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BERGMAN KERNELS AND SYMPLECTIC REDUCTION

XIAONAN MA AND WEIPING ZHANG

Abstract. We generalize several recent results concerning the asymptotic expansions

of Bergman kernels to the framework of geometric quantization and establish an as-

ymptotic symplectic identification property. More precisely, we study the asymptotic

expansion of the G-invariant Bergman kernel of the spinc Dirac operator associated with

high tensor powers of a positive line bundle on a symplectic manifold. We also develop

a way to compute the coefficients of the expansion, and compute the first few of them,

especially, we obtain the scalar curvature of the reduction space from the G-invariant

Bergman kernel on the total space. These results generalize the corresponding results

in the non-equivariant setting, which has played a crucial role in the recent work of

Donaldson on stability of projective manifolds, to the geometric quantization setting.

As another kind of application, we generalize some Toeplitz operator type properties

in semi-classical analysis to the framework of geometric quantization. The method we

use is inspired by Local Index Theory, especially by the analytic localization techniques

developed by Bismut and Lebeau.
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0. Introduction

The study of the Bergman kernel is a classical subject in the theory of several complex

variables, where usually it concerns the kernel function of the projection operator to an

infinite dimensional Hilbert space. The recent interest of the analogue of this concept in

complex geometry mainly started in the paper of Tian [39], which was in turn inspired

by a question of Yau. Here, the projection is onto a finite dimensional space instead.

After [39], the Bergman kernel has been studied extensively in [35], [42], [14], [23],

establishing the diagonal asymptotic expansion for high powers of an ample line bundle.

Moreover, the coefficients in the asymptotic expansion encode geometric information of

the underlying complex projective manifolds. This asymptotic expansion plays a crucial

role in the recent work of Donaldson [18], where the existence of Kähler metrics with

constant scalar curvature is shown to be closely related to Chow-Mumford stability.

In [17], [26], [27], Dai, Liu, Ma and Marinescu studied the full off-diagonal asymptotic

expansion of the (generalized) Bergman kernel of the spinc Dirac operator and the renor-

malized Bochner–Laplacian associated to a positive line bundle on a compact symplectic

manifold. As a by product, they gave a new proof of the results mentioned in the pre-

vious paragraph. They find also various applications therein, especially as pointed out

in [27], the full off-diagonal asymptotic expansion implies Toeplitz operator type prop-

erties. This approach is inspired by the Local Index Theory, especially by the analytic

localization techniques of Bismut-Lebeau [7, §11]. We refer to the above papers and the

recent book [28] for detail informations of the Bergman kernel on compact symplectic

manifolds.

In this paper, we generalize some of the results in [17], [26] and [27] to the framework

of geometric quantization, by studying the asymptotic expansion of the G-invariant
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Bergman kernel for high powers of an ample line bundle on symplectic manifolds admit-

ting a Hamiltonian group action.

To start with, let (X,ω) be a compact symplectic manifold of real dimension 2n.

Assume that there exists a Hermitian line bundle L over X endowed with a Hermitian

connection ∇L with the property that
√
−1

2π
RL = ω,(0.1)

where RL = (∇L)2 is the curvature of (L,∇L).

Let (E, hE) be a Hermitian vector bundle on X equipped with a Hermitian connection

∇E and RE denotes the associated curvature.

Let gTX be a Riemannian metric on X. Let J : TX → TX be the skew–adjoint linear

map which satisfies the relation

ω(u, v) = gTX(Ju, v)(0.2)

for u, v ∈ TX.

Let J be an almost complex structure such that

gTX(Ju, Jv) = gTX(u, v), ω(Ju, Jv) = ω(u, v)(0.3)

and that ω(·, J ·) defines a metric on TX. Then J commutes with J and J = J(−J2)−1/2

(cf. (2.7)).

Let ∇TX be the Levi-Civita connection on (TX, gTX) with curvature RTX and scalar

curvature rX . The connection ∇TX induces a natural connection ∇det on det(T (1,0)X)

with curvature Rdet, and the Clifford connection ∇Cliff on the Clifford module Λ(T ∗(0,1)X)

with curvature RCliff (cf. Section 2.2).

The spinc Dirac operatorDp acts on Ω0,•(X,Lp⊗E) =
⊕n

q=0 Ω0,q(X,Lp⊗E), the direct

sum of spaces of (0, q)–forms with values in Lp ⊗E. We denote by D+
p the restriction of

Dp on Ω0,even(X,Lp ⊗ E). The index of D+
p is defined by

Ind(D+
p ) = KerD+

p − CokerD+
p .(0.4)

Let G be a compact connected Lie group with Lie algebra g and dimG = n0. Suppose

that G acts on X and its action on X lifts on L and E. Moreover, we assume the G-

action preserves the above connections and metrics on TX,L,E and J . Then Ind(D+
p ) is

a virtual representation of G. Denote by (KerDp)
G, Ind(D+

p )G the G-trivial components

of KerDp, Ind(D+
p ) respectively.

The action of G on L induces naturally a moment map µ : X → g∗ (cf. (2.14)). We

assume that 0 ∈ g∗ is a regular value of µ.

Set P = µ−1(0). Then the Marsden-Weinstein symplectic reduction (XG = P/G, ωXG
)

is a symplectic orbifold (XG is smooth if G acts freely on P ).

Moreover, (L,∇L), (E,∇E) descend to (LG,∇LG), (EG,∇EG) over XG so that the

corresponding curvature condition
√
−1
2π
RLG = ωG holds (cf. [20]). The G-invariant

almost complex structure J also descends to an almost complex structure JG on TXG,

and hL, hE, gTX descend to hLG , hEG , gTXG respectively.

One can construct the corresponding spinc Dirac operator DG,p on XG.
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The geometric quantization conjecture of Guillemin-Sternberg [20] can be stated as

follows: when E is the trivial bundle C on X, for any p > 0,

dim
(
Ind(D+

p )G
)

= dim
(
Ind(D+

G,p)
)
.(0.5)

When G is abelian, this conjecture was proved by Meinrenken [31] and Vergne [41].

The remaining nonabelian case was proved by Meinrenken [32] using the symplectic cut

techniques of Lerman, and by Tian and Zhang [40] using analytic localization techniques.

More generally, by a result of Tian and Zhang [40, Theorem 0.2], for any general vector

bundle E as above, there exists p0 > 0 such that for any p ≥ p0, (0.5) still holds.

On the other hand, by [25, Theorem 2.5] (cf. (2.13)), which is a direct consequence

of the Lichnerowicz formula for Dp, for p large enough, CokerD+
p is null (cf. also [10],

[13]). Thus there exists p0 > 0 such that for any p ≥ p0,

(0.6)

dim(KerDp)
G = dim(KerDG,p) = dim

(
Ind(D+

G,p)
)

=

∫

XG

Td(TXG) ch(LpG ⊗EG)

= rk(E)

∫

XG

(p c1(LG))n−n0

(n− n0)!
+

∫

XG

(
c1(EG) +

rk(E)

2
c1(TXG)

)(p c1(LG))n−n0−1

(n− n0 − 1)!

+ O(pn−n0−2),

where ch(·), c1(·),Td(·) are the Chern character, the first Chern class and the Todd class

of the corresponding complex vector bundles (TXG is a complex vector bundle with

complex structure JG).

Set Ep := Λ(T ∗(0,1)X)⊗Lp⊗E. Let 〈 〉 be the L2-scalar product on Ω0,•(X,Lp⊗E) =

C ∞(X,Ep) induced by gTX , hL, hE as in (1.19).

Let PG
p be the orthogonal projection from (Ω0,•(X,Lp ⊗ E), 〈 〉) on (KerDp)

G. The

G-invariant Bergman kernel is PG
p (x, x′) (x, x′ ∈ X), the smooth kernel of PG

p with

respect to the Riemannian volume form dvX(x′).

Let pr1 and pr2 be the projections from X × X onto the first and second factor X

respectively. Then PG
p (x, x′) is a smooth section of pr∗1(Ep) ⊗ pr∗2(E

∗
p) on X × X. In

particular, PG
p (x, x) ∈ End(Ep)x = End(Λ(T ∗(0,1)X) ⊗ E)x.

The G-invariant Bergman kernel PG
p (x, x′) is an analytic version of (KerDp)

G. In view

of (0.6), it is natural to expect that the kernel PG
p (x, x′) should be closely related to the

corresponding Bergman kernel on the symplectic reduction XG. The purpose of this

paper is to study the asymptotic expansion of the G-invariant Bergman kernel PG
p (x, x′)

as p → ∞, and we will relate it to the asymptotic expansion of the Bergman kernel on

the symplectic reduction XG.

Let dX(x, x′) be the Riemannian distance between x, x′ ∈ X.

In Section 2.4, we prove the following result which allows us to reduce our problem as

a problem near P = µ−1(0).

Theorem 0.1. For any open G-neighborhood U of P in X, ε0 > 0, l,m ∈ N, there

exists Cl,m > 0 (depend on U , ε0) such that for p ≥ 1, x, x′ ∈ X, dX(Gx, x′) ≥ ε0 or
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x, x′ ∈ X \ U ,

|PG
p (x, x′)|C m ≤ Cl,mp

−l,(0.7)

where Cm is the Cm-norm induced by ∇L,∇E, ∇TX , hL, hE and gTX.

Assume for simplicity that G acts freely on P .

Let U be an open G-neighborhood of µ−1(0) such that G acts freely on U .

For any G-equivariant vector bundle (F,∇F ) on U , we denote by FB the bundle on

U/G = B induced naturally by G-invariant sections of F on U . The connection ∇F

induces canonically a connection ∇FB on FB. Let RFB be its curvature. Let

µF (K) = ∇F
KX − LK ∈ End(F )(0.8)

for K ∈ g and KX the corresponding vector field on U .

Note that PG
p ∈ (C ∞(U ×U, pr∗1Ep⊗ pr∗2E

∗
p))

G×G, thus we can view PG
p (x, x′) (x, x′ ∈

U) as a smooth section of pr∗1(Ep)B ⊗ pr∗2(E
∗
p)B on B × B.

Let gTB be the Riemannian metric on U/G = B induced by gTX. Let ∇TB be the

Levi-Civita connection on (TB, gTB) with curvature RTB. Let NG be the normal bundle

to XG in B. We identify NG with the orthogonal complement of TXG in (TB|XG
, gTB).

Let gTXG, gNG be the metrics on TXG, NG induced by gTB respectively.

Let P TXG, PNG be the orthogonal projections from TB|XG
on TXG, NG respectively.

Set

∇NG = PNG(∇TB|XG
)PNG, ∇TXG = P TXG(∇TB|XG

)P TXG,(0.9)

0∇TB
= ∇TXG ⊕∇NG, A = ∇TB|XG

− 0∇TB
.

Then ∇NG , 0∇TB
are Euclidean connections on NG, TB|XG

on XG, ∇TXG is the Levi-

Civita connection on (TXG, g
TXG), and A is the associated second fundamental form.

Denote by vol(Gx) (x ∈ U) the volume of the orbit Gx equipped with the metric

induced by gTX . Following [40, (3.10)], let h(x) be the function on U defined by

h(x) = (vol(Gx))1/2.(0.10)

Then h reduces to a function on B.

Denote by IC⊗E the projection from Λ(T ∗(0,1)X) ⊗ E onto C ⊗ E under the decom-

position Λ(T ∗(0,1)X) ⊗ E = C ⊗ E ⊕ Λ>0(T ∗(0,1)X) ⊗ E, and IC⊗EB
the corresponding

projection on B.

In the whole paper, for any x0 ∈ XG, Z ∈ Tx0B, we write Z = Z0 + Z⊥, with

Z0 ∈ Tx0XG, Z⊥ ∈ NG,x0.

Let τZ0Z⊥ ∈ N
G,exp

XG
x0

(Z0)
be the parallel transport of Z⊥ with respect to the connection

∇NG along the geodesic in XG, [0, 1] ∋ t→ expXG
x0

(tZ0).

For ε0 > 0 small enough, we identify Z ∈ Tx0B, |Z| < ε0 with expB
exp

XG
x0

(Z0)
(τZ0Z⊥) ∈

B. Then for x0 ∈ XG, Z,Z ′ ∈ Tx0B, |Z|, |Z ′| < ε0, the map Ψ : TB|XG
×TB|XG

→ B×B,

Ψ(Z,Z ′) = (expB
exp

XG
x0

(Z0)
(τZ0Z⊥), expB

exp
XG
x0

(Z′0)
(τZ′0Z

′⊥))

is well defined.
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We identify (Ep)B,Z to (Ep)B,x0 by using parallel transport with respect to ∇(Ep)B

along [0, 1] ∋ u→ uZ.

Let πB : TB|XG
× TB|XG

→ XG be the natural projection from the fiberwise product

of TB|XG
on XG onto XG.

From Theorem 0.1, we only need to understand PG
p ◦Ψ, and under our identification,

PG
p ◦ Ψ(Z,Z ′) is a smooth section of

π∗
B(End(Ep)B) = π∗

B(End(Λ(T ∗(0,1)X) ⊗ E)B)

on TB|XG
× TB|XG

.

Let | |
C m′ (XG) be the Cm′

-norm on C ∞(XG,End(Λ(T ∗(0,1)X) ⊗ E)B) induced by

∇CliffB , ∇EB , hE and gTX . The norm | |
C m′ (XG) induces naturally a C

m′
-norm along XG

on C ∞(TB|XG
× TB|XG

, π∗
B(End(Λ(T ∗(0,1)X) ⊗E)B)), we still denote it by | |

C m′ (XG).

Let dvB, dvXG
, dvNG

be the Riemannian volume forms on (B, gTB), (XG, g
TXG), (NG, g

NG)

respectively. Let κ ∈ C ∞(TB|XG
,R), with κ = 1 onXG, be defined by that for Z ∈ Tx0B,

x0 ∈ XG,

dvB(x0, Z) = κ(x0, Z)dvTx0B
(Z) = κ(x0, Z)dvXG

(x0)dvNG,x0
.(0.11)

The following result is one of the main results of this paper.

Theorem 0.2. Assume that G acts freely on µ−1(0) and J = J on µ−1(0). Then there

exist Qr(Z,Z
′) ∈ End(Λ(T ∗(0,1)X) ⊗E)B,x0 (x0 ∈ XG, r ∈ N), polynomials in Z,Z ′ with

the same parity as r, whose coefficients are polynomials in A, RTB, RCliffB , REB , µE,

µCliff (resp. rX, Rdet, RE; resp. h, RL, RLB ; resp. µ) and their derivatives at x0 to

order r − 1 (resp. r − 2; resp. r, resp. r + 1), such that if we denote by

P (r)
x0

(Z,Z ′) = Qr(Z,Z
′)P (Z,Z ′), Q0(Z,Z

′) = IC⊗EB
,(0.12)

with

P (Z,Z ′) = exp
(
− π

2
|Z0 − Z ′0|2 − π

√
−1
〈
Jx0Z

0, Z ′0〉 )(0.13)

× 2
n0
2 exp

(
− π

(
|Z⊥|2 + |Z ′⊥|2

))
,

then there exists C ′′ > 0 such that for any k,m,m′, m′′ ∈ N, there exists C > 0 such that

for x0 ∈ XG, Z,Z ′ ∈ Tx0B, |Z|, |Z ′| ≤ ε0,
1

(0.14) (1 +
√
p|Z⊥| + √

p|Z ′⊥|)m′′

sup
|α|+|α′|≤m

∣∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
p−n+

n0
2 (hκ

1
2 )(Z)(hκ

1
2 )(Z ′)PG

p ◦ Ψ(Z,Z ′) −
k∑

r=0

P (r)
x0

(
√
pZ,

√
pZ ′)p−

r
2

)∣∣∣∣∣
C m′ (XG)

≤ Cp−(k+1−m)/2(1+
√
p|Z0|+√

p|Z ′0|)2(n+k+m′+2)+m exp(−
√
C ′′√p|Z−Z ′|)+O(p−∞).

Furthermore, the expansion is uniform in the following sense: for any fixed k,m,m′, m′′ ∈
N, assume that the derivatives of gTX, hL, ∇L, hE, ∇E,and J with order 6 2n + k +

1In the exponential factor of [29, (7)], we missed m′ as in the last line of (0.14) here.
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m+m′+3 run over a set bounded in the Cm′
– norm taken with respect to the parameters

and, moreover, gTX runs over a set bounded below. Then the constant C is independent

of gTX ; and the C
m′

-norm in (0.14) includes also the derivatives on the parameters.

In (0.14), the term O(p−∞) means that for any l, l1 ∈ N, there exists Cl,l1 > 0 such

that its C l1-norm is dominated by Cl,l1p
−l.

It is interesting to see that the kernel P (Z,Z ′) is the product of two kernels : along

Tx0XG, it is the classical Bergman kernel on Tx0XG with complex structure Jx0, while

along NG, it is the kernel of a harmonic oscillator on NG,x0 .

Remark 0.3. i) Theorem 0.2 is a special case of Theorem 2.23 where we do not assume

J = J on P = µ−1(0). In Theorem 3.2, we get explicit informations on P (r) when J

verifies (3.2).

ii) If G does not act freely on P , then XG is an orbifold. In Section 4.1, we explain how

to modify our arguments to get the asymptotic expansion, Theorem 4.1. Analogous to

the usual orbifold case [17, (5.27)], PG
p (x, x)(x ∈ P ) does not have a uniform asymptotic

expansion if the singular set of XG is not empty.

iii) Let V be an irreducible representation of G, let P V
p be the orthogonal projection

from Ω0,•(X,Lp ⊗ E) on HomG(V,KerDp) ⊗ V ⊂ KerDp. In Section 4.2, we get the

asymptotic expansion of the kernel P V
p (x, x′) from Theorems 0.1, 0.2.

iv) When G = {1}, Theorem 0.2 is [17, Theorem 4.18′].

v) If we take Z = Z ′ = 0 in (0.14), then we get for x0 ∈ XG,

P (0)
x0

(0, 0) = 2
n0
2 IC⊗EB

,(0.15)

and
∣∣∣p−n+

n0
2 h2(x0)P

G
p (x0, x0) −

k∑

r=0

P (2r)
x0

(0, 0)p−r
∣∣∣
C m′ (XG)

≤ Cp−k−1.(0.16)

In Section 4.3, we show that (0.15) and (0.16) are direct consequences of the full off-

diagonal asymptotic expansion of the Bergman kernel [17, Theorem 4.18′]. In fact, one

possible way to get Theorem 0.2 is to average the full off-diagonal asymptotic expansion

of the Bergman kernel on X [17, Theorem 4.18′] with respect to a Haar measure on G.

However, we do not know how to get the full off-diagonal expansion, especially the fast

decay along NG in (0.14) in this way.

In this paper we will apply the analytic localization techniques to get Theorem 0.2, and

this method also gives us an effective way to compute the coefficients in the asymptotic

expansion (cf. §3.2). The key observation is that the G-invariant Bergman kernel is

exactly the kernel of the orthogonal projection to the zero space of a deformation of D2
p

by the Casimir operator (i.e., to consider D2
p − pCas). This plays an essential role in

proving Theorems 0.1, 0.2.

Let Ip be a section of End(Λ(T ∗(0,1)X) ⊗ E)B on XG defined by

Ip(x0) =

∫

Z∈NG,|Z|≤ε0
h2(x0, Z)PG

p ◦ Ψ((x0, Z), (x0, Z))κ(x0, Z)dvNG
(Z).(0.17)
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By Theorem 0.1, modulo O(p−∞), Ip(x0) does not depend on ε0, and

(0.18) dim(KerDp)
G =

∫

X

Tr[PG
p (y, y)]dvX(y) =

∫

U

Tr[PG
p (y, y)]dvX(y) + O(p−∞)

=

∫

B

h2(y) Tr[PG
p (y, y)]dvB(y) + O(p−∞)

=

∫

XG

Tr[Ip(x0)]dvXG
(x0) + O(p−∞).

A direct consequence of Theorem 0.2 is the following corollary.

Corollary 0.4. Taken Z = Z ′ ∈ NG,x0, m = 0 in (0.14), we get

(0.19)
∣∣∣p−n+

n0
2 (h2κ)(Z)PG

p (Z,Z) −
k∑

r=0

P (r)
x0

(
√
pZ,

√
pZ)p−r/2

∣∣∣
C m′ (XG)

≤ Cp−(k+1)/2(1 +
√
p|Z|)−m′′

+ O(p−∞).

In particular, there exist Φr ∈ End(Λ(T ∗(0,1)X) ⊗ E)B,x0 (r ∈ N) which are polynomials

in A, RTB, RCliffB , REB , µE, µCliff, (resp. rX, Rdet, RE; resp. h, RLB , RL; resp. µ),

and their derivatives at x0 up to order 2r − 1 (resp. 2r − 2; resp. 2r; resp. 2r + 1),

and Φ0 = IC⊗EB
, such that for any k,m′ ∈ N, there exists Ck,m′ > 0 such that for any

x0 ∈ XG, p ∈ N,

∣∣∣p−n+n0Ip(x0) −
k∑

r=0

Φr(x0)p
−r
∣∣∣
C m′

≤ Ck,m′p−k−1.(0.20)

In the rest of Introduction, we will specify our results in the Kähler case.

We suppose now that (X,ω, J) is a compact Kähler manifold and J = J on X.

Assume also that (L, hL,∇L), (E, hE ,∇E) are holomorphic Hermitian vector bundles

with holomorphic Hermitian connections, and the action of G on X,L,E is holomorphic.

Let ∂
Lp⊗E,∗

be the formal adjoint of the Dolbeault operator ∂
Lp⊗E

, then

Dp =
√

2(∂
Lp⊗E

+ ∂
Lp⊗E,∗

),(0.21)

and

D2
p = 2

(
∂
Lp⊗E

∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E)

(0.22)

preserves the Z-grading of Ω0,•(X,Lp ⊗ E).

By the Kodaira vanishing theorem, for p large enough,

(KerDp)
G = H0(X,Lp ⊗E)G.(0.23)

Thus for p large enough, PG
p (x, x′) ∈ (Lp⊗E)x⊗ (Lp⊗E)∗x′ and so PG

p (x, x) ∈ End(Ex),

Ip(x0) ∈ End(Ex0). In particular, in (0.15),

P (0)
x0

(0, 0) = 2
n0
2 IdEG

.(0.24)
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Remark 0.5. In the special case of E = C, PG
p (x0, x0) is a non-negative function on

XG, and (0.16) has been proved in [33, Theorem 1] without knowing the informations on

P
(2r)
x0 (0, 0), while in [34, Theorem 1], it was claimed that P

(0)
x0 (0, 0) = 1. In [33, Prop. 1],

Paoletti knew that for any l ∈ N, there is C > 0 such that for any p, |PG
p (x, x)| ≤ Cp−l

uniformly on any compact subset of X \ (µ−1(0) ∪ R), with R the subset of unstable

points of the action of G. In [34], some Toeplitz operator type properties on XG was also

claimed from the analysis of Toeplitz structures of Boutet de Monvel–Guillemin [11],

Boutet de Monvel-Sjöstrand [12] and Shiffman-Zelditch [36]. If we suppose moreover

that G is a torus, Charles [15] has also a different version on the Toeplitz operator type

properties on XG.

In Section 4.4, we will show that Theorem 0.2 implies properties of Toeplitz operators

on XG (which also hold in the symplectic case). In particular, we recover the results on

Toeplitz operators [15], [34].

Let h̃ denote the restriction to XG of the function h defined in (0.10).

The second main result of this paper is that we can in fact obtain the scalar curvature

rXG on the symplectic reduction XG from Ip.

Theorem 0.6. If (X,ω) is a compact Kähler manifold and L,E are holomorphic vector

bundles with holomorphic Hermitian connections ∇L,∇E, J = J , and G acts freely

on µ−1(0), then for p large enough, Ip(x0) ∈ End(EG)x0, and in (0.20), Φr(x0) ∈
End(EG)x0 are polynomials in A, RTB, REB , µE, RE (resp. h, RLB ; resp. µ) and their

derivatives at x0 to order 2r − 1 (resp. 2r, resp. 2r + 1), and Φ0 = IdEG
. Moreover

Φ1(x0) =
1

8π
rXG
x0

+
3

4π
∆XG

log h̃ +
1

2π
REG
x0

(w0
j , w

0
j).(0.25)

Here rXG is the Riemannian scalar curvature of (TXG, g
TXG), ∆XG

is the Bochner-

Laplacian on XG (cf. (1.21)), and {w0
j} is an orthonormal basis of T (1,0)XG.

Since the non-equivariant version of this result has already played a crucial role in the

work of Donaldson mentioned before, we have reason to believe that Theorem 0.6 might

also play a role in the study of stability of projective manifolds. Indeed, as Donaldson

usually interprets his results in the framework of geometric quantization, this seems

likely to be so.

We recover (0.6) from (0.25) after taking the trace, and then the integration on XG.

Thus (0.25) is a local version of (0.6) in the spirit of the Local Index Theory. The ap-

pearance of the term 3
4π

∆XG
log h̃ is unexpected.

Let T be the torsion of the connection 0∇TX
in (1.2) on U . The curvature Θ of the

principal bundle U → B relates to the torsion T by (1.6).

