(x+ ξ) ≥ f(x) + 〈y, ξ〉, ∀ξ ∈ X}. If no
confusion occurs, one writes ∂f(x).
For each point a, ǫa is the Dirac measure at a.

Stop saying no, be strict. 1 The function sin x is not negative, but it is not nonnegative.
It is not decreasing, but it is not nondecreasing. All this does not make much sense and
is not far from being a nonsense for non-English speaking people. As a convention, we’ll
use the non-English way of saying that a positif function is a [0,∞)-valued function while
if it is (0,∞)-valued it is also strictly positif. The integer part is a croissant (increasing
in colloquial English) function and the exponential is also a strictly croissant function.
Symmetrically, we also use the notions of négatif (negative in colloquial English) and
strictly négatif, décroissant (decreasing in colloquial English) and strictly décroissant
functions or sequences. To be coherent, [0,∞) and (−∞, 0] are respectively the sets of
positif and négatif numbers, and ǫ > 0 is also strictly positif. We keep the French words
not to be mixed up with the usual way of writing mathematics in English.

2. The abstract convex minimization problem

In this section we give the statements of the results about the abstract convex minimiza-
tion problem. The dual equality and the primal attainment are stated at Theorem 2.6;
the dual attainment and the dual representation of the minimizers are stated at Theorems
2.9 and 2.13. Their proofs are postponed to Section 4.

1This is only a suggestion, not a demanding of the right to write maths differently.
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2.1. Basic diagram. Let Y be a vector space and X = Y∗ its algebraic dual space. It is
useful to define the constraint operator T by means of its adjoint T ∗ : Y → L∗ (L∗ is the
algebraic dual space of L), as follows. For all ℓ ∈ L, x ∈ X ,

T ℓ = x⇐⇒ ∀y ∈ Y , 〈T ∗y, ℓ〉L∗,L = 〈y, x〉Y ,X .
We shall assume that the restriction

T ∗(Y) ⊂ U (2.1)

holds, where U is identified with a subspace of L∗ = U∗∗. It follows that the diagram
〈
U , L

〉

T ∗
x

yT〈
Y , X

〉 (Diagram 0)

is meaningful.

2.2. Assumptions. Let us give the list of our main hypotheses.

(HΦ) 1- Φ : U → [0,+∞] is convex and Φ(0) = 0
2- ∀u ∈ U , ∃α > 0,Φ(αu) <∞
3- ∀u ∈ U , u 6= 0, ∃t ∈ R,Φ(tu) > 0

(HT ) 1- T ∗(Y) ⊂ U
2- ker T ∗ = {0}

(HC) C1
△

= C ∩ X1 is a convex σ(X1,Y1)-closed subset of X1

The definitions of the vector spaces X1 and Y1 which appear in the last assumption are
stated below at Section 2.3. For the moment, let us only say that if C is convex and
σ(X ,Y)-closed, then (HC) holds.

Comments about the assumptions.

- By construction, Φ∗ is a convex σ(L,U)-closed function, even if Φ is not convex.
Assuming the convexity of Φ is not a restriction.

- The assumption (HΦ1) also expresses that Φ achieves its minimum at u = 0 and
that Φ(0) = 0. This is a practical normalization requirement which will allow us
to build a gauge functional associated with Φ. More, (HΦ1) implies that Φ∗ also
shares this property. Gauge functionals related to Φ∗ will also appear later.

- With any convex function Φ̃ satisfying (HΦ2), one can associate a function Φ
satisfying (HΦ1) in the following manner. Because of (HΦ2), Φ̃(0) is finite and

there exists ℓo ∈ L such that ℓo ∈ ∂Φ̃(0). Then, Φ(u)
△

= Φ̃(u) − 〈ℓo, u〉 − Φ̃(0),

u ∈ U , satisfies (HΦ1) and Φ̃∗(ℓ) = Φ∗(ℓ− ℓo) − Φ̃(0), ℓ ∈ L.
- The hypothesis (HΦ3) is not a restriction. Indeed, assuming (HΦ1), let us suppose

that there exists a direction uo 6= 0 such that Φ(tuo) = 0 for all real t. Then any
ℓ ∈ L such that 〈ℓ, uo〉 6= 0 satisfies Φ∗(ℓ) ≥ supt∈R

t〈ℓ, uo〉 = +∞ and can’t be a
solution to (P ).

- The hypothesis (HT2) isn’t a restriction either: If y1 − y2 ∈ ker T ∗, we have
〈Tℓ, y1〉 = 〈Tℓ, y2〉, for all ℓ ∈ L. In other words, the spaces Y and Y/ker T ∗ both
specify the same constraint sets {ℓ ∈ L;Tℓ = x}.

The effective assumptions are the following ones.

- The specific form of the objective function Φ∗ as a convex conjugate makes it a
convex σ(L,U)-closed function.

- (HΦ2) and (HC) are geometric restrictions.
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- (HT1) is a regularity assumption on T.

2.3. Variants of (P ) and (D). These variants are expressed below in terms of new
spaces and functions. Let us first introduce them.

The norms | · |Φ and | · |Λ. Let Φ±(u) = max(Φ(u),Φ(−u)). By (HΦ1) and (HΦ2), {u ∈
U ; Φ±(u) ≤ 1} is a convex absorbing balanced set. Hence its gauge functional which is

defined for all u ∈ U by |u|Φ △

= inf{α > 0; Φ±(u/α)) ≤ 1} is a seminorm. Thanks to
hypothesis (HΦ3), it is a norm.
Taking (HT1) into account, one can define

Λ(y)
△

= Φ(T ∗y), y ∈ Y . (2.2)

Let Λ±(y) = max(Λ(y),Λ(−y)). The gauge functional on Y of the set {y ∈ Y ; Λ±(y) ≤ 1}
is |y|Λ △

= inf{α > 0; Λ±(y/α) ≤ 1}, y ∈ Y . Thanks to (HΦ) and (HT ), it is a norm and

|y|Λ = |T ∗y|Φ, y ∈ Y . (2.3)

The spaces. Let

U1 be the | · |Φ-completion of U and let

L1
△

= (U , | · |Φ)′ be the topological dual space of (U , | · |Φ).

Of course, we have (U1, | · |Φ)′ ∼= L1 ⊂ L where any ℓ in U ′
1 is identified with its restriction

to U . Similarly, we introduce

Y1 the | · |Λ-completion of Y and

X1
△

= (Y , | · |Λ)′ the topological dual space of (Y , | · |Λ).

We have (Y1, | · |Λ)′ ∼= X1 ⊂ X where any x in Y ′
1 is identified with its restriction to Y .

We also have to consider the algebraic dual space L∗
1 and X ∗

1 of L1 and X1.

The adjoint operators of T . It will be proved at Lemma 4.1 that

TL1 ⊂ X1 (2.4)

Let us denote T1 the restriction of T to L1 ⊂ L. By (2.4), we have T1 : L1 → X1. Let us
define its adjoint T ∗

2 : X ∗
1 → L∗

1 for all ω ∈ X ∗
1 by:

〈ℓ, T ∗
2ω〉L1,L∗

1
= 〈T1ℓ, ω〉X1,X ∗

1
, ∀ℓ ∈ L1.

This definition is meaningful, thanks to (2.4). We denote T ∗
1 the restriction of T ∗

2 to
Y1 ⊂ X ∗

1 . Of course, it is defined for any y ∈ Y1, by

〈ℓ, T ∗
1 y〉L1,L∗

1
= 〈y, T ℓ〉Y1,X1

, ∀ℓ ∈ L1.

It will proved at Lemma 4.1 that

T ∗
1 Y1 ⊂ U1 (2.5)

We have the inclusions Y ⊂ Y1 ⊂ X ∗
1 . The adjoint operators T ∗ and T ∗

1 are the restrictions
of T ∗

2 to Y and Y1.
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Some modifications of Φ and Λ. The convex conjugate of Φ the dual pairing 〈U ,L〉 is

Φ∗(ℓ)
△

= sup
u∈U

{〈u, ℓ〉 − Φ(u)}, ℓ ∈ L

We introduce the following modifications of Φ :

Φ0(u)
△

= sup
ℓ∈L

{〈u, ℓ〉 − Φ∗(ℓ)}, u ∈ U

Φ1(u)
△

= sup
ℓ∈L1

{〈u, ℓ〉 − Φ∗(ℓ)}, u ∈ U1

Φ2(ζ)
△

= sup
ℓ∈L1

{〈ℓ, ζ〉 − Φ∗(ℓ)}, ζ ∈ L∗
1.

They are respectively σ(U ,L), σ(U1,L1) and σ(L∗
1,L1)-closed convex functions. It is

immediate to see that the restriction of Φ2 to U1 is Φ1. As L1 = U ′
1, Φ1 is also the | · |Φ-

closed convex regularization of Φ. The function Φ2 is the extension Φ̄ which appears in
the introductory Section 1.
We also introduce

Λ0(y)
△

= Φ0(T
∗y), y ∈ Y

Λ1(y)
△

= Φ1(T
∗
1 y), y ∈ Y1

Λ2(ω)
△

= Φ2(T
∗
2 ω), ω ∈ X ∗

1

which look like the definition (2.2). Note that thanks to (HT1) and (2.5), the first equalities
are meaningful. Because of the previous remarks, the restriction of Λ2 to Y1 is Λ1.

The optimization problems. Let Φ∗
0 and Φ∗

1 be the convex conjugates of Φ0 and Φ1 with
respect to the dual pairings 〈U ,L〉 and 〈U1,L1〉 :

Φ∗
0(ℓ)

△

= sup
u∈U

{〈u, ℓ〉 − Φ0(u)}, ℓ ∈ L

Φ∗
1(ℓ)

△

= sup
u∈U1

{〈u, ℓ〉 − Φ1(u)}, ℓ ∈ L1

and Λ∗
0,Λ

∗
1 be the convex conjugates of Λ0,Λ1 with respect to the dual pairings 〈Y ,X〉

and 〈Y1,X1〉 :

Λ∗
0(x)

△

= sup
y∈Y

{〈y, x〉 − Λ0(y)}, x ∈ X

Λ∗
1(x)

△

= sup
y∈Y1

{〈y, x〉 − Λ1(y)}, x ∈ X1

Finally, denote
C1 = C ∩ X1.

The optimization problems to be considered are

minimize Φ∗(ℓ) subject to Tℓ ∈ C, ℓ ∈ L (P )

minimize Φ∗
1(ℓ) subject to Tℓ ∈ C1, ℓ ∈ L1 (P1)

minimize Λ∗
0(x) subject to x ∈ C1, x ∈ X1 (P1,X )

maximize inf
x∈C

〈y, x〉 − Λ0(y), y ∈ Y (D0)

maximize inf
x∈C1

〈y, x〉 − Λ1(y), y ∈ Y1 (D1)

maximize inf
x∈C1

〈x, ω〉 − Λ2(ω), ω ∈ X ∗
1 (D2)
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2.4. Statement of the abstract results. We are now ready to give answers to the
questions related to (P ) and (D) in an abstract setting.

Theorem 2.6 (Primal attainment and dual equality). Assume that (HΦ) and (HT ) hold.

(a) For all x in X , we have the little dual equality

inf{Φ∗(ℓ); ℓ ∈ L, T ℓ = x} = Λ∗
0(x) ∈ [0,∞]. (2.7)

Moreover, in restriction to X1, Λ∗
0 = Λ∗

1 and Λ∗
1 is σ(X1,Y1)-inf-compact.

(b) The problems (P ) and (P1) are equivalent: they have the same solutions and
inf(P ) = inf(P1) ∈ [0,∞].

(c) If C is convex and σ(X ,Y)-closed, we have the dual equality

inf(P ) = sup(D0) ∈ [0,∞].

Assume that (HΦ), (HT ) and (HC) hold.

(d) We have the dual equalities

inf(P ) = inf(P1) = sup(D1) = sup(D2) = inf
x∈C

Λ∗
0(x) ∈ [0,∞] (2.8)

(e) If in addition inf(P ) < ∞, then (P ) is attained in L1. Moreover, any minimizing
sequence for (P ) has σ(L1,U1)-cluster points and every such cluster point solves
(P ).

(f) Let ℓ̄ ∈ L1 be a solution to (P ), then x̄
△

= T ℓ̄ is a solution to (P1,X ) and inf(P ) =
Φ∗(ℓ̄) = Λ∗

0(x̄).

Theorem 2.9 (Dual attainment and representation. Interior convex constraint). Assume
that (HΦ), (HT ) and (HC) hold and also suppose that the interior constraint qualification

C ∩ icordom Λ∗
0 6= ∅ (2.10)

is satisfied. Then, the following statements hold true.

(a) The primal problem (P ) is attained in L1 and the dual problem (D2) is attained in
X ∗

1

(b) Any ℓ̄ ∈ L1 is a solution to (P ) if and only if there exists ω̄ ∈ X ∗
1 such that the

following three statements hold



(1) T ℓ̄ ∈ C
(2) 〈T ℓ̄, ω̄〉 ≤ 〈x, ω̄〉 for all x ∈ C1

(3) ℓ̄ ∈ ∂L1
Φ2(T

∗
2 ω̄)

More, these three statements hold if and only if: ℓ̄ is a solution to (P ), ω̄ is a solution
to (D2) and inf(P )=sup(D2).
It is well-known that the representation formula

ℓ̄ ∈ ∂L1
Φ2(T

∗
2 ω̄) (2.11)

is equivalent to Young’s identity

Φ∗(ℓ̄) + Φ2(T
∗
2 ω̄) = 〈T ℓ̄, ω̄〉. (2.12)

(c) Any solution ω̄ of (D2) shares the following properties
(1) ω̄ stands in the σ(X ∗

1 ,X1)-closure of dom Λ1.
(2) T ∗

2 ω̄ stands in the σ(L∗
1,L1)-closures of T ∗

1 (dom Λ1) and dom Φ.
(3) For any xo in C ∩ icordom Λ∗

1, ω̄ is jDxo
-upper semicontinuous and j−Dxo

-lower
semicontinuous at 0, where jDxo

and j−Dxo
are the gauge functionals on X1 of the

convex sets Dxo
= {x ∈ X1; Λ

∗
0(xo + x) ≤ Λ∗

0(xo) + 1} and −Dxo
.
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As will be seen at Section 3, the Monge-Kantorovich problem provides an important
example where no constraint is interior (see Remark 3.18). In order to solve it without
imposing constraint qualification, we are going to consider the more general situation
(1.16) where the constraint is said to be a subgradient constraint. This means that x̄ ∈
diffdom Λ∗

0 with

diffdom Λ∗
0 = {x ∈ X1; ∂X ∗

1
Λ∗

0(x) 6= ∅} where

∂X ∗
1
Λ∗

0(x) = {ω ∈ X ∗
1 ; Λ∗

0(x
′) ≥ Λ∗

0(x) + 〈x′ − x, ω〉, ∀x′ ∈ X1}.

Two new optimization problems to be considered are

minimize Φ∗(ℓ) subject to Tℓ = x̄, ℓ ∈ L (P x̄)

maximize 〈x̄, ω〉 − Λ2(ω), ω ∈ X ∗
1 (Dx̄

2 )

where x̄ ∈ X . This corresponds to the simplified case where C is reduced to the single
point x̄.

Theorem 2.13 (Dual attainment and representation. Subgradient affine constraint). Let
us assume that (HΦ) and (HT ) hold and suppose that x̄ ∈ dom Λ∗

0. Then, inf(P x̄) <∞. If
in addition,

x̄ ∈ diffdom Λ∗
0, (2.14)

then the following statements hold true.

(a) The primal problem (P x̄) is attained in L1 and the dual problem (Dx̄
2) is attained in

X ∗
1 .

(b) Any ℓ̄ ∈ L1 is a solution to (P x̄) if and only if T ℓ̄ = x̄ and there exists ω̄ ∈ X ∗
1 such

that (2.11) or equivalently (2.12) holds.
More, this occurs if and only if: ℓ̄ is a solution to (P ), ω̄ is a solution to (Dx̄

2 ) with
x̄ := T ℓ̄ and inf(P x̄) = sup(Dx̄

2).
(c) Any solution ω̄ of (Dx̄

2 ), shares the following properties
(1) ω̄ stands in the σ(X ∗

1 ,X1)-closure of dom Λ1.
(2) T ∗

2 ω̄ stands in the σ(L∗
1,L1)-closures of T ∗

1 (dom Λ1) and dom Φ.
(3) Let ω̄ be any solution of (Dx̄

2 ) with x̄ ∈ icordom Λ∗
0. Then, ω̄ is jDx̄

-upper semi-
continuous and j−Dx̄

-lower semicontinuous at 0 where Dx̄ = {x ∈ X1; Λ
∗
0(x̄+x) ≤

Λ∗
0(x̄) + 1}.

3. Application to the Monge-Kantorovich optimal transport problem

We apply the results of Section 2 to the Monge-Kantorovich problem. Recall that we
take A and B two Polish spaces furnished with their Borel σ-fields. Their product space
A×B is endowed with the product topology and the corresponding Borel σ-field. The
lower semicontinuous cost function c : A×B → [0,∞] may take infinite values. Let us also
take two probability measures µ ∈ PA and ν ∈ PB on A and B. The Monge-Kantorovich
problem is

minimize π ∈ PAB 7→
∫

A×B

c(a, b) π(dadb) subject to π ∈ P (µ, ν) (MK)

where P (µ, ν) is the set of all π ∈ PAB with prescribed marginals πA = µ on A and πB = ν
on B.
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3.1. Statement of the results. Let us fix some notations. We denote CA, CB and
CAB the spaces of all continuous bounded functions on A, B and A×B. The Kantorovich
maximization problem:

maximize

∫

A

ϕdµ+

∫

B

ψ dν for all ϕ, ψ such that

ϕ ∈ CA, ψ ∈ CB and ϕ⊕ ψ ≤ c
(K)

is the basic dual problem of (MK). We also consider the following extended version of
(K) :

maximize

∫

A

ϕdµ+

∫

B

ψ dν for all ϕ ∈ RA, ψ ∈ RB such that

ϕ ∈ L1(A, µ), ψ ∈ L1(B, ν) and ϕ⊕ ψ ≤ c everywhere on A×B.
(K)

Remark 3.1. The real-valued function ϕ ∈ RA is defined everywhere, rather than µ-almost
everywhere, and ϕ ∈ L1(A, µ) implies that it is µ-measurable. This means that there exists
some measurable set NA ⊂ A such that µ(NA) = 0 and 1NA

ϕ is measurable. A similar
remark holds for ψ.

The set of all probability measures π on A×B such that
∫
A×B

c dπ <∞ is denoted Pc.
By Definition 1.1, an optimal plan stands in Pc. In the next theorem, Pc will be endowed
with the weak topology σ(Pc, Cc) where Cc is the space of all continuous functions u on
A×B such that |u| ≤ k(1 + c) for some k ≥ 0.

Theorem 3.2 (Dual equality and primal attainment).

(1) The dual equality for (MK) is

inf(MK) = sup(K) = sup(K) ∈ [0,∞].

(2) Assume that there exists some πo in P (µ, ν) such that
∫
A×B c dπ

o <∞. Then:
(a) There is at least an optimal plan and all the optimal plans are in Pc;
(b) Any minimizing sequence is relatively compact for the topology σ(Pc, Cc) and

all its cluster points are optimal plans.

This result is well-known. The dual equality inf(MK) = sup(K) = sup(K) is the
Kantorovich dual equality. The proof of Theorem 3.2 will be an opportunity to make
precise the abstract material Φ, U , T . . . in terms of the Monge-Kantorovich problem.

Next, we state the characterization of the optimal plans without restriction.

Theorem 3.3 (Characterization of the optimal plans).

(1) A probability measure π ∈ PAB is an optimal plan if and only if there exist two
finitely-valued functions ϕ ∈ RA and ψ ∈ RB such that




(a) πA = µ, πB = ν,
∫
A×B

c dπ <∞,
(b) ϕ⊕ ψ ≤ c everywhere and
(c) ϕ⊕ ψ = c π-almost everywhere.

(3.4)

(2) Let ϕ and ψ be finitely-valued functions on A and B and let be π ∈ PAB.
(a) If ϕ is µ-measurable and ψ is ν-measurable, the following statements are equiv-

alent:
- ϕ, ψ and π satisfy (3.4);
- π is an optimal plan and (ϕ, ψ) is a solution of (K).

(b) In the general case where ϕ and ψ are not assumed to be measurable, consider
the following statements:
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(i) ϕ, ψ and π satisfy (3.4);
(ii) lsϕ, lsψ and π satisfy (3.4);
(iii) π is an optimal plan and (lsϕ, lsψ) is a solution of (K).
Then: (i) ⇒ (ii) ⇔ (iii).

This new result improves the already existing literature on the subject. It is important
to note that the functions ϕ and ψ satisfying (3.4) are neither assumed to be integrable
nor to be measurable. Next theorem shows that they can be further specified.

Theorem 3.5 (More about necessary conditions). Assume that π is an optimal plan.
Then, there exist two finitely-valued functions ϕ ∈ RA and ψ ∈ RB such that ϕ ∈ L1(A, µ),
ψ ∈ L1(B, ν) and

{
|ϕ⊕ ψ| ≤ c everywhere and
ϕ⊕ ψ = c on supp π

⋂{c <∞}.

Clearly, (ϕ, ψ) is a maximizer of (K).

Remarks 3.6.

a. Note that any optimal plan π is satisfies supp π ⊂ cl {c <∞}.
b. Recall that π is said be to concentrated on the measurable set Γ if π(Γ) = 1. For

instance, (3.4-c) is equivalent to the existence of some set Γ on which π is concentrated
and ϕ⊕ ψ = c on Γ. The support of π, denoted supp π, is the closure of the union of
all the sets Γ on which π is concentrated.

3.2. Proof of Theorem 3.2. We apply the general results of Section 2.

The operators T and T ∗. The algebraic dual spaces of CA, CB and CAB are C∗
A, C

∗
B and

C∗
AB. We define the marginal operator

Tℓ = (ℓA, ℓB) ∈ C∗
A × C∗

B, ℓ ∈ C∗
AB

where 〈ϕ, ℓA〉 = 〈ϕ⊗ 1, ℓ〉 and 〈ψ, ℓB〉 = 〈1 ⊗ ψ, ℓ〉 for all ϕ ∈ CA and all ψ ∈ CB.
Let us identify the operator T ∗. For all (ϕ, ψ) ∈ CA × CB and all ℓ ∈ L, we have
〈T ∗(ϕ, ψ), ℓ〉L∗,L = 〈(ϕ, ψ), (ℓA, ℓB)〉 = 〈ϕ, ℓA〉+〈ψ, ℓB〉 = 〈ϕ⊕ψ, ℓ〉U ,L where ϕ⊕ψ(a, b) =
ϕ(a) + ψ(b). Hence, for each ϕ ∈ CA and ψ ∈ CB,

T ∗(ϕ, ψ) = ϕ⊕ ψ ∈ CA×B. (3.7)

The problem (P ). Then, the Diagram 0 is built with U = CAB, L = C∗
AB, X = C∗

A × C∗
B

and Y = CA×CB . Here and below, we denote the convex indicator function of the set X,

δX(x) =

{
0 if x ∈ X
+∞ otherwise.

Choosing C = {(µ, ν)} and Φ(u) = δ{u≤c}, u ∈ CAB we get Φ∗(ℓ) = sup{〈u, ℓ〉; u ∈
CAB, u ≤ c}, ℓ ∈ C∗

AB and we obtain the primal problem

minimize Φ∗(ℓ) subject to ℓA = µ and ℓB = ν, ℓ ∈ C∗
AB. (P )

It will be shown at Proposition 3.12 that the corresponding problem (P1) is (MK).
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The problem (D0). Now, let’s have a look at Φ0. As {u ∈ CAB; u ≤ c} is convex and
σ(CAB, C

∗
AB)-closed, we have Φ0 = Φ. Therefore, for each ϕ ∈ CA and ψ ∈ CB,

Λ0(ϕ, ψ) = Λ(ϕ, ψ) = Φ(T ∗(ϕ, ψ)) = δ{ϕ⊕ψ≤c}

and the dual problem is

maximize

∫

A

ϕdµ+

∫

B

ψ dν subject to ϕ⊕ ψ ≤ c, ϕ ∈ CA, ψ ∈ CB (D0)

whose value is

Λ∗(µ, ν) = sup

{∫

A

ϕdµ+

∫

B

ψ dν;ϕ ∈ CA, ψ ∈ CB : ϕ⊕ ψ ≤ c

}

As Λ = Λ0 and Λ∗
0 = Λ∗

1 (Theorem 2.6-a), we have: Λ∗
0 = Λ∗

1 = Λ∗.

The hypotheses (H). We begin with a simple remark.

Remark 3.8. One can choose c ≥ 1 without loss of generality. Indeed, with c ≥ 0
taking c̃ = c + 1 one obtains

∫
A×B c dπ =

∫
A×B c̃ dπ − 1 for all π ∈ PAB. Consequently,

the minimization problems (MK) and (M̃K) associated with c and c̃ share the same

minimizers and their values are related by inf(MK) = inf(M̃K) − 1.
It also follows from these considerations that our results still hold under the assumption
that c is bounded below rather than c is positif.

We assume from now on that c ≥ 1. This guarantees (HΦ2). In the case where c is
finitely valued, the remaining hypotheses (H) follow by (3.7) and direct inspection.

If c is infinite somewhere, then (HΦ3) fails. Indeed, for any function u ∈ CAB, we have
Φ(tu) = 0 for all real t if and only if {u 6= 0} ⊂ A×B \ S where

S = cl {c <∞}
is the closure of {(a, b) ∈ A×B; c(a, b) < ∞}. The way to get rid of this problem is
standard. Let u ∼ v be the equivalence relation on RA×B defined by u|S = v|S , i.e. u and
v match on S. The space U to be considered is the factor space

U := CAB/ ∼
Clearly, if u ∼ v then Φ(u) = Φ(v). Hence, it is possible to identify without loss of
generality any u ∈ CAB with its equivalence class which in turn is identified with the
restriction u|S of u to S.

The problem (P1). Recall that c ≥ 1 without loss of generality. Let us first identify the
space L1. As Φ±(u) = δ{|u|≤c}, we obtain the seminorm |u|Φ = sup |u/c| := ‖u‖c on CAB
which becomes a norm on U ,

U1 = Cc := {u|S; u : A×B → R, u continuous and |u| ≤ kc for some real k}
L1 = (Cc, ‖ · ‖c)′ = C ′

c.

Obviously, any π in Pc has its support included in S and belongs to C ′
c with the dual

bracket 〈u|S , π〉 =
∫
S
u dπ, u|S ∈ Cc. In what follows, it will be written equivalently

• u|S ∈ Cc to specify that the equivalence class of u stands in Cc and
• u ∈ Cc to specify that the restriction u|S of the continuous function u on A×B

stands in Cc.
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Clearly, the function Φ1 is

Φ1(u) = δ{u≤c}, u ∈ Cc

and the modified primal problem is

minimize Φ∗
1(ℓ) subject to ℓA = µ and ℓB = ν, ℓ ∈ C ′

c (P1)

where for each ℓ ∈ C ′
c,

Φ∗
1(ℓ) = sup{〈u, ℓ〉; u ∈ Cc, u ≤ c}.

Remark 3.9. Two representations of C ′
c.

a. Let Cc(S) be the space of all continuous functions w on S (w.r.t. the relative topology)
such that ‖w‖c = supS |w/c| < ∞ and Cc(S)′ be the topological dual space of the
normed space (Cc(S), ‖ · ‖c). Let E be the subspace of all functions in Cc(S) which can
be continuously extended to the whole space A×B. There is a one-one correspondence
between C ′

c and the dual space (E , ‖ · ‖c)′.
b. There is also a one-one correspondence between C ′

c and the space of all linear forms ℓ
on the space of all continuous functions on A×B such that supp ℓ ⊂ S (see Definition
3.10 below) and sup{〈u, ℓ〉 = 〈u|S, ℓ〉; u : ‖u‖c ≤ 1} <∞.

Definition 3.10. For any linear form ℓ on the space of all continuous functions on A×B,
we define the support of ℓ as the subset of all (a, b) ∈ A×B such that for any neighborhood
G of (a, b), there exists some function u in CAB satisfying {u 6= 0} ⊂ G and 〈u, ℓ〉 6= 0. It
is denoted supp ℓ.

Definition 3.11.

(a) One says that ℓ ∈ C ′
c acts as a probability measure if there exists ℓ̃ ∈ PAB such that

supp ℓ̃ ⊂ S and for all u ∈ CAB, 〈u|S , ℓ〉 =
∫
S
u dℓ̃. In this case, we write: ℓ ∈ PS .

(b) One says that ℓ ∈ C ′
c stands in Pc if there exists ℓ̃ ∈ Pc such that for all u ∈ Cc,

〈u|S , ℓ〉 =
∫
S u dℓ̃. In this case, we write: ℓ ∈ Pc.

Of course, if there exists ℓ̃ satisfying (a), it belongs to Pc and is unique since any
probability measure on a metric space is determined by its values on the continuous
bounded functions. This explains why the notation ℓ ∈ Pc in (b) isn’t misleading.