Following (3.6) and (5.20), we choose {e⊥j } to be an orthonormal basis of NG,x0 and

{ ∂
∂z0j

} ∈ T
(1,0)
x0 XG to be the holomorphic basis of the normal coordinate on XG, and define

Tklm, T̃jkl as in (5.14). In particular, by Remark 5.3, T̃jkl = 0 if G is abelian.

The G-invariant section µ̃E of TY ⊗ End(E) on U is defined by (1.13) and (1.14).
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If there is no other specific notification in the next formula (0.26), when we meet the

operation | |2, we will first do this operation, then take the sum of the indices.

Theorem 0.7. Under the assumption of Theorem 0.6, for p > 0 large enough, PG
p (x, x) ∈

End(Ex) and P
(r)
x0 (0, 0) ∈ End(Ex0). Moreover,

(0.26) P (2)
x0

(0, 0) = 2
n0
2

{
1

8π
rXG
x0

+
1

π
REG( ∂

∂z0j
, ∂
∂z0j

) +
1

π
∆XG

log h̃

− 3

8π
∇e⊥

k
∇e⊥

k
log h− 2

π

√
−1∇

JT (
∂
∂z0j

,
∂
∂z0

l

)
log h− 3

π

∣∣∣∇ ∂
∂z0j

log h
∣∣∣
2

− 5

4π

∣∣∣∇e⊥j
log h

∣∣∣
2

+
1

2π
|T (e⊥k ,

∂
∂z0j

)|2 − 1

2π

∣∣∣
∑

j

T ( ∂
∂z0j
, ∂
∂z0j

)
∣∣∣
2

+
1

2π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

+
1

24π
T 2
klm +

1

26π
T̃ijk(3T̃kji − T̃ijk) +

1

2π

〈
µ̃Ex0

, µ̃Ex0

〉
gTY

+
1

π

〈
µ̃E, T ( ∂

∂z0
l

, ∂
∂z0

l

)
〉

+
3
√
−1

2π

〈
µ̃E, Je⊥k

〉
∇e⊥

k
log h +

√
−1

4π

〈
Je⊥k ,∇TY

e⊥
k
µ̃E
〉}

.

Remark 0.8. Certainly, if we only assume that J = J on U , a neighborhood of P =

µ−1(0), then we still have Φr(x0) ∈ End(EG)x0 , as we work on the kernel of the Dirac

operator Dp. Set Ip,0 = IC⊗EG
IpIC⊗EG

, the component of Ip on C ⊗ EG. As the

computation is local, we still have Theorem 0.6 with Ip replaced by Ip,0 and Ip−Ip,0 =

O(p−∞) (cf. (5.18)). If we only work on the ∂-operator, i.e. the holomorphic sections,

in Section 5.6, we explain how to reduce the case of general J to the case J = J . Same

remark holds for PG
p (x0, x0).

Let i : P →֒ X be the natural injection.

Let πG : C ∞(P, Lp ⊗ E)G → C ∞(XG, L
p
G ⊗ EG) be the natural identification.

By a result of Zhang [43, Theorem 1.1 and Proposition 1.2], one sees that for p large

enough, the map

πG ◦ i∗ : C
∞(X,Lp ⊗ E)G → C

∞(XG, L
p
G ⊗ EG)

induces a natural isomorphism

σp = πG ◦ i∗ : H0(X,Lp ⊗E)G → H0(XG, L
p
G ⊗ EG).(0.27)

(When E = C, this result was first proved in [20, Theorem 3.8].)

The following result is a symplectic version of the above isomorphism which is proved

in Corollary 4.10, as a simple application of the Toeplitz operator type properties proved

in that subsection. It might be regarded as an “asymptotic symplectic quantization

identification”, generalizing the corresponding holomorphic identification (0.27).

Theorem 0.9. If X is a compact symplectic manifold and J = J , then the natural map

σp : (KerDp)
G → KerDG,p defined in (4.108) is an isomorphism for p large enough.

Let 〈 , 〉Lp
G
⊗EG

be the metric on LpG ⊗ EG induced by hLG and hEG.
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In view of [40, (3.54)], the natural Hermitian product on C ∞(XG, L
p
G ⊗ EG) is the

following weighted Hermitian product 〈 , 〉h̃:

〈s1, s2〉h̃ =

∫

XG

〈s1, s2〉Lp
G
⊗EG

(x0)h̃
2(x0) dvXG

(x0).(0.28)

In fact, πG : (C ∞(P, Lp ⊗ E)G, 〈 , 〉) → (C ∞(XG, L
p
G ⊗ EG), 〈 , 〉h̃) is an isometry.

We still denote by 〈 〉 the scalar product on H0(X,Lp ⊗ E)G induced by (0.23).

Theorem 0.10. The isomorphism (2p)−
n0
4 σp is an asymptotic isometry from (H0(X,Lp⊗

E)G, 〈 , 〉) onto (H0(XG, L
p
G ⊗ EG), 〈 , 〉h̃), i.e., if {spi }

dp

i=1 is an orthonormal basis of

(H0(X,Lp ⊗E)G, 〈 , 〉), then

(2p)−
n0
2 〈σpspi , σpspj〉h̃ = δij + O

(
1

p

)
.(0.29)

From the explicit formula (0.26), one can also get the coefficient of p−1 in the expansion

(0.29). We leave it to the interested readers.

Let P̃XG
p denote the orthogonal projection from (C ∞(XG, L

p
G⊗EG), 〈 , 〉h̃) ontoH0(X,LpG⊗

EG). Let P̃XG
p (x0, x

′
0) (x0, x

′
0 ∈ XG) be the smooth kernel of the operator P̃XG

p with re-

spect to h̃2(x′0)dvXG
(x′0).

The following result is an easy consequence of [17, Theorem 1.3].

Theorem 0.11. Under the assumption of Theorem 0.6, there exist smooth coefficients

Φ̃r(x0) ∈ End(EG)x0 which are polynomials in RTXG, REG (resp. h̃), and their derivatives

at x0 to order 2r − 1 (resp. 2r), and Φ̃0 = IdEG
, such that for any k, l ∈ N, there exists

Ck,l > 0 such that for any x0 ∈ XG, p ∈ N,

∣∣∣p−n+n0h̃2(x0)P̃
XG
p (x0, x0) −

k∑

r=0

Φ̃r(x0)p
−r
∣∣∣
C l

≤ Ck,lp
−k−1.(0.30)

Moreover, the following identity holds,

Φ̃1(x0) =
1

8π
rXG
x0

+
1

2π
∆XG

log h̃ +
1

2π
REG
x0

(w0
j , w

0
j).(0.31)

Remark 0.12. From (0.25) and (0.31), one sees that in general Φ1 6= Φ̃1, if h̃ is not

constant on XG. This reflects a subtle difference between the Bergman kernel and the

geometric quantization.

From the works [17], [26] and the present paper, we see clearly that the asymptotic

expansion of Bergman kernel is parallel to the small time asymptotic expansion of the

heat kernel. To localize the problem, the spectral gap property (2.13) and the finite

propagation speed of solutions of hyperbolic equations play essential roles.

Let U be a G-neighborhood of µ−1(0) as in Theorem 0.2, in this paper, we will then

work on U/G.

Indeed, after doing suitable rescaling on the coordinate, we get the limit operator L 0
2

(cf. (3.13)) which is the sum of two parts, along Tx0XG, its kernel is infinite dimensional

and gives us the classical Bergman kernel as in Cn−n0, while along NG, it is a harmonic
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oscillator and its kernel is one dimensional. This explains well why we can expect to get

the fast decay estimate along NG in (0.14).

This paper is organized as follows. In Section 1, we study connections and Laplacians

associated to a principal bundle. In Section 2, we localize the problem by using the

spectral gap property and finite propagation speed, then we use the rescaling technique

in local index theory to prove Theorem 2.23 which is a version of Theorem 0.2 without

assumption on J. We assume G acts freely on P = µ−1(0) in Sections 2.5-2.8, and in

Section 4.1 we explain Theorem 4.1, the version of Theorem 0.2 where we only assume

that µ is regular at 0. In Section 3, we get explicit informations on the coefficients P (r)

when J verifies (3.2), thus we get an effective way to compute its first coefficients of the

asymptotic expansion (0.14). Especially, we establish (0.12) and (0.13). In Section 4,

we explain various applications of our Theorem 0.2, including Toeplitz properties, etc.

In Section 5, we compute the coefficients Φ1 in Theorem 0.6 and P
(2)
x0 (0, 0) in Theorem

0.7 and in the general case: J 6= J . In Section 6, we prove Theorems 0.10, 0.11.

Some results of this paper have been announced in [29, 30].

Notation : In the whole paper, if there is no other specific notification, when in a

formula a subscript index appears two times, we sum up with this index.
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1. Connections and Laplacians associated to a principal bundle

In this Section, for π : X → B = X/G a G-principal bundle, we will study the

associated connections and Bochner-Laplacians. The results in this Section extend the

corresponding ones in [2, §1d)] and [1, §5.1, 5.2] where the metric along the fiber is

parallel along the horizontal direction. These results will be used in Proposition 2.7 and

in Sections 3.3, 5.

If G acts only infinitesimal freely on X, then B = X/G is an orbifold. The results in

this Section can be extended easily to this situation, as will be explained in Section 4.1.

This Section is organized as follows. In Section 1.1, we study the Levi-Civita con-

nection for a principal bundle which extends the results of [2, §1d)]. In Section 1.2, we

study the relation of the Laplacians on the total and base manifolds.

1.1. Connections associated to a principal bundle. Let a compact connected Lie

group G acts smoothly on the left on a smooth manifold X and dimG = n0. We suppose

temporary that G acts freely on X. Then

π : X → B = X/G

is a G-principal bundle. We denote by TY the relative tangent bundle for the fibration

π : X → B.

Let gTX be a G-invariant metric on TX. Let ∇TX be the Levi-Civita connection on

TX. By the explicit equation for
〈
∇TX

· ·, ·
〉

in [1, (1.18)], for W,Z, Z ′ vector fields on X,

(1.1) 2
〈
∇TX
W Z,Z ′〉 = W 〈Z,Z ′〉 + Z 〈W,Z ′〉 − Z ′ 〈W,Z〉

− 〈W, [Z,Z ′]〉 − 〈Z, [W,Z ′]〉 + 〈Z ′, [W,Z]〉 .

Let THX be the orthogonal complement of TY in TX.

For U ∈ TB, let UH ∈ THX be the lift of U .

Let gTY , gT
HX be G-invariant metrics on TY, THX induced by gTX . Let P TY , P THX

be the orthogonal projections from TX onto TY , THX.

Let gTB be the metric on TB induced by gT
HX . Let ∇TB be the Levi-Civita connection

on (TB, gTB) with curvature RTB. Set

∇THX = π∗∇TB, ∇TY = P TY∇TXP TY , 0∇TX
= ∇TY ⊕∇THX .(1.2)

Then ∇THX , 0∇TX
define Euclidean connections on THX, TX, and ∇TY is the connec-

tion on TY induced by ∇TX (cf. [2, Def. 1.6]).

Let T be the torsion of 0∇TX
, and let S ∈ T ∗X ⊗ End(TX), ġTY· ∈ T ∗B ⊗ End(TY )

be defined by

S = ∇TX − 0∇TX
, ġTYU = (gTY )−1(LUHgTY ) for U ∈ TB.(1.3)

Then S is a 1-form on X taking values in the skew-adjoint endomorphisms of TX.

By [6, Theorem 1.2] (cf. [5, Theorems 1.1 and 1.2]) the proof of which can also be

found in [1, Prop. 10.2] where one applies directly (1.1), we know that ∇TY is the
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Levi-Civita connection on TY along the fiber Y , and for U ∈ TB,

∇TY
UH = LUH +

1

2
(gTY )−1(LUHgTY ) = LUH +

1

2
ġTYU .(1.4)

Let g be the Lie algebra of G. For K ∈ g, we denote by KX
x = ∂

∂t
e−tKx|t=0 the

corresponding vector field on X, then gKX
x = (Adg(K))Xgx. Thus we can identify the

trivial bundle X × g with Ad-action of G on g to the G-equivariant bundle TY by the

map K → KX .

Let θ : TX → g be the connection form of the principal bundle π : X → B such that

THX = Ker θ, and Θ its curvature.

For K1, K2 ∈ g, U, V ∈ TB, as UH is G-invariant, we have

LUHKX
1 = −[KX

1 , U
H ] = 0.(1.5)

By (1.4), (1.5), we get T ∈ Λ2(T ∗X) ⊗ TY and

T (UH , V H) = Θ(UH , V H) = −P TY [UH , V H ], T (KX
1 , K

X
2 ) = 0,(1.6)

T (UH , KX
1 ) =

1

2
(gTY )−1(LUHgTY )KX

1 =
1

2
ġTYU KX

1 .

And by (1.1), (1.4), (1.5) and (1.6), for W ∈ TX, we have (cf. also [2, (1.28)], [1, Prop.

10.6]),

S(W )(TY ) ⊂ THX, S(UH)V H ∈ TY,

2
〈
S(UH)KX

1 , V
H
〉

= 2
〈
S(KX

1 )UH , V H
〉

=
〈
T (UH , V H), KX

1

〉
,(1.7)

〈
S(KX

2 )UH , KX
1

〉
= −

〈
S(KX

2 )KX
1 , U

H
〉

=
1

2
UH

〈
KX

2 , K
X
1

〉
=
〈
T (UH , KX

1 ), KX
2

〉
.

Let {ei} be an orthonormal basis of TB. By (1.3) and (1.7), for Y a section of TY ,

∇TX
UHY = ∇TY

UHY +
1

2

〈
T (UH , eHi ), Y

〉
eHi .(1.8)

Proposition 1.1. Let {fl}n0
l=1 be a G-invariant orthonormal frame of TY , then

n0∑

l=1

∇TY
fl
fl = 0.(1.9)

Proof. (1.9) is analogue to the fact that any left invariant volume form on G is also right

invariant. We only need to work on a fiber Yb, b ∈ B.

Let dvY be the Riemannian volume form on Yb.

By using Lfk
fl = ∇TY

fk
fl −∇TY

fl
fk and dvY is preserved by ∇TY on Yb, we get

Lfk
dvY =

n0∑

l=1

〈
∇TY
fl
fk, fl

〉
dvY .(1.10)

Now from Lfk
= ifk

dY + dY ifk
and

〈
∇TY
fl
fk, fl

〉
is G-invariant and (1.10), we get

0 =

∫

Yb

Lfk
dvY =

n0∑

l=1

〈
∇TY
fl
fk, fl

〉 ∫

Yb

dvY .(1.11)
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From (1.11), we get (1.9). �

Remark 1.2. If gTY is induced by a family of Ad-invariant metric on g under the

isomorphism from X × g to TY defined by K → KX , then (1.9) is trivial. In this case,

as in [19, Theorem 11.3], for Y1, Y2 two G-invariant sections of TY , by (1.1), we have

∇TY
Y1
Y2 =

1

2
[Y1, Y2].(1.12)

1.2. Curvatures and Laplacians associated to a principal bundle. Let (F, hF ) be

a G-equivariant Hermitian vector bundle on X with a G-invariant Hermitian connection

∇F on X. For any K ∈ g, denote by LK the infinitesimal action induced by K on the

corresponding vector bundles.

Let µF be the section of g∗ ⊗ End(F ) on X defined by,

µF (K) = ∇F
KX − LK for K ∈ g.(1.13)

By using the identification X × g → TY , µF defines a G-invariant section µ̃F of TY ⊗
End(F ) on X such that

〈
µ̃F , KX

〉
= µF (K).(1.14)

The curvature RF
µ of the Hermitian connection ∇F −µF (θ) on F is G-invariant. More-

over as ∇F is G-invariant, by (1.13),

RF
µ (KX , v) = [LK ,∇F − µF (θ)](v) = 0(1.15)

for K ∈ g, v ∈ TX, and

RF
µ = RF −∇F (µF (θ)) + µF (θ) ∧ µF (θ).(1.16)

The Hermitian vector bundle (F, hF ) induces a Hermitian vector bundle (FB, h
FB) on

B by identifying G-invariant sections of F on X.

For s ∈ C ∞(B,FB) ≃ C ∞(X,F )G, we define

∇FB

U s = ∇F
UHs.(1.17)

Then ∇FB is a Hermitian connection on FB with curvature RFB .

Observe that ∇FB is the restriction of the connection ∇F −µF (θ) to C ∞(X,F )G, and

RFB is the section induced by RF
µ . From (1.16), for U1, U2 ∈ TB, we get

RFB(U1, U2) = RF (UH
1 , U

H
2 ) − µF (Θ)(U1, U2).(1.18)

Let dvX be the Riemannian volume form on (X, gTX). We define a scalar product on

C ∞(X,F ) by

〈s1, s2〉 =

∫

X

〈s1, s2〉F (x) dvX(x) .(1.19)

As in (1.19), hFB , gTB induce a natural scalar product 〈 〉 on C
∞(B,FB).

Denote by vol(Gx) (x ∈ X) the volume of the orbit Gx equipped with the metric

induced by gTX . The function

h(x) =
√

vol(Gx), x ∈ X,
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as in (0.10) is G-invariant and defines a function on B.

Denote by πG : C
∞(X,F )G → C

∞(B,FB) the natural identification. Then the map

Φ = hπG : (C ∞(X,F )G, 〈 , 〉) → (C ∞(B,FB), 〈 , 〉)(1.20)

is an isometry.

Let {ea}ma=1 be an orthonormal frame of TX.

Let (E, hE) be a Hermitian vector bundle on X and let ∇E be a Hermitian connection

on E. The usual Bochner Laplacians ∆E ,∆X are defined by

∆E := −
m∑

a=1

(
(∇E

ea
)2 −∇E

∇TX
ea

ea

)
, ∆X = ∆C.(1.21)

Let {fl}n0
l=1 be a G-invariant orthonormal frame of TY , and {f l} its dual basis, and

let {ei} be an orthonormal frame of TB, then {eHi , fl} is an orthonormal frame of TX.

To simplify the notation, for σ1, σ2 ∈ TY ⊗End(F ), we denote by 〈σ1, σ2〉gTY ∈ End(F )

the contraction of σ1 ⊗ σ2 on the part of TY by gTY . In particular,

〈µ̃F , µ̃F 〉gTY =

n0∑

l=1

〈µ̃F , fl〉2 ∈ End(F ).(1.22)

The following result extends [1, Prop. 5.6, 5.10] where F = X ×G V for a G-

representation V , and where gTY is induced by a fixed Ad-invariant metric on g under

the isomorphism from X × g to TY defined by K → KX (Thus h is constant on B).

Theorem 1.3. As an operator on C ∞(B,FB), we have

Φ∆FΦ−1 = ∆FB − 〈µ̃F , µ̃F 〉gTY − 1

h
∆Bh.(1.23)

Proof. At first by (1.6) and (1.7),

(1.24)
1

h
(eih) =

1

2
(LeH

i
dvY )/dvY =

1

2

〈
LeH

i
f l, f l

〉
= −1

2

〈
LeH

i
fl, fl

〉

=
1

4
(LeH

i
gTY )(fl, fl) =

1

2

〈
T (eHi , fl), fl

〉
= −1

2

〈
S(fl)fl, e

H
i

〉
.

As µ̃F is G-invariant, then 〈µ̃F , fl〉 is also a G-invariant section of End(F ).

By (1.13), ∇F
fl

= 〈µ̃F , fl〉 on C ∞(X,F )G, and by (1.3), ∇TX
fl
fl = ∇TY

fl
fl+S(fl)fl, thus

by (1.20), we get for 1 ≤ l ≤ n0,

Φ[(∇F
fl
)2 −∇F

∇TX
fl

fl
]Φ−1 = 〈µ̃F , fl〉2 − 〈µ̃F ,∇TY

fl
fl〉 − h∇FB

S(fl)fl
h−1.(1.25)

From (1.7), (1.9), (1.21), (1.22), (1.24) and (1.25), we have

(1.26) Φ∆FΦ−1 = −
2n−n0∑

i=1

Φ
[
(∇F

eH
i
)2 −∇F

∇TX

eH
i

eH
i

]
Φ−1 −

n0∑

l=1

Φ
[
(∇F

fl
)2 −∇F

∇TX
fl

fl

]
Φ−1

= h∆FBh−1 −
n0∑

l=1

〈µ̃F , fl〉2 − 2(eih)∇FB
ei
h−1 = ∆FB − 〈µ̃F , µ̃F 〉gTY − 1

h
∆Bh.

�
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2. G-invariant Bergman kernels

In this Section, we study the uniform estimate with its derivatives on t = 1√
p

of the

G-invariant Bergman kernel PG
p (x, x′) of D2

p as p→ ∞.

The first main difficulty is to localize the problem to arbitrary small neighborhoods

of P = µ−1(0), so that one can study the G-invariant Bergman kernel in the spirit of

[17]. Our observation here is that the G-invariant Bergman kernel is exactly the kernel

of the orthogonal projection on the zero space of an operator Lp, which is a deformation

of D2
p by the Casimir operator. Moreover, Lp has a spectral gap property (cf. (2.22),

(2.23)). In the spirit of [17, §3], this allows us to localize the problem to a problem near

a G-neighborhood of Gx. By combining with the Lichnerowicz formula, we get Theorem

0.1 in Section 2.4.

After localizing the problem to a problem near P , we first replace X by G× R
2n−n0 ,

then we reduce it to a problem on R2n−n0. On R2n−n0, the problem in Section 2.7 is

similar to a problem on R2n considered in [17, §3.3].

Comparing with the operator in [17, §3.3], we have an extra quadratic term along the

normal direction of XG. This allows us to improve the estimate in the normal direction.

After suitable rescaling, we will introduce a family of Sobolev norms defined by the

rescaled connection on Lp and the rescaled moment map in this situation, then we can

extend the functional analysis techniques developed in [17, §3.3] and [7, §11].

This section is organized as follows. In Section 2.1, we recall a basic property on

the Casimir operator of a compact connected Lie group. In Section 2.2, we recall the

definition of spinc Dirac operators for an almost complex manifold. In Section 2.3,

we introduce the operator Lp to study the G-invariant Bergman kernel PG
p of D2

p. In

Section 2.4, we explain that the asymptotic expansion of PG
p (x, x′) is localized on a

G-neighborhood of Gx, and we establish Theorem 0.1. In Section 2.5, we show that

our problem near P is equivalent to a problem on U/G for any open G-neighborhood

U of P . In Section 2.6, we derive an asymptotic expansion of ΦLpΦ−1 in coordinates

of U/G. In Section 2.7, we study the uniform estimate with its derivatives on t of the

Bergman kernel associated to the rescaled operator L t
2 from ΦLpΦ−1 using heat kernel.

In Theorem 2.21, we estimate uniformly the remainder term of the Taylor expansion of

e−uL t
2 for u ≥ u0 > 0, 0 < t ≤ t0 ≤ 1. In Section 2.8, we identify Jr,u, the coefficient

of the Taylor expansion of e−uL t
2 , with the Volterra expansion of the heat kernel, thus

giving a way to compute the coefficient P
(r)
x0 in Theorem 0.2. In Section 2.8, we prove

Theorem 0.2 except (0.12) and (0.13).

We use the notation in Section 1. In Sections 2.5-2.8, we assume G acts freely on

P = µ−1(0).

2.1. Casimir operator. Let G be a compact connected Lie group with Lie algebra g

and dimG = n0. We choose an Ad-invariant metric on g such that it is the minus Killing

form on the semi-simple part of g.

Let {Kj}dimG
j=1 be an orthogonal basis of g and {Kj} be its dual basis of g∗.
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The Casimir operator Cas of g is defined as the following element of the universal

enveloping algebra U(g) of g,

Cas :=
dimG∑

j=1

KjKj.(2.1)

Then Cas is independent of the choice of {Kj} and belongs to the center of U(g).

Let t be the Lie algebra of a maximum torus T of G, and t∗ its dual. Let | | denote

the norm on t∗ induced by the Ad-invariant metric on g.

Let W ⊂ t∗ be the fundamental Weyl chamber associated to the set of positive roots

∆+ of G, and its closure W ⊂ t∗.

Let I = {K ∈ t; exp(2πK) = 1 ∈ T} the integer lattice such that T = t/2πI, and

P = {α ∈ t∗;α(I) ⊂ Z} the lattice of integral forms.

Let ̺G be the half sum of the positive roots of G.

By the Weyl character formula [19, Theorem 8.21], the irreducible representations

correspond one to one to ϑ ∈ W ∩ P , the highest weight of the representation.

Moreover, for any irreducible representation ρ : G → End(E) with highest weight

ϑ ∈ W ∩ P , classically, the action of Cas on E is given by (cf. [19, Theorem 10.6]),

ρ(Cas) = −(|ϑ+ ̺G|2 − |̺G|2) IdE .(2.2)

Set

ν1 := inf
06=ϑ∈W∩P

(|ϑ+ ̺G|2 − |̺G|2) > 0.(2.3)

By (2.2), for any representation ρ : G → End(E), if the G-invariant subspace EG of

E is zero, then

−ρ(Cas) ≥ ν1 IdE .(2.4)

2.2. Spinc Dirac operator. Let (X,ω) be a compact symplectic manifold of real di-

mension 2n. Assume that there exists a Hermitian line bundle L over X endowed with

a Hermitian connection ∇L with the property that
√
−1

2π
RL = ω,

where RL = (∇L)2 is the curvature of (L,∇L).

Let (E, hE) be a Hermitian vector bundle on X with Hermitian connection ∇E and

its curvature RE .

Let gTX be a Riemannian metric on X.

Let J : TX −→ TX be the skew–adjoint linear map which satisfies the relation

ω(u, v) = gTX(Ju, v)(2.5)

for u, v ∈ TX.

Let J be an almost complex structure such that

gTX(Ju, Jv) = gTX(u, v), ω(Ju, Jv) = ω(u, v),(2.6)
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and that ω(·, J ·) defines a metric on TX. Then J commutes with J and

−〈JJ·, ·〉 = ω(·, J ·)
is positive by our assumption. Thus −JJ ∈ End(TX) is symmetric and positive, and

one verifies easily that

−JJ = (−J2)1/2, J = J(−J2)−1/2.(2.7)

The almost complex structure J induces a splitting

TX ⊗R C = T (1,0)X ⊕ T (0,1)X,

where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the eigenvalues√
−1 and −

√
−1 respectively. Let T ∗(1,0)X and T ∗(0,1)X be the corresponding dual

bundles.

For any v ∈ TX ⊗R C with decomposition v = v1,0 + v0,1 ∈ T (1,0)X ⊕ T (0,1)X, let

v∗1,0 ∈ T ∗(0,1)X be the metric dual of v1,0. Then

c(v) :=
√

2(v∗1,0 ∧−iv0,1)(2.8)

defines the Clifford action of v on Λ(T ∗(0,1)X), where ∧ and i denote the exterior and

interior multiplications respectively.

Set

(2.9) ν0 := inf
u∈T (1,0)

x X, x∈X
RL
x (u, u)/|u|2gTX > 0.

Let ∇TX be the Levi-Civita connection of the metric gTX with curvature RTX . We

denote by P T (1,0)X the projection from TX ⊗R C to T (1,0)X.

Let ∇T (1,0)X = P T (1,0)X ∇TXP T (1,0)X be the Hermitian connection on T (1,0)X induced

by ∇TX with curvature RT (1,0)X .

By [22, pp.397–398], ∇TX induces canonically a Clifford connection ∇Cliff on Λ(T ∗(0,1)X)

and its curvature RCliff (cf. also [25, §2]).

Let {ea}a be an orthonormal basis of TX. Then

RCliff =
1

4

∑

ab

〈RTXea, eb〉c(ea)c(eb) +
1

2
Tr
[
RT (1,0)X

]
.(2.10)

Let ∇Ep be the connection on

Ep := Λ(T ∗(0,1)X) ⊗ Lp ⊗E(2.11)

induced by ∇Cliff, ∇L and ∇E.

Let 〈 〉Ep
be the metric on Ep induced by gTX , hL and hE .

The L2–scalar product 〈 〉 on Ω0,•(X,Lp⊗E), the space of smooth sections of Ep, is

given by (1.19). We denote the corresponding norm by ‖·‖L2.

Definition 2.1. The spinc Dirac operator Dp is defined by

(2.12) Dp :=
2n∑

a=1

c(ea)∇Ep

ea
: Ω0,•(X,Lp ⊗ E) −→ Ω0,•(X,Lp ⊗ E) .
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Clearly, Dp is a formally self–adjoint, first order elliptic differential operator on Ω0,•(X,Lp⊗
E), which interchanges Ω0,even(X,Lp ⊗ E) and Ω0,odd(X,Lp ⊗ E).

If A is any operator, we denote by Spec(A) the spectrum of A.

The following result was proved in [25, Theorems 1.1, 2.5] by applying directly the

Lichnerowicz formula (cf. also [8, Theorem 1] in the holomorphic case).

Theorem 2.2. There exists CL > 0 such that for any p ∈ N and any s ∈ Ω>0(X,Lp ⊗
E) =

⊕
q>1 Ω0,q(X,Lp ⊗ E),

(2.13) ‖Dps‖2
L2 > (2pν0 − CL)‖s‖2

L2 .

Moreover Spec(D2
p) ⊂ {0} ∪ [2pν0 − CL,+∞[.

2.3. G-invariant Bergman kernel. Suppose that the compact connected Lie group G

acts on the left of X, and the action of G lifts on L,E and preserves the metrics and

connections, ω and the almost complex structure J .

Let µ : X → g∗ be defined by

2π
√
−1µ(K) := µL(K) = ∇L

KX − LK , K ∈ g.(2.14)

Then µ is the corresponding moment map (cf. [1, Example. 7.9]), i.e. for any K ∈ g,

dµ(K) = iKXω.(2.15)

For V a subspace of Ω0,•(X,Lp ⊗E), we denote by V ⊥ the orthogonal complement of

V in (Ω0,•(X,Lp ⊗ E), 〈 〉).
Let Ω0,•(X,Lp ⊗ E)G, (KerDp)

G be the G-invariant subspaces of Ω0,•(X,Lp ⊗ E),

KerDp. Let PG
p be the orthogonal projection from Ω0,•(X,Lp ⊗E) on (KerDp)

G.

Definition 2.3. The G-invariant Bergman kernel PG
p (x, x′) (x, x′ ∈ X) of Dp is the

smooth kernel of PG
p with respect to the Riemannian volume form dvX(x′).

Let {Spi }
dp

i=1 (dp = dim(KerDp)
G) be any orthonormal basis of (KerDp)

G with respect

to the norm ‖ ‖L2, then

PG
p (x, x′) =

dp∑

i=1

Spi (x) ⊗ (Spi (x
′))∗ ∈ (Ep)x ⊗ (E∗

p)x′.(2.16)

Especially, PG
p (x, x) ∈ End(Ep)x ≃ End(Λ(T ∗(0,1)X) ⊗E)x.

We use the notation µF in (1.13) now.

Recall that the Lie derivative LK on TX is given by

LKV = ∇TX
KXV −∇TX

V KX .(2.17)

Thus

µTX(K) = ∇TX
· KX ∈ End(TX),(2.18)

and the action on Λ(T ∗(0,1)X) induced by µTX(K) is given by

µCliff(K) =
1

4

2n∑

a=1

c(ea)c(∇TX
ea
KX) +

1

2
Tr[P T (1,0)X∇TX

· KX ].(2.19)
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Thus the action LK of K on smooth sections of Λ(T ∗(0,1)X) is given by (cf. [40, (1.24)])

LK = ∇Cliff
KX − µCliff(K).(2.20)

By (2.14) and (2.20), the action LK of K on Ω0,•(X,Lp ⊗ E) is ∇Ep

KX − µEp(K) with

µEp(K) = 2π
√
−1pµ(K) + µE(K) + µCliff(K).(2.21)

Definition 2.4. The (formally) self-adjoint operator Lp acting on (Ω0,•(X,Lp⊗E), 〈 , 〉)
is defined by,

Lp = D2
p − p

dimG∑

i=1

LKi
LKi

.(2.22)

The following result will play a crucial role in the whole paper.

Theorem 2.5. The projection PG
p is the orthogonal projection from Ω0,•(X,Lp⊗E) onto

Ker(Lp). Moreover, there exist ν, CL > 0 such that for any p ∈ N,

Ker(Lp) = (KerDp)
G,

Spec(Lp)⊂{0}∪[2pν − CL,+∞[.
(2.23)

Proof. By (2.22), for any s ∈ Ω0,•(X,Lp ⊗E),

〈Lps, s〉 = ‖Dps‖2
L2 + p

dimG∑

i=1

‖LKi
s‖2

L2 .(2.24)

Thus Lps = 0 is equivalent to

Dps = LKi
s = 0.(2.25)

This means s is fixed by the G-action. Thus we get the first equation of (2.23).

For s ∈ (KerLp)⊥, there exist s1 ∈ Ω0,•(X,Lp ⊗ E)G ∩ (KerDp)
⊥, s2 ∈ (Ω0,•(X,Lp ⊗

E)G)⊥, such that s = s1 + s2. Clearly,

Dps1 ∈ Ω0,•(X,Lp ⊗ E)G, Dps2 ∈ (Ω0,•(X,Lp ⊗ E)G)⊥.

By Theorem 2.2 and (2.4),

〈Lps, s〉 = −p〈ρ(Cas)s2, s2〉 + ‖Dps2‖2
L2 + ‖Dps1‖2

L2(2.26)

≥ pν1‖s2‖2
L2 + (2pν0 − CL)‖s1‖2

L2,

from which we get (2.23). �

We assume that 0 ∈ g∗ is a regular value of µ. Then XG = µ−1(0)/G is an orbifold

(XG is smooth if G acts freely on P = µ−1(0)). Furthermore, ω descends to a symplectic

form ωG on XG. Thus one gets the Marsden-Weinstein symplectic reduction (XG, ωG).

Moreover, (L,∇L), (E,∇E) descend to (LG,∇LG), (EG,∇EG) over XG so that the

corresponding curvature condition holds [20] :
√
−1

2π
RLG = ωG.(2.27)
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The G-invariant almost complex structure J also descends to an almost complex struc-

ture JG on TXG, and hL, hE, gTX descend to hLG , hEG, gTXG.

We can construct the corresponding spinc Dirac operator DG,p on XG.

Let PG,p be the orthogonal projection from Ω0,•(XG, L
p
G ⊗ EG) on KerDG,p, and let

PG,p(x, x
′) be the smooth kernel of PG,p with respect to the Riemannian volume form

dvXG
(x′).

The purpose of this paper is to study the asymptotic expansion of PG
p (x, x′) when

p → ∞, and we will relate it to the asymptotic expansion of the Bergman kernel PG,p
on XG.

2.4. Localization of the problem. Let aX be the injectivity radius of (X, gTX), and

ε ∈ (0, aX/4). If x ∈ X, Z ∈ TxX, let R ∋ u → xu = expXx (uZ) ∈ X be the geodesic in

(X, gTX), such that x0 = x, dxu

du
|u=0 = Z.

For x ∈ X, we denote by BX(x, ε) and BTxX(0, ε) the open balls in X and TxX

with center x and radius ε, respectively. The map TxX ∋ Z → expXx (Z) ∈ X is a

diffeomorphism from BTxX(0, ε) on BX(x, ε) for ε ≤ aX .

From now on, we identify BTxX(0, ε) with BX(x, ε) for ε ≤ aX/4.

Let f : R → [0, 1] be a smooth even function such that

f(v) =

{
1 for |v| ≤ ε/2,

0 for |v| ≥ ε.
(2.28)

Set

F (a) =
(∫ +∞

−∞
f(v)dv

)−1
∫ +∞

−∞
eivaf(v)dv.(2.29)

Then F (a) is an even function and lies in Schwartz space S(R) and F (0) = 1.

Let F̃ be the holomorphic function on C such that F̃ (a2) = F (a). The restriction of

F̃ to R lies in the Schwartz space S(R).

Let F̃ (Lp)(x, x′) be the smooth kernel of F̃ (Lp) with respect to the volume form

dvX(x′).

Proposition 2.6. For any l,m ∈ N, there exists Cl,m > 0 such that for p ≥ CL/ν,

|F̃ (Lp)(x, x′) − PG
p (x, x′)|C m(X×X) ≤ Cl,mp

−l.(2.30)

Here the Cm norm is induced by ∇L,∇E, ∇Cliff, hL, hE and gTX.

Proof. For a ∈ R, set

φp(a) = 1[pν,+∞[(a)F̃ (a).(2.31)

Then by Theorem 2.5, for p > CL/ν,

F̃ (Lp) − PG
p = φp(Lp).(2.32)

By (2.29), for any m ∈ N there exists Cm > 0 such that

sup
a∈R

|a|m|F̃ (a)| ≤ Cm.(2.33)
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As X is compact, there exist {xi}ri=1 ⊂ X such that {Ui = BX(xi, ε)}ri=1 is a covering

of X. We identify BTxi
X(0, ε) with BX(xi, ε) by geodesics as above.

We identify (Ep)Z for Z ∈ BTxi
X(0, ε) to (Ep)xi

by parallel transport with respect to

the connection ∇Ep along the curve γZ : [0, 1] ∋ u→ expXxi
(uZ).

Let {ej}2n
j=1 be an orthonormal basis of Txi

X. Let ẽj(Z) be the parallel transport of

ej with respect to ∇TX along the above curve.

Let ΓE ,ΓL,ΓCliff be the corresponding connection forms of ∇E, ∇L and ∇Cliff with

respect to any fixed frame for E,L, Λ(T ∗(0,1)X) which is parallel along the curve γZ
under the trivialization on Ui. Then ΓL is a usual 1-form.

Denote by ∇U the ordinary differentiation operator on Txi
X in the direction U . Then

∇Ep = ∇ + pΓL + ΓCliff + ΓE , Dp = c(ẽj)∇Ep

ẽj
.(2.34)

Let {ϕi} be a partition of unity subordinate to {Ui}.
For l ∈ N, we define a Sobolev norm on the l-th Sobolev space H l(X,Ep) by

‖s‖2
Hl

p
=
∑

i

l∑

k=0

2n∑

i1,··· ,ik=1

‖∇ei1
· · ·∇eik

(ϕis)‖2
L2(2.35)

Then by (2.34), there exist C,C ′, C ′′ > 0 such that for p ≥ 1, s ∈ H2(X,Ep),

C ′‖D2
ps‖L2 − C ′′p2‖s‖L2 ≤ ‖s‖H2

p
≤ C(‖D2

ps‖L2 + p2‖s‖L2).(2.36)

Observe that Dp commutes with the G-action, thus

[Dp, LKj
] = 0.(2.37)

By (2.22), (2.37), and the facts that Dp is self-adjoint and LKj
is skew-adjoint, we

know

(2.38) ‖Lps‖2
L2 = ‖D2

ps‖2
L2 + p2‖

∑

j

LKj
LKj

s‖2
L2 − 2pRe

∑

j

〈D2
ps, LKj

LKj
s〉

= ‖D2
ps‖2

L2 + p2‖
∑

j

LKj
LKj

s‖2
L2 + 2p

∑

j

‖LKj
Dps‖2

L2 .

From (2.36), and (2.38), there exists C > 0 such that

‖s‖H2
p
≤ C(‖Lps‖L2 + p2‖s‖L2).(2.39)

Let Q be a differential operator of order m ∈ N with scalar principal symbol and with

compact support in Ui, then

[Lp, Q] = [D2
p, Q] − p

∑

j

[LKj
LKj

, Q](2.40)

is a differential operator of order m+ 1. Moreover, by (2.21), (2.34), the leading term of

order m− 1 differential operator in [LKj
LKj

, Q] is p2[((ΓL − 2π
√
−1µ)(Kj))

2, Q]. Thus

by (2.39) and (2.40),

‖Qs‖H2
p
≤ C(‖LpQs‖L2 + p2‖Qs‖L2)(2.41)

≤ C(‖QLps‖L2 + p‖s‖Hm+1
p

+ p2‖s‖Hm
p

+ p3‖s‖Hm−1
p

).
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This means

‖s‖H2m+2
p

≤ Cmp
2m+2

m+1∑

j=0

‖Ljps‖L2 .(2.42)

Moreover, from

〈Lm′

p φp(Lp)Qs, s′〉 = 〈s,Q∗φp(Lp)Lm
′

p s
′〉,

(2.31) and (2.33), we know that for any l,m′ ∈ N, there exists Cl,m′ > 0 such that for

p ≥ 1,

‖Lm′

p φp(Lp)Qs‖L2 ≤ Cl,m′p−l+m‖s‖L2.(2.43)

We deduce from (2.42) and (2.43) that if Q1, Q2 are differential operators of order

m,m′ with compact support in Ui, Uj respectively, then for any l > 0, there exists

Cl > 0 such that for p ≥ 1,

‖Q1φp(Lp)Q2s‖L2 ≤ Clp
−l‖s‖L2.(2.44)

On Ui × Uj , by using Sobolev inequality and (2.32), we get Proposition 2.6. �

Observe that KX
j are vector fields along the orbits of the G-action, thus the contribu-

tion of pLKj
LKj

in the wave operator exp(
√
−1t

√
Lp) will propagate along the G-orbits,

and the principal symbol of Lp is given by

σ(Lp)(ξ) = |ξ|2 + p
∑

j

〈KX
j , ξ〉2 for ξ ∈ T ∗X.

By the finite propagation speed for solutions of hyperbolic equations [16, §7.8], [37,

§4.4], [38, I. §2.6, §2.8], F̃ (Lp)(x, x′) only depends on the restriction of Lp to G ·BX(x, ε)

and

F̃ (Lp)(x, x′) = 0, if dX(Gx, x′) ≥ ε.(2.45)

(When we apply the proof of [38, §2.6, §2.8], we need to suppose that Σ1,Σ2 therein are

G-space-like surfaces for the operator ∂2

∂t2
−D2

p).

Combining with Proposition 2.6, we know that the asymptotic of PG
p (x, x′) as p→ ∞

is localized on a neighborhood of Gx.

Proof of Theorem 0.1. From Proposition 2.6 and (2.45), we get (0.7) for any x, x′ ∈ X,

dX(Gx, x′) ≥ ε0. Now we will establish (0.7) for x, x′ ∈ X \ U .

Recall that U is a G-open neighborhood of P = µ−1(0).

As 0 is a regular value of µ, there exists ǫ0 > 0 such that µ : X2ǫ0 = µ−1(Bg
∗
(0, 2ǫ0)) →

Bg
∗
(0, 2ǫ0) is a submersion, X2ǫ0 is a G-open subset of X.

Fix ε, ǫ0 > 0 small enough such that X2ǫ0 ⊂ U , and dX(x, y) > 4ε for any x ∈ Xǫ0,

y ∈ X \ U . Then Vǫ0 = X \Xǫ0 is a smooth G-manifold with boundary ∂Vǫ0 .

Consider the operator Lp on Vǫ0 with the Dirichlet boundary condition. We denote it

by Lp,D. Note that Lp,D is self-adjoint.
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Still from [38, §2.6, §2.8], the wave operator exp(
√
−1t

√
Lp,D) is well defined and

exp(
√
−1t

√
Lp,D)(x, x′) only depends on the restriction of Lp to G · BX(x, t) ∩ Vǫ0, and

is zero if dX(Gx, x′) ≥ t. Thus, by (2.29),

F̃ (Lp)(x, x′) = F̃ (Lp,D)(x, x′), if x, x′ ∈ X \ U.(2.46)

Now for s ∈ C ∞
0 (Vǫ0, Ep), after taking an integration over G, we can get the de-

composition s = s1 + s2 with s1 ∈ Ω0,•(X,Lp ⊗ E)G, s2 ∈ (Ω0,•(X,Lp ⊗ E)G)⊥ and

supp si ⊂ Vǫ0 \ ∂Vǫ0 .
Since

∑dimG
i=1 LKi

LKi
commutes with the G-action, Lps1 ∈ Ω0,•(X,Lp ⊗ E)G, Lps2 ∈

(Ω0,•(X,Lp ⊗E)G)⊥ and, by (2.22), (2.26),

(2.47) 〈Lps, s〉 = 〈Lps1, s1〉 + 〈Lps2, s2〉
= ‖Dps2‖2

L2 − p〈ρ(Cas)s2, s2〉 + 〈D2
ps1, s1〉

≥ pν1‖s2‖2
L2 + 〈D2

ps1, s1〉.
To estimate the term 〈D2

ps1, s1〉, we will use the Lichnerowicz formula.

Recall that the Bochner-Laplacian ∆Ep on Ep is defined by (1.21).

Let rX be the Riemannian scalar curvature of (TX, gTX).

Let {wa} be an orthonormal frame of (T (1,0)X, gTX). Set

ωd = −
∑

a,b

RL(wa, wb)w
b ∧ iwa

,

τ(x) =
∑

a

RL(wa, wa) , RE
τ =

∑

a

RE(wa, wa) ,

c(R) =
∑

a<b

(
RE + 1

2
Tr[RT (1,0)X ]

)
(ea, eb) c(ea) c(eb) .

(2.48)

The Lichnerowicz formula [1, Theorem 3.52] (cf. [25, Theorem 2.2]) for D2
p is

(2.49) D2
p = ∆Ep − 2pωd − pτ + 1

4
rX + c(R).

Especially, as supp si ⊂ Vǫ0 \ ∂Vǫ0 , from (2.49), we get

〈D2
ps1, s1〉 = ‖∇Eps1‖2

L2 − p〈(2ωd + τ)s1, s1〉 + 〈(1
4
rX + c(R))s1, s1〉.(2.50)

Since s1 ∈ Ω0,•(X,Lp ⊗ E)G, from (1.13), for any K ∈ g,

∇Ep

KXs1 = (LK + µEp(K))s1 = µEp(K)s1.(2.51)

From (2.21) and (2.51), there exist C,C ′ > 0 such that

‖∇Eps1‖2
L2 ≥ C

∑

j

‖∇Ep

KX
j

s1‖2
L2 = C

∑

j

‖µEp(Kj)s1‖2
L2(2.52)

≥ Cp2‖|µ|s1‖2
L2 − C ′‖s1‖2

L2 ≥ Cǫ20p
2‖s1‖2

L2 − C ′‖s1‖2
L2.

From (2.47)-(2.52), for p large enough,

〈Lps, s〉 ≥ pν1‖s2‖2
L2 + Cp2‖s1‖2

L2.(2.53)
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Thus there are C,C ′ > 0 such that for p ≥ 1,

Spec(Lp,D) ⊂ [Cp− C ′,∞[.(2.54)

At first as KX
j ∈ T∂Vǫ0 for any j, thus LKj

preserves the Dirichlet boundary condition.

We get for l ∈ N,

LKj
φp(Lp,D) = φp(Lp,D)LKj

, (Lp,D)lφp(Lp,D) = φp(Lp,D)(Lp,D)l.(2.55)

Thus from (2.22) and (2.55),

D2
p,D ≤ Lp,D,(2.56)

and for l ∈ N, (D2
p,D)l commutes with the operator φp(Lp,D).

Let φp(Lp,D)(x, x′) be the smooth kernel of φp(Lp,D) with respect to dvX(x′).

Then from the above argument we get that for any l, k ∈ N, (D2
p,x)

l(D2
p,x′)

kφp(Lp,D)(x, x′)

verifies the Dirichlet boundary condition for x, x′ respectively.

By (2.34) and the elliptic estimate for Laplacian with Dirichlet boundary condition

[38, Theorem 5.1.3], there exists C > 0 such that for s ∈ H2m+2(X,Ep) ∩ H1
0 (X,Ep),

p ∈ N, we have

‖s‖H2m+2 ≤ C(‖D2
ps‖H2m + p2‖s‖H2m+1).(2.57)

Thus if Q1, Q2 are differential operators of order 2m, 2m′ with compact support in Ui,

Uj respectively, by (2.57) and (2.56), as in (2.42), we get for s ∈ C ∞
0 (Vǫ0, Ep),

(2.58) ‖Q1φp(Lp,D)Q2s‖L2 ≤ Cp2m+2m′
m∑

j1=0

m′∑

j2=0

‖(D2
p,D)j1φp(Lp,D)(D2

p,D)j2s‖L2

≤ Cp2m+2m′
m∑

j1=0

m′∑

j2=0

‖(Lp,D)j1φp(Lp,D)(Lp,D)j2s‖L2 .

From (2.54), (2.58), as in (2.44), we get

‖Q1φp(Lp,D)Q2s‖L2 ≤ Clp
−l‖s‖L2.(2.59)

By using Sobolev inequality as in the proof of Proposition 2.6, from (2.30), (2.46) and

(2.59), we get Theorem 0.1. �

2.5. Induced operator on U/G. Let U be a G-neighborhood of P = µ−1(0) in X such

that G acts freely on U , the closure of U . We will use the notation as in Introduction

and Sections 1.1, 1.2 with X therein replaced by U , especially B = U/G.

Let π : U → B be the natural projection with fiber Y . Let TY be the sub-bundle of

TU generated by the G-action, let gTY , gTP be the metrics on TY , TP induced by gTX .

Let THU , THP be the orthogonal complements of TY in TU , (TP, gTP ). Let gT
HU

be the metric on THU induced by gTX, and it induces naturally a Riemannian metric

gTB on B.

Let dvB be the Riemannian volume form on (B, gTB).

Recall that in (1.20), we defined the isometry Φ = hπG : (C ∞(U,Ep)
G, 〈 , 〉) →

(C ∞(B,Ep,B), 〈 , 〉).
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By (1.14), µEp defines a G-invariant section µ̃Ep of TY ⊗ End(Ep) on U .

Remark that ωd, τ , c(R) in (2.48) are G-invariant. We still denote by ωd, τ , c(R) the

induced sections on B.

As a direct corollary of Theorem 1.3 and (2.49), we get the following result,

Proposition 2.7. As an operator on C ∞(B,Ep,B),

(2.60) ΦLpΦ−1 = ΦD2
pΦ

−1

= ∆Ep,B − 〈µ̃Ep, µ̃Ep〉gTY − 1

h
∆Bh− 2pωd − pτ + 1

4
rX + c(R).

From Theorem 0.1, Prop. 2.6 and (2.45), modulo O(p−∞), PG
p (x, x′) depends only the

restriction of Lp on U .

To get a complete picture on PG
p (x, x′), we explain now that modulo O(p−∞), PG

p (x, x′)

depends only on the restriction of ΦLpΦ−1 on any neighborhood of XG in B.