Note also that any probability measure ℓ̃ ∈ Pc has a support included in S. Since A×B
is a metric space, for any ℓ ∈ Pc acting as a measure, supp ℓ in the sense of Definition
3.10 matches with the usual support of the measure ℓ̃.

Completing the proof of Theorem 3.2. The full connection with the Monge-Kantorovich
problem is given by the following Proposition 3.12. Clearly, with this proposition in hand,
Theorem 3.2 directly follows from Theorem 2.6 and the obvious inequalities sup(K) ≤
sup(K) ≤ inf(MK).

Proposition 3.12. For all ℓ ∈ C ′
c,

(a) Φ∗
1(ℓ) <∞ ⇒ ℓ ≥ 0,

(b) Φ∗
1(ℓ) <∞ ⇒ supp ℓ ⊂ S,

(c) [ℓ ≥ 0, supp ℓ ⊂ S, ℓA = µ and ℓB = ν] ⇒ ℓ ∈ PS and
(d) for all ℓ ∈ PS , Φ∗

1(ℓ) =
∫
S
c dℓ.

It follows that

- domΦ∗
1 ⊂ Pc and

- the problems (MK) and (P1) share the same values and the same minimizers.
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Proof. Clearly, the last statement follows from the first part of the proposition. The proof
is divided into four parts.

• Proof of (a). Suppose that ℓ ∈ C ′
c isn’t in the positif cone. This means that there exists

uo ∈ Cc such that uo ≥ 0 and 〈uo, ℓ〉 < 0. Since uo satisfies λuo ≤ 0 ≤ c for all λ < 0, we
have Φ∗

1(ℓ) ≥ supλ<0{〈λuo, ℓ〉} = +∞. Hence, Φ∗
1(ℓ) < ∞ implies that ℓ ≥ 0 and one can

restrict our attention to the positif ℓ’s.

• Proof of (b). Suppose ad absurdum that supp ℓ  S. Then, there exists a positif function
uo ∈ CAB such that {uo > 0} ∩ S = ∅ and 〈uo, ℓ〉 > 0. As tuo ≤ c|A×B\S ≡ ∞ for all t > 0,
Φ∗

1(ℓ) ≥ supt>0{〈tuo, ℓ〉} = +∞.

• Proof of (c). Let us take ℓ ≥ 0 such that supp ℓ ⊂ S, ℓA = µ and ℓB = ν. It is clear that
〈1, ℓ〉 = 1. It remains to check that for any ℓ ∈ C ′

c

[ℓ ≥ 0, supp ℓ ⊂ S, ℓA = µ and ℓB = ν] ⇒ ℓ is σ-additive, (3.13)

rather than only additive. Since A×B is a metric space, one can apply an extension
of the construction of Daniell’s integrals ([5], Proposition II.7.2) to see that ℓ acts as a
measure if and only if for any décroissant sequence (un) of continuous functions such that
0 ≤ un ≤ 1 for all n and limn→∞ un = 0 pointwise, we have limn→∞〈un, ℓ〉 = 0. This
insures the σ-additivity of ℓ. Note that as supp ℓ ⊂ S, for all u ∈ Cc one can shortly write
〈u, ℓ〉 instead of the meaningful bracket 〈u|S , ℓ〉.
Unfortunately, this pointwise convergence of (un) is weaker than the uniform convergence
with respect to which any ℓ ∈ C ′

c is continuous. Except if A×B is compact, since in this
special case, any décroissant sequence of continuous functions which converges pointwise
to zero also converges uniformly on the compact space S.
So far, we have only used the fact that A×B is a metric space. We now rely on the
Polishness of A and B to get rid of this compactness restriction. It is known that any
probability measure P on a Polish space X is tight (i.e. a Radon measure): for all ǫ > 0,
there exists a compact set Kǫ ⊂ X such that P (X \ Kǫ) ≤ ǫ ([5], Proposition II.7.3).
As in addition a Polish space is completely regular, there exists a continuous function fǫ
with a compact support such that 0 ≤ fǫ ≤ 1 and

∫
X

(1 − fǫ) dP ≤ ǫ. This is true in
particular for the probability measures µ ∈ PA and ν ∈ PB which specify the constraint
in (MK). Hence, there exist ϕǫ ∈ CA and ψǫ ∈ CB with compact supports such that
0 ≤ ϕǫ, ψǫ ≤ 1 and 0 ≤

∫
A
(1 − ϕǫ) dµ,

∫
B
(1 − ψǫ) dν ≤ ǫ. It follows that any ℓ ∈ C ′

c with
ℓA = µ and ℓB = ν satisfies 0 ≤ 〈(1 − ϕǫ ⊗ ψǫ), ℓ〉 ≤ 2ǫ. With the following easy estimate
0 ≤ 〈un, ℓ〉 ≤ 2ǫ + 〈un(ϕǫ ⊗ ψǫ), ℓ〉 and the compactness of the support of ϕǫ ⊗ ψǫ, one
concludes that limn→∞〈un, ℓ〉 = 0 which proves (3.13).

• Proof of (d). As c is bounded below and lower semicontinuous on a metric space, it
is the pointwise limit of a croissant sequence (cn) of continuous bounded functions. It
follows from the monotone convergence theorem that for any ℓ ∈ PS , Φ∗

1(ℓ) =
∫
S c dℓ.

This completes the proof of the proposition. �

Optimal plan: an overview of the proofs of Theorems 3.3 and 3.5. The proofs
of these theorems are postponed to Section 3.6. We first derive preliminary results at
Sections 3.3, 3.4 and 3.5.

At Section 3.3, the abstract results of Section 2 are translated in terms of the Monge-
Kantorovich problem. This is summarized at Theorem 3.24 which states an abstract
characterization of the optimal plans. This theorem directly results from the extended
saddle-point method. In particular, the optimal plan π is related to some linear form
ω ∈ X ∗

1 . It remains to show that ω is the extension of some couple of functions (ϕ, ψ).
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This is done at Section 3.4 for the sufficient condition and at Section 3.5 for the necessary
condition. The main results of Sections 3.4 and 3.5 are respectively Lemma 3.31 and
Lemma 3.43.

3.3. Optimal plan: applying the extended saddle-point method. The main result
of this section is Theorem 3.24 which gives an abstract characterization of an optimal plan.

The space X1. By (2.3), we see that |(ϕ, ψ)|Λ = ‖ϕ⊕ ψ‖c. This leads to

X1 = {(κ1, κ2) ∈ C∗
A × C∗

B; |(κ1, κ2)|∗Λ <∞}
where |(κ1, κ2)|∗Λ = sup{〈ϕ, κ1〉 + 〈ψ, κ2〉; (ϕ, ψ) ∈ Y1, ‖ϕ ⊕ ψ‖c ≤ 1}. The dual equality
(2.8) gives

|(κ1, κ2)|∗Λ = inf {‖ℓ‖∗c ; ℓ ∈ C ′
c : ℓA = κ1, ℓB = κ2} .

Note that X1 is the space of all (κ1, κ2) ∈ C∗
A × C∗

B such that κ1 = ℓA and κ2 = ℓB for
some ℓ in C ′

c. Recall that the elements of X1 = Y ′
1 are identified with their restriction to

Y which is dense in Y1.

Remark 3.14 (The space Y1 and the problem (D1)). The exact description of Y1 and (D1)
will not be used later. Nevertheless, as an illustration of our general results, we describe
them assuming that c is finitely valued. As Λ(ϕ, ψ) = δ{ϕ⊕ψ≤c}, one sees that

Y1 = {(ϕ, ψ);ϕ : A→ R continuous, ψ : B → R continuous : ϕ⊕ ψ ∈ Cc}
This result is not as obvious as it seems to be. It follows from an interesting paper [2]
of J.M. Borwein and A.S. Lewis which studies the convergence of sequences of the form
(ϕn⊕ψn)n≥1. The additive form ϕ⊕ψ in the expression of Y1 is proved at ([2], Corollary
3.5) and the continuity of ϕ and ψ is a consequence of ([2], Proposition 5.1).

The corresponding problem (D1) is

maximize

∫

A

ϕdµ+

∫

B

ψ dν for all ϕ, ψ such that

ϕ, ψ continuous, ϕ⊕ ψ ∈ Cc and ϕ⊕ ψ ≤ c.

Anyway, we won’t use this dual problem since it is sandwiched between (D0) and (D2).

The extension Φ2. To proceed, one has to compute the extension Φ2. As it is the greatest
convex σ(C ′∗

c , C
′
c)-lower semicontinuous extension of Φ, we have

Φ2(ξ) = δΓ(ξ), ξ ∈ C ′∗
c (3.15)

where Γ is the σ(C ′∗
c , C

′
c)-closure of

Γ = {u ≤ c} ⊂ Cc.

Any ω ∈ X ∗
1 is decomposed as ω = (ωA, ωB) where for all (κ1, κ2) ∈ X1, 〈ω, (κ1, κ2)〉 =

〈ω̄, (κ1, 0)〉 + 〈ω̄, (0, κ2)〉 = 〈ωA, κ1〉 + 〈ωB, κ2〉 where ω ∈ X ∗
1 is seen as the restriction to

X1 of some linear form ω̄ on X = C∗
A × C∗

B. The adjoint operator T ∗
2 is defined for all

ω ∈ X ∗
1 and ℓ ∈ C ′

c by 〈T ∗
2ω, ℓ〉 = 〈ωA, ℓA〉 + 〈ωB, ℓB〉 := 〈ωA ⊕ ωB, ℓ〉. That is

T ∗
2ω = ωA ⊕ ωB ∈ C ′∗

c . (3.16)

This yields

Λ2(ω) = δΓ(ωA ⊕ ωB), ω ∈ X ∗
1

and the extended dual problem (D2) is

maximize 〈ωA, µ〉 + 〈ωB, ν〉, ω ∈ X ∗
1 such that ωA ⊕ ωB ∈ Γ (D2)
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Note that for this dual problem to be meaningful, it is necessary that (HC) holds: i.e.
(µ, ν) ∈ X1. This is realized if (µ, ν) ∈ dom Λ∗ or equivalently if inf(MK) <∞.

The constraint qualification. One will be allowed to apply Theorem 2.13 under the con-
straint qualification (2.14):

(µ, ν) ∈ diffdom Λ∗. (3.17)

Let us give some details on this abstract requirement.

Remark 3.18. Note that for all µ ∈ PA, ν ∈ PB, (µ, ν) 6∈ icordom Λ∗ if A×B is an infinite
set. Indeed, for all π ∈ P (µ, ν) such that

∫
A×B

c dπ < ∞, one can find (ao, bo) such that

with ε(ao,bo) the Dirac measure at (ao, bo), ℓt := tε(ao,bo) + (1 − t)π 6≥ 0 for all t < 0, so
that Φ∗

1(ℓt) = +∞ (Proposition 3.12-a). This shows that [ℓ0, ℓ1] = [π, ε(ao,bo)] ⊂ dom Φ∗
1

while ℓt 6∈ dom Φ∗
1 for all t < 0. Hence, (µ, ν) 6∈ icordom Λ∗ and one has to consider the

assumption (3.17) on (µ, ν) rather than (µ, ν) ∈ icordom Λ∗.
This is in contrast with the situation encountered in [4] where the rule is xo ∈ icordom Λ∗.

Lemma 3.19. We have dom Λ∗ = diffdom Λ∗.

Proof. Proposition 3.12-a states that dom Φ∗
1 ⊂ L+ where L+ = {ℓ ∈ C ′

c; ℓ ≥ 0} is the the
positif cone of C ′

c. Therefore, Φ∗
1 = Φ∗

1 + δL+ . Consequently, with (2.7) one obtains that

Λ∗(x) = inf{Φ∗
1(ℓ); ℓ ∈ L+, T ℓ = x}, x ∈ X1.

Suppose ad absurdum that there is some xo ∈ dom Λ∗ such that xo 6∈ diffdom Λ∗. This
implies that there exists some half-line ]xo, xo + ∞(x′o − xo)[ on which Λ∗ achieves the
value +∞, which in turn implies that Φ∗

1 must achieve the value +∞ somewhere on L+.
But this is impossible since Φ∗

1(ℓ) = ‖ℓ‖∗c for all ℓ ∈ L+. This completes the proof of the
lemma. �

As a consequence of this lemma, it appears that (3.17) is not a constraint qualification.
One can apply Theorem 2.13 under the only restriction that inf(MK) < ∞. This gives
the following

Lemma 3.20. Let us assume that inf(MK) < ∞. Then, (P ) and (D2) both admit a
solution in PAB and X ∗

1 . Furthermore, any (π, ω) ∈ PAB × X ∗
1 is a solution of (P ) and

(D2) if and only if 



(a) πA = µ, πB = ν,
∫
A×B

c dπ <∞;
(b) π ∈ ∂C′

c
Φ2(η) where

(c) η = T ∗
2ω.

(3.21)

As Φ∗
1 and Φ2 are mutually convex conjugates, (3.21-b) is equivalent to

η ∈ ∂C′∗
c
Φ∗

1(π) (3.22)

and also equivalent to Young’s identity

Φ∗
1(π) + Φ2(η) = 〈η, π〉 (3.23)

and also equivalent to {
Φ2(η) = 0
〈η, π〉 =

∫
A×B cdπ.

In other words:

Theorem 3.24. Let π ∈ P (µ, ν) be such that
∫
A×B c dπ <∞. Then:

(1) (D2) admits at least a solution in X ∗
1 ;
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(2) π is an optimal plan if and only if there exists some ω ∈ X ∗
1 such that

{
(a) T ∗

2ω ∈ Γ
(b) 〈ω, (µ, ν)〉 =

∫
A×B

cdπ;

With η = T ∗
2ω, this implies the equivalent statements (3.21-b), (3.22) or (3.23).

(3) If such an ω exists, it is a solution of (D2) and any other solution of (D2) is also
convenient.

This is the core of the extended saddle-point method applied to Monge-Kantorovich
problem. To prove a practical optimality criterion one still has to translate these abstract
properties.

3.4. Optimal plan: preliminary results for the sufficient condition. The next
lemmas are preliminary results for the proof of a sufficient condition for the optimality.

Lemma 3.25. Let ϕ and ψ be real functions on A and B.

(1) The lower semicontinuous regularizations lsϕ and lsψ of ϕ and ψ satisfy

ls (ϕ⊕ ψ) = lsϕ⊕ lsψ.

(2) If ϕ and ψ are such that ϕ ⊕ ψ = c on some subset T of A×B and ϕ ⊕ ψ ≤ c
everywhere on A×B. Then, lsϕ and lsψ still share the same properties.