As in the proof of Theorem 0.1, we will fix ǫ0 > 0 small enough such that X2ǫ0 =

µ−1(Bg
∗
(0, 2ǫ0))⊂ U , and the constant ε > 0 which will be fixed later, verifying that

dX(x, y) > 4ε for any x ∈ Xǫ0 , y ∈ X \ U . Set Bǫ0 = π(Xǫ0).

First we will extend all objects from a neighborhood of P to the total space of the

normal bundle N of P in X.

Let πN : N → P be the normal bundle of P in X. We identify N to the orthogonal

complement of TP in (TX, gTX). Then G acts on N and the action extends naturally

on π∗
N (L|P ), π∗

N(E|P ).

By (2.5), we have an orthogonal decomposition of TX,

TX|P = THP ⊕ TY |P ⊕N, and TY |P ≃ P × g, N = JTY |P ≃ P × g.(2.61)

Denote by P TY , P TP , PNP the orthogonal projections from TX on TY , TP and N |P by

this identification.

From (2.61), we have

TN ≃ π∗
NTX|P ≃ π∗

N (TP ⊕ g).(2.62)

For ε > 0, we denote by BN
ε = {(y, Z) ∈ N, y ∈ P, |Z|gTX ≤ ε}.

Then for ε0 small enough, the map (y, Z) ∈ N → expXy (Z) ∈ X is a diffeomorphism

from BN
2ε0 onto a tubular neighborhood U2ε0 of P in X.

From now on, we use the notation (y, Z) instead of expXy (Z). We identify y ∈ P with

(y, 0) ∈ N . From (2.61), (2.62), we may and we will identify TN to π∗
NTP ⊕ g.

For Z ∈ Ny, |Z| ≤ 2ε0, we identify LZ , EZ to Ly, Ey by using parallel transport

with respect to ∇L, ∇E along the curve [0, 1] ∋ u → uZ. In this way, we identify the

Hermitian bundles (π∗
NL|P , π∗

Nh
L), (π∗

NE|P , π∗
Nh

E) to (L, hL), (E, hE) on BN
2ε0

.

Let ε > 0 with ε < ε0/2. Let ϕ : R → [0, 1] be a smooth even function such that

ϕ(v) = 1 if |v| < 2; ϕ(v) = 0 if |v| > 4.(2.63)

Let ψε : N → N be the map defined by ψε(Z) = ϕ(|Z|/ε)Z ∈ Ny for Z ∈ Ny.

Let gTNZ = gTXψε(Z), J
N
Z = Jψε(Z) be the induced metric and almost-complex structure

on N .
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Let ∇π∗
NE = ψ∗

ε∇E , then ∇π∗
NE is the extension of ∇E on BN

2ε.

Let ∇π∗
N
L be the Hermitian connection on (π∗

NL, π
∗
Nh

L) defined by that for Z ∈ Ny,

∇π∗
N
L = ψ∗

ε∇L + (1 − ϕ( |Z|
ε

))RL
y (Z, P TP ·) +

1

2
(1 − ϕ2( |Z|

ε
))RL

y (Z, PNP ·).(2.64)

Then by using the identification (2.61), and (2.62), we calculate directly that its curvature

Rπ∗
NL = (∇π∗

NL)2 is

(2.65) R
π∗

NL

Z = ψ∗
εR

L + d
(
(1 − ϕ( |Z|

ε
))RL

y (Z, P TP ·) +
1

2
(1 − ϕ2( |Z|

ε
))RL

y (Z, PNP ·)
)

= RL
ψε(Z)(P

TP ·, P TP ·) +RL
y (PNP ·, ·) + ϕ2( |Z|

ε
)(RL

ψε(Z) − RL
y )(PNP ·, PNP ·)

+ ϕ( |Z|
ε

)(RL
ψε(Z) −RL

y )(PNP ·, P TP ·)

− ϕ′( |Z|
ε

)
Z∗

ε|Z| ∧ [RL
y (Z, P TP ·) − RL

ψε(Z)(Z, P
TP ·)]

− (ϕϕ′)( |Z|
ε

)
Z∗

ε|Z| ∧ [RL
y (Z, PNP ·) − RL

ψε(Z)(Z, P
NP ·)]

+ dy

(
(1 − ϕ( |Z|

ε
))RL

y (Z, P TP ·) +
1

2
(1 − ϕ2( |Z|

ε
))RL

y (Z, PNP ·)
)
.

Here Z∗ ∈ N∗ is the dual of Z ∈ N with respect to the metric gN .

From (2.65), one deduces that Rπ∗
N
L is positive in the sense of (2.9) when ε is small

enough, with the corresponding constant ν0 for Rπ∗
NL being larger than 4

5
ν0.

Note that G acts naturally on the normal bundle N , and under our identification, the

G-actions on L,E on BN
ε are exactly the G-actions on L|P , E|P on P .

Now we define the G-actions on π∗
NL, π

∗
NE by their G-actions on P , then they extend

the G-actions on L,E on BN
ε to N .

By (2.14), the moment map µN : N → g∗ of the G-action on N is defined by

−2π
√
−1µN(K) = LK −∇π∗

N
L

KN , K ∈ g.(2.66)

Observe that ψε∗K
N
(y,Z) = KP

y ∈ TP , thus from (2.14), (2.61), and (2.64),

(2.67) 2π
√
−1µN(K)(y,Z) = (1 − ϕ(|Z|/ε))RL

y (Z,K
P ) + 2π

√
−1µ(K)ψε(Z)

= RL
y (Z,KP ) + O(ϕ2(|Z|/ε)|Z|2).

Thus µ−1
N (0) = µ−1(0) = P for ε small enough, and for |Z| ≥ 4ε,

2π
√
−1µN(K)(y,Z) = RL

y (Z,KP ).(2.68)

From now on, we fix ε as above.

Let F̃ (ΦLpΦ−1)(x, x′) (x, x′ ∈ Bǫ0) be the smooth kernel of F̃ (ΦLpΦ−1) with respect

to dvB(x′). We will also view F̃ (ΦLpΦ−1) as a G×G-invariant section of pr∗1Ep⊗ pr∗2E
∗
p

on Xǫ0 ×Xǫ0.

Theorem 2.8. For any l,m ∈ N, there exists Cl,m > 0 such that for p ≥ 1, x, x′ ∈ Xǫ0,

|h(x)h(x′)PG
p (x, x′) − F̃ (ΦLpΦ−1)(π(x), π(x′))|C m(Xǫ0×Xǫ0 ) ≤ Cl,mp

−l.(2.69)
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Proof. Let DN
p be the Dirac operator on N associated to the above data by the construc-

tion in Section 2.2. By the argument in [25, p. 656-657] and the proof of Theorem 2.5,

we know that Theorems 2.2, 2.5 still hold for DN
p .

Let LNp be the operator on N defined as in (2.22). Then there exists C > 0 such that

for p ≥ 1,

Spec
(
LNp
)
⊂ {0} ∪ [pν − C,+∞[.(2.70)

Let PN,G
p be the orthogonal projection from Ω0,•(N, π∗

N(Lp ⊗E)) on (KerDN
p )G, then

by (2.70) and the arguments as in the proof of Theorem 2.6, for any l,m ∈ N, V ⊂ N a

compact subset of N , there exists Cl,m > 0 such that for p ≥ 1, x, x′ ∈ V ,

|F̃ (LNp )(x, x′) − PN,G
p (x, x′)|C m(V×V ) ≤ Cl,mp

−l.(2.71)

Let P
N/G
p be the projection from (L2(N/G, (Λ(T ∗(0,1)N)⊗π∗

N (Lp⊗E))N/G), 〈 , 〉) onto

Ker(ΦLNp Φ−1), and let P
N/G
p (z, z′) be the smooth kernel of the operator P

N/G
p with

respect to dvN/G(z′).

We still denote by pr1, pr2 the projections from N×N onto the first and second factor

N . We will also view P
N/G
p (z, z′) as a G×G-invariant section of

pr∗1(Λ(T ∗(0,1)N) ⊗ π∗
N(Lp ⊗E)) ⊗ pr∗2(Λ(T ∗(0,1)N) ⊗ π∗

N(Lp ⊗ E))∗

on N ×N .

As Φ in (1.20) defines an isometry from (KerDN
p )G = KerLNp onto Ker(ΦLNp Φ−1), one

has

h(x)h(x′)PN,G
p (x, x′) = PN/G

p (π(x), π(x′)).(2.72)

On N/G, by the arguments as in the proof of Theorem 2.6, we get

|F̃ (ΦLpΦ−1)(z, z′) − PN/G
p (z, z′)|C m(V/G×V/G) ≤ Cl,mp

−l.(2.73)

By the finite propagation speed (2.45), we know that for x, x′ ∈ Xǫ0,

F̃ (LNp )(x, x′) = F̃ (Lp)(x, x′).(2.74)

Now we get (2.69) from (2.30), (2.71)-(2.74). �

Let dB(·, ·) be the Riemannian distance on B.

By (2.60) and the finite propagation speed for solutions of hyperbolic equations [16,

§7.8], [37, §4.4], F̃ (ΦLpΦ−1)(x, x′) only depends on the restriction of ΦLpΦ−1 to BB(x, ε)

and

F̃ (ΦLpΦ−1)(x, x′) = 0, if dB(x, x′) ≥ ε.(2.75)

Thus we have localized our problem near XG.

Theorem 2.8 helps us to understand that the asymptotic of PG
p (x, x′) is local near XG.

In the rest, we will not use directly Theorem 2.8, but the argument of its proof will be

used in Section 2.6.
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2.6. Rescaling and a Taylor expansion of the operator ΦLpΦ−1. Recall that NG

is the normal bundle of XG in B, and we identify NG as the orthogonal complement of

TXG in (TB, gTB).

Let P TXG, PNG be the orthogonal projection from TB on TXG, NG on XG.

Recall that ∇NG , 0∇TB
are connections on NG, TB on XG, and A is the associated

second fundamental form defined in (0.9).

We fix x0 ∈ XG.

If W ∈ Tx0XG, let R ∋ t → xt = expXG
x0

(tW ) ∈ XG be the geodesic in XG such that

xt|t=0 = x0,
dx
dt
|t=0 = W .

If W ∈ Tx0XG, |W | ≤ ε, V ∈ Nx0, let τWV ∈ N
G,exp

XG
x0

(W )
be the natural parallel trans-

port of V with respect to the connection ∇NG along the curve [0, 1] ∋ t→ expXG
x0

(tW ).

If Z ∈ Tx0B, Z = Z0 +Z⊥, Z0 ∈ Tx0XG, Z⊥ ∈ Nx0, |Z0|, |Z⊥| ≤ ε, we identify Z with

expB
exp

XG
x0

(Z0)
(τZ0Z⊥). This identification is a diffeomorphism from BTXG

x0
(0, ε)×BNG

x0
(0, ε)

into an open neighborhood U (x0) of x0 in B. We denote it by Ψ, and U (x0) ∩XG =

BTXG
x0

(0, ε) × {0}.
From now on, we use indifferently the notation BTXG

x0
(0, ε) × BNG

x0
(0, ε) or U (x0), x0

or 0, · · · .
We identify (LB)Z , (EB)Z and (Ep,B)Z to (LB)x0 , (EB)x0 and (Ep,B)x0 by using parallel

transport with respect to ∇LB ,∇EB and ∇Ep,B along the curve γu : [0, 1] ∋ u→ uZ.

Recall that THU ⊂ TX is the horizontal bundle for π : U → B defined in Section 2.5.

Let P THU be the orthogonal projection from TX onto THU .

For W ∈ TB, let WH ∈ THU be the lift of W .

For y0 ∈ π−1(x0), we define the curve γ̃u : [0, 1] → X to be the lift of the curve γu with

γ̃0 = y0 and ∂γ̃u

∂u
∈ THU . Then on π−1(BTB(0, ε)), we use the parallel transport with

respect to ∇L,∇E and ∇Ep along the curve γ̃u to trivialized the corresponding bundles.

By (1.17), the previous trivialization is naturally induced by this one.

Let {e0i }, {e⊥j } be orthonormal basis of Tx0XG, NG,x0, then {ei} = {e0i , e⊥j } is an

orthonormal basis of Tx0B. Let {ei} be its dual basis. We will also denote Ψ∗(e
0
i ),Ψ∗(e

⊥
j )

by e0i , e
⊥
j . Thus in our coordinate,

∂
∂Z0

i

= e0i ,
∂

∂Z⊥
j

= e⊥j .(2.76)

For ε > 0 small enough, we will extend the geometric objects on BTB(x0, ε) to

R2n−n0 ≃ Tx0B (here we identify (Z1, · · · , Z2n−n0) ∈ R2n−n0 to
∑

i Ziei ∈ Tx0B) such

that Dp will become the restriction of a spinc Dirac operator on G × R
2n−n0 associated

to a Hermitian line bundle with positive curvature. In this way, we can replace X by

G× R2n−n0 .

First of all, we denote by L0, E0 the trivial bundles L|Gy0 , E|Gy0 on X0 = G×R2n−n0 ,

and we still denote by ∇L,∇E, hL etc. the connections and metrics on L0, E0 on

π−1(BTx0B(0, 4ε)) induced by the above identification. Then hL, hE is identified with

the constant metrics hL0 = hLy0 , hE0 = hEy0 .
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Set

R⊥ =
∑

j

Z⊥
j e

⊥
j = Z⊥, R0 =

∑

i

Z0
i e

0
i = Z0, R = R⊥ + R0 = Z.(2.77)

Then R is the radial vector field on R2n−n0 .

Let ϕε : X0 → X0 be the map defined by ϕε(g, Z) = (g, ϕ(|Z|/ε)Z) for (g, Z) ∈
G× R2n−n0 .

Let gTX0(g, Z) = gTX(ϕε(g, Z)), J0(g, Z) = J(ϕε(g, Z)) be the metric and almost-

complex structure on X0.

Let ∇E0 = ϕ∗
ε∇E , then ∇E0 is the extension of ∇E on π−1(BTx0B(0, ε)).

Let ∇L0 be the Hermitian connection on (L0, h
L0) on G× R2n−n0 defined by for Z ∈

R2n−n0,

∇L0 = ϕ∗
ε∇L +

(
1 − ϕ( |Z|

ε
)
)
RL
y0

(RH , P TY
y0

·) +
1

2

(
1 − ϕ2( |Z|

ε
)
)
RL
y0

(RH , P THU
y0

·).(2.78)

As in (2.65), its curvature RL0 is positive in the sense of (2.9) for ε small enough, and

the corresponding constant ν0 for RL0 is bigger than 4
5
ν0 uniformly for y0 ∈ P .

From now on, we fix ε as above.

Now G acts naturally on X0, and under our identification, the G-action on L,E on

G×BTx0B(0, ε) is exactly the G-action on L|Gy0 , E|Gy0.
We define a G-action on L0, E0 by its G-action on Gy0, then it extends the G-action

on L,E on G× BTx0B(0, ε) to X0.

By (2.15), for any K ∈ g, W ∈ TP on P = µ−1(0), we have

RL(W,KX) = −2π
√
−1ω(W,KX) = 2π

√
−1W (µ(K)) = 0,

RL
(1,Z0)(RH , KX) = RL

(1,Z0)((R⊥)H , KX).
(2.79)

Observe that for (1, Z) ∈ G × R2n−n0 , ϕε∗K
X0

(1,Z) = KX
y0

for K ∈ g, by (2.14), the

moment map µX0 : X0 → g∗ of the G-action on X0 is given by

2π
√
−1µX0(K)(1,Z) = (1 − ϕ( |Z|

ε
))RL

y0
(RH , KX

y0
) + 2π

√
−1µ(K)ϕε(1,Z).(2.80)

Now from the choice of our coordinate, we know that µX0 = 0 on G × R2n−2n0 × {0}.
Moreover,

2π
√
−1µ(K)ϕε(1,Z) = RL

(1,Z)(ϕ( |Z|
ε

)(R⊥)H , KX) + O(ϕ( |Z|
ε

)|Z||Z⊥|).(2.81)

From our construction, (2.80) and (2.81), we know that

µ−1
X0

(0) = G× R
2n−2n0 × {0}.(2.82)

By (2.79) and (2.80), for Z ∈ Tx0B, |Z| ≥ 4ε,

2π
√
−1µX0(K)(1,Z) = RL

y0
((R⊥)H , KX

y0
).(2.83)

Let DX0
p be the Dirac operator on X0 associated to the above data by the construction

in Section 2.2. As in (2.70), the analogue of Theorems 2.2, 2.5 still holds for DX0
p .

Let gTB0 be the metric on B0 = R2n−n0 induced by gTX0, and let dvB0 be the Rie-

mannian volume form on (B0, g
TB0).

The operator ΦLX0
p Φ−1 is also well-defined on Tx0B ≃ R2n−n0.
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Let Px0,p be the orthogonal projection from L2(R2n−n0 , (Λ(T ∗(0,1)X0) ⊗ Lp0 ⊗ E0)B0)

onto Ker(ΦLX0
p Φ−1) on R2n−n0 . Let Px0,p(Z,Z

′) (Z,Z ′ ∈ R2n−n0) be the smooth kernel

of Px0,p with respect to dvB0(Z
′). As before, we view Px0,p as a G×G-invariant section

of

pr∗1(Λ(T ∗(0,1)X0) ⊗ Lp0 ⊗ E0) ⊗ pr∗2(Λ(T ∗(0,1)X0) ⊗ Lp0 ⊗E0)
∗

on X0 ×X0.

Let PG
0,p be the orthogonal projection from Ω0,•(X0, L

p
0 ⊗E0) onto (KerDX0

p )G, and let

PG
0,p(x, x

′) be the smooth kernel of PG
0,p with respect to the volume form dvX0(x

′).

Note that Φ in (1.20) defines an isometry from (KerDX0
p )G = KerLX0

p onto Ker(ΦLX0
p Φ−1),

as in (2.72), we get

h(x)h(x′)PG
0,p(x, x

′) = Px0,p(π(x), π(x′)).(2.84)

Proposition 2.9. For any l,m ∈ N, there exists Cl,m > 0 such that for x, x′ ∈ G ×
BTx0B(0, ε),

∣∣∣(PG
0,p − PG

p )(x, x′)
∣∣∣
C m

≤ Cl,mp
−l.(2.85)

Proof. By the analogue of Theorems 2.2, 2.5, we know that for x, x′ ∈ G× BTx0B(0, ε),

PG
0,p − F̃ (LX0

p ) verifies also (2.30), and for x, x′ ∈ G× BTx0B(0, ε),

F̃ (LX0
p )(x, x′) = F̃ (Lp)(x, x′)

by finite propagation speed. Thus we get (2.85). �

Let T ∗(0,1)X0 be the anti-holomorphic cotangent bundle of (X0, J0). Since J0(g, Z) =

J(ϕε(g, Z)), T
∗(0,1)
Z,J0

X0 is naturally identified with T
∗(0,1)
ϕε(g,Z),JX0.

Let ∇Cliff0 be the Clifford connection on Λ(T ∗(0,1)X0) induced by the Levi-Civita con-

nection ∇TX0 on (X0, g
TX0). Let RE0 , RTX0, RCliff0 be the corresponding curvatures on

E0, TX0 and Λ(T ∗(0,1)X0) (cf. (2.10)).

We identify Λ(T ∗(0,1)X0)(g,Z) with Λ(T
∗(0,1)
(g,0) X) by identifying first Λ(T ∗(0,1)X0)(g,Z) with

Λ(T
∗(0,1)
ϕε(g,Z),JX0), which in turn is identified with Λ(T

∗(0,1)
Gy0

X) by using parallel transport

along u→ uϕε(g, Z) with respect to ∇Cliff0. We also trivialize Λ(T ∗(0,1)X0) in this way.

Let SL be a G-invariant unit section of L|Gy0 . Using SL and the above discussion, we

get an isometry

Λ(T ∗(0,1)X0) ⊗ E0 ⊗ Lp0 ≃ (Λ(T ∗(0,1)X) ⊗ E)|π−1(x0) = E|π−1(x0).

For any 1 ≤ i ≤ 2n − n0, let ẽi(Z) be the parallel transport of ei with respect to the

connection 0∇TB along [0, 1] ∋ u → uZ0, and with respect to the connection ∇TB along

[1, 2] ∋ u→ Z0 + (u− 1)Z⊥.

If α = (α1, · · · , α2n−n0) is a multi-index, set Zα = Zα1
1 · · ·Zα2n−n0

2n−n0
.

Recall that A, R⊥ have been defined in (0.9), (2.77).

The following Lemma extends [1, Prop. 1.28] (cf. also [17, Lemma 4.5]).

Lemma 2.10. The Taylor expansion of ẽi(Z) with respect to the basis {ei} to order r is

a polynomial of the Taylor expansion of the curvature coefficients of RTB to order r − 2

and A to order r − 1.
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Proof. Let ∂i = ∇ei
be the partial derivatives along ei.

Let ΓTB be the connection form of ∇TB with respect to the frame {ẽi} of TB. By the

definition of our fixed frame, we have iR⊥ΓTB = 0. As in [1, (1.12)],

LR⊥ΓTB = [iR⊥ , d]ΓTB = iR⊥(dΓTB + ΓTB ∧ ΓTB) = iR⊥RTB.(2.86)

Let Θ(Z) = (θij(Z))2n−n0
i,j=1 be the (2n− n0) × (2n− n0)-matrix such that

ei =
∑

j

θji (Z)ẽj(Z), ẽj(Z) = (Θ(Z)−1)kj ek.(2.87)

Set θj(Z) =
∑

i θ
j
i (Z)ei and

θ =
∑

j

ej ⊗ ej =
∑

j

θj ẽj ∈ T ∗B ⊗ TB.(2.88)

As ∇TB is torsion free, ∇TBθ = 0. Thus the R2n−n0-valued one-form θ = (θj(Z))

satisfies the structure equation,

dθ + ΓTB ∧ θ = 0.(2.89)

By the same proof of [1, Prop. 1.27], we have

R⊥ =
∑

j

Z⊥
j ẽ

⊥
j (Z), iR⊥θ =

∑

j

Z⊥
j e

⊥
j = Z⊥.(2.90)

Here under our trivialization by {ẽi}, we consider Z⊥ = (0, Z⊥
1 , · · · , Z⊥

n0
) as a R2n−n0-

valued function.

Substituting (2.90) and (LR⊥ − 1)Z⊥ = 0 into the identity iR⊥(dθ+ ΓTB ∧ θ) = 0, we

obtain

(LR⊥ − 1)LR⊥θ = (LR⊥ − 1)(dZ⊥ + ΓTBZ⊥) = (LR⊥ΓTB)Z⊥ = (iR⊥RTB)Z⊥.(2.91)

Here we consider RTB as a matrix of 2-forms, so that RTBZ⊥ is a vector of 2-forms, and

θ is a R2n−n0-valued 1-form.

By (2.90) and (2.91), we get

iej
(LR⊥ − 1)LR⊥θi(Z) =

〈
RTB(R⊥, ej)R⊥, ẽi

〉
(Z).(2.92)

We will denote by ∂⊥, ∂0 the partial derivatives along NG, TXG respectively. Then

we have the following Taylor expansions of (2.92): for j ∈ {2(n− n0) + 1, · · · , 2n− n0},
i.e. ej ∈ NG, by LR⊥ej = ej , we have

∑

|α⊥|≥1

(|α⊥|2 + |α⊥|)((∂⊥)α
⊥

θij)(Z
0)

(Z⊥)α
⊥

α⊥!
=
〈
RTB(R⊥, ej)R⊥, ẽi

〉
(Z).(2.93)

and for j ∈ {1, · · · , 2(n− n0)}, i.e. ej ∈ TXG, by LR⊥ej = 0, we have

∑

|α⊥|≥1

(|α⊥|2 − |α⊥|)((∂⊥)α
⊥

θij)(Z
0)

(Z⊥)α
⊥

α⊥!
=
〈
RTB(R⊥, ej)R⊥, ẽi

〉
(Z).(2.94)

From (2.93), (2.94), we still need to obtain the Taylor expansions for θij(Z
0), (1 ≤

i, j ≤ 2n− n0) and (∂⊥k θ
i
j)(Z

0), (1 ≤ j ≤ 2(n− n0)).
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By our construction, we know that for i or j ∈ {2(n− n0) + 1, · · · , 2n− n0},
ẽ⊥k (Z0) = e⊥k (Z0), θij(Z

0) = δi,j .(2.95)

By [1, (1.21)] (cf. [17, (4.35)]), we know that on R2n−2n0 ×{0}, for i, j ∈ {1, · · · , 2(n−
n0)},

θij(0) = δi,j,

∑

|α0|≥1

(|α0|2 + |α0|)((∂0)α
0

θij)(0)
(Z0)α

0

α0!
=
〈
RTXG(R0, ej)R0, ẽi

〉
(Z0).

(2.96)

while by (0.9), (2.87), and [e⊥i , e
⊥
j ] = 0, we get

(2.97) (∂⊥k θ
i
j)(Z

0) = e⊥k 〈e0j , ẽ0i 〉(Z0) = 〈∇TB
e⊥
k
e0j , ẽ

0
i 〉(Z0)

= 〈∇TB
e0j
e⊥k , ẽ

0
i 〉(Z0) = −〈∇TB

e0j
ẽ0i , e

⊥
k 〉(Z0) = −〈A(e0j )ẽ

0
i , e

⊥
k 〉(Z0).

Let RTXG , RNG be the curvatures of ∇TXG ,∇NG . By (0.9),

RTXG +RNG + A2 + 0∇TB
· A = RTB|XG

∈ Λ2(TXG) ⊗ End(TB).(2.98)

For 1 ≤ j ≤ 2(n− n0), 2(n− n0) + 1 ≤ i ≤ 2n− n0, i
′ = i− 2(n− n0), by [e⊥k , e

0
j ] = 0,

as in (2.97), we get

(∂⊥k θ
i
j)(Z

0) = e⊥k 〈e0j , ẽ⊥i′ 〉(Z0) = 〈∇TB
e0j
e⊥k , ẽ

⊥
i′ 〉(Z0) = 〈∇NG

e0j
e⊥k , e

⊥
i′ 〉(Z0).(2.99)

By [1, Prop. 1.18] (cf. (2.104)) and (2.99), the Taylor expansion of (∂⊥k θ
i
j)(Z

0) at 0 to

order r only determines by those of RNG to order r − 1.

Now by (2.87), (2.93)-(2.99) determine the Taylor expansion of θij(Z) to order m in

terms of the Taylor expansion of the curvature coefficients of RTB to order m− 2 and A

to order m− 1.

By (2.87), we get Lemma 2.10. �

Let dvTB be the Riemannian volume form on (Tx0B, g
TB).

Let κ(Z) (Z ∈ R2n−n0) be the smooth positive function defined by the equation

dvB0(Z) = κ(Z)dvTB(Z),(2.100)

with κ(0) = 1.

For s ∈ C ∞(R2n−n0,Ex0) and Z ∈ R2n−n0, for t = 1√
p
, set

(Sts)(Z) = s(Z/t), ∇t = S−1
t tκ

1
2∇Ep,B0κ−

1
2St,

L
t
2 = S−1

t t2κ
1
2 ΦDX0,2

p Φ−1κ−
1
2St.

(2.101)

As in (1.18), we denote by RLB , REB , RCliffB the curvatures on LB, EB, Λ(T ∗(0,1)X)B
induced by ∇L,∇E ,∇Cliff on X.

As in (1.14), µ̃ ∈ TY , µ̃E ∈ TY ⊗End(E), µ̃Cliff ∈ TY ⊗End(Λ(T ∗(0,1)X)) are sections

induced by µ, µE, µCliff in (2.15), (2.21).

Denote by ∇V the ordinary differentiation operator on Tx0B in the direction V .

Denote by (∂αRLB)x0 the tensor (∂αRLB)x0(ei, ej) := ∂α(RLB(ei, ej))x0 .
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Theorem 2.11. There exist Ai,j,r ( resp. Bi,r, Cr) (r ∈ N, i, j ∈ {1, · · · , 2n − n0})
polynomials in Z, and Ai,j,r is a monomial in Z with degree r, the degree on Z of Bi,r
(resp. Cr) has the same parity with r − 1 (resp. r), with the following properties:

– the coefficients of Ai,j,r are polynomials in RTB (resp. A) and their derivatives at

x0 to order r − 2 (resp. r − 1);

– the coefficients of Bi,r are polynomials in RTB, A, RCliffB , REB , (resp. RLB) and

their derivatives at x0 to order r − 1 (resp. r);

– the coefficients of Cr are polynomials in RTB, A, RCliffB , REB , µ̃E, µ̃Cliff (resp. rX,

Tr[RT (1,0)X ], RE; resp. h, RL, RLB ; resp. µ) and their derivatives at x0 to order r − 1

(resp. r − 2; resp. r; resp. r + 1).

– if we denote by

Or = Ai,j,r∇ei
∇ej

+ Bi,r∇ei
+ Cr,

L
0
2 = −

2n−n0∑

j=1

(
∇ej

+
1

2
RLB
x0

(R, ej)
)2

− 2ωd,x0 − τx0 + 4π2|P TY Jx0R|2,(2.102)

then

L
t
2 = L

0
2 +

m∑

r=1

trOr + O(tm+1).(2.103)

Moreover, there exists m′ ∈ N such that for any k ∈ N, t ≤ 1, |tZ| ≤ ε, the derivatives of

order ≤ k of the coefficients of the operator O(tm+1) are dominated by Ctm+1(1+ |Z|)m′
.

Proof. Let ΓEB , ΓLB and ΓCliffB be the connection forms of ∇EB , ∇LB and ∇CliffB with re-

spect to any fixed frames for EB, LB and Λ(T ∗(1,0)X)B which are parallel along the curve

γu : [0, 1] ∋ u → uZ under our trivialization on BTx0B(0, ε). Then ΓEB is End(CdimE)-

valued 1-form on R2n−n0 and ΓLB is 1-form on R2n−n0 .

Now for Γ• = ΓEB ,ΓLB or ΓCliffB and R• = REB , RLB or RCliffB respectively, by the

definition of our fixed frame and [1, Proposition 1.18] (cf. also [17, (4.45)]), the Taylor

coefficients of Γ•(ej)(Z) at x0 to order r only determines by those of R• to order r − 1,

and
∑

|α|=r
(∂αΓ•)x0(ej)

Zα

α!
=

1

r + 1

∑

|α|=r−1

(∂αR•)x0(R, ej)
Zα

α!
.(2.104)

Especially,

Γ•
Z(ej) =

1

2
R•
x0

(R, ej) + O(|Z|2).(2.105)

By (2.101), for t = 1/
√
p, if |Z| ≤ √

pε, then

∇t = κ
1
2 (tZ)

(
∇ + (tΓCliffB + tΓEB +

1

t
ΓLB)(tZ)

)
κ−

1
2 (tZ).(2.106)

Moreover, set

(∇TB
ei
ej)(Z) = Γkij(Z)ek, gij(Z) = gTB(ei, ej)(Z) = θki θ

k
j (Z),(2.107)

then Γkij is the connection form of ∇TB with respect to the frame {ei}.
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Let (gij) be the inverse matrix of (gij), then

∆Ep,B = −
∑

ij

gij
(
∇Ep,B
ei

∇Ep,B
ej

− Γkij∇Ep,B
ek

)
,(2.108)

and by (1.1), (2.100),

κ(Z) = (det gij)
1/2(Z),

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij).

(2.109)

By (2.60), (2.101) and (2.108),

(2.110) L
t
2 (Z) = −gij(tZ)(∇t,ei

∇t,ej
− tΓkij(tZ)∇t,ek

) − 〈tµ̃Ep, tµ̃Ep〉gTY (tZ)

− 2ωd(tZ) − τ(tZ) + t2
(1

4
rX + c(R) − 1

h
∆B0h

)
(tZ).

By (2.21),

〈tµ̃Ep, tµ̃Ep〉gTY = −4π2|1
t
µ̃|2gTY + 〈4π

√
−1µ̃+ t2(µ̃Cliff + µ̃E), µ̃Cliff + µ̃E〉gTY .(2.111)

By (2.5), (2.15), and µ̃y0 = 0, for y0 ∈ P, π(y0) = x0, we get for K ∈ g,

−〈JeHi , KX〉y0 = ω(KX , eHi ) = ∇eH
i
(µ(K)) = 〈∇TY

eH
i
µ̃, KX〉y0,(2.112)

thus

|µ̃|2gTY (Z) = |∇TY
R µ̃|2gTY + O(|Z|3) = |P TY Jx0R|2 + O(|Z|3).(2.113)

By Lemma 2.10, (2.104), (2.106), (2.110) and (2.113), we know that L t
2 has the

expansion (2.103), in particular, we get the formula L 0
2 in (2.102).

By (2.98), (2.104) and (2.110), we get the properties on Ai,j,r, Bi,r.
By (2.98), (2.110) and (2.111), we get the properties on Cr.
The proof of Theorem 2.11 is complete. �

2.7. Uniform estimate on the G-invariant Bergman kernel. Recall that the op-

erators L t
2 , ∇t were defined in (2.101), and E0 = Λ(T ∗(0,1)X0)⊗E0. We have trivialized

the bundle E0,B0 to EB,x0 in Section 2.6. We still denote by hE0,B0 the metric on the

trivial bundle EB,x0 on R2n−n0 induced by the corresponding metric on E0,B0. Note that

hE0,B0 is not a constant metric on R2n−n0 .

We also denote by 〈 , 〉0,L2 and ‖ ‖0,L2 the scalar product and the L2 norm on

C ∞(Tx0B,EB,x0) induced by gTx0B, hE0,B0 as in (1.19).

Let µ̃X0, µ̃
E0,p be the G-invariant sections of TY , TY ⊗ End(E0,p) on X0 induced by

µX0, µ
E0,p as in (1.14).

Let {fl} be a G-invariant orthonormal frame of TY on π−1(BB(x0, ε)), then (f0,l)Z =

(fl)ϕε(Z) is a G-invariant orthonormal frame of TY0 on X0.

Definition 2.12. Set

Dt = {∇t,ei
, 1 ≤ i ≤ 2n− n0;

1

t
〈µ̃X0, f0,l〉(tZ), 1 ≤ j ≤ n0}.(2.114)
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For k ∈ N∗, let Dk
t be the family of operators acting on C ∞(Tx0B,EB,x0) which can be

written in the form Q = Q1 · · ·Qk, Qi ∈ Dt.

For s ∈ C
∞(Tx0B,EB,x0), k ≥ 1, set

‖s‖2
t,0 =

∫

R2n−n0

|s(Z)|2
h
E0,B0 (tZ)

dvTx0B
(Z) = t−2n+n0‖Sts‖2

0,L2 ,

‖s‖2
t,k = ‖s‖2

t,0 +
k∑

l=1

∑

Q∈Dl
t

‖Qs‖2
t,0.

(2.115)

We denote by 〈s′, s〉t,0 the inner product on C
∞(Tx0B,EB,x0) corresponding to ‖ ‖2

t,0.

Let Hm
t be the Sobolev space of order m with norm ‖ ‖t,m. Let H−1

t be the Sobolev

space of order −1 and let ‖ ‖t,−1 be the norm on H−1
t defined by ‖s‖t,−1 = sup06=s′∈H1

t

| 〈s, s′〉t,0 |/‖s′‖t,1.
If A ∈ L (Hm

t , H
m′

t ) (m,m′ ∈ Z), we denote by ‖A‖m,m′

t the norm of A with respect

to the norms ‖ ‖t,m and ‖ ‖t,m′ .

Then L t
2 is a formally self-adjoint elliptic operator with respect to ‖ ‖2

t,0, and is a

smooth family of operators with respect to the parameter x0 ∈ XG.

Theorem 2.13. There exist constants C1, C2, C3 > 0 such that for t ∈]0, 1] and any

s, s′ ∈ C∞
0 (R2n−n0,EB,x0),

〈
L

t
2s, s

〉
t,0

≥ C1‖s‖2
t,1 − C2‖s‖2

t,0,

|
〈
L

t
2s, s

′〉
t,0

| ≤ C3‖s‖t,1‖s′‖t,1.
(2.116)

Proof. By (2.83) and our construction for L0, E0 on X0, we know for Z ∈ Tx0B, |Z| > 4ε,

µE0,p(K)(1,Z) = pRL
y0

((R⊥)H , KX
y0

).(2.117)

Thus from (2.110) and (2.115),

(2.118)
〈
L

t
2s, s

〉
t,0

= ‖∇ts‖2
t,0 − t2

〈
〈µ̃E0,p, µ̃E0,p〉gTY (tZ)s, s

〉
t,0

+

〈(
−2S−1

t ωd − S−1
t τ + t2S−1

t (1
4
rX + c(R) − 1

h
∆B0h)

)
s, s

〉

t,0

.

From (2.80), (2.111), (2.117), and our construction on ∇E0 ,

−t2
〈
〈µ̃E0,p, µ̃E0,p〉gTY (tZ)s, s

〉
t,0

≥ 2π2

n0∑

l=1

∥∥∥
1

t
〈µ̃X0 , f0,l〉(tZ)s

∥∥∥
2

t,0
− Ct‖s‖2

t,0.(2.119)

From (2.118) and (2.119), we get (2.116). �

Recall that ν is the constant in (2.23).

Let δ be the counterclockwise oriented circle in C of center 0 and radius ν/4, and let

∆ be the oriented path in C which goes parallel to the real axis from +∞ + i to ν
2

+ i

then parallel to the imaginary axis to ν
2
− i and the parallel to the real axis to +∞− i.
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0

δ

∆

/2ν/4 ν

Theorem 2.14. There exist t0 > 0, C > 0 such that for t ∈]0, t0], λ ∈ δ ∪ ∆ and

x0 ∈ XG, (λ− L t
2 )−1 exists and

‖(λ− L
t
2 )−1‖0,0

t ≤ C,

‖(λ− L
t
2 )−1‖−1,1

t ≤ C(1 + |λ|2).
(2.120)

Proof. By (2.23), (2.60) for DX0
p , and (2.101), there exists t0 > 0 such that for t ∈]0, t0],

Spec
(
L

t
2

)
⊂ {0} ∪ [ν,+∞[ .(2.121)

Thus (λ− L t
2 )−1 exists for λ ∈ δ ∪ ∆.

The first inequality of (2.120) is from (2.121).

By (2.116), for λ0 ∈ R, λ0 ≤ −2C2, (λ0 − L t
2 )−1 exists, and we have ‖(λ0 −

L t
2 )−1‖−1,1

t ≤ 1
C1

. Now,

(λ− L
t
2 )−1 = (λ0 − L

t
2 )−1 − (λ− λ0)(λ− L

t
2 )−1(λ0 − L

t
2 )−1.(2.122)

Thus for λ ∈ δ ∪ ∆, from (2.122), we get

‖(λ− L
t
2 )−1‖−1,0

t ≤ 1

C1

(
1 +

4

ν
|λ− λ0|

)
.(2.123)

Now we change the last two factors in (2.122), and apply (2.123), we get

‖(λ− L
t
2 )−1‖−1,1

t ≤ 1

C1

+
|λ− λ0|
C1

2

(
1 +

4

ν
|λ− λ0|

)
(2.124)

≤ C(1 + |λ|2).
The proof of our Theorem is complete. �

Proposition 2.15. Take m ∈ N∗. There exists Cm > 0 such that for t ∈]0, 1],

Q1, · · · , Qm ∈ Dt ∪{Zi}2n−n0
i=1 and s, s′ ∈ C ∞

0 (R2n−n0,EB,x0),∣∣∣
〈
[Q1, [Q2, . . . , [Qm,L

t
2 ]] . . .]s, s′

〉
t,0

∣∣∣ ≤ Cm‖s‖t,1‖s′‖t,1.(2.125)

Proof. Note that [∇t,ei
, Zj] = δij. By (2.110), we know that [Zj ,L

t
2 ] verifies (2.125).

Recall that by (2.80) and (2.83), (∇ei
〈µ̃X0, f0,l〉)(tZ) is uniformly bounded with its

derivatives for t ∈ [0, 1] and

∇ei
〈µ̃X0, f0,l〉 = (ei〈µ̃X0, f0,l〉)x0 = ω(f0,l, ei)x0(2.126)

for |Z| ≥ 4ε. Thus [1
t
〈µ̃X0, f0,l〉(tZ),L t

2 ] also verifies (2.125).
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Note that by (2.101),

[∇t,ei
,∇t,ej

] =
(
RL0,B0 (tZ) + t2RE0,B0 (tZ)

)
(ei, ej).(2.127)

Thus from (2.110), (2.126) and (2.127), we know that [∇t,ek
,L t

2 ] has the same structure

as L
t
2 for t ∈]0, 1], i.e. [∇t,ek

,L t
2 ] has the type as

(2.128)
∑

ij

aij(t, tZ)∇t,ei
∇t,ej

+
∑

i

ci(t, tZ)∇t,ei

+
∑

l

[
c′l(t, tZ)

1

t
〈µ̃X0, f0,l〉(tZ) + a|1

t
µ̃X0|2gTY (tZ)

]
+ c(t, tZ),

where a ∈ C; aij(t, Z), ci(t, Z), c′j(t, Z), c(t, Z) and their derivatives on Z are uniformly

bounded for Z ∈ R2n−n0 , t ∈ [0, 1]; moreover, they are polynomials in t. In fact, for

[∇t,ek
,L t

2 ], a = 0 in (2.128).

Let (∇t,ei
)∗ be the adjoint of ∇t,ei

with respect to 〈 , 〉t,0, then by (2.115),

(∇t,ei
)∗ = −∇t,ei

− t(k−1∇ei
k)(tZ),(2.129)

the last term of (2.129) and its derivatives in Z are uniformly bounded in Z ∈ R2n−n0 , t ∈
[0, 1].

By (2.128) and (2.129), (2.125) is verified for m = 1.

By iteration, we know that [Q1, [Q2, . . . , [Qm,L
t
2 ]] . . .] has the same structure (2.128)

as L
t
2 . By (2.129), we get Proposition 2.15. �

Theorem 2.16. For any t ∈]0, t0], λ ∈ δ ∪ ∆, m ∈ N, the resolvent (λ − L t
2 )−1 maps

Hm
t into Hm+1

t . Moreover for any α ∈ Z2n−n0, there exist N ∈ N, Cα,m > 0 such that

for t ∈]0, t0], λ ∈ δ ∪ ∆, s ∈ C
∞
0 (R2n−n0,EB,x0),

‖Zα(λ− L
t
2 )−1s‖t,m+1 ≤ Cα,m(1 + |λ|2)N

∑

α′≤α
‖Zα′

s‖t,m.(2.130)

Proof. For Q1, · · · , Qm ∈ Dt, Qm+1, · · · , Qm+|α| ∈ {Zi}2n−n0
i=1 , we can express Q1 · · ·

Qm+|α|(λ− L t
2 )−1 as a linear combination of operators of the type

[Q1, [Q2, . . . [Qm′ , (λ− L
t
2 )−1]] . . .]Qm′+1 · · ·Qm+|α|, m′ ≤ m+ |α|.(2.131)

Let Rt be the family of operators

Rt = {[Qj1, [Qj2 , . . . [Qjl ,L
t
2 ]] . . .]}.

Clearly, any commutator [Q1, [Q2, . . . [Qm′ , (λ−L t
2 )−1]] . . .] is a linear combination of

operators of the form

(λ− L
t
2 )−1R1(λ− L

t
2 )−1R2 · · ·Rm′(λ− L

t
2 )−1(2.132)

with R1, · · · , Rm′ ∈ Rt.

By Proposition 2.15, the norm ‖ ‖1,−1
t of the operators Rj ∈ Rt is uniformly bound

by C.

By Theorem 2.14, we find that there exist C > 0, N ∈ N such that the norm ‖ ‖0,1
t

of operators (2.132) is dominated by C(1 + |λ|2)N . �
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Let πB : TB ×B TB → B be the natural projection from the fiberwise product of TB

on B.

Let e−uL t
2 (Z,Z ′), (L t

2 e
−uL t

2 )(Z,Z ′) be the smooth kernels of the operators e−uL t
2 ,

L t
2e

−uL t
2 with respect to dvTx0B

(Z ′).

Note that L t
2 are families of differential operators with coefficients in End(EB,x0) =

End(Λ(T ∗(0,1)X)⊗E)B,x0. Thus we can view e−uL t
2 (Z,Z ′), (L t

2 e
−uL t

2 )(Z,Z ′) as smooth

sections of π∗
B(End(Λ(T ∗(0,1)X) ⊗ E)B) on TB ×B TB.

Let ∇End(EB) be the connection on End(Λ(T ∗(0,1)X)⊗E)B induced by ∇CliffB and ∇EB .

And ∇End(EB), hE and gTX induce naturally a C
m-norm for the parameter x0 ∈ XG.

As in Introduction, for Z ∈ Tx0B, we will write Z = Z0 + Z⊥, with Z0 ∈ Tx0XG,

Z⊥ ∈ NG,x0 .

Theorem 2.17. There exists C ′′ > 0 such that for any m,m′, m′′, r ∈ N, u0 > 0, there

exists C > 0 such that for t ∈]0, t0], u ≥ u0, Z,Z
′ ∈ Tx0B,

sup
|α|+|α′|≤m

(1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

∂r

∂tr
e−uL t

2 (Z,Z ′)
∣∣∣
C m′ (XG)

≤ C(1 + |Z0| + |Z ′0|)2(n+r+m′+1)+m exp
(1

2
νu− 2C ′′

u
|Z − Z ′|2

)
,

sup
|α|+|α′|≤m

(1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

∂r

∂tr
(L t

2 e
−uL t

2 ) (Z,Z ′)
∣∣∣
C m′ (XG)

≤ C(1 + |Z0| + |Z ′0|)2(n+r+m′+1)+m exp
(
− 1

4
νu− 2C ′′

u
|Z − Z ′|2

)
,

(2.133)

where C
m′

(XG) is the C
m′

norm for the parameter x0 ∈ XG.

Proof. By (2.121), for any k ∈ N∗,

e−uL t
2 =

(−1)k−1(k − 1)!

2πiuk−1

∫

δ∪∆

e−uλ(λ− L
t
2 )−kdλ,

L
t
2e

−uL t
2 =

(−1)k−1(k − 1)!

2πiuk−1

∫

∆

e−uλ
[
λ(λ− L

t
2 )−k − (λ− L

t
2 )−k+1

]
dλ.

(2.134)

From Theorem 2.16, we deduce that if Q ∈ ∪ml=1Dl
t, there are N ∈ N, Cm > 0 such

that for any λ ∈ δ ∪ ∆,

‖Q(λ− L
t
2 )−m‖0,0

t ≤ Cm(1 + |λ|2)N .(2.135)

Recall that L 2
t is self-adjoint with respect to ‖ ‖t,0. After taking the adjoint of (2.135),

we get

‖(λ− L
t
2 )−mQ‖0,0

t ≤ Cm(1 + |λ|2)N .(2.136)

From (2.134), (2.135) and (2.136), we get if Q,Q′ ∈ ∪ml=1Dl
t,

‖Qe−uL t
2Q′‖0,0

t ≤ Cme
1
4
νu,

‖Q(L t
2 e

−uL t
2 )Q′‖0,0

t ≤ Cme
− 1

2
νu.

(2.137)
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Let | |m be the usual Sobolev norm on C ∞(R2n−n0,EB,x0) induced by hEB,x0 =

h(Λ(T ∗(0,1)X)⊗E)B,x0 and the volume form dvTx0B
(Z) as in (2.115).

Observe that by (2.106), (2.115), there exists C > 0 such that for s ∈ C ∞(Tx0B,EB,x0),

supp(s) ⊂ BTx0B(0, q), m ≥ 0,

1

C
(1 + q)−m‖s‖t,m ≤ |s|m ≤ C(1 + q)m‖s‖t,m.(2.138)

Now (2.137), (2.138) together with Sobolev’s inequalities imply that if Q,Q′ ∈ ∪ml=1Dl
t,

for Ku(L
t
2 ) = e−

1
4
νue−uL t

2 or e
1
2
νu

L t
2 e

−uL t
2 , we have

sup
|Z|,|Z′|≤q

|QZQ
′
Z′Ku(L

t
2 )(Z,Z ′)| ≤ C(1 + q)2n+2.(2.139)

By (2.80), (2.81) and (2.83),

n0∑

l=1

∣∣∣
1

t
〈µ̃X0, f0,l〉(tZ)

∣∣∣
2

= |1
t
µ̃X0 |2gTY (tZ) ≥ C|Z⊥|2.(2.140)

Thus by (2.106), (2.139), (2.140), we derive (2.133) with the exponentials e
1
4
νu, e−

1
2
νu

for the case when r = m′ = 0 and C ′′ = 0, i.e.

sup
|α|+|α′|≤m

(1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′Ku(L
t
2 ) (Z,Z ′)

∣∣∣(2.141)

≤ C(1 + |Z0| + |Z ′0|)2n+m+2.

To obtain (2.133) in general, we proceed as in the proof of [4, Theorem 11.14].

Note that the function f is defined in (2.28). For ̺ > 1, put

Ku,̺(a) =

∫ +∞

−∞
exp(iv

√
2ua) exp(−v

2

2
)
(
1 − f(

1

̺

√
2uv)

) dv√
2π
.(2.142)

Then there exist C ′, C1 > 0 such that for any c > 0, m,m′ ∈ N, there is C > 0 such that

for u ≥ u0, a ∈ C, |Im(a)| ≤ c, we have

|a|m|K(m′)
u,̺ (a)| ≤ C exp

(
C ′c2u− C1

u
̺2
)
.(2.143)

For any c > 0, let Vc be the images of {λ ∈ C, |Im(λ)| ≤ c} by the map λ→ λ2. Then

Vc = {λ ∈ C,Re(λ) ≥ 1

4c2
Im(λ)2 − c2},

and δ ∪ ∆ ⊂ Vc for c large enough.

Let K̃u,̺ be the holomorphic function such that K̃u,̺(a
2) = Ku,̺(a).