Proof. • Proof of (1). For each (a, b) ∈ A×B,
ls (ϕ⊕ ψ)(a, b) = sup

V ∈N ((a,b))

inf
(a′,b′)∈V

[ϕ(a′) + ψ(b′)]

= sup

{
inf

(a′,b′)∈VA×VB

[ϕ(a′) + ψ(b′)];VA ∈ N (a), VB ∈ N (b)

}

= sup

{
inf
a′∈VA

ϕ(a′);VA ∈ N (a)

}
+ sup

{
inf
b′∈VB

ψ(b′);VB ∈ N (b)

}

= lsϕ(a) + lsψ(b)

where N (x) stands for the set of all open neighbourhoods of x.

• Proof of (2). It is a direct consequence of the lower semicontinuity of c and statement
(1). �

Lemma 3.26. Let π ∈ P (µ, ν) be such that
∫
A×B

c dπ <∞. Suppose that there exists two

real-valued functions ϕ ∈ RA and ψ ∈ RB such that
{
ϕ⊕ ψ ≤ c everywhere
ϕ⊕ ψ = c π-almost everywhere.

(3.27)

(1) If ϕ is µ-measurable and ψ is ν-measurable, then ϕ ∈ L1(A, µ) and ψ ∈ L1(B, ν).
(2) In any case, the real-valued functions lsϕ and lsψ still satisfy (3.27) together with

lsϕ ∈ L1(A, µ) and lsψ ∈ L1(B, ν).

Proof. • Proof of (1). Let us fix (ao, bo) ∈ A×B such that c(ao, bo) < ∞ (such a point
exists since

∫
A×B

c dπ < ∞ for some π.) We have ϕ(a) = c(a, bo) − ψ(bo) ≥ −ψ(bo) for

all a ∈ A and similarly ψ ≥ −ϕ(ao). Hence, the integrals
∫
A
ϕdµ ∈ [−ψ(bo),+∞] and∫

B
ψ dν ∈ [−ϕ(ao),+∞] are well-defined. Finally, ϕ ∈ L1(A, µ) and ψ ∈ L1(B, ν) since∫

A
ϕdµ+

∫
B
ψ dν =

∫
A×B c dπ <∞.
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• Proof of (2). Applying Lemma 3.25 with T a measurable set such that π(T ) = 1
yields two lower bounded measurable functions lsϕ and lsψ which still satisfy (3.27).
One concludes as above. �

Let Υ be the σ(X ∗
1 ,X1)-closure of

Υ = {(ϕ, ψ) ∈ CA × CB;ϕ⊕ ψ ≤ c}. (3.28)

Lemma 3.29.

(a) For all (a, b) ∈ S, Λ∗(εa, εb) = c(a, b).
(b) For any ω ∈ X ∗

1 , we have ω ∈ Υ if and only if 〈ω, κ〉 ≤ Λ∗(κ), ∀κ ∈ X1.
(c) T ∗

2 Υ ⊂ Γ.

Proof. • Proof of (a). For any (a, b) ∈ S, Λ∗(εa, εb) = inf{
∫
A×B c dπ; π ∈ PAB : πA =

εa, πB = εb} =
∫
A×B c dε(a,b) = c(a, b) where we used the dual equality (2.7) and the fact

that ε(a,b) is the unique plan π with marginals εa and εb.

• Proof of (b). It is enough to check that for all φ = (ϕ, ψ) in CA × CB

φ ∈ Υ ⇔ [〈φ, κ〉 ≤ Λ∗(κ), ∀κ ∈ X1]. (3.30)

Young’s inequality 〈φ, κ〉 ≤ Λ(φ) + Λ∗(κ), ∀φ, κ and φ ∈ Υ ⇔ Λ(φ) = δΥ(φ) = 0 give the
direct implication. For the converse, choosing κ = (εa, εb) in the right-hand side of (3.30),
one obtains with the previous statement (a) that ϕ⊕ ψ ≤ c.

• Proof of (c). It is clear that T ∗Υ ⊂ Γ and one concludes with the σ(X ∗
1 ,X1)-σ(L∗

1,L1)-
continuity of T ∗

2 : X ∗
1 → L∗

1, see Lemma 4.1-d. �

Lemma 3.31. Let π ∈ P (µ, ν) be such that
∫
A×B

c dπ < ∞ and suppose that there exist
two real functions ϕ in L1(A, µ) and ψ in L1(B, ν) satisfying (3.27).
Then, there exists some ω in Υ such that




〈ω, (µ, ν)〉 =
∫
A×B

c dπ;
ω(ǫa, ǫb) = ϕ(a) + ψ(b) for π-a.e. (a, b) and
ω(κ) ≤ Λ∗(|κ|), ∀κ ∈ X1.

Proof. There exists a measurable subset T of S such that π(T ) = 1 and ϕ⊕ψ = c every-
where on T . Let Eo be the vector subspace of X1 spanned by (µ, ν) and {(ǫa, ǫb); (a, b) ∈
T }. It follows from our assumptions on ϕ and ψ that for all positif κ = (κ1, κ2) ∈ Eo, ϕ
is in L1(A, κ1) and ψ is in L1(B, κ2). Define the linear form ωo on Eo for each κ ∈ Eo by

ωo(κ) =

∫

A

ϕdκ1 +

∫

B

ψ dκ2.

Clearly,

ωo(µ, ν) =

∫

A×B

c dπ (3.32)

and for all positif κ ∈ Eo,

ωo(κ) =

∫

A

ϕdκ1 +

∫

B

ψ dκ2

≤ sup

{∫

A

ϕ̃ dκ1 +

∫

B

ψ̃ dκ2; ϕ̃ ∈ L1(A, κ1), ψ̃ ∈ L1(B, κ1), ϕ̃⊕ ψ̃ ≤ c

}
.

Denoting (Kκ) and (Kκ) the analogues of problems (K) and (K) with (κ1, κ2) instead of
(µ, ν), this means that

ωo(κ) ≤ sup(Kκ).
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The dual equality (2.8) states that sup(Kκ) = Λ∗(κ). As we have already seen at Theorem
3.2-a that sup(Kκ) = sup(Kκ), we obtain: sup(Kκ) = Λ∗(κ). Therefore, we have proved
that ωo(κ) ≤ Λ∗(κ), for all κ ∈ Eo, κ ≥ 0. As for any κ ∈ Eo, ωo(κ) =

∫
A×B

c dρ for any
measure ρ with marginals ρA = κ1 and ρB = κ2, one sees that ωo is positif. It follows that

ωo(κ) ≤ Λ∗(|κ|), κ ∈ Eo

where |κ| = (|κ1|, |κ2|) and |κi| is the absolute value of the measure κi.
Note that X1 is a Riesz space since it is the topological dual of a normed Riesz space.
Hence, any κ ∈ X1 admits positif and négatif parts κ+ and κ−, and its absolute value
is |κ| = κ+ + κ−. This allows to consider the positively homogeneous convex function
Λ∗(|κ|) on the vector space E1 spanned by dom Λ∗. By the analytic form of Hahn-Banach
theorem, there exists an extension ω of ωo to E1 which satisfies ω(κ) ≤ Λ∗(|κ|) for all
κ ∈ E1. But E1 = X1 and one completes the proof of the lemma with (3.32) and Lemma
3.29-b. �

3.5. Optimal plan: preliminary results for the necessary condition. Under the
condition (3.21-a), π necessarily satisfies: supp π ⊂ S. This fact will be invoked without
warning.

Lemma 3.33. Let π and η satisfy (3.21-a,b). Then, the restriction of η to L∞.π :=
{h.π; h ∈ L∞(A× B, π)} is given by

〈η, h.π〉 =

∫

A×B

hc dπ, ∀h ∈ L∞(π) (3.34)

Proof. To specify the restriction γ of η to L∞.π, it is enough to vary Φ∗
1 in the direction

L∞.π to get with (3.22): γ ∈ ∂(L∞.π)∗Φ
∗
1(π). Taking h ∈ L∞(π) such that ‖h‖∞ ≤ 1, by

monotone convergence we obtain Φ∗
1(π + h.π) = sup{

∫
A×B

(1 + h)u dπ; u ∈ Cc, u ≤ c} =∫
S
(1 + h)c dπ. It comes out that ∂(L∞.π)∗Φ

∗
1(π) = {c}, which gives (3.34). �

We first derive the necessary condition in the special case where c is assumed to be
finite and continuous.

Proposition 3.35. Assume that c is finite and continuous and let π be an optimal plan.
Then, there exist two finitely-valued upper semicontinuous functions ϕ on A and ψ on B
such that {

ϕ⊕ ψ ≤ c everywhere and
ϕ⊕ ψ = c on supp π.

Proof. At the beginning of this proof, c is only assumed to be finite and lower semicontin-
uous. By Lemma 3.19, (3.17) is satisfied. Let η and ω be as in (3.21-b & c). Because of
Theorem 2.13-c-1 & 2, there exists a generalized sequence {(ατ , βτ )} in domΛ1 such that
limτ T

∗
1 (ατ , βτ) = η with respect to σ(C ′∗

c , C
′
c). As T ∗

1 dom Λ1 ⊂ U1 (see Lemma 4.1-g),
T ∗

1 (ατ , βτ ) = ατ ⊕ βτ ∈ Cc and
{

(a) limτ ατ ⊕ βτ = η with
(b) Cc ∋ ατ ⊕ βτ ≤ c for all τ

(3.36)

Defining

η̃(a, b) = 〈η, ǫ(a,b)〉, (a, b) ∈ A×B, (3.37)

where ǫ(a,b) is the Dirac mass at (a, b), one immediately sees that

η̃ ≤ c. (3.38)
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Furthermore, since η̃ = limτ ατ ⊕ βτ pointwise (C ′
c contains the Dirac masses), by ([2],

Corollary 3.5) we obtain that η̃ = ϕ ⊕ ψ for some functions ϕ and ψ on A and B. This
gives us some hope to complete the proof, but as will be seen below, η̃ isn’t the right
function to be considered.
For any (a, b) in supp π : the support of π, one can find a sequence {hk} in Cc such that
limk hk.π = ǫ(a,b) in Pc, see Lemma 3.60 below. As c is lower semicontinuous, with (3.34)
we obtain

lim inf
k

〈hk.π, η〉 = lim inf
k

∫

A×B

hkc dπ ≥ c(a, b). (3.39)

Unfortunately, no regularity property for η has been established to insure that 〈η, ǫ(a,b)〉 ≥
lim infk〈η, hk.π〉; this would lead to the converse of (3.38): η̃ ≥ c on supp π. An alternate
strategy is to introduce the upper semicontinuous regularization

η = us η̃

of η̃ on A×B. As η is upper semicontinuous, for all (a, b) ∈ supp π, we have η(a, b) ≥
lim supk

∫
A×B

ηhk dπ. Now, one obtains with (3.39) that

η(a, b) ≥ c(a, b), ∀(a, b) ∈ supp π. (3.40)

Regularizing both sides of (3.38) and assuming that c is upper semicontinuous and there-
fore continuous, we obtain that

η ≤ c. (3.41)

It remains to check that

η = ϕ⊕ ψ

for some finitely-valued upper semicontinuous functions ϕ and ψ on A and B. With (3.16)
and (3.21) we know that η = ωA⊕ωB for some ω ∈ X ∗

1 . It follows that η̃ = ω̃A⊕ ω̃B where
ω̃A(a) = ωA(ǫa) and ω̃B(b) = ωB(ǫb). With Lemma 3.25, one sees that η = us ω̃A ⊕ us ω̃B.
This proves the desired result with ϕ = us ω̃A and ψ = us ω̃B. Since η̃ ≤ η ≤ c and both
η̃ and c are finitely-valued, so are ϕ and ψ. �

Remark 3.42. By means of the usual approaches [8, 1, 10], one can prove when c is finitely-
valued that under the assumptions (1.6) or (1.7), ϕ and ψ can be required to be c-concave
conjugates to each other. In the special case where c is assumed to be continuous, c-
concave conjugates are upper semicontinuous. This is in accordance with Proposition
3.35.

Now, we remove the assumption that c is finite and continuous and only assume that
it is lower semicontinuous. The main technical result for the proof of the characterization
of the optimal plans is the following

Lemma 3.43. Assume that c is a [1,∞]-valued lower semicontinuous function. Let π ∈
Pc and η ∈ C ′∗

c be as in (3.21-b), i.e. π ∈ ∂C′
c
Φ2(η) and define the function η̃ on S by

η̃(a, b) = 〈η, ǫ(a,b)〉, (a, b) ∈ S. (3.44)

Then, {
η̃ ≤ c on S
η̃ = c on supp π

⋂{c <∞}
and η̃ is a finitely-valued measurable function on S.
Remark 3.45. We assume that c ≥ 1 without loss of generality, see Remark 3.8, to allow
dividing by c in the definition of Cc.
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Proof. Because of Theorem 2.13-c-2, there exists a sequence {ρn} in CAB such that
{
ρn ≤ c, ∀n and
limn→∞ ρn = η

(3.46)

with respect to σ(C ′∗
c , C

′
c). Having Remark 3.9 in mind, recall that only the restriction of

ρn to S carries information as regards to the dual pairing 〈C ′∗
c , C

′
c〉. Also recall that the

kth Moreau-Yosida approximation of a function u on a space with metric d is defined for
all x by u(k)(x) = infy{u(y) + kd(x, y)}. Defining the Moreau-Yosida approximations

ρn,k = [max(ρn, k)]
(k)

ck = [max(c, k)](k)

for all n, k ≥ 1, (3.46) implies that




(a) ρn,k, ck ∈ CAB, ρn,k ≤ ck ≤ c, ∀n ≥ 1
(b) limn limk〈ρn,k, m〉 = 〈η,m〉, ∀m ∈ Mc, m ≥ 0
(c) 0 ≤ ck ↑ c pointwise.

(3.47)

where Mc is the space of all measures m on S such that
∫
S c d|m| <∞. By Remark 3.9,

one sees that Mc ⊂ C ′
c.

While deriving (3.47), we used the well-known results:

• a Moreau-Yosida approximation is a continuous function and
• the sequence of Moreau-Yosida approximations of a function tends pointwise and

croissantly to its lower semicontinuous regularization.

The proof of statement (3.47-b) relies on the monotone convergence theorem; this is the
reason why it holds for all m in Mc rather than in C ′

c.
Let us introduce the cone Q+ = {ℓ ∈ C ′

c; ℓ ≥ 0 and 〈η, ℓ〉 ≥ 0} and Q the vector space
spanned by Q+. We first consider the restriction θ of η to Q. By (3.34), π is in Q+ and
(3.22) gives us θ ∈ ∂Q∗N(π) where N(ℓ) = sup{〈u, ℓ〉; u ∈ Cc, |u| ≤ c}, ℓ ∈ Q which is the
dual norm ‖ · ‖∗c restricted to Q. It follows that θ belongs to the topological dual space Q′

of the normed space (Q, ‖ · ‖∗c) :
θ := η|Q ∈ Q′.

This topological regularity of θ will allow us a few lines below to invoke Brønsted-
Rockafellar’s lemma. It is not clear that η is continuous on the whole normed space
C ′
c.

Let us denote Ψ the restriction of Φ∗
1 to Q and Ψ∗ its convex conjugate with respect to the

dual pairing 〈Q,Q′〉. Since θ ∈ Q′, θ ≥ 0 and η ∈ Γ, one sees that 0 ≤ Ψ∗(θ) ≤ Φ2(η) = 0.
As (3.21-b) is equivalent to Young’s identity (3.23), one obtains

Ψ(π) + Ψ∗(θ) = 〈θ, π〉 = lim
n→∞

〈ξn, π〉

where
ξn = ρn,k(n)|Q

∈ Q′ (3.48)

is the restriction of ρn,k(n) ∈ C ′∗
c to Q ⊂ C ′

c for some sequence {k(n)}n which converges
fast enough to infinity to imply that limn→∞〈ξn, π〉 = 〈θ, π〉 by means of (3.47-b).

Denote Ψn the restriction to Q of the analogue of Φ∗
1 with ck(n) instead of c and Ψ∗

n

its convex conjugate with respect to 〈Q,Q′〉. By (3.47-c), we have limn→∞ Ψn(π) = Ψ(π).
By (3.47-a), we also have Ψ∗(θ) = Ψ∗

n(ξn) = 0 for all n. Therefore,

Ψn(π) + Ψ∗
n(ξn) = 〈ξn, π〉 + ǫn
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with limn→∞ ǫn = 0. In other words, ξn is an ǫn-subgradient of Ψn at π. Hence, by
Brønsted-Rockafellar lemma, there exist two sequences {πn} in Q and {θn} in Q′ such
that for all n,

‖πn − π‖ ≤ √
ǫn, (3.49)

‖ξn − θn‖ ≤ √
ǫn (3.50)

(both norms N(ℓ) = sup{〈u, ℓ〉; u ∈ Cc, |u| ≤ c} on Q and sup{〈·, ℓ〉; ℓ ∈ Q, N(ℓ) ≤ 1} on
Q′ are simply written ‖ · ‖) and

θn ∈ ∂Q′Ψn(πn). (3.51)

We define
G = {(a, b) ∈ S; 〈η, ǫ(a,b)〉 ≥ 0}

the set of all (a, b) ∈ A×B such that ǫ(a,b) ∈ Q. Since ck(n) is finite and continuous,
proceeding as in Proposition 3.35, one shows as for (3.40) that

θn(a, b) = ck(n)(a, b), ∀(a, b) ∈ clG ∩ supp πn (3.52)

where
θn(a, b) = us θ̃n(a, b), (a, b) ∈ S

is the upper semicontinuous regularization of

θ̃n(a, b) =

{
θn(ǫ(a,b)) if (a, b) ∈ G
−∞ otherwise

, (a, b) ∈ S

and clG is the closure of G in A×B. Since S is closed, we have clG ⊂ S. As πn may not
be a measure, one uses Lemma 3.60 below instead of its usual analogue.

Thanks to (3.49), limn→∞ πn = π strongly in Q and for all large enough n we have
πn ∈ Q+ and

supp πn = supp π. (3.53)

With η the upper semicontinuous regularization of η̃, we have {η ≥ 0} = cl {η̃ ≥ 0}. It
follows from (3.40) that

supp π ⊂ clG. (3.54)

Thanks to (3.48) and (3.50), for all 0 ≤ r <∞,

lim
n→∞

sup
(a,b)∈G∩{c≤r}

|ρn,k(n)(a, b) − θ̃n(a, b)| = 0. (3.55)

Let us assume for a while that
sup
S
c <∞. (3.56)

Under this assumption, (3.55) leads us to limn→∞ supG |ρn,k(n) − θ̃n| = 0 on G. Upper
regularizing, because of this uniform estimate and the continuity of ρn,k(n), one obtains

lim
n→∞

γn = 0 (3.57)

where γn = supclG |ρn,k(n) − θn|. By (3.52), (3.53), (3.54) and ρn,k ≤ ρn for all n, k, we
obtain for all large enough n : ρn(a, b) ≥ ck(n)(a, b)−γn, ∀(a, b) ∈ supp π. Letting n tend to
infinity, we see with (3.46), (3.47-c) and (3.57) that η̃(a, b) = c(a, b), for all (a, b) ∈ supp π
where η̃ is defined at (3.44). We have just proved that under the assumption (3.56),

{
(a) η̃(a, b) ≤ c(a, b), ∀(a, b) ∈ S
(b) η̃(a, b) = c(a, b), ∀(a, b) ∈ supp π

(3.58)

where the statement (a) directly follows from (3.46).
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It remains to remove the restriction (3.56). For each k ≥ 1, let
{

Sk = {c ≤ k} and
ck = c+ δSk

The function ck is lower semicontinuous on A×B and satisfies (3.56); {Sk} is a croissant
sequence of closed level sets of c with Sk ⊂ S for all k. By Proposition 3.12-b we have
supp π ⊂ S.
It is assumed that π ∈ ∂C′

c
Φ2(η) which is equivalent to the Young’s identity Φ∗

1(π) +
Φ2(η) = 〈η, π〉 or equivalently [Φ∗

1(π) = 〈η, π〉 and Φ2(η) = 0] which is also equivalent to
{ 〈η, π〉 =

∫
A×B

c dπ and
〈η, ℓ〉 ≤ Φ∗

1(ℓ), ∀ℓ ∈ C ′
c

(3.59)

because of Proposition 3.12-d and Lemma 3.61 below. Let us consider for each k
{

πk = 1Sk
.π

〈ηk, ℓ〉 = 〈η, ℓ〉, ∀ℓ ∈ C ′
c such that supp ℓ ⊂ Sk

Note with Remark 3.9 that πk ∈ C ′
ck

and ηk ∈ C ′∗
ck
.Also introduce Θk and Θ∗

k the analogues
of Φ∗

1 and Φ2 where c is replaced by ck.
By Proposition 3.12-d and (3.34), Θk(πk) =

∫
A×B

ck dπk = 〈ηk, πk〉. Since for any ℓ ∈ C ′
c

such that supp ℓ ⊂ Sk we have Θk(ℓ) = Φ∗
1(ℓ), one obtains with (3.59) that 〈ηk, ℓ〉 ≤ Θk(ℓ)

for all ℓ ∈ C ′
ck
. Reasoning as for the derivation of (3.59) but taking the reverse way, this

shows that

πk ∈ ∂C′
ck

Θ∗
k(ηk).

Applying (3.58) yields
{
η̃k(a, b) ≤ ck(a, b), ∀(a, b) ∈ Sk
η̃k(a, b) = ck(a, b), ∀(a, b) ∈ supp πk

, ∀k ≥ 1

with η̃k(a, b) = 〈ηk, ǫ(a,b)〉, (a, b) ∈ Sk. As ∪kSk = {c <∞}, this is equivalent to
{
η̃(a, b) ≤ c(a, b), ∀(a, b) ∈ {c <∞}
η̃(a, b) = c(a, b), ∀(a, b) ∈ supp π

⋂{c <∞}
Finally, one sees with (3.46) that η̃ = limn→∞ ρn on S. This implies that η̃ is measurable
on S and completes the proof of the lemma. �

During this proof, we have used the following elementary lemmas.

Lemma 3.60. Let ℓ be a positif element of C ′
c. For any (a, b) ∈ supp ℓ, there exists a se-

quence {hk}k≥1 of positif continuous bounded functions on A×B such that limk→∞ hk.ℓ =
ǫ(a,b) in with respect to σ(C ′

c, Cc).

Proof. To see this, consider a décroissant sequence {Gk}k≥1 of neighbourhoods of (a, b)
with limkGk = {(a, b)} and choose hk such that {hk > 0} ⊂ Gk and 〈hk, ℓ〉 = 1, this is
possible since A×B is a metric space. �

Lemma 3.61. For any η ∈ C ′∗
c , the three following statements are equivalent:

(i) Φ2(η) = 0;
(ii) η ∈ Γ;
(iii) 〈η, ℓ〉 ≤ Φ∗

1(ℓ), for all ℓ ∈ C ′
c.
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Proof. The equivalence (i) ⇔ (ii) is an immediate consequence of (3.15).
Let us prove: (ii) ⇔ (iii). Taking the closure, it is enough to check that for all u in CAB

u ∈ Γ ⇔ [〈u, ℓ〉 ≤ Φ∗
1(ℓ), ∀ℓ ∈ C ′

c]. (3.62)

Young’s inequality 〈u, ℓ〉 ≤ Φ(u) + Φ∗(ℓ) and u ∈ Γ ⇔ Φ(u) = 0 for all u, ℓ give the
direct implication. For the converse, choosing ℓ = ε(a,b) in the right-hand side of (3.62),
one obtains for all (a, b) ∈ S, u(a, b) ≤ Φ∗(ε(a,b)). But, Φ∗(ε(a,b)) = c(a, b) by Proposition
3.12-d. This proves (3.62) and completes the proof of the lemma. �

3.6. Optimal plan : completing the proofs of Theorem 3.3 and 3.5. We are now
in position to complete the proofs of these results.

Proof of Theorem 3.3. • Proof of (1). Sufficient condition. Let π ∈ P (µ, ν) be such that∫
A×B c dπ < ∞. Let ϕ and ψ satisfy (3.27). Because of Lemma 3.26, one obtains that

lsϕ and lsψ still satisfy (3.27) as well as lsϕ ∈ L1(A, µ) and lsψ ∈ L1(B, ν). Thanks to
Lemma 3.31, there exists some ω ∈ Υ (see (3.28)) such that 〈ω, (µ, ν)〉 =

∫
A×B c dπ. But,

with Lemma 3.29-c: T ∗
2ω ∈ Γ. Therefore, one can apply Theorem 3.24-b which insures

that π is optimal.

Necessary condition. Let π be an optimal plan. Because of Theorem 3.24-b there exists
ω ∈ X ∗

1 such that η := T ∗
2ω ∈ Γ and (3.21-b) holds. With Lemma 3.43, one sees that η̃

defined by (3.44) satisfies η̃ ≤ c on S and η̃ = c on supp π
⋂{c < ∞}. By (3.16), for all

(a, b) ∈ S we have η̃(a, b) = ω̃A(a) + ω̃B(b) where ω̃A(a) = 〈ωA, ǫa〉 and ω̃B(b) = 〈ωB, ǫb〉.
One concludes the proof, taking ϕ = 1SA

ω̃A and ψ = 1SB
ω̃B where SA and SB are the

canonical projections of S on A and B.

• Proof of (2). It appears from Lemmas 3.31 and 3.43 that the optimal functions (ϕ, ψ)
and the optimal linear form ω ∈ X ∗

1 associated with π by the KKT condition (3.21), see
Theorem A.8, are related to each other by

ω(ǫa, ǫb) = ϕ⊕ ψ(a, b), for π-a.e. (a, b) ∈ A×B. (3.63)

Therefore, (3.21) and (3.4) express the same KKT condition. If ϕ and ψ are measurable,
then they are integrable by Lemma 3.26-1 and they solve (K) by Theorem 3.24. This
proves statement (a). In the general situation (b), replacing (ϕ, ψ) by (lsϕ, lsψ), one
concludes similarly by means of Lemma 3.26-2. �

Proof of Theorem 3.5. By Theorem 3.3 there exist functions ϕ1 and ψ1 satisfying (3.27).
By Lemma 3.26 there exist functions ϕ2 and ψ2 such that ϕ2 ∈ L1(A, µ) and ψ2 ∈ L1(B, ν).
Now with Lemma 3.31, one can extend (ϕ2, ψ2) in the sense of (3.63) into ω ∈ X ∗

1 such
that ω(κ) ≤ Λ∗(|κ|), ∀κ ∈ X1. But, this is clearly equivalent to |ω(κ)| ≤ Λ∗(|κ|), ∀κ ∈ X1.
Applying Lemma 3.43 and taking ϕ = 1SA

ω̃A and ψ = 1SB
ω̃B as in the proof of the

necessary condition of Theorem 3.3 leads to the desired result. �

4. The proofs of the results of Section 2

The results of Section 2 are a summing up of Proposition 4.7, Lemma 4.11 , Proposition
4.12, Corollary 4.17, Lemma 4.19, Proposition 4.20, Proposition 4.30 and Proposition 4.38.

We are going to apply the general results of the Lagrangian approach to the minimiza-
tion problem (P ) which are recalled at Appendix A. We use the notations of Appendix
A.
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4.1. Preliminary technical results. Recall that |u|Φ = inf{α > 0; Φ±(u/α) ≤ 1} with
Φ±(u) = max(Φ(u),Φ(−u)). Its associated dual uniform norm is

|ℓ|∗Φ
△

= sup
u,|u|Φ≤1

|〈u, ℓ〉|, ℓ ∈ L1

on L1. The topological dual space of (L1, | · |∗Φ) is denoted by L′
1. It is the topological

bidual space of (U1, | · |Φ).
Similarly, recall that |y|Λ = inf{α > 0; Λ±(y/α) ≤ 1} with Λ±(y) = max(Λ(y),Λ(−y)).
Its associated dual uniform norm is

|x|∗Λ
△

= sup
y,|y|Λ≤1

|〈y, x〉|, x ∈ X1

on X1. The topological dual space of (X1, | · |∗Λ) is denoted by X ′
1. It is the topological

bidual space of (Y1, | · |Λ).

The adjoint operator T ♯1 which appears at Lemma 4.1-f below is defined as follows. For

all ω ∈ X ′
1 and all ℓ ∈ L1, |〈T ♯1ω, ℓ〉L∗

1,L1
| = |〈ω, T ℓ〉X ′

1
,X1

|
Lemma 4.1. Let us assume (HΦ) and (HT ).