By (2.143), for λ ∈ Vc,

|λ|m|K̃(m′)
u,̺ (λ)| ≤ C exp

(
C ′c2u− C1

u
̺2
)
.(2.144)

Using finite propagation speed of solutions of hyperbolic equations and (2.142), we

find that there exists a fixed constant (which depends on ε) c′ > 0 such that

K̃u,̺(L
t
2 )(Z,Z ′) = e−uL t

2 (Z,Z ′) if |Z − Z ′| ≥ c′̺.(2.145)
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By (2.144), we see that given k ∈ N, there is a unique holomorphic function K̃u,̺,k(λ)

defined on a neighborhood of Vc such that it verifies the same estimates as K̃u,̺ in (2.144)

and K̃u,̺,k(λ) → 0 as λ→ +∞; moreover

K̃
(k−1)
u,̺,k (λ)/(k − 1)! = K̃u,̺(λ).(2.146)

Thus as in (2.134),

K̃u,̺(L
t
2 ) =

1

2πi

∫

δ∪∆

K̃u,̺,k(λ)(λ− L
t
2 )−kdλ,

L
t
2 K̃u,̺(L

t
2 ) =

1

2πi

∫

∆

K̃u,̺,k(λ)
[
λ(λ− L

t
2 )−k − (λ− L

t
2 )−k+1

]
dλ.

(2.147)

By (2.135), (2.136) and by proceeding as in (2.137)-(2.139), we find that for Ku(a) =

K̃u,̺(a) or aK̃u,̺(a), for |Z|, |Z ′| ≤ q,

(2.148) sup
|α|+|α′|≤m

(1 + |Z⊥| + |Z ′⊥|)2n+m+m′′+2
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′ Ku(L
t
2 )(Z,Z ′)

∣∣∣

≤ C(1 + q)2n+2+m exp(C ′c2u− C1

u
̺2).

Setting ̺ ∈ N∗, |̺− 1
c′
|Z−Z ′|| < 1 in (2.148), we get for α, α′ verifying |α|+ |α′| ≤ m,

(2.149) (1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′ Ku(L
t
2 )(Z,Z ′)

∣∣∣

≤ C(1 + |Z0| + |Z ′0|)2n+m+2 exp(C ′c2u− C1

2c′2u
|Z − Z ′|2).

Take δ1 =
C′c2+ 1

4
ν

C′c2+ 1
2
ν
, from (2.141)δ1× (2.149)1−δ1 and (2.145), we get (2.133) for r =

m′ = 0.

To get (2.133) for r ≥ 1, note that from (2.134), for k ≥ 1

∂r

∂tr
e−uL t

2 =
(−1)k−1(k − 1)!

2πiuk−1

∫

δ∪∆

e−uλ
∂r

∂tr
(λ− L

t
2 )−kdλ.(2.150)

We have the similar equation for ∂r

∂tr
(L t

2 e
−uL t

2 ).

Set

Ik,r =
{

(k, r) = (ki, ri)|
j∑

i=0

ki = k + j,

j∑

i=1

ri = r, ki, ri ∈ N
∗
}
.(2.151)

Then there exist ak

r
∈ R such that

Ak

r
(λ, t) = (λ− L

t
2 )−k0

∂r1L t
2

∂tr1
(λ− L

t
2 )−k1 · · · ∂

rjL
t
2

∂trj
(λ− L

t
2 )−kj ,

∂r

∂tr
(λ− L

t
2 )−k =

∑

(k,r)∈Ik,r

ak

r
Ak

r
(λ, t).

(2.152)
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We claim that Ak

r
(λ, t) is well defined and for any m ∈ N, k > 2(m+ r + 1), Q,Q′ ∈

∪ml=1Dl
t, there exist C > 0, N ∈ N such that for λ ∈ δ ∪ ∆,

‖QAk

r
(λ, t)Q′s‖t,0 ≤ C(1 + |λ|)N

∑

|β|≤2r

‖Zβs‖t,0.(2.153)

In fact, by (2.110), ∂r

∂tr
L t

2 is a combination of ∂r1

∂tr1
(gij(tZ)), ( ∂

r2

∂tr2
∇t,ei

), ∂r3

∂tr3
(q(tZ)),

∂r4

∂tr4
(t〈µ̃E0,p, f0,l(tZ)〉), where q runs over the functions rX , etc., appearing in (2.110).

Now ∂r1

∂tr1
(q(tZ)) (resp. ∂r1

∂tr1
(t〈µ̃E0,p, f0,l〉(tZ)), ∂r1

∂tr1
∇t,ei

) (r1 ≥ 1) are functions of the

type as q′(tZ)Zβ, |β| ≤ r1 (resp. r1 + 1) (where q′, as q, runs over the functions rX ,

etc., appearing in (2.110)), with q′(Z) and its derivatives on Z being bounded smooth

functions on Z.

Let R ′
t be the family of operators of the type

R
′
t = {[fj1Qj1, [fj2Qj2 , . . . [fjlQjl,L

t
2 ]] . . .]}

with fji smooth bounded (with its derivatives) functions and Qji ∈ Dt ∪ {Zj}2n−n0
j=1 .

Now for the operator Ak

r
(λ, t)Q′, we will move first all the term Zβ in d′(tZ)Zβ as

above to the right hand side of this operator, to do so, we always use the commutator

trick, i.e., each time, we consider only the commutation for Zi, not for Zβ with |β| > 1.

Then Ak

r
(λ, t)Q′ is as the form

∑
|β|≤2r L

t
βQ

′′
βZ

β, and Q′′
β is obtained from Q′ and its

commutation with Zβ.

Now we move all the terms ∇t,ei
, 〈1

t
µ̃, f0,l〉(tZ) in

∂rj L t
2

∂trj to the right hand side of the

operator Ltβ.

Then as in the proof of Theorem 2.16, we get finally that QAk

r
(λ, t)Q′ is as the form∑

β L t
βZ

β where L t
β is a linear combination of operators of the form

Q(λ− L
t
2 )−k

′
0R1(λ− L

t
2 )−k

′
1R2 · · ·Rl′(λ− L

t
2 )−k

′
l′Q′′′Q′′,(2.154)

with R1, · · · , Rl′ ∈ R ′
t, Q

′′′ ∈ ∪2r
l=1Dl

t, Q
′′ ∈ ∪ml=1Dl

t, |β| ≤ 2r, and Q′′ is obtained from

Q′ and its commutation with Zβ.

By the argument as in (2.135) and (2.136), as k > 2(m+r+1), we can split the above

operator to two parts

Q(λ− L
t
2 )−k

′
0R1(λ− L

t
2 )−k

′
1R2 · · ·Ri(λ− L

t
2 )−k

′′
i ;

(λ− L
t
2 )−(k′i−k′′i ) · · ·Rl′(λ− L

t
2 )−k

′
l′Q′′′Q′′,

and the ‖ ‖0,0
t -norm of each part is bounded by C(1 + |λ|2)N .

Thus the proof of (2.153) is complete.

By (2.150), (2.152) and (2.153), we get the similar estimate (2.141), (2.149) for
∂r

∂tr
e−uL t

2 , ∂r

∂tr
(L t

2 e
−uL t

2 ) with the exponential 2n + m + 2r + 2 instead of 2n + m + 2

therein.

Thus we get (2.133) for m′ = 0.

Finally, for U ∈ TXG a vector on XG,

∇π∗ End(EB)
U e−uL t

2 =
(−1)k−1(k − 1)!

2πiuk−1

∫

δ∪∆

e−uλ∇π∗ End(EB)
U (λ− L

t
2 )−kdλ.(2.155)
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Now, by using the similar formula (2.152) for ∇π∗ End(EB)
U (λ−L t

2 )−k by replacing
∂r1L t

2

∂tr1

by ∇π∗ End(EB)
U L

t
2 , and remark that ∇π∗ End(EB)

U L
t
2 is a differential operator on Tx0B with

the same structure as L t
2 .

Then by the above argument, we get (2.133) for m′ ≥ 1. �

Let P0,t be the orthogonal projection from C ∞(Tx0B,EB,x0) to the kernel of L t
2 with

respect to 〈 , 〉t,0. Set

Fu(L
t
2 ) =

1

2πi

∫

∆

e−uλ(λ− L
t
2 )−1dλ.(2.156)

By (2.121),

Fu(L
t
2 ) = e−uL t

2 − P0,t =

∫ +∞

u

L
t
2 e

−u1L t
2du1.(2.157)

Let P0,t(Z,Z
′), Fu(L

t
2 )(Z,Z ′) be the smooth kernels of P0,t, Fu(L

t
2 ) with respect to

dvTx0B
(Z ′).

Corollary 2.18. With the notation in Theorem 2.17,

(2.158) sup
|α|+|α′|≤m

(1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

∂r

∂tr
Fu(L

t
2 ) (Z,Z ′)

∣∣∣
C m′ (P )

≤ C(1 + |Z0| + |Z ′0|)2n+m+2m′+2r+2 exp(−1

8
νu−

√
C ′′ν|Z − Z ′|).

Proof. Note that 1
8
νu+ 2C′′

u
|Z − Z ′|2 ≥

√
C ′′ν|Z − Z ′|, thus

(2.159)

∫ +∞

u

e
− 1

4
νu1− 2C′′

u1
|Z−Z′|2

du1 ≤ e−
√
C′′ν|Z−Z′|

∫ +∞

u

e−
1
8
νu1du1

=
8

ν
e−

1
8
νu−

√
C′′ν|Z−Z′|.

By (2.133), (2.157) and (2.159), we get (2.158). �

For k large enough, set

Fr,u =
(−1)k−1(k − 1)!

2πi r!uk−1

∫

∆

e−uλ
∑

(k,r)∈Ik,r

ak

r
Ak

r
(λ, 0)dλ,

Jr,u =
(−1)k−1(k − 1)!

2πi r!uk−1

∫

δ∪∆

e−uλ
∑

(k,r)∈Ik,r

ak

r
Ak

r
(λ, 0)dλ,

Fr,u,t =
1

r!

∂r

∂tr
Fu(L

t
2 ) − Fr,u, Jr,u,t =

1

r!

∂r

∂tr
e−uL t

2 − Jr,u.

(2.160)

Certainly, as t→ 0, the limit of ‖ ‖t,m exists, and we denote it by ‖ ‖0,m.
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Theorem 2.19. For any r ≥ 0, k > 0, there exist C > 0, N ∈ N such that for

t ∈ [0, t0], λ ∈ δ ∪ ∆,

∥∥∥∥
(∂rL t

2

∂tr
− ∂rL t

2

∂tr
|t=0

)
s

∥∥∥∥
t,−1

≤ Ct
∑

|α|≤r+3

‖Zαs‖0,1,

(2.161)

∥∥∥
( ∂r
∂tr

(λ− L
t
2 )−k −

∑

(k,r)∈Ik,r

ak

r
Ak

r
(λ, 0)

)
s
∥∥∥

0,0
≤ Ct(1 + |λ|2)N

∑

|α|≤4r+3

‖Zαs‖0,0.

Proof. Note that by (2.106), (2.115), for t ∈ [0, 1], k ≥ 1

‖s‖t,0 ≤ C‖s‖0,0, ‖s‖t,k ≤ C
∑

|α|≤k
‖Zαs‖0,k.(2.162)

An application of Taylor expansion for (2.110) leads to the following equation, if s, s′

have compact support,
∣∣∣
〈(∂rL t

2

∂tr
− ∂rL t

2

∂tr
|t=0

)
s, s′

〉

0,0

∣∣∣ ≤ Ct‖s′‖t,1
∑

|α|≤r+3

‖Zαs‖0,1.(2.163)

Thus we get the first inequality of (2.161).

Note that

(λ− L
t
2 )−1 − (λ− L

0
2 )−1 = (λ− L

t
2 )−1(L t

2 − L
0
2 )(λ− L

0
2 )−1.(2.164)

Now from (2.120), (2.163) and (2.164),
∥∥((λ− L

t
2 )−1 − (λ− L

0
2 )−1

)
s
∥∥

0,0
≤ Ct(1 + |λ|4)

∑

|α|≤3

‖Zαs‖0,0.(2.165)

After taking the limit, we know that Theorems 2.14-2.16 still hold for t = 0.

Note that ∇0,ej
= ∇ej

+ 1
2
RLB
x0

(R, ej) by (2.106).

If we denote by Lλ,t = λ− L
t
2 , then

(2.166) Ak

r
(λ, t) −Ak

r
(λ, 0) =

j∑

i=1

L
−k0
λ,t · · ·

(
∂riL t

2

∂tri
− ∂riL t

2

∂tri
|t=0

)
L

−ki

λ,0 · · ·L −kj

λ,0

+

j∑

i=0

L
−k0
λ,t · · ·

(
L

−ki

λ,t − L
−ki

λ,0

)(∂ri+1L t
2

∂tri+1
|t=0

)
· · ·L −kj

λ,0 .

Now from the first inequality of (2.161), (2.120), (2.152), (2.165) and (2.166), we get

(2.161). �

Theorem 2.20. There exist C > 0, N ∈ N such that for t ∈]0, t0], u ≥ u0, q ∈ N,

Z,Z ′ ∈ Tx0B, |Z|, |Z ′| ≤ q,
∣∣∣Fr,u,t(Z,Z ′)

∣∣∣ ≤Ct
1

2(2n−n0+1) (1 + q)Ne−
1
8
νu,(2.167)

∣∣∣Jr,u,t(Z,Z ′)
∣∣∣ ≤Ct

1
2(2n−n0+1) (1 + q)Ne

1
2
νu.
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Proof. Let J0
x0,q be the vector space of square integrable sections of EB,x0 over {Z ∈

Tx0B, |Z| ≤ q + 1}.
If s ∈ J0

x0,q
, put ‖s‖2

(q) =
∫
|Z|≤q+1

|s|2
EB,x0

dvTB(Z). Let ‖A‖(q) be the operator norm of

A ∈ L (J0
x0,q

) with respect to ‖ ‖(q).

By (2.150), (2.160) and (2.161), we get: there exist C > 0, N ∈ N such that for

t ∈]0, t0], u ≥ u0,

‖Fr,u,t‖(q) ≤ Ct(1 + q)Ne−
1
2
νu,(2.168)

‖Jr,u,t‖(q) ≤ Ct(1 + q)N e
1
4
νu.

Let φ : R → [0, 1] be a smooth function with compact support, equal 1 near 0, such

that
∫
Tx0B

φ(Z)dvTx0B
(Z) = 1.

Take ς ∈]0, 1].

By the proof of Theorem 2.17, Fr,u verifies the similar inequality as in (2.158). Thus

by (2.158), there exists C > 0 such that if |Z|, |Z ′| ≤ q, U,U ′ ∈ EB,x0,

(2.169)
∣∣∣ 〈Fr,u,t(Z,Z ′)U,U ′〉 −

∫

Tx0B×Tx0B

〈Fr,u,t(Z −W,Z ′ −W ′)U,U ′〉

1

ς4n−2n0
φ(W/ς)φ(W ′/ς)dvTx0B

(W )dvTx0B
(W ′)

∣∣∣ ≤ Cς(1 + q)Ne−
1
8
νu|U ||U ′|.

On the other hand, by (2.168),

(2.170)
∣∣∣
∫

Tx0B×Tx0B

〈Fr,u,t(Z −W,Z ′ −W ′)U,U ′〉 1

ς4n−2n0
φ(W/ς)φ(W ′/ς)

dvTx0B
(W )dvTx0B

(W ′)
∣∣∣ ≤ Ct

1

ς2n−n0
(1 + q)Ne−

1
2
νu|U ||U ′|.

By taking ς = t1/2(2n−n0+1), we get (2.167).

In the same way, we get (2.167) for Jr,u,t. �

Theorem 2.21. There exists C ′′ > 0 such that for any k,m,m′, m′′ ∈ N, there exist

N ∈ N, C > 0 such that if t ∈]0, t0], u ≥ u0, Z,Z
′ ∈ THx0

U , α, α ∈ Z2n−n0, |α|+ |α′| ≤ m,

(1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
Fu(L

t
2 ) −

k∑

r=0

Fr,ut
r
)
(Z,Z ′)

∣∣∣
C m′ (XG)

≤ Ctk+1(1 + |Z0| + |Z ′0|)2(n+k+m′+2)+m exp(−1

8
νu−

√
C ′′ν|Z − Z ′|),

(1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
e−uL t

2 −
k∑

r=0

Jr,ut
r
)
(Z,Z ′)

∣∣∣
C m′ (XG)

≤ Ctk+1(1 + |Z0| + |Z ′0|)2(n+k+m′+2)+m exp(
1

2
νu − 2C ′′

u
|Z − Z ′|2).

(2.171)

Proof. By (2.160) and (2.167),

1

r!

∂r

∂tr
Fu(L

t
2 )|t=0 = Fr,u,

1

r!

∂r

∂tr
e−uL t

2 |t=0 = Jr,u.(2.172)
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Now by Theorem 2.17 and (2.160), Jr,u, Fr,u have the same estimates as ∂r

∂tr
e−uL t

2 ,
∂r

∂tr
Fu(L

t
2 ) in (2.133), (2.158).

Again from (2.133), (2.158), (2.160), (2.167), and the Taylor expansion

G(t) −
k∑

r=0

1

r!

∂rG

∂tr
(0)tr =

1

k!

∫ t

0

(t− t0)
k ∂

k+1G

∂tk+1
(t0)dt0,(2.173)

we get (2.171). �

2.8. Evaluation of Jr,u. For u > 0, we will write u∆j for the rescaled simplex {(u1, · · · , uj)|
0 ≤ u1 ≤ u2 ≤ · · · ≤ uj ≤ u}.

Let e−uL 0
2 (Z,Z ′) be the smooth kernel of e−uL 0

2 with respect to dvTx0B
(Z ′).

Recall that the Or’s have been defined in (2.102).

Theorem 2.22. For r ≥ 0, we have

(2.174) Jr,u =
∑

∑j
i=1 ri=r, ri≥1

(−1)j
∫

u∆j

e−(u−uj)L
0
2 Orje

−(uj−uj−1)L
0
2

· · ·Or1e
−u1L 0

2 du1 · · · duj,
where the product in the integrand is the convolution product. Moreover,

Jr,u(Z,Z
′) = (−1)rJr,u(−Z,−Z ′).(2.175)

Proof. We introduce an even extra-variable σ such that σr+1 = 0.

Set [ ][r] the coefficient of σr, Lσ = L 0
2 +

∑r
j=1 Ojσ

j.

From (2.160), (2.172), we know

Jr,u(Z,Z
′) =

1

r!

∂r

∂tr
e−uL t

2 (Z,Z ′)|t=0 = [e−uLσ ][r](Z,Z ′).(2.176)

Now from (2.176) and the Volterra expansion of e−uLσ (cf. [1, §2.4]), we get (2.174).

We prove (2.175) by iteration.

From (2.102)

(2.177) L
0
2 = −

2n−n0∑

j=1

(∇ej
)2 − π2〈((P THUJP THU)2 + 4P THUJP TY JP THU)x0R,R〉

+ 2π
√
−1∇PTHUJPTHUR − 2ωd,x0 − τx0 .

Here the matrix ((P THUJP THU)2+4P THUJP TY JP THU)x0 need not commute with P THUJP THU .

Thus [3, (6.37), (6.38)] does not apply directly here, and we could not get a precise

formula for e−uL 0
2 as in [17, (4.106)].

By the uniqueness of the solution of heat equations and (2.177), we know

e−uL 0
2 (Z,Z ′) = e−uL 0

2 (−Z,−Z ′).(2.178)

By (2.174),

J0,u(Z,Z
′) = e−uL 0

2 (Z,Z ′).(2.179)
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Thus we get (2.175) for r = 0.

If (2.175) holds for r ≤ k, then by (2.174), (2.179),

Jk+1,u = −
k+1∑

j=1

∫ u

0

e−(u−u1)L 0
2 OjJk+1−j,u1du1.(2.180)

By the iteration, Theorem 2.11 and (2.179), and note that ∇ei
in Oj will change the

parity of the polynomials we obtained, we get (2.175) for r = k + 1. �

2.9. Proof of Theorem 0.2. By (2.157) and (2.171), for any u > 0 fixed, there exists

Cu > 0 such that for t = 1√
p
, Z,Z ′ ∈ Tx0B, x0 ∈ P , α, α′ ∈ Z

2n−n0 , |α| + |α′| ≤ m, we

have

(2.181) (1 + |Z⊥| + |Z ′⊥|)m′′

∣∣∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
P0,t −

k∑

r=0

tr(Jr,u − Fr,u)
)
(Z,Z ′)

∣∣∣∣∣
C m′ (XG)

≤ Cut
k+1(1 + |Z0| + |Z ′0|)2(n+k+m′+2)+m exp(−

√
C ′′ν|Z − Z ′|).

Set

P (r) = Jr,u − Fr,u.(2.182)

Then P (r) does not depend on u > 0 by (2.181), as P0,t does not depend on u.

Moreover, by taking the limit of (2.158) as t→ 0,

(2.183) (1 + |Z⊥| + |Z ′⊥|)m′′
∣∣∣Fr,u(Z,Z ′)

∣∣∣
C m′ (XG)

≤ C(1 + |Z0| + |Z ′0|)2n+2r+2m′+2 exp(−1

8
νu−

√
C ′′ν|Z − Z ′|).

Thus

Jr,u(Z,Z
′) = P (r)(Z,Z ′) + Fr,u(Z,Z

′) = P (r)(Z,Z ′) + O(e−
1
8
νu),(2.184)

uniformly on any compact set of Tx0B × Tx0B.

Especially, from (2.175), (2.184), we get

P (r)(Z,Z ′) = (−1)rP (r)(−Z,−Z ′).(2.185)

By (2.101), for Z,Z ′ ∈ Tx0B,

Px0,p(Z,Z
′) = pn−

n0
2 κ−

1
2 (Z)P0,t(Z/t, Z

′/t)κ−
1
2 (Z ′).(2.186)

We note in passing that, as a consequence of (2.181) and (2.186), we obtain the

following estimate.
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Theorem 2.23. For any k,m,m′, m′′ ∈ N, there exists C > 0 such that for Z,Z ′ ∈ Tx0B,

|Z|, |Z ′| ≤ ε, x0 ∈ XG,

(2.187) sup
|α|+|α′|≤m

(1 +
√
p|Z⊥| + √

p|Z ′⊥|)m′′

∣∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
p−n+

n0
2 Px0,p(Z,Z

′) −
k∑

r=0

P (r)(
√
pZ,

√
pZ ′)κ−

1
2 (Z)κ−

1
2 (Z ′)p−r/2

)∣∣∣∣∣
C m′ (XG)

≤ Cp−(k+1−m)/2(1 +
√
p|Z0| + √

p|Z ′0|)2(n+k+m′+2)+m exp(−
√
C ′′ν

√
p|Z − Z ′|).

From (2.84), (2.85), (2.109) and (2.187), we get Theorem 0.2 without knowing the

properties (0.12), (0.13) for P (r).

To prove the uniformity part of Theorem 0.2, we notice that in the proof of Theorem

2.17, we only use the derivatives of the coefficients of L t
2 with order 6 2n+m+m′+r+2.

Thus the constants in Theorems 2.17 and 2.20, (resp. Theorem 2.21) are uniformly

bounded, if with respect to a fixed metric gTX0 , the C 2n+m+m′+r+2 (resp. C 2n+m+m′+k+3) –

norms on X of the data (gTX, hL, ∇L, hE, ∇E, J) are bounded, and gTX is bounded

below.

Moreover, taking derivatives with respect to the parameters we obtain a similar equa-

tion as (2.155), where x0 ∈ XG plays now a role of a parameter. Thus the C
m′

– norm in

(2.187) can also include the parameters if the Cm′
– norms (with respect to the parameter

x0 ∈ XG) of the derivatives of above data with order 6 2n+ k +m+ 3 are bounded.

Thus we can take Ck, l in (0.10) independent of gTX under our condition.

This achieves the proof of Theorem 0.2 except (0.12) and (0.13) which will be proved

in Theorem 3.2 under the condition in Theorem 0.2.
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3. Evaluation of P (r)

In this Section, inspired by the method in [26, §1.4, 1.5], we develop a direct and

effective method to compute P (r). In particular, we get (0.12) and (0.13) under the

condition in Theorem 0.2.

This section is organized as follows. In Section 3.1, we study the spectrum of the

limited operator L 0
2 . In Section 3.2, we get a direct method to evaluate P (r) in (0.12),

especially, we prove (0.12) and (0.13). In Section 3.3, we compute explicitly O1 in (2.103),

and get a general formula for P (2) by using the operators O1, O2. In Section 3.4, we

compute explicitly an interesting example: the line bundle O(2) on (CP 1, 2ωFS). We

verify that Theorem 0.2 coincides with our computation here if 0 is a regular value of

the moment map µ, but it does not hold if 0 is a singular value.

We use the notations in Section 2.6, and we suppose that (3.2) is verified.

3.1. Spectrum of L 0
2 . Recall that THP is the orthogonal complement of TY in (TP, gTP ).

Note that by (2.5) and (2.15), we have the following orthogonal splitting of vector bundles

on P = µ−1(0),

TX = THP ⊕ TY ⊕ JTY, TP = THP ⊕ TY.(3.1)

In the rest of this Section, we suppose that on P

JTHP = THP, J2TY = TY.(3.2)

(2.7) and (3.2) imply that −JJ preserves TY and JTY .

As gTX is J-invariant, we get

JTY = J TY, J THP = THP.(3.3)

Thus (JTY )B|XG
is the orthogonal complement of TXG in TB, and J induces naturally

JG ∈ End(TXG). We will identify (JTY )B|XG
to the normal bundle of XG in B.