(a) dom Φ∗ ⊂ L1 and dom Λ∗ ⊂ X1

(b) T (dom Φ∗) ⊂ dom Λ∗ and TL1 ⊂ X1

(c) T is σ(L,U)-σ(X ,Y)-continuous
(d) T ∗

2 : X ∗
1 → L∗

1 is σ(X ∗
1 ,X1)-σ(L∗

1,L1)-continuous
(e) T1 : L1 → X1 is | · |∗Φ-| · |∗Λ-continuous

(f) T ♯1X ′
1 ⊂ L′

1

(g) T ∗
1Y1 ⊂ U1 and T ∗

1 : Y1 → U1 is σ(Y1,X1)-σ(U1,L1)-continuous
(h) T1 : L1 → X1 is σ(L1,U1)-σ(X1,Y1)-continuous

Proof. • Proof of (a). For all ℓ ∈ L and α > 0, Young’s inequality yields: 〈u, ℓ〉 =
α〈ℓ, u/α〉 ≤ [Φ(u/α)+Φ∗(ℓ)]α, for all u ∈ U . Hence, for any α > |u|Φ, 〈u, ℓ〉 ≤ [1+Φ∗(ℓ)]α.
It follows that 〈u, ℓ〉 ≤ [1 + Φ∗(ℓ)]|u|Φ. Considering −u instead of u, one gets

|〈u, ℓ〉| ≤ [1 + Φ∗(ℓ)]|u|Φ, ∀u ∈ U , ℓ ∈ L. (4.2)

It follows that dom Φ∗ ⊂ L1. One proves dom Λ∗ ⊂ X1 similarly.

• Proof of (b). Let us consider | · |Φ∗
±

and | · |Λ∗
±

the gauge functionals of the level sets

{Φ∗
± ≤ 1} and {Λ∗

± ≤ 1}. It is easy to show that

Λ∗
±(x) ≤ Φ∗

±(ℓ), for all ℓ ∈ L and x ∈ X such that Tℓ = x (4.3)

Therefore, T (domΦ∗
±) ⊂ domΛ∗

±. On the other hand, by Proposition B.1 (see the Ap-
pendix), the linear space spanned by dom Φ∗

± is dom | · |Φ∗
±

and the linear space spanned

by dom Λ∗
± is dom | · |Λ∗

±
. But, dom | · |Φ∗

±
= dom | · |∗Φ = L1 and dom | · |Λ∗

±
= dom | · |∗Λ = X1

by Proposition B.1 again. Hence, TL1 ⊂ X1.

• Proof of (c). To prove that T is continuous, one has to show that for any y ∈ Y ,
ℓ ∈ L 7→ 〈y, T ℓ〉 ∈ R is continuous. We get ℓ 7→ 〈y, T ℓ〉 = 〈T ∗y, ℓ〉 which is continuous
since (HT1) is T ∗y ∈ U .
• Proof of (d). It is a direct consequence of TL1 ⊂ X1. See the proof of (c).

• Proof of (e). We know by Proposition B.1 that | · |Φ∗
±

∼ | · |∗Φ and | · |Λ∗
±

∼ | · |∗Λ
are equivalent norms on L1 and X1 respectively. For all ℓ ∈ L1, |Tℓ|∗Λ ≤ 2|Tℓ|Λ∗

±
=

2 inf{α > 0; Λ∗
±(Tℓ/α) ≤ 1} ≤ 2 inf{α > 0; Φ∗

±(ℓ/α) ≤ 1}. This last inequality follows
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from (4.3). Going on, we get |Tℓ|∗Λ ≤ 2|ℓ|Φ∗
±
≤ 4|ℓ|∗Φ, which proves that T1 shares the

desired continuity property with ‖T1‖ ≤ 4.

• Proof of (f). Let us take ω ∈ X ′
1. For all ℓ ∈ L1, |〈T ♯1ω, ℓ〉L∗

1,L1
| = |〈ω, T ℓ〉X ′

1,X1
|

≤ ‖ω‖X ′
1
|Tℓ|∗Λ ≤ ‖ω‖X ′

1
‖T1‖|ℓ|∗Φ where ‖T1‖ <∞, thanks to (e). Hence, T ♯1ω stands in L′

1.

• Proof of (g). Let us take y ∈ Y1. We’ve just seen that T ∗
1 y stands in L′

1. Let us show that
in addition, it is the strong limit of a sequence in U . Indeed, there exists a sequence (yn)
in Y such that limn→∞ yn = y in (Y1, | · |Λ). Hence, for all ℓ ∈ L1, |〈T ∗

1 yn− T ∗
1 y, ℓ〉L∗

1,L1
| =

|〈yn − y, T ℓ〉Y1,X1
| ≤ ‖T1‖|yn − y|Λ|ℓ|∗Φ and supℓ∈L1,|ℓ|∗Φ≤1 |〈T ∗

1 yn − T ∗
1 y, ℓ〉| ≤ ‖T1‖|yn − y|Λ

tends to 0 as n tends to infinity, where T ∗
1 yn = T ∗yn belongs to U for all n ≥ 1 by (HT1).

Consequently, T ∗
1 y ∈ U1.

The continuity statement now follows from (d).

• Proof of (h).
By (b), T1 maps L1 into X1 and because of (g): T ∗Y1 ⊂ U1. Hence, for all y ∈ Y1,

ℓ 7→ 〈T1ℓ, y〉X1,Y1
= 〈ℓ, T ∗y〉L1,U1

is σ(L1,U1)-continuous. This completes the proof of
Lemma 4.1. �

Let Φ∗
0, Λ∗

0 and Λ∗
1 be the convex conjugates of Φ0, Λ0 and Λ1 for the dual pairings

〈U ,L〉, 〈Y ,X〉 and 〈Y1,X1〉.
Lemma 4.4. Under the hypotheses (HΦ) and (HT ), we have

(a) Φ0 = Φ1 ≤ Φ on U (a’) Λ0 = Λ1 ≤ Λ on Y
(b) Φ∗ = Φ∗

0 on L (b’) Λ∗ ≤ Λ∗
0 on X

(c) Φ∗ = Φ∗
0 = Φ∗

1 on L1 (c’) Λ∗ ≤ Λ∗
0 ≤ Λ∗

1 on X1

Proof. (a) follows directly from Lemma 4.1-a, (a’) from (a) and (b’) from (a’).
(b) follows from the general fact that the convex conjugates of a function and its convex
lower semicontinuous regularization match.
Let us show (c). As U is a dense subspace of U1, we obtain that the restriction of Φ∗ to
L1 is also the convex conjugate of Φ (restricted to L1) for the dual pairing 〈U1,L1〉. Now,
with the same argument as in (b), this implies that Φ∗ = Φ∗

1 on L1.
(c’) follows from (a’), the fact that Y is a dense subset of Y1, the weak continuity of T ∗

1

which is proved at Lemma 4.1-g and the lower semicontinuity of Φ1. �

Lemma 4.5. Under the hypothesis (HΦ),

(a) Φ∗ = Φ∗
0 is σ(L,U)-inf-compact and

(b) Φ∗
1 is σ(L1,U1)-inf-compact.

Proof. • Proof of (b). We first prove that Φ∗
1 is σ(L1,U1)-inf-compact. Recall that we

already obtained at (4.2) that |〈u, ℓ〉| ≤ [1 + Φ∗(ℓ)]|u|Φ, for all u ∈ U and ℓ ∈ L. By
completion, one deduces that for all ℓ ∈ L1 and u ∈ U1, |〈u, ℓ〉| ≤ [1 + Φ∗

1(ℓ)]|u|Φ (recall
that Φ∗ = Φ∗

1 on L1, Lemma 4.4-c.) Hence, Φ∗
1(ℓ) ≤ A implies that |ℓ|∗Φ ≤ A+1. Therefore,

the level set {Φ∗
1 ≤ A} is relatively σ(L1,U1)-compact.

By construction, Φ∗
1 is σ(L1,U1)-lower semicontinuous. Hence, {Φ∗

1 ≤ A} is σ(L1,U1)-
closed and σ(L1,U1)-compact.

• Proof of (a). As Φ∗ = Φ∗
0 = Φ∗

1 on L1 (Lemma 4.4-c), dom Φ∗ ⊂ L1 (Lemma 4.1-a) and
U ⊂ U1, it follows from the σ(L1,U1)-inf-compactness of Φ∗

1 that Φ∗ = Φ∗
0 is σ(L,U)-inf-

compact. �
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4.2. A first dual equality. In this section we only consider the basic spaces U ,L,Y and
X . Let us begin applying Appendix A with 〈P,A〉 = 〈U ,L〉 and 〈B,Q〉 = 〈Y ,X〉 and the
topologies are the weak topologies σ(L,U), σ(U ,L), σ(X ,Y) and σ(Y ,X ). The function

to be minimized is f(ℓ) = Φ∗(ℓ)+δC(Tℓ), ℓ ∈ L where δC(x) =

{
0 if x ∈ C
+∞ if x 6∈ C

denotes

the convex indicator of C. The perturbation F of f is Fenchel’s one:

F0(ℓ, x) = Φ∗(ℓ) + δC(Tℓ+ x), ℓ ∈ L, x ∈ X .
We assume (HT1): T

∗Y ⊂ U , so that the duality diagram is
〈
U , L

〉

T ∗
x

yT〈
Y , X

〉 (Diagram 0)

The analogue of F for the dual problem is

G0(y, u)
△

= inf
ℓ,x

{〈y, x〉 − 〈u, ℓ〉 + F0(ℓ, x)} = inf
x∈C

〈y, x〉 − Φ0(T
∗y + u).

The corresponding value functions are

ϕ0(x) = inf{Φ∗
0(ℓ); ℓ ∈ L : Tℓ ∈ C − x}, x ∈ X

γ0(u) = sup
y∈Y

{ inf
x∈C

〈y, x〉 − Φ0(T
∗y + u)}, u ∈ U .

The primal and dual problems are (P ) and (D0).

Lemma 4.6. Assuming (HΦ) and (HT1), if C is a σ(X ,Y)-closed convex set, F0 is jointly
closed convex on L × X .
Proof. As T is linear continuous (Lemma 4.1-c) and C is closed convex, {(ℓ, x);Tℓ+x ∈ C}
is closed convex in L × X . As Φ∗ is closed convex on L, its epigraph is closed convex in
L×R. It follows that epiF0 = (X × epi Φ∗)∩ {(ℓ, x);Tℓ+ x ∈ C} is closed convex, which
implies that F0 is convex and lower semicontinuous. As it is nowhere equal to −∞ (since
inf F0 ≥ inf Φ∗ > −∞, F0 is also a closed convex function. �

Therefore, assuming that C is a σ(X ,Y)-closed convex set, one can apply the general
theory of Appendix A since the perturbation function F0 satisfies the assumptions (A.1)
and (A.3).

Proposition 4.7. Let us assume that (HΦ) and (HT ) hold. If C is convex and σ(X ,Y)-
closed, we have the dual equality

inf(P ) = sup(D0) ∈ [0,∞]. (4.8)

In particular, for all x in X , we have the little dual equality

inf{Φ∗(ℓ); ℓ ∈ L, T ℓ = x} = Λ∗
0(x) ∈ [0,∞]. (4.9)

Proof. The identity (4.9) is a special case of (4.8) with C = {x}.
To prove (4.8), we consider separately the cases where inf(P ) < +∞ and inf(P ) = +∞.

Case where inf(P ) < +∞. Thanks to Theorem A.6-b’, it is enough to prove that γ0 is
upper semicontinuous at u = 0. We are going to prove that γ0 is continuous at u = 0.
Indeed, for all u ∈ U ,

−γ0(u) = inf
y
{Φ0(T

∗y + u) − inf
x∈C

〈y, x〉} ≤ Φ0(u) ≤ Φ(u)
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where the first inequality is obtained taking y = 0. The norm | · |Φ is designed so that
Φ0 is bounded above on a | · |Φ-neighbourhood of zero. By the previous inequality, so
is the convex function −γ0. Therefore, −γ0 is | · |Φ-continuous on icordom (−γ0) ∋ 0. As
it is convex and L1 = (U , | · |Φ)′, it is also σ(U ,L1)-lower semicontinuous and a fortiori
σ(U ,L)-lower semicontinuous , since L1 ⊂ L.
Case where inf(P ) = +∞. Note that sup(D0) ≥ −Φ0(0) = 0 > −∞, so that we can apply
Theorem A.6-b. It is enough to prove that

lsϕ0(0) = +∞
in the situation where ϕ0(0) = inf(P ) = +∞. We have lsϕ0(0) = supV ∈N (0) inf{Φ∗

0(ℓ); ℓ :
Tℓ ∈ C + V } where N (0) is the set of all the σ(X ,Y)-open neighbourhoods of 0 ∈ X . It
follows that for all V ∈ N (0), there exists ℓ ∈ L such that Tℓ ∈ C+V and Φ∗

0(ℓ) ≤ lsϕ0(0).
This implies that

T ({Φ∗
0 ≤ lsϕ0(0)}) ∩ (C + V ) 6= ∅, ∀V ∈ N (0). (4.10)

On the other hand, inf(P ) = +∞ is equivalent to: T (dom Φ∗
0) ∩ C = ∅.

Now, we prove ad absurdum that lsϕ0(0) = +∞. Suppose that lsϕ0(0) < +∞. Because
of T (dom Φ∗

0) ∩ C = ∅, we have a fortiori

T ({Φ∗
0 ≤ lsϕ0(0)}) ∩ C = ∅.

As Φ∗
0 is inf-compact (Lemma 4.5-a) and T is weakly continuous (Lemma 4.1-c), T ({Φ∗

0 ≤
lsϕ0(0)}) is a σ(X ,Y)-compact subset of X . Clearly, it is also convex. But C is assumed
to be closed and convex, so that by Hahn-Banach theorem, C and T ({Φ∗

0 ≤ lsϕ0(0)})
are strictly separated. This contradicts (4.10), considering open neighbourhoods V of the
origin in (4.10) which are open half-spaces. Consequently, lsϕ0(0) = +∞. This completes
the proof of the proposition. �

4.3. Primal attainment and dual equality. We are going to consider the following
duality diagram, see Section 2.3:

〈
U1 , L1

〉

T ∗
1

x
yT1〈

Y1 , X1

〉 (Diagram 1)

Note that the inclusions T1L1 ⊂ X1 and T ∗
1 Y1 ⊂ U1 which are stated in Lemma 4.1 are

necessary to validate this diagram.
Let F1, G1 and γ1 be the analogous functions to F0, G0 and γ0. Denoting ϕ1 the primal
value function, we obtain

F1(ℓ, x) = Φ∗
1(ℓ) + δC1

(T1ℓ+ x), ℓ ∈ L1, x ∈ X1

G1(y, u) = inf
x∈C1

〈y, x〉 − Φ1(T
∗
1 y + u), y ∈ Y1, u ∈ U1 and

ϕ1(x) = inf{Φ∗
1(ℓ); ℓ ∈ L1 : T1ℓ ∈ C1 − x}, x ∈ X1,

γ1(u) = sup
y∈Y1

{ inf
x∈C1

〈y, x〉 − Φ1(T
∗
1 y + u)}, u ∈ U1.

It appears that the primal and dual problems are (P1) and (D1).