For U, V ∈ Tx0B, x0 ∈ XG, we have

ω(UH , V H) = ωG(P TXGU, P TXGV ).(3.4)

From the above discussion, for x0 ∈ XG, we can choose {w0
j}n−n0
j=1 , {e⊥j }n0

j=1 orthonormal

basis of T
(1,0)
x0 XG, (JTY )B,x0 ⊂ TB such that

J|
T

(1,0)
x0

XG
=

√
−1

2π
diag(a1, · · · , an−n0) ∈ End(T (1,0)

x0
XG),

J2|(JTY )B
=

−1

4π2
diag(a⊥,21 , · · · , a⊥,2n0

) ∈ End((JTY )B,x0),

(3.5)

with aj , a
⊥
j > 0, and let {w0,j}n−n0

j=1 , {e⊥j}n0
j=1 be their dual basis, then

e02j−1 = 1√
2
(w0

j + w0
j ) and e02j =

√
−1√
2

(w0
j − w0

j) ,

j = 1, . . . , n− n0 , forms an orthonormal basis of Tx0XG.

From now on, we use the coordinate in Section 2.6 induced by the above basis.

Denote by Z0 = (Z0
1 , · · · , Z0

2n−2n0
), Z⊥ = (Z⊥

1 , · · · , Z⊥
n0

), then Z = (Z0, Z⊥).
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In what follows we will use the complex coordinates z0 = (z0
1 , · · · , z0

n−n0
), thus Z0 =

z0 + z0, and w0
i =

√
2 ∂
∂z0i

, w0
i =

√
2 ∂
∂z0i

, and

e02i−1 = ∂
∂z0i

+ ∂
∂z0i
, e02i =

√
−1( ∂

∂z0i
− ∂

∂z0i
).(3.6)

We will also identify z0 to
∑

i z
0
i
∂
∂z0i

and z0 to
∑

i z
0
i
∂
∂z0i

when we consider z0 and z0 as

vector fields. Remark that

(3.7)
∣∣∣ ∂
∂z0i

∣∣∣
2

=
∣∣∣ ∂
∂z0i

∣∣∣
2

=
1

2
, so that |z0|2 = |z0|2 =

1

2
|Z0|2 .

It is very useful to rewrite L 0
2 by using the creation and annihilation operators. Set

bi = −2 ∂
∂z0i

+
1

2
aiz

0
i , b+i = 2 ∂

∂z0i
+

1

2
aiz

0
i , b = (b1, · · · , bn−n0) ;

b⊥j = − ∂
∂Z⊥

j

+ a⊥j Z
⊥
j , b⊥+

j = ∂
∂Z⊥

j

+ a⊥j Z
⊥
j , b⊥ = (b⊥1 , · · · , b⊥n0

).
(3.8)

Then for any polynomial g(Z0, Z⊥) on Z0 and Z⊥,

[bi, b
+
j ] = bib

+
j − b+j bi = −2aiδi j , [bi, bj] = [b+i , b

+
j ] = 0 ,

[g, bj] = 2 ∂
∂z0j
g, [g, b+j ] = −2 ∂

∂z0j
g ,(3.9)

[b⊥i , b
⊥+
j ] = −2a⊥i δi j, [b⊥j , b

⊥
k ] = [b⊥+

j , b⊥+
k ] = 0,

[g, b⊥j ] = −[g, b⊥+
j ] = ∂

∂Z⊥
j

g .

Set

L =

n−n0∑

j=1

bjb
+
j , L

⊥ =

n0∑

j=1

b⊥j b
⊥+
j , ∇0,· = ∇· +

1

2
RLB
x0

(R, ·).(3.10)

From (1.18) and (3.4), for U, V ∈ Tx0B, we get

RLB
x0

(U, V ) = −2π
√
−1
〈
JP TXGU, P TXGV

〉
.(3.11)

By (2.48), (3.5), (3.8), (3.10) and (3.11), we have

bi = −2∇
0,

∂
∂z0i

, b+i = 2∇
0,

∂
∂z0i

, ∇0,e⊥j
= ∇e⊥j

,

τx0 =
∑

j

aj +
∑

j

a⊥j .
(3.12)

From (2.102), (3.10) and (3.12), we get

L
0
2 = −

2n−2n0∑

j=1

(∇0,e0j
)2 −

n0∑

j=1

(
(∇e⊥j

)2 − |a⊥j Z⊥
j |2
)
− 2ωd,x0 − τx0(3.13)

= L + L
⊥ − 2ωd,x0.

By [38, §8.6], [26, Theorem 1.15], we know

Theorem 3.1. The spectrum of the restriction of L on L2(R2n−2n0) is given by

(3.14) Spec
(
L |L2(R2n−2n0 )

)
=
{

2

n−n0∑

i=1

α0
i ai : α0 = (α0

1, · · · , α0
n−n0

) ∈ N
n−n0

}
,
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and an orthogonal basis of the eigenspace of 2
∑n−n0

i=1 α0
i ai is given by

(3.15) bα
0
(
(z0)β exp

(
−1

4

∑

i

ai|z0
i |2
))

, with β ∈ N
n−n0 .

The spectrum of the restriction of L ⊥ on L2(Rn0) is given by

(3.16) Spec
(
L

⊥|L2(Rn0 )

)
=
{

2

n0∑

i=1

α⊥
i a

⊥
i : α⊥ = (α⊥

1 , · · · , α⊥
n0

) ∈ N
n0

}
,

and the eigenspace of 2
∑n0

i=1 α
⊥
i a

⊥
i is one dimensional and an orthonormal basis is given

by

(3.17)
( n0∏

i=1

√
π

a⊥i
(2a⊥i )α

⊥
i (α⊥

i !)
)−1/2

(b⊥)α
⊥

exp
(
−1

2

∑

i

a⊥i |Z⊥
i |2
)
.

Especially, the orthonormal basis of Ker(L |L2(R2n−2n0 )); Ker(L ⊥|L2(Rn0 )) are

( aβ

2|β|β!

n−n0∏

i=1

ai
2π

) 1
2
(
(z0)β exp

(
− 1

4

n−n0∑

j=1

aj|z0
j |2
)
, β ∈ N

n−n0;

G⊥(Z⊥) =
( n0∏

i=1

a⊥i
π

) 1
4

exp
(
− 1

2

n0∑

i=1

a⊥i |Z⊥
i |2
)
.

(3.18)

Let PL (Z0, Z ′0), PL ⊥(Z⊥, Z ′⊥) (resp. P (Z,Z ′)) be the kernels of the orthogonal

projections PL , PL ⊥ (resp. P ) from L2(R2n−2n0) onto Ker(L ), L2(Rn0) onto Ker(L ⊥)

(resp. L2(R2n−n0) onto Ker(L + L ⊥)).

From (3.18), we get

PL (Z0, Z ′0) =
( n−n0∏

i=1

ai
2π

)
exp

(
− 1

4

n−n0∑

i=1

ai
(
|z0
i |2 + |z′0i |2 − 2z0

i z
′0
i

))
,

PL ⊥(Z⊥, Z ′⊥) =
( n0∏

i=1

√
a⊥i
π

)
exp

(
− 1

2

n0∑

i=1

a⊥i (|Z⊥
i |2 + |Z ′⊥

i |2)
)
,

P (Z,Z ′) =PL (Z0, Z ′0)PL ⊥(Z⊥, Z ′⊥).

(3.19)

Let PN be the orthogonal projection from L2(R2n−n0 , (Λ(T ∗(0,1)X) ⊗ E)x0) onto N =

Ker(L 0
2 ). Let PN(Z,Z ′) be the associated kernel.

Recall that the projection IC⊗EB
from (Λ(T ∗(0,1)X) ⊗ E)B onto C ⊗ EB is defined in

Introduction.

By (2.7), (2.9), (2.48) and (3.5),

−ωd,x0 ≥ ν0 on Λ>0(T ∗(0,1)X),(3.20)

thus

PN(Z,Z ′) = P (Z,Z ′)IC⊗EB
.(3.21)
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If J = J on P , then by (3.19) and (3.21),

PN(Z,Z ′) = exp
(
− π

2

n−n0∑

i=1

(
|z0
i |2 + |z′0i |2 − 2z0

i z
′0
i

))

× 2
n0
2 exp

(
− π

(
|Z⊥|2 + |Z ′⊥|2

))
IC⊗EB

,

(3.22)

PN((0, Z⊥), (0, Z⊥)) = 2
n0
2 exp

(
− 2π|Z⊥|2

)
IC⊗EB

.

3.2. Evaluation of P (r): a proof of (0.12) and (0.13). Recall that δ is the counter-

clockwise oriented circle in C of center 0 and radius ν/4.

By (2.121),

P0,t =
1

2πi

∫

δ

(λ− L
t
2 )−1dλ.(3.23)

Let f(λ, t) be a formal power series with values in End(L2(R2n−n0, (Λ(T ∗(0,1)X) ⊗
E)B,x0))

f(λ, t) =

∞∑

r=0

trfr(λ), fr(λ) ∈ End(L2(R2n−n0, (Λ(T ∗(0,1)X) ⊗ E)B,x0)).(3.24)

By (2.103), consider the equation of formal power series for λ ∈ δ,

(λ− L
0
2 −

∞∑

r=1

trOr)f(λ, t) = IdL2(R2n−n0 ,(Λ(T ∗(0,1)X)⊗E)B,x0
) .(3.25)

Let N⊥ be the orthogonal space of N in L2(R2n−n0, (Λ(T ∗(0,1)X) ⊗ E)B,x0), and PN⊥

be the orthogonal projection from L2(R2n−n0, (Λ(T ∗(0,1)X) ⊗ E)B,x0) onto N⊥.

We decompose f(λ, t) according the splitting L2(R2n−n0 , (Λ(T ∗(0,1)X) ⊗ E)B,x0) =

N ⊕N⊥,

gr(λ) = PNfr(λ), f⊥
r (λ) = PN⊥

fr(λ).(3.26)

Using Theorem 3.1, (3.13), (3.20), (3.26) and identifying the powers of t in (3.25), we

find that

g0(λ) =
1

λ
PN , f⊥

0 (λ) = (λ− L
0
2 )−1PN⊥

,

f⊥
r (λ) = (λ− L

0
2 )−1

r∑

j=1

PN⊥Ojfr−j(λ),

gr(λ) =
1

λ

r∑

j=1

PNOjfr−j(λ).

(3.27)

Recall that P (r) (r ∈ N) is defined in (2.182) and (2.187).

Theorem 3.2. There exist Jr(Z,Z
′) polynomials in Z,Z ′ with the same parity as r,

whose coefficients are polynomials in A, RTB, RCliffB , REB , µE, µCliff (resp. rX, Tr[RT (1,0)X ],

RE; resp. h, RL, RLB ; resp. µ) and their derivatives at x0 up to order r−1 (resp. r−2;
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resp. r; resp. r + 1), and in the inverses of the linear combination of the eigenvalues of

J at x0 , such that

P (r)(Z,Z ′) = Jr(Z,Z
′)P (Z,Z ′).(3.28)

Moreover,

P (0)(Z,Z ′) = PN(Z,Z ′) = P (Z,Z ′)IC⊗EB
.(3.29)

Proof. By (3.23), for M > 0, by combining Theorems 2.13-2.16 and the argument as in

[26, §1.3], we get another proof of the existence of the asymptotic expansion of P0,t(Z,Z
′)

for |Z|, |Z ′| ≤M when t→ 0.

By (2.84), (2.85) and (2.186), this gives another proof of Theorems 0.2, 2.23 for

|Z|, |Z ′| ≤M/
√
p. Moreover, by (2.150), (2.160) and (3.26),

P (r) =
1

2πi

∫

δ

gr(λ)dλ+
1

2πi

∫

δ

f⊥
r (λ)dλ.(3.30)

From (3.27), (3.30), we get (3.29).

Generally, from Theorems 2.11, 3.1, (3.9), (3.27), (3.30) and the residue formula, we

conclude Theorem 3.2. �

Proof of (0.12) and (0.13). As J = J on µ−1(0), the condition (3.2) is verified.

From Theorem 3.2, (3.22), we get (0.12) and (0.13). �

From Theorem 3.1, (3.27), (3.30), and the residue formula, we can get P (r) by using

the operators (L 0
2 )−1, PN , PN⊥

,Ok (k ≤ r).

This gives us a direct method to compute P (r) in view of Theorem 3.1. In particular,

P (1) = − PNO1P
N⊥

(L 0
2 )−1PN⊥ − PN⊥

(L 0
2 )−1PN⊥O1P

N ,(3.31)

and

P (2) =
1

2πi

∫

δ

[
(λ− L

0
2 )−1PN⊥

(O1f1 + O2f0)(λ) +
1

λ
PN(O1f1 + O2f0)(λ)

]
dλ

=
1

2πi

∫

δ

{
(λ− L

0
2 )−1PN⊥

[
O1

(
(λ− L

0
2 )−1PN⊥O1 +

1

λ
PNO1

)
+ O2

]

+
1

λ
PN
[
O1

(
(λ− L

0
2 )−1PN⊥O1 +

1

λ
PNO1

)
+ O2

]}
(λ− L

0
2 )−1dλ

=(L 0
2 )−1PN⊥O1(L

0
2 )−1PN⊥O1P

N − PN⊥

(L 0
2 )−2O1P

NO1P
N

+ (L 0
2 )−1PN⊥O1P

NO1(L
0
2 )−1PN⊥ − (L 0

2 )−1PN⊥O2P
N

+ PNO1(L
0
2 )−1PN⊥O1(L

0
2 )−1PN⊥ − PNO1(L

0
2 )−2PN⊥O1P

N

− PNO1P
NO1(L

0
2 )−2PN⊥ − PNO2(L

0
2 )−1PN⊥

.

(3.32)

In the next Subsection we will prove PNO1P
N = 0, thus the second and seventh terms

in (3.32) are zero.
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3.3. A formula for O1. We will use the notation in Section 1. All tensors in this

Subsection will be evaluated at the base point x0 ∈ XG.

For ψ a tensor on X, we denote by ∇Xψ its covariant derivative induced by ∇TX .

If ψ1 is a G-equivariant tensor, then we can consider it as a tensor on B = U/G with

the covariant derivative ∇Bψ1, we will denote by

(∇B∇Bψ1)(cjej ,c′kek) := cjc
′
k(∇B

ej
∇B
ek
ψ1)x0,

etc.

We denote by {ea} an orthonormal basis of (TX, gTX).

To simplify the notation, we often denote by U the lift UH of U ∈ TB.

Recall that µ̃ ∈ TY is defined by (1.14) and the moment map µ (2.14), and that A is

the second fundamental form of XG defined by (0.10).

Lemma 3.3. The following identities hold,

(∇TY
R µ̃)x0 = −JR⊥,

(∇TY
· ∇TY

· µ̃)(R,R) := (∇TY
eH
j
∇TY
eH
i
µ̃)x0ZjZi(3.33)

= −P TY
(
(∇X

R0J)(R0 + 2R⊥) + (∇X
R⊥J)R⊥)

− JA(R0)R0 − 1

2
T (R0,JR0) + T (R⊥,JR⊥).

Proof. Recall that P TY , P THX are the orthogonal projections from TX onto TY, THX

defined in Section 1.1. Note that on P , by (3.3),

Je⊥,Hi ∈ TY, Je0,Hi = (JGe
0
i )
H ∈ THP.(3.34)

By (1.14) and (2.15), for K ∈ g,

−
〈
JeHi , K

X
〉

= ∇eH
i
µ(K) =

〈
∇TY
eH
i
µ̃, KX

〉
+
〈
µ̃,∇TY

eH
i
KX

〉
.(3.35)

From (1.4), (1.5), (1.6) and (3.35),

∇TY
eH
i
µ̃ = −P TY JeHi − 1

2
ġTYeH

i
µ̃ = −P TY JeHi − T (eHi , µ̃).(3.36)

From (3.36) and the fact that µ̃ = 0 on P , one gets the first equation in (3.33).

Now for W (resp. Y ) a smooth section of TX (resp. TY ), by (1.8),

(3.37)
〈
∇TY
eH
j
P TYW,Y

〉
= eHj 〈W,Y 〉 −

〈
P TYW,∇TY

eH
j
Y
〉

=
〈
∇TX
eH
j
W,Y

〉
+

1

2

〈
T (eHj , P

THXW ), Y
〉
.

By (3.37),

∇TY
eH
j
P TYW = P TY∇TX

eH
j
W +

1

2
T (eHj , P

THXW ).(3.38)
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By (3.36) and (3.38),

(3.39) ∇TY
eH
j
∇TY
eH
i
µ̃ = −P TY (∇X

eH
j
J)eHi − P TY J∇TX

eH
j
eHi

− 1

2
T (eHj , P

THXJeHi ) − 1

2
(∇TY

eH
j
ġTYeH

i
)µ̃− 1

2
ġTYeH

i
(∇TY

eH
j
µ̃).

By (1.3) and (1.7), for U1, U2 sections of TB on B,

∇TX
UH

2
UH

1 = (∇TB
U2
U1)

H − 1

2
T (UH

2 , U
H
1 ).(3.40)

By the definition of our basis {e0i , e⊥j } in Section 2.6,

(∇TB
e0i
e0j )x0 = A(e0i )e

0
j , (∇TB

e0i
e⊥j )x0 = (∇TB

e⊥j
e0i )x0 = A(e0i )e

⊥
j , (∇TB

e⊥j
e⊥i )x0 = 0.(3.41)

Thus by (1.6), (3.2), (3.36), (3.39), (3.40), (3.41) and the facts that A exchanges NG and

TXG on XG, and that µ̃ = 0 on P , we get

(∇TY
· ∇TY

· µ̃)(R,R) = −P TY (∇X
RJ)R− JA(R0)R0 − 1

2
T (R,JR0) + T (R,JR⊥).(3.42)

We use the closeness of ω to complete the proof of (3.33).

From (0.2), for U, V,W ∈ TX,

〈(∇X
U J)V,W 〉 = (∇X

U ω)(V,W ),(3.43)

thus

(3.44) 〈(∇X
U J)V,W 〉 + 〈(∇X

V J)W,U〉 + 〈(∇X
WJ)U, V 〉 = dω(U, V,W ) = 0.

By (1.3), (1.7), (3.44) and (3.34), for Y a smooth section of TY ,

〈J∇TX
Y e0j , e

⊥
i 〉 = −〈∇TX

Y e0j ,Je
⊥
i 〉 = −〈T (e0j ,Je

⊥
i ), Y 〉

and

(3.45) 〈T (e⊥i ,Je
0
j), Y 〉 = −2〈∇TX

Y (Je0j), e
⊥
i 〉 = −2〈(∇X

Y J)e0j , e
⊥
i 〉 + 2〈T (e0j ,Je

⊥
i ), Y 〉

= 2〈(∇X
e0j
J)e⊥i , Y 〉 − 2〈(∇X

e⊥i
J)e0j , Y 〉 + 2〈T (e0j ,Je

⊥
i ), Y 〉.

From (3.42), (3.45), we get the second equation of (3.33). �

Theorem 3.4. The following identity holds,

O1 = − 2

3
(∂jR

LB)x0(R, ei)Zj∇0,ei
− 1

3
(∂iR

LB)x0(R, ei)(3.46)

− 2
〈
A(e0i )e

0
j ,R⊥〉∇0,e0i

∇0,e0j
− π

√
−1
〈
(∇X

RJ)ea, eb
〉
c(ea) c(eb)

+ 4π2
〈
(∇X

R0J)(R0 + 2R⊥) + (∇X
R⊥J)R⊥ − T (R⊥,JR⊥),JR⊥〉

+ 4π2

〈
JA(R0)R0 +

1

2
T (R0,JR0),JR⊥

〉
+ 4π

√
−1
〈
µ̃Cliff + µ̃E,JR⊥〉 .
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Proof. For ψ ∈ (T ∗X ⊗ End(Λ(T ∗(0,1)X)))B ≃ (T ∗X ⊗ (C(TX) ⊗R C))B, where C(TX)

is the Clifford bundle of TX, we denote by ∇Xψ the covariant derivative of ψ induced

by ∇TX .

From [∇Cliff
W , c(ea)] = c(∇TX

W ea), we observe that for W ∈ TB,

∇X
W (ψ(ea)c(ea)) = (∇X

Wψ)(ea)c(ea) + ψ(∇TX
WHea)c(ea) + ψ(ea)c(∇TX

WHea)(3.47)

= (∇X
Wψ)(ea)c(ea).

Thus by (2.48) and (3.47), for k ≥ 2,

(3.48) − (2ωd + τ)(tZ) =
1

2

(
RL(ea, eb) c(ea) c(eb)

)
(tZ)

=
1

2

k∑

r=0

∂r

∂tr

[
(RL(ea, eb) c(ea) c(eb))(tZ)

]
|t=0

tr

r!
+ O(tk+1)

=
1

2

(
RL
x0

+ t(∇X
RR

L)x0

)
(ea, eb) c(ea) c(eb) + O(t2).

By Lemma 3.3 and (2.111), we have

−t2〈µ̃Ep, µ̃Ep〉(tZ) =4π2
3∑

k=2

1

k!

∂k

∂tk

(
|µ̃|2gTY (tZ)

)∣∣∣
t=0

tk−2(3.49)

+ 4π
√
−1t

〈
µ̃Cliff + µ̃E ,JR⊥〉

x0
+ O(t2).

The following two formulas are clear,

1

2

∂2

∂t2
|µ̃|2gTY (tZ)

∣∣∣∣
t=0

=
1

2

(
∇∇|µ̃|2gTY (Z)

)
(R,R)

∣∣∣
Z=0

= |∇TY
R µ̃|2,

1

3!

∂3

∂t3
|µ̃|2gTY (tZ)

∣∣∣∣
t=0

=
1

6

(
∇∇∇|µ̃|2gTY (Z)

)
(R,R,R)

∣∣∣
Z=0

= 〈(∇TY∇TY µ̃)(R,R),∇TY
R µ̃〉.

(3.50)

From Lemma 3.3 and (3.49)-(3.50), we see that the contribution from −t2〈µ̃Ep, µ̃Ep〉(tZ)

is the last three terms of (3.46).

By (2.104), (2.106) and (3.10), we have

∇t,ei
= ∇0,ei

+
t

3
(∂jR

LB)x0Zj(R, ei) −
t

2
(
1

κ
∇ei

κ)(tZ) + O(t2).(3.51)

By gij(Z) = θki (Z)θkj (Z) and (2.95)-(2.97), we know

gij(Z) =δij − 2
〈
A(e0i )e

0
j ,R⊥〉+ O(|Z|2) for 1 ≤ i, j ≤ 2(n− n0),

δij + O(|Z|2) otherwise;

κ(Z) = det(gij(Z))1/2 = 1 − 〈A(e0i )e
0
i ,R⊥〉 + O(|Z|2).

(3.52)

From (3.41), (3.51) and (3.52), the first three terms of the right hand side of (3.46) is

the coefficient t1 of the Taylor expansion of −gij(tZ)(∇t,ei
∇t,ej

−t∇t,∇TB
ei

ej(tZ)).

By (2.110), (3.43) and the above argument, the proof of Theorem 3.4 is complete. �
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Theorem 3.5. We have the relation

PNO1P
N = 0.(3.53)

Proof. By (3.8) and (3.19),

b+i P
N = b⊥+

i PN = 0 , (b⊥i P
N)(Z,Z ′) = 2a⊥i Z

⊥
i P

N(Z,Z ′),

(biP
N)(Z,Z ′) = ai(z

0
i − z′0i )PN(Z,Z ′).

(3.54)

We learn from (3.54) that for any polynomial g(Z⊥) in Z⊥, we can write g(Z⊥)PN(Z,Z ′)

as sums of gβ⊥(b⊥)β
⊥
PN(Z,Z ′) with constants gβ⊥. By Theorem 3.1,

(3.55) PL ⊥(b⊥)α
⊥

g(Z⊥)PN = 0 , for |α⊥| > 0.

Let {wa} be an orthonormal basis of (T (1,0)X, gTX).

Note that if f, g are two C-linear forms, then

f(ea)g(ea) = f(wa)g(wa) + f(wa)g(wa).

Thus by Theorem 3.1, (2.8), (3.21) and (3.54),

PN
〈
(∇X

RJ)ea, eb
〉
c(ea) c(eb)P

N = −2PN
〈
(∇X

RJ)wa, wa
〉
PN(3.56)

= −2
〈
(∇X

z0+z′0J)wa, wa
〉
PN =

√
−1 Tr |TX [J(∇X

z0+z′0J)]PN .

By (3.8), (3.12), (3.21), (3.46), (3.54)-(3.56), we get

(3.57) PNO1P
N = PN

{2

3
(∂RR

LB)x0(R, ∂
∂z0i

)bi −
1

3
(∂e0iR

LB)x0(R, e0i )

+
1

3
(∂RR

LB)x0(R, e⊥j )b⊥j − 1

3
(∂e⊥j R

LB)x0(R0, e⊥j )

+ πTr |TX [J(∇X
R0J)] + 8π2

〈
(∇X

R0J)R⊥,JR⊥〉}PN .

By (3.9), (3.54) and (3.55),

PNZ⊥
j Z

⊥
k P

N =
1

2a⊥k
PNZ⊥

j b
⊥
k P

N =
1

2a⊥k
δjkP

N .(3.58)

For ψ a tensor on XG, let ∇XGψ be the covariant derivative of ψ induced by the

Levi-Civita connection ∇TXG .