Lemma 4.11. Assuming (HΦ) and (HT ), the problems (P ) and (P1) are equivalent: they
have the same solutions and inf(P ) = inf(P1) ∈ [0,∞].
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Proof. It is a direct consequence of dom Φ∗ ⊂ L1, TL1 ⊂ X1 and Φ∗ = Φ∗
1 on L1, see

Lemma 4.1-a,b and Lemma 4.4-c. �

Proposition 4.12 (Primal attainment and dual equality). Assume that (HΦ) and (HT )
hold.

(a) For all x in X1, we have the little dual equality

inf{Φ∗(ℓ); ℓ ∈ L, T ℓ = x} = Λ∗
1(x) ∈ [0,∞]. (4.13)

Assume that in addition (HC) holds.

(b) We have the dual equalities

inf(P ) = sup(D1) ∈ [0,∞] (4.14)

inf(P ) = inf(P1) = inf
x∈C1

Λ∗
1(x) ∈ [0,∞] (4.15)

(c) If in addition inf(P ) <∞, then (P ) is attained in L1.

(d) Let ℓ̄ ∈ L1 be a solution to (P ), then x̄
△

= T ℓ̄ is a solution to (P1,X ) and inf(P ) =
Φ∗(ℓ̄) = Λ∗

1(x̄).

Proof. • We begin with the proof of (4.14). As, inf(P ) = inf(P1) by Lemma 4.11, we have
to show that inf(P1) = sup(D1). We consider separately the cases where inf(P1) < +∞
and inf(P1) = +∞.

Case where inf(P1) < +∞. Because of (HC), F1 is jointly convex and F1(ℓ, ·) is σ(X1,Y1)-
closed convex for all ℓ ∈ L1. As T ∗

1 Y1 ⊂ U1 (Lemma 4.1), one can apply the approach of
Appendix A to the duality Diagram 1. Therefore, by Theorem A.6-b’, the dual equality
holds if γ1 is σ(U1,L1)-upper semicontinuous at 0. As in the proof of Proposition 4.7,
we have −γ1(u) ≤ Φ1(u), for all u ∈ U1. But Φ1 is the σ(U1,L1)-lower semicontinuous

regularization of Φ̃(u) =

{
Φ(u) if u ∈ U
+∞ otherwise

, u ∈ U1 and Φ is bounded above by 1 on

the ball {u ∈ U ; |u|Φ < 1}. As L1 = (U1, | · |Φ)′, Φ1 is also the | · |Φ-regularization of Φ̃.
Therefore, Φ1 is bounded above by 1 on {u ∈ U1; |u|Φ < 1}, since {u ∈ U ; |u|Φ < 1} is
| · |Φ-dense in {u ∈ U1; |u|Φ < 1}. As −γ1(≤ Φ1) is convex and bounded above on a | · |Φ-
neighbourhood of 0, it is |·|Φ-continuous on icordom (−γ1) ∋ 0. Hence, it is σ(U1,L1)-lower
semicontinuous at 0.

Case where inf(P1) = +∞. This proof is a transcription of the second part of the proof
of Proposition 4.7, replacing T by T1, C by C1, all the subscripts 0 by 1 and using the
preliminary results: Φ∗

1 is inf-compact (Lemma 4.5) and T1 is weakly continuous (Lemma
4.1-h). This completes the proof of (4.14).
• The identity (4.13) is simply (4.14) with C1 = {x}.
• Let us prove (c). By Lemma 4.1-h, T1 is σ(L1,U1)-σ(X1,Y1)-continuous. Since C1 is
σ(X1,Y1)-closed, {ℓ ∈ L1;Tℓ ∈ C1} is σ(L1,U1)-closed. As Φ∗

1 is σ(L1,U1)-inf-compact
(Lemma 4.5), it achieves its infimum on the closed set {ℓ ∈ L1;Tℓ ∈ C1} if inf(P1) =
inf(P ) <∞.
• Let us prove (4.15). The dual equality (4.14) gives us, for all xo ∈ C1, inf(P1) =
supy∈Y1

{infx∈C1
〈y, x〉 − Λ1(y)} ≤ supy∈Y1

{〈xo, y〉 − Λ1(y)} = Λ∗
1(xo). Therefore

inf(P1) ≤ inf
x∈C1

Λ∗
1(x). (4.16)

In particular, equality holds instead of inequality if inf(P1) = +∞. Suppose now that
inf(P1) < ∞. From statement (c), we already know that there exists ℓ̄ ∈ L1 such that

x̄
△

= T ℓ̄ ∈ C1 and inf(P1) = Φ∗(ℓ̄). Clearly inf(P1) ≤ inf{Φ∗(ℓ);Tℓ = x̄, ℓ ∈ L1} ≤ Φ∗(ℓ̄).
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Hence, inf(P1) = inf{Φ∗
1(ℓ);Tℓ = x̄, ℓ ∈ L1}. By the little dual equality (4.13) we have

inf{Φ∗
1(ℓ);Tℓ = x̄, ℓ ∈ L1} = Λ∗

1(x̄). Finally, we have obtained inf(P1) = Λ∗
1(x̄) with

x̄ ∈ C1. Together with (4.16), this leads us to the desired identity: inf(P1) = infx∈C1
Λ∗

1(x).
• Finally, (d) is a by-product of the proof of (4.15). �

The following result is an improvement of Lemma 4.4-c’.

Corollary 4.17. We have dom Λ∗
1 ⊂ dom Λ∗

0, dom Λ∗
1 ⊂ X1 and in restriction to X1,

Λ∗
0 = Λ∗

1.

Proof. The first part is already proved at Lemma 4.1-a. The matching Λ∗
0 = Λ∗

1 follows
from (4.9) and (4.13). �

4.4. Dual attainment. We now consider the following duality diagram
〈
L1 , L∗

1

〉

T1

y
xT ∗

2〈
X1 , X ∗

1

〉 (Diagram 2)

where the topologies are the respective weak topologies. The associated perturbation
functions are

F2(ℓ, x) = Φ∗
1(ℓ) + δC1

(Tℓ+ x), ℓ ∈ L1, x ∈ X1

G2(ζ, ω) = inf
x∈C1

〈x, ω〉 − Φ2(T
∗
2ω + ζ), ζ ∈ L∗

1, ω ∈ X ∗
1

As F2 = F1, the primal problem is (P1) and its value function is ϕ1 :

ϕ1(x) = inf
x′∈C1−x

Λ∗
1(x

′), x ∈ X1 (4.18)

where we used (4.13). The dual problem is (D2).
Assume that inf(P ) < ∞. We know by Proposition 4.12-d that (P1,X ) admits at least

a solution x̄ = T ℓ̄ where ℓ̄ is a solution to (P1). Let us consider the following new
minimization problem

minimize Φ∗
1(ℓ) subject to Tℓ = x̄, ℓ ∈ L1 (P x̄

1 )

Of course ℓ̄ is a solution to (P1) if and only if it is a solution to (P x̄
1 ) where x̄ = T ℓ̄.

Since our aim is to derive a representation formula for ℓ̄, it is enough to build our duality
schema upon (P x̄

1 ) rather than upon (P1). The associated perturbation functions are

F x̄
2 (ℓ, x) = Φ∗

1(ℓ) + δ{x̄}(Tℓ+ x), ℓ ∈ L1, x ∈ X1

Gx̄
2(ζ, ω) = 〈x̄, ω〉 − Φ2(T

∗
2ω + ζ), ζ ∈ L∗

1, ω ∈ X ∗
1

As F x̄
2 is F1 with C1 = {x̄}, the primal problem is (P x̄

1 ) and its value function is

ϕx̄1(x) = Λ∗
1(x̄− x), x ∈ X1.

The dual problem is
maximize 〈x̄, ω〉 − Λ2(ω), ω ∈ X ∗

1 (Dx̄
2 )

Lemma 4.19. Under the hypotheses (HΦ) and (HT ), Λ∗
1 is σ(X1,Y1)-inf-compact.

Proof. By (4.13): inf{Φ∗
1(ℓ); ℓ ∈ L1, T1ℓ = x} = Λ∗

1(x) for all x ∈ X1 (note that Φ∗ = Φ∗
1

on L1 by Lemma 4.4-c.) As T1 is continuous (Lemma 4.1-h) and Φ∗
1 is inf-compact(Lemma

4.5), it follows that Λ∗
1 is also inf-compact. �

Proposition 4.20 (Dual attainment). Assume that (HΦ), (HT ) and (HC) hold.
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(a) Suppose that
C ∩ icordom Λ∗

1 6= ∅. (4.21)

Then the dual problem (D2) is attained in X ∗
1 .

(b) Suppose that C ∩ dom Λ∗
1 6= ∅. Then, inf(P ) <∞ and we know (see Proposition 4.12-

d) that (P1,X ) admits at least a solution. If in addition, there exists a solution x̄ to
(P1,X ) such that

x̄ ∈ diffdom Λ∗
1, (4.22)

then the dual problem (Dx̄
2 ) is attained in X ∗

1 .

Proof. • Proof of (a). As F2 = F1, one can apply the approach of Appendix A to the
duality Diagram 2. Let us denote ϕ∗∗

1 the σ(X1,Y1)-lower semicontinuous regularization
of ϕ1 and ϕ∗∗

2 its σ(X1,X ∗
1 )-lower semicontinuous regularization. Since X1 separates Y1,

the inclusion Y1 ⊂ X ∗
1 holds. It follows that ϕ∗∗

1 (0) ≤ ϕ∗∗
2 (0) ≤ ϕ1(0). But we have (4.14)

which is ϕ∗∗
1 (0) = ϕ1(0). Therefore, one also obtains ϕ∗∗

2 (0) = ϕ1(0) which is the dual
equality

inf(P1) = sup(D2) (4.23)

and one can apply Theorem A.6-c which gives

argmax(D2) = −∂ϕ1(0). (4.24)

It remains to show that the value function ϕ1 given at (4.18) is such that

∂ϕ1(0) 6= ∅. (4.25)

As the considered dual pairing 〈X1,X ∗
1 〉 is the saturated algebraic pairing, for (4.25)

to be satisfied, by the geometric version of Hahn-Banach theorem, it is enough that
0 ∈ icordomϕ1. But this holds provided that the constraint qualification (4.21) is satisfied.

• Proof of (b). Let us specialize to the special case where C1 = {x̄}. The dual equality
(4.23) becomes

inf(P x̄
1 ) = sup(Dx̄

2 ) (4.26)

and (4.25) becomes ∂ϕx̄1(0) 6= ∅ which is directly implied by (4.22). �

Remark 4.27. The dual equality (4.26) is

Λ∗
1 = Λ∗

2 (4.28)

where these convex conjugates are to be taken respectively with respect to 〈X1,Y1〉 and
〈X1,X ∗

1 〉. Denoting Λ1 and Λ2 the convex σ(X ∗
1 ,X1)-lower semicontinuous regularizations

of Λ1 and Λ2, (4.28) implies the identity

Λ1 = Λ2. (4.29)

Usual results about convex conjugation tell us that Λ∗
1(x̄) = supω∈X ∗

1
{〈x̄, ω〉 − Λ1(ω)} =

sup(Dx̄
2) and the above supremum is attained at ω̄ if and only if ω̄ ∈ ∂X ∗

1
Λ∗

1(x̄). This is
the attainment statement in Proposition 4.20-b.

4.5. Dual representation of the minimizers. We keep the framework of Diagram 2
and derive the KKT relations in this situation. The Lagrangian associated with F2 = F1

and Diagram 2 is for any ℓ ∈ L1, ω ∈ X ∗
1 ,

K2(ℓ, ω)
△

= inf
x∈X1

{〈x, ω〉 + Φ∗
1(ℓ) + δC1

(Tℓ+ x)},
= Φ∗

1(ℓ) − 〈Tℓ, ω〉+ inf
x∈C1

〈x, ω〉.

Proposition 4.30. Assume that (HΦ), (HT ) and (HC) hold.
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(a) Any ℓ̄ ∈ L1 is a solution to (P1) if and only if there exist some ω̄ ∈ X ∗
1 such that the

following three statements hold
(1) T ℓ̄ ∈ C
(2) 〈T ℓ̄, ω̄〉 ≤ 〈x, ω̄〉 for all x ∈ C1

(3) and the following representation formula holds

ℓ̄ ∈ ∂L1
Φ2(T

∗
2 ω̄) (4.31)

More, these three statements hold if and only if: ℓ̄ is solution to (P1), ω̄ is a solution
to (D2) and inf(P1) = sup(D2).
Statement (4.31) is equivalent to the Young’s identity

Φ∗(ℓ̄) + Φ2(T
∗
2 ω̄) = 〈T ℓ̄, ω̄〉. (4.32)

(b) (Assumption (HC) is useless here). Any ℓ̄ ∈ L1 is a solution to (P x̄) if and only if
T ℓ̄ = x̄ and there exists some ω̄ ∈ X ∗

1 such that (4.31) or equivalently (4.32) holds.
More, this occurs if and only if: ℓ̄ is a solution to (P ), ω̄ is a solution to (Dx̄

2 ) with
x̄ := T ℓ̄ and inf(P x̄) = sup(Dx̄

2).

Proof. This proof is an application of Theorem A.8. Under the general assumptions (HΦ),
(HT ) and (HC), we have seen at Proposition 4.20 that the dual equalities (4.23) and (4.26)
hold true. In both situations (a) and (b), (ℓ̄, ω̄) is a saddle-point; all we have to do is to
translate the KKT relations (A.10) and (A.11).

• Proof of (a). WithK2 as above, (A.10) and (A.11) are ∂ℓK2(ℓ̄, ω̄) ∋ 0 and ∂ω(−K2)(ℓ̄, ω̄) ∋
0. Since −〈Tℓ, ω〉 is locally weakly upper bounded as a function of ω around ω̄ and
as a function of ℓ around ℓ̄, one can apply (Rockafellar, [7], Theorem 20) to derive
∂ℓK2(ℓ̄, ω̄) = ∂Φ∗(ℓ̄) − T ∗

2 ω̄ and ∂ω(−K2)(ℓ̄, ω̄) = ∂(− infx∈C1
〈x, ·〉) + T ℓ̄. Therefore the

KKT relations are

T ∗
2 ω̄ ∈ ∂Φ∗(ℓ̄) (4.33)

−T ℓ̄ ∈ ∂(δ∗−C1
)(ω̄) (4.34)

where δ∗−C1
is the convex conjugate of the convex indicator of −C1.

As a convex conjugate, Φ∗ is a closed convex functions. Its convex conjugate is Φ2.
Therefore (4.33) is equivalent to the following equivalent statements

ℓ̄ ∈ ∂Φ2(T
∗
2 ω̄)

Φ∗(ℓ̄) + Φ2(T
∗
2 ω̄) = 〈ℓ̄, T ∗

2 ω̄〉
Similarly, as a convex conjugate δ∗−C1

is a closed convex functions. Its convex conjugate is
δ−C̄1

where C̄1 stands for the σ(X1,X ∗
1 )-closure of C1. Of course, as C1 is σ(X1,Y1)-closed

by hypothesis (HC), it is a fortiori σ(X1,X ∗
1 )-closed, so that C̄1 = C1. Therefore (4.34) is

equivalent to
δC1

(T ℓ̄) + δ∗−C1
(ω̄) = 〈−T ℓ̄, ω̄〉. (4.35)

It follows from (4.35) that δC1
(T ℓ̄) <∞ which is equivalent to T ℓ̄ ∈ C1.

Now (4.35) is −〈T ℓ̄, ω̄〉 = δ∗−C1
(ω̄) = − infx∈C1

〈x, ω̄〉 which is 〈T ℓ̄, ω̄〉 = infx∈C1
〈x, ω̄〉. This

completes the proof of (a).

• Proof of (b). This follows directly from (a) with x̄ = T ℓ̄ and C1 = {x̄}. �

Remark 4.36. Thanks to Proposition 4.12-d, (4.32) leads us to

Λ∗
1(x̄) + Λ2(ω̄) = 〈x̄, ω̄〉 (4.37)

for all x̄ ∈ dom Λ∗
1 and all ω̄ ∈ X ∗

1 solution to (Dx̄
2 ). By Young’s inequality: Λ∗

2(x̄) +
Λ2(ω̄) ≥ 〈x̄, ω̄〉 and the identities (4.28), (4.37), we see that Λ2(ω̄) ≥ Λ2(ω̄). But, the
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reversed inequality always holds true. Therefore, we have Λ2(ω̄) = Λ2(ω̄). This proves
that Λ2 = Λ2 on dom Λ2.

Proposition 4.38. Assume that (HΦ), (HT ) and (HC) hold. Any solution ω̄ of (D2) or
(Dx̄

2 ) shares the following properties

(a) ω̄ stands in the σ(X ∗
1 ,X1)-closure of dom Λ1.

(b) T ∗
2 ω̄ stands in the σ(L∗

1,L1)-closures of T ∗
1 (domΛ1) and dom Φ.

(c) For any xo ∈ X1, let us denote jDxo
and j−Dxo

the gauge functionals on X1 of the
convex sets Dxo

and −Dxo
where Dxo

= {x ∈ X1; Λ
∗
1(xo + x) ≤ Λ∗

1(xo) + 1}.
- Let ω̄ be any solution of (D2). Then, for any xo in C ∩ icordom Λ∗

1, ω̄ is
jDxo

-upper semicontinuous and j−Dxo
-lower semicontinuous at 0.

- Let ω̄ be any solution of (Dx̄
2) with x̄ ∈ icordom Λ∗

1. Then, ω̄ is jDx̄
-upper

semicontinuous and j−Dx̄
-lower semicontinuous at 0.

Proof. • Proof of (a). Because of (4.37), we have ω̄ ∈ dom Λ2. As Λ2 ≤ Λ2 and Λ1 = Λ2

(see (4.29)), we obtain ω̄ ∈ dom Λ1 which implies (a).

• Proof of (b). It follows from (a) and the continuity of T ∗
2 , see Lemma 4.1-d that T ∗

2 ω̄
is in the σ(L∗

1,L1)-closure of T ∗
1 (dom Λ1). On the hand, T ∗

2 ω̄ ∈ domΦ2 and Φ2 is the
σ(L∗

1,L1)-closed convex closure of Φ. It follows that T ∗
2 ω̄ is in the σ(L∗

1,L1)-closure of
dom Φ.

• Proof of (c). Let ω̄ ∈ argmax(D2). By (4.18) and (4.24), for all x ∈ X1 and any xo ∈ C1,
〈−ω̄, x〉 ≤ ϕ1(x)−ϕ1(0) ≤ Λ∗

1(xo−x)−ϕ(0) ≤ Λ∗
1(xo−x). It follows that 〈ω̄, x〉 ≤ Λ∗

1(xo)+1
for all x ∈ Dxo

. This implies that for all x ∈ X1, 〈ω̄, x〉 ≤ [1 + Λ∗
1(xo)]jDxo

(x). Since
jD(−x) = j−D(x), we finally obtain

−[1 + Λ∗
1(xo)]j−Dxo

(x) ≤ 〈ω̄, x〉 ≤ [1 + Λ∗
1(xo)]jDxo

(x), ∀x ∈ X1

for any xo ∈ C1, which is the desired result. Choosing xo in C1 ∩ icordom Λ∗
1 implies that

jDxo
is a nondegerate homogeneous functional.

The second case where ω̄ ∈ argmax(Dx̄
2) is a specialization of the previous one. �

Appendix A. A short reminder about convex minimization

To quote easily and precisely some well-known results of convex minimization while
proving our abstract results at Section 4, we give a short overview of the approach to
convex minimization problems by means of conjugate duality as developed in Rockafellar’s
monograph [7]. For complete proofs of these results, one can also have a look at the
author’s lecture notes [3].

Let A be a vector space and f : A→ [−∞,+∞] an extended real convex function. We
consider the following convex minimization problem

minimize f(a), a ∈ A (P)

Let Q be another vector space. The perturbation of the objective function f is a function
F : A × Q → [−∞,+∞] such that for q = 0 ∈ Q, F (·, 0) = f(·). The problem (P) is
imbedded in a parametrized family of minimization problems

minimize F (a, q), a ∈ A (Pq)
The value function of (Pq)q∈Q is

ϕ(q)
△

= inf(Pq) = inf
a∈A

F (a, q) ∈ [−∞,+∞], q ∈ Q.
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Let us assume that the perturbation is chosen such that

F is jointly convex on A×Q. (A.1)

Then, (Pq)q∈Q is a family of convex minimization problems and the value function ϕ is
convex.

Let B be a vector space in dual pairing with Q. This means that B and Q are locally
convex topological vector spaces in separating duality such that their topological dual
spaces B′ and Q′ satisfy B′ = Q and Q′ = B up to some isomorphisms. The Lagrangian
associated with the perturbation F and the duality 〈B,Q〉 is

K(a, b)
△

= inf
q∈Q

{〈b, q〉 + F (a, q)}, a ∈ A, b ∈ B. (A.2)

Under (A.1), K is a convex-concave function. Assuming in addition that F is chosen such
that

q 7→ F (a, q) is a closed convex function for any a ∈ A, (A.3)

one can reverse the conjugate duality relation (A.2) to obtain

F (a, q) = sup
b∈B

{K(a, b) − 〈b, q〉}, ∀a ∈ A, q ∈ Q (A.4)

Introducing another vector space P in separating duality with A we define the function

G(b, p)
△

= inf
a∈A

{K(a, b) − 〈a, p〉}, b ∈ B, p ∈ P. (A.5)

This formula is analogous to (A.4). Going on symmetrically, one interprets G as the
concave perturbation of the objective concave function

g(b)
△

= G(b, 0), b ∈ B

associated with the concave maximization problem

maximize g(b), b ∈ B (D)

which is the dual problem of (P). It is imbedded in the family of concave maximization
problems (Dp)p∈P

maximize G(b, p), b ∈ B (Dp)

whose value function is
γ(p)

△

= sup
b∈B

G(b, p), p ∈ P.

Since G is jointly concave, γ is also concave. We have the following diagram

γ(p) f(a)〈
P , A

〉

G(b, p) K(a, b) F (a, q)〈
B , Q

〉

g(b) ϕ(q)

The concave conjugate of the function f with respect to the dual pairing 〈Y,X〉 is

f ∗̂(y) = infx{〈y, x〉 − f(x)} and its superdifferential at x is ∂̂f(x) = {y ∈ Y ; f(x′) ≤
f(x) + 〈y, x′ − x〉}.
Theorem A.6. We assume that 〈P,A〉 and 〈B,Q〉 are topological dual pairings.

(a) We have sup(D) = ϕ∗∗(0). Hence, the dual equality inf(P) = sup(D) holds if and
only if ϕ(0) = ϕ∗∗(0).
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(b) In particular,

• F is jointly convex
• ϕ is lower semicontinuous at 0
• sup(D) > −∞



 ⇒ inf(P) = sup(D)

(c) If the dual equality holds, then

argmax g = −∂ϕ(0).

Let us assume in addition that (A.1) and (A.3) are satisfied.

(a’) We have inf(P) = γ ∗̂∗̂(0). Hence, the dual equality inf(P) = sup(D) holds if and
only if γ(0) = γ ∗̂∗̂(0).

(b’) In particular,

• γ is upper semicontinuous at 0
• inf(P) < +∞

}
⇒ inf(P) = sup(D)

(c’) If the dual equality holds, then

argmin f = −∂̂γ(0).

Definition A.7 (Saddle-point). One says that (ā, b̄) ∈ A × B is a saddle-point of the
function K if

K(ā, b) ≤ K(ā, b̄) ≤ K(a, b̄), ∀a ∈ A, b ∈ B.

Theorem A.8 (Saddle-point theorem and KKT relations). The following statements are
equivalent.

(1) The point (ā, b̄) is a saddle-point of the Lagrangian K
(2) f(ā) ≤ g(b̄)
(3) The following three statements hold

(a) we have the dual equality: sup(D) = inf(P),
(b) ā is a solution to the primal problem (P) and
(c) b̄ is a solution to the dual problem (D).

In this situation, one also gets

sup(D) = inf(P) = K(ā, b̄) = f(ā) = g(b̄). (A.9)

Moreover, (ā, b̄) is a saddle-point of K if and only if it satisfies

∂aK(ā, b̄) ∋ 0 (A.10)

∂̂bK(ā, b̄) ∋ 0 (A.11)

where the subscript a or b indicates the unfixed variable.

Appendix B. Gauge functionals associated with a convex function

The following result is well-known, but since I didn’t find a reference for it, I give its
short proof.

Let θ : S → [0,∞] be an extended positif convex function on a vector space S, such
that θ(0) = 0. Let S∗ be the algebraic dual space of S and θ∗ the convex conjugate of θ :

θ∗(r)
△

= sup
s∈S

{〈r, s〉 − θ(s)}, r ∈ S∗.
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It is easy to show that θ∗ : S∗ → [0,∞] and θ∗(0) = 0. We denote Cθ
△

= {θ ≤ 1} and

Cθ∗
△

= {θ∗ ≤ 1} the unit level sets of θ and θ∗. The gauge functionals to be considered are

jθ(s)
△

= inf{α > 0; s ∈ αCθ} = inf{α > 0; θ(s/α) ≤ 1} ∈ [0,∞], s ∈ S.

jθ∗(r)
△

= inf{α > 0; r ∈ αCθ∗} = inf{α > 0; θ∗(r/α) ≤ 1} ∈ [0,∞], r ∈ S∗.

As 0 belongs to Cθ and Cθ∗, one easily proves that jθ and jθ∗ are positively homogeneous.
Similarly, as Cθ and Cθ∗ are convex sets, jθ and jθ∗ are convex functions.

Proposition B.1. Let θ : S → [0,∞] be an extended positif convex function on a vector
space S, such that θ(0) = 0 as above. Then for all r ∈ S∗, we have

1

2
jθ∗(r) ≤ δ∗Cθ

(r)
△

= sup
s∈Cθ

〈r, s〉 ≤ 2jθ∗(r).

We also have
cone dom θ∗ = dom jθ∗ = dom δ∗Cθ

where cone dom θ∗ is the convex cone (with vertex 0) generated by dom θ∗.

Proof. • Let us first show that δ∗Cθ
(r) ≤ 2jθ∗(r) for all r ∈ S∗. If jθ∗(r) > 0, then for all

s ∈ Cθ, 〈r, s〉 = 〈r/jθ∗(r), s〉jθ∗(r) ≤ [θ(s) + θ∗(r/jθ∗(r))]jθ∗(r) ≤ (1 + 1)jθ∗(r).
If jθ∗(r) = 0, then θ∗(tr) ≤ 1 for all t > 0. For any s ∈ Cθ, we get 〈r, s〉 = 1

t
〈tr, s〉 ≤

1
t
[θ(s) + θ∗(tr)] ≤ 2/t. Letting t tend to infinity, one obtains that 〈r, s〉 ≤ 0.

• Let us show that jθ∗(r) ≤ 2δ∗Cθ
(r). If δ∗Cθ

(r) = ∞, there is nothing to prove. So, let us
suppose that δ∗Cθ

(r) <∞. As 0 ∈ Cθ, we have δ∗Cθ
(r) ≥ 0.

First case: δ∗Cθ
(r) > 0. For all s ∈ S and ǫ > 0, we have s/[jθ(s) + ǫ] ∈ Cθ. It

follows that 〈r/δ∗Cθ
(r), s〉 = 〈r, s/[jθ(s) + ǫ]〉 jθ(s)+ǫ

δ∗
Cθ

(r)
≤ δ∗Cθ

(r) jθ(s)+ǫ
δ∗
Cθ

(r)
= jθ(s) + ǫ. Therefore,

〈r/δ∗Cθ
(r), s〉 ≤ jθ(s), for all s ∈ S.

If s doesn’t belong to Cθ, then jθ(s) ≤ θ(s). This follows from the the assumptions on θ :
convex function such that θ(0) = 0 = min θ and the positive homogeneity of jθ. Otherwise,
if s belongs to Cθ, we have jθ(s) ≤ 1. Hence, 〈r/δ∗Cθ

(r), s〉 ≤ max(1, θ(s)), ∀s ∈ S. On the
other hand, there exists so ∈ S such that θ∗(r/[2δ∗Cθ

(r)]) ≤ 〈r/[2δ∗Cθ
(r)], so〉 − θ(so) + 1/2.

The last two inequalities provide us with θ∗(r/[2δ∗Cθ
(r)]) ≤ 1

2
max(1, θ(so))−θ(so)+ 1

2
≤ 1

since θ(so) ≥ 0. We have proved that jθ∗(r) ≤ 2δ∗Cθ
(r).

Second case: δ∗Cθ
(r) = 0. We have 〈r, s〉 ≤ 0 for all s ∈ Cθ. As dom θ is a subset of

the cone generated by Cθ, we also have for all t > 0 and s ∈ dom θ, 〈tr, s〉 ≤ 0. Hence
〈tr, s〉− θ(s) ≤ 0 for all s ∈ S and θ∗(tr) ≤ 0, for all t ≥ 0. As θ∗ ≥ 0, we have θ∗(tr) = 0,
for all t ≥ 0. It follows that jθ∗(r) = 0. This completes the proof of the equivalence of jθ∗
and δ∗Cθ

.
• Finally, this equivalence implies that dom jθ∗ = dom δ∗Cθ

and as θ∗(0) = 0 we have
0 ∈ dom θ∗ which implies that cone dom θ∗ = dom jθ∗ . �
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