For U, V,W ∈ Tx0XG, by (3.2), (3.3) and (3.11), we have

(∂UR
LB)x0(V,W ) = −2π

√
−1
〈
(∇XG

U JG)V,W
〉

= −2π
√
−1
〈
(∇X

U J)V,W
〉
.(3.59)

From (3.2), (3.5), we know that

Je⊥j =
aj
2π
Je⊥j .(3.60)
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By Theorem 3.1, (1.18), (2.7), (3.9), (3.44) and (3.54)-(3.60), we get

(3.61) PNO1P
N = PN

{
− 4π

√
−1

3

[
2
〈
(∇X

R0J) ∂
∂z0

i

, ∂
∂z0i

〉
+
〈
(∇X

∂
∂z0i

J)R0, ∂
∂z0i

〉

−
〈
(∇X

∂
∂z0i

J)R0, ∂
∂z0i

〉]
+ πTr |TX [J(∇X

R0J)] + 2π
〈
(∇X

R0J)e⊥j , Je
⊥
j

〉}
PN

= π
[
−4

√
−1
〈
(∇X

z0+z′0J) ∂
∂z0i
, ∂
∂z0i

〉
+Tr |TX [J(∇X

z0+z′0J)]−2
〈
J(∇X

z0+z′0J)e⊥j , e
⊥
j

〉 ]
PN = 0.

The proof of Theorem 3.5 is complete. �

From (3.32) and Theorem 3.5, we get the following general formula which will be used

in Section 5,

P (2) =(L 0
2 )−1PN⊥O1(L

0
2 )−1PN⊥O1P

N − (L 0
2 )−1PN⊥O2P

N

+ PNO1(L
0
2 )−1PN⊥O1(L

0
2 )−1PN⊥ − PNO2(L

0
2 )−1PN⊥

+ (L 0
2 )−1PN⊥O1P

NO1(L
0
2 )−1PN⊥ − PNO1(L

0
2 )−2PN⊥O1P

N .

(3.62)

3.4. Example (CP 1, 2ωFS). Let ωFS be the Kähler form associated to the Fubini-Study

metric gTCP 1

FS on CP 1. We will use the metric gTCP 1
= 2 gTCP 1

FS on CP 1 in this Subsection.

Let L be the holomorphic line bundle O(2) on CP 1. Recall that O(−1) is the tauto-

logical line bundle of CP 1.

We will use the homogeneous coordinate (z0, z1) ∈ C2 for CP 1 ≃ (C2 \ {0})/C∗.

Denote by Ui = {[z0, z1] ∈ CP 1; zi 6= 0}, (i = 0, 1), the open subsets of CP 1, and the

two coordinate charts are defined by φi : Ui ≃ C, φi([z0, z1]) =
zj

zi
, j 6= i.

For any i0, i1 ∈ N, zi00 z
i1
1 is naturally identified to a holomorphic section of O(−i0−i1)∗

on CP 1. For any k ∈ N, we have

H0(CP 1,O(k)) = C{sk,i0 := zi00 z
i1
1 , i0 + i1 = k, and i0, i1 ∈ N}.(3.63)

On Ui, the trivialization of the line bundle L is defined by L ∋ s → s/z2
i , here z2

i is

considered as a holomorphic section of O(2).

In the following, we will work on C by using φ1 : U1 → C. Then for z ∈ C,

ωFS(z) =

√
−1

2π
∂∂ log((1 + |z|2)−1) =

√
−1

2π

dz ∧ dz
(1 + |z|2)2

.(3.64)

Let hL be the smooth Hermitian metric on L on CP 1 defined by for z ∈ C,

|s2,0|2hL(z) = (1 + |z|2)−2.(3.65)

Let ∇L be the holomorphic Hermitian connection of (L, hL) with its curvature RL.

By (3.64) and (3.65), under our trivialization on C

∇L = ∂ + ∂ + ∂ log(|s2,0|2hL),(3.66)
√
−1

2π
RL =

√
−1

2π
∂∂ log |s2,0|2hL = 2ωFS =: ω.

Let K be the canonical basis of LieS1 = R, i.e. for t ∈ R, exp(tK) = e2π
√
−1t ∈ S1.

We define an S1-action on CP 1 by g · [z0, z1] = [gz0, z1] for g ∈ S1.
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On our local coordinate, g · z = gz, and the vector field KCP 1
on CP 1 induced by K is

KCP 1

(z) := ∂
∂t

exp(−tK) · z|t=0 = −2π
√
−1
(
z ∂
∂z

− z ∂
∂z

)
.(3.67)

Set

µ(K)([z0, z1]) =
2|z0|2

|z0|2 + |z1|2
− 1.

Then, on C,

µ(K) = 2|z|2 (1 + |z|2)−1 − 1.(3.68)

By (3.64), (3.67) and (3.68), we verify easily that µ is a moment map associated to

the S1-action on (CP 1, ω) in the sense of (2.15).

The LieS1-action on the sections of L defined by (2.14) induces a holomorphical S1-

action on L. In particular, from (3.66)-(3.68),

∂
∂t

exp(−tK) · s2,j|t=0 =: LKs2,j = 2π
√
−1(1 − j) s2,j.(3.69)

By (3.69), the S1-invariant sub-space of H0(CP 1, Lp) and µ−1(0) are

H0(CP 1, Lp)S
1

= C s2p,p, µ−1(0) = {z ∈ C, |z| = 1},(3.70)

and S1 acts freely on µ−1(0), thus (CP 1)S1 = {pt}.
Under our trivialization of L, s2p,j ∈ H0(CP 1, Lp) is the function zj , and from (3.65),

‖s2p,j‖2
L2 =

∫

C

|z|2j
(1 + |z|2)2p

2ωFS =

∫ ∞

0

2tj dt

(1 + t)2p+2
=

2 j! (2p− j)!

(2p+ 1)!
.(3.71)

Thus ( (2p+1)!
2 (p!)2

)1/2s2p,p is an orthonormal basis of H0(CP 1, Lp)S
1
.

Let ∂
Lp∗

be the formal adjoint of the Dolbeault operator ∂
Lp

. For p ≥ 1, the spinc

Dirac operator Dp in (2.12) and its kernel are given by

Dp =
√

2
(
∂
Lp

+ ∂
Lp∗)

, KerDp = H0(CP 1, Lp).(3.72)

Finally, by Def. 2.3, for p ≥ 1, we get

PG
p (z, z′) =

(2p+ 1)!

2 (p!)2
s2p,p(z) ⊗ s2p,p(z

′)∗,

PG
p (z, z) =

(2p+ 1)!

2 (p!)2
|s2p,p|2hLp (z) =

(2p+ 1)!

2 (p!)2

|z|2p
(1 + |z|2)2p

.

(3.73)

Note that our trivialization by s2,0 is not unitary, thus we do not see directly the

off-diagonal decay (0.14) from (3.73).

Here we will only verify that (3.73) is compatible with (0.13), (0.15) and (0.16).

Recall that Stirling’s formula [38, (3.A.40)] tells us that as p→ +∞,

p! = (2πp)1/2pp e−p
(

1 + O

(
1

p

))
.(3.74)

By (3.74),

(2p+ 1)!

2 (p!)2
=

√
p√
π e

22p
(
1 +

1

2p

)2p(
1 + O(

1

p
)
)

=

√
p

π
22p
(
1 + O(

1

p
)
)
.(3.75)
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Now, C∗ is an open neighborhood of µ−1(0) and B = C∗/S1 ≃ R+ by mapping z ∈ C∗

to r = |z| ∈ R
+.

By (3.64), the metrics on {|z| = r} = {re2π
√
−1θ; θ ∈ R/Z}, B ≃ R+ induced by

ω = 2ωFS is

8π r2 (1 + r2)−2 dθ ⊗ dθ, gTB =
2

π
(1 + r2)−2 dr ⊗ dr.(3.76)

From (3.76), the fiberwise volume function h2(r) in (0.10) on R+ is

h2(r) =
√

8π r (1 + r2)−1.(3.77)

From (3.73), (3.75) and (3.77), we get for |z| = r,

h2(r)PG
p (z, z) =

√
8π

(2p+ 1)!

2 (p!)2

( r

1 + r2

)2p+1

=
√

2 p
( 2r

1 + r2

)2p+1(
1 + O(

1

p
)
)
.(3.78)

When |z| = 1, from (3.78), we re-find (0.15) and (0.16).

From (3.76),
√

2π ∂
∂r

is an orthonormal basis of (B, gTB) at r = 1, thus the normal

coordinate Z⊥ has the form r − 1 =
√

2π(Z⊥ + O(|Z⊥|2). Thus

(2r (1 + r2)−1)2p+1 = e(2p+1) log(1−π(Z⊥)2+O(|Z⊥|3)) = e−2πp(Z⊥)2 + · · · .(3.79)

This means that (3.78), (3.79) are compatible with (0.13) and (3.22).

If we consider the sub-space H0(CP 1, Lp)−p of H0(CP 1, Lp) with the weight −p of

S1-action, then by (2.14) as in (3.69), and (3.71),
√
p+ 1

2
s2p,0 is an orthonormal basis

of H0(CP 1, Lp)−p.

Thus the smooth kernel P−p
p (z, z′) of the orthogonal projection from C ∞(CP 1, Lp)

onto H0(CP 1, Lp)−p is

P−p
p (z, z′) = (p+

1

2
) s2p,0(z) ⊗ s2p,0(z

′)∗, P−p
p (z, z) = (p+

1

2
)(1 + |z|2)−2p.(3.80)

Note that µ−1(−1) = {0}, i.e. −1 is a singular value of µ.

Let µ1 be the moment map defined by µ1(K) = µ(K) + 1, then H0(CP 1, Lp)−p is the

corresponding S1-invariant holomorphic sections of Lp with respect to the corresponding

S1-action.

Thus 0 is a singular value of µ1 and this explains why we have a factor p in (3.80)

instead of p1/2 in (3.78).

4. Applications

This Section is organized as follows. In Section 4.1, we explain Theorem 4.1, the

version of Theorem 0.2 when we only assume that µ is regular at 0. In Section 4.2, We

explain how to handle the ϑ-weight Bergman kernel. In Section 4.3, we deduce (0.15),

and (0.16) from [17, Theorem 4.18′]. In Section 4.4, we explain Theorem 0.2 implies

Toeplitz operator type properties on XG. In Section 4.5, we extend our results for non-

compact manifolds and for covering spaces. In Section 4.6, we explain the relation on

the G-invariant Bergman kernel on X and the Bergman kernel on XG.

We use the notation in Introduction.
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4.1. Orbifold case. In this Subsection, we only suppose that 0 ∈ g∗ is a regular value

of µ, then G acts only infinitesimal freely on P = µ−1(0), thus XG = P/G is a compact

symplectic orbifold.

Let G0 = {g ∈ G, g · x = x for any x ∈ P}, then G0 is a finite normal sub-group of G

and G/G0 acts effectively on P .

We will use the notation for the orbifold as in [24, §1], [17, §4.2].

Let U be a G-neighborhood of P = µ−1(0) in X such that G acts infinitesimal freely

on U , the closure of U . From the construction in Section 1.2, any G-equivariant vector

bundle F on U induces an orbifold vector bundle FB on the orbifold B = U/G.

The function h in (0.10) is only C ∞ on the regular part of the orbifold B, and we

extend continuously h to U/G from its regular part, which is C ∞ and we denote it by

ĥ, then ĥ is also C ∞ on U .

As we work on P in Section 2.5, we need not to modify this part.

We need to modify Section 2.6 as follows.

Observe first that the construction in Section 1.1 works well if we only assume that G

acts locally freely on X therein.

Denote by ∇THU the connection on THU as in Section 1.1, and on P , let ∇N , ∇THP ,
0∇THU

be the connections on N, THU in Section 2.5 as in (0.9).

For y0 ∈ P , W ∈ THU (resp.THP ), we define R ∋ t → xt = expT
HU

y0 (tW ) ∈ U (resp.

expT
HP

y0
(tW ) ∈ P ) the curve such that xt|t=0 = y0,

dx
dt
|t=0 = W , dx

dt
∈ THU , ∇THU

dx
dt

dx
dt

= 0

(resp. dx
dt

∈ THP , ∇THP
dx
dt

dx
dt

= 0).

By proceeding as in Section 2.6, we identify BTHU(y0, ε) to a subset of U as follow-

ing, for Z ∈ BTHU(y0, ε), Z = Z0 + Z⊥, Z0 ∈ THy0P , Z⊥ ∈ Nx0, we identify Z with

expT
HU

expTH P
x0

(Z0)
(τZ0Z⊥).

Set Gy0 = {g ∈ G, gy0 = y0}, then G · BTHU(y0, ε) = G ×Gy0
BTHU(y0, ε) is a G-

neighborhood of Gy0, and (Gy0 , B
THU(y0, ε)) is a local coordinate of B.

As the construction in Section 2.6 is Gy0-equivariant, we extend the geometric objects

on G×Gy0
BTHU(y0, ε) to G×Gy0

R2n−n0 = X0.

Thus we get the corresponding geometric objects on G×R2n−n0 by using the covering

G × R2n−n0 → G ×Gy0
R2n−n0, especially, L̂X0

p (where we use the ·̂ notation to indicate

the modification) is defined similarly on G× R
2n−n0, and Theorem 2.5 holds for L̂X0

p .

Let π̂G : G × R2n−n0 → R2n−n0 be the natural projection and as in (1.20), we define

Φ̂ = ĥπ̂G, then the operator Φ̂L̂X0
p Φ̂−1 is well-defined on THy0U ≃ R2n−n0.

Let gT
HX0 be the metric on R2n−n0 induced by gTX0, and let dvTHX0

be the Riemannian

volume form on (R2n−n0 , gT
HX0).

Let Py0,p be the orthogonal projection from L2(R2n−n0, (Λ(T ∗(0,1)X)⊗Lp⊗E)y0) onto

Ker(Φ̂L̂X0
p Φ̂−1) on R2n−n0 . Let Py0,p(Z,Z

′) (Z,Z ′ ∈ R2n−n0) be the smooth kernel of

Py0,p with respect to dvTHX0
(Z ′).

Let PG
0,p be the orthogonal projection from Ω0,•(X0, L

p
0 ⊗ E0) on (KerDX0

p )G, and let

PG
0,p(x, x

′) be the smooth kernel of PG
0,p with respect to the volume form dvX0(x

′).
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Let P
X0/G
p (y, y′) (y, y′ ∈ X0/G) be the smooth kernel associated to the operator on

X0/G induced by Φ̂L̂X0
p Φ̂−1 as in (2.72).

Note that our trivialization of the restriction of L on BTHU(y0, ε) as in Section 2.6 is

not Gy0-invariant, except that Gy0 acts trivially on Ly0 .

For x, x′ ∈ X0, with their representatives x̃, x̃′ ∈ R2n−n0 , we have

ĥ(x)ĥ(x′)PG
0,p(x, x

′) = PX0/G
p (π(x), π(x′)) =

1

|G0|
∑

g∈Gy0

(g, 1) · Py0,p(g−1x̃, x̃′).(4.1)

The second equation of (4.1) is from direct computation (cf. [17, (5.19)]).

As we work on G×R2n−n0 , for the operator Φ̂L̂X0
p Φ̂−1, Prop. 2.9 and Sections 2.7-2.9

still holds.

From Theorem 2.23 for Py0,p and (4.1), we get

Theorem 4.1. Under the same notation in Theorems 0.2, 2.23, for α, α′ ∈ N2n−n0,

|α| + |α′| ≤ m, we have

(4.2) (1 +
√
p|Z⊥| + √

p|Z ′⊥|)m′′

∣∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
p−n+

n0
2 (ĥκ

1
2 )(Z)(ĥκ

1
2 )(Z ′)PG

p ◦ Ψ(Z,Z ′)

− 1

|G0|
k∑

r=0

∑

g∈Gy0

(g, 1) · P (r)
y0

(g−1√pZ,√pZ ′)p−
r
2

)∣∣∣
C m′ (P )

≤ Cp−(k+1−m)/2(1 +
√
p|Z0| + √

p|Z ′0|)2(n+k+m′+2)+m exp(−
√
C ′′νp inf

g∈Gy0

|g−1Z − Z ′|)

+ O(p−∞).

If Z = Z ′ = Z0, then for g ∈ Gy0 , gZ
0 = Z0, we use Theorem 2.23 for Z = Z ′ = 0 with

the base point Z0, and for the rest element in Gy0 , we use Theorem 2.23 for Z = Z ′ = Z0

with the base point y0, then we get

(4.3)

∣∣∣∣∣∣
p−n+

n0
2 (ĥ2κ)(Z0)PG

p ◦ Ψ(Z0, Z0) − 1

|G0|

k∑

r=0

∑

g∈Gy0 ,gZ
0=Z0

(g, 1) · P (2r)
Z0 (0, 0)p−r

− 1

|G0|

2k∑

r=0

∑

g∈Gy0 ,gZ
0 6=Z0

(g, 1) · P (r)
y0

(g−1√pZ0,
√
pZ0)p−

r
2

∣∣∣∣∣∣

≤ Cp−(2k+1)/2
(
1 + (1 +

√
p|Z0|)2(n+2k+2) exp(−

√
C ′′′νp|Z0|)

)
.

Note that if g ∈ Gy0 acts as the multiplication by eiθ on Ly0 , then (g, 1)·P (r)
y0 , (g, 1)·P (r)

Z0

in (4.3) have a factor eiθp which depends on p.

Of course, after replacing L by some power of L, we can assume that Gy0 acts as

identity on L for any y0 ∈ P , in this case, (g, 1) · P (r)
y0 , (g, 1) · P (r)

Z0 do not depend on p.

From Theorem 3.2 and (4.3), if the singular set of XG is not empty, analogous to the

usual orbifold case [17, (5.27)], p−n+
n0
2 PG

p (y0, y0), (y0 ∈ P ) does not have a uniform

asymptotic expansion in the form
∑∞

r=0 cr(y0)p
−r.
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4.2. ϑ-weight Bergman kernel on X. In this section, we assume that G acts on

P = µ−1(0) freely.

Let V be a finite dimensional irreducible representation of G, we denote it by ρV :

G→ End(V). Let ϑ be the highest weight of the representation V. Let V∗ be the trivial

bundle on X with G-action ρV
∗

induced by ρV .

Let P V
p be the orthogonal projection from Ω0,•(X,Lp⊗E) on HomG(V,KerDp)⊗V ⊂

KerDp. Let P V
p (x, x′), (x, x′ ∈ X), be the smooth kernel of P V

p with respect to dvX(x′).

We call P V
p (x, x′) the ϑ-weight Bergman kernel of Dp.

We explain now the asymptotic expansion of P V
p (x, x′) as p→ ∞.

We will consider the corresponding objects in Sections 1-3 by replacing E by E ⊗V∗.

Especially, we denote by DV∗

p the corresponding spinc Dirac operator associated to the

bundle Lp ⊗E ⊗ V∗.

Certainly, all results in Sections 1-3 still hold for the bundle E ⊗ V∗.

Let P ϑ
p be the orthogonal projection from C ∞(X,Ep ⊗ V∗) onto (KerDV∗

p )G, and

P ϑ
p (x, x′), (x, x′ ∈ X) the smooth kernel of P ϑ

p with respect to dvX(x′).

As V is an irreducible representation of G, we get

KerDV∗

p = (KerDp) ⊗ V∗, (KerDV∗

p )G = HomG(V,KerDp).(4.4)

Let {vi} be an orthonormal basis of V with respect to a G-invariant metric on V and

{v∗i } the corresponding dual basis.

Let dg be a Haar measure on G. By Schur Lemma,
∫

G

g · (vj ⊗ v∗i )dg =
1

dimC V δij IdV .(4.5)

Thus if W is a finite dimensional representation of G with the highest weight ϑ, then for

any s ∈W , we have

s = (dimC V)
(∫

G

g · (s⊗ v∗i )dg
)
⊗ vi ∈ HomG(V,W ) ⊗ V = W.(4.6)

From (4.6) and the G×G-invariance of the kernel P ϑ
p (x, x′), we get

P V
p (x, x′) = (dimC V)

∑

i

(P ϑ
p (x, x′)v∗i , vi),

P V
p (x, x) = (dimC V) TrV∗ P ϑ

p (x, x) ∈ End(Λ(T ∗(0,1)X) ⊗E)x.

(4.7)

In fact, let {ψj} be an orthonormal basis of Ker(DV∗

p )G, then for any j fixed, in view of

the second equality in (4.4), one sees that

ψ∗
jψj ∈ EndG(V) and TrV [ψ∗

jψj ] = ‖ψj‖2
L2 = 1.(4.8)

Thus by Schur Lemma,

ψ∗
jψj =

1

dimC V IdV(4.9)

and {(dimC V)
1
2ψjvi} is an orthonormal basis of HomG(V,KerDp) ⊗ V ⊂ KerDp.
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Let U be a G-neighborhood of P = µ−1(0) as in Theorem 0.2, P ϑ
p is viewed as a

smooth section of pr∗1(Ep ⊗ V∗)B ⊗ pr∗2(Ep ⊗ V∗)∗B on B × B, or as a G × G-invariant

smooth section of pr∗1(Ep ⊗ V∗) ⊗ pr∗2(Ep ⊗ V∗)∗ on U × U .

Moreover, vi, v
∗
i are smooth (not G-invariant) sections of U × V, U × V∗ on U . Thus

from (4.7), P V
p is not a G×G-invariant section of pr∗1(Ep) ⊗ pr∗2(E

∗
p) on U × U .

Now Theorem 0.2 applies well to the bundle E ⊗ V∗, thus we get the asymptotic

expansion of P ϑ
p (x, x′) as p→ +∞, and the leading term in the expansion of

p−n+
n0
2 (hκ

1
2 )(x)(hκ

1
2 )(x′)P ϑ

p (x, x′) is P (
√
pZ,

√
pZ ′)IC⊗(E⊗V∗)B

.

By (4.7), the leading term of the asymptotic expansion of p−n+
n0
2 (hκ

1
2 )(x)(hκ

1
2 )(x′)P V

p (x, x′)

is

(dimC V)2 P (
√
pZ,

√
pZ ′)IC⊗EB

, P (0, 0) = 2n0/2.(4.10)

Let Θ be the curvature of P → XG as in Section 1.1. Let ρV
∗

∗ denote the differential

of ρV
∗
. By (1.18),

R(E⊗V∗)G = REG + ρV
∗

∗ (Θ).(4.11)

In the same way, we can define I
V
p a section of End(Λ(T ∗(0,1)X) ⊗ E)B on XG by

(0.17) for P V
p . From (0.25) (which will be proved in Section 5), (4.7), (4.10) and (4.11),

we get

Theorem 4.2. Under the condition of Theorem 0.6, the first coefficients of the asymp-

totic expansion of I V
p ∈ End(EG) in (0.20) is

Φ0 = (dimC V)2,(4.12)

Φ1 =
1

8π
(dimC V)2

(
rXG
x0

+ 6∆XG
log h+ 4REG

x0
(w0

j , w
0
j )
)

+
1

2π
(dimC V) TrV∗

[
ρV

∗

∗ (Θ)(w0
j , w

0
j)
]
.

4.3. Averaging the Bergman kernel: a direct proof of (0.15) and (0.16). We use

the same assumption and notation in Theorem 0.2.

Let Pp(x, x
′) be the smooth kernel of the orthogonal projection Pp from Ω0,•(X,Lp ⊗

E) onto KerDp with respect to dvX(x′). Then Pp(x, x
′) is the usual Bergman kernel

associated to Dp.

Let dg be a Haar measure on G. By Schur Lemma,

PG
p (x, x′) =

∫

G

((g, 1) · Pp)(x, x′)dg =

∫

G

(g, 1) · Pp(g−1x, x′)dg.(4.13)

One possible way to get Theorem 0.2 is to apply the full off-diagonal expansion [17,

Theorem 4.18′] to (4.13).

Unfortunately, we do not know how to get the full off-diagonal expansion, especially

the fast decay along NG in (0.14) in this way.

However, it is easy to get (0.15) and (0.16) as direct consequences of [17, Theorem

4.18′] and (4.13).
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As in Section 2.5, we denote by TY the sub-bundle of TX on a neighborhood of

P = µ−1(0) generated by the G-action and by THP the orthogonal complement of TY

in (TP, gTP ).

Take y0 ∈ P . Let {ei}2(n−n0)
i=1 , {fl}n0

l=1 be orthonormal basis of THy0P , Ty0Y . Then

{ei}2(n−n0)
i=1 ∪ {fl, Jy0fl}n0

l=1 is an orthonormal basis of Ty0X. We use this orthonormal

basis to get a local coordinate of X by using the exponential map expXy0 .

We identify BTy0X(0, ε) to BX(y0, ε) by the exponential map Z → expXy0(uZ).

Let ∇Cliff⊗E be the connection on Λ(T ∗(0,1)X) ⊗ E induced by ∇Cliff and ∇E .

For Z ∈ BTy0X(0, ε), we identify LZ , (Λ(T ∗(0,1)X)⊗E)Z , (Ep)Z to Ly0 , (Λ(T ∗(0,1)X)⊗
E)y0, (Ep)y0 by parallel transport with respect to the connections ∇L, ∇Cliff⊗E, ∇Ep

along the curve γZ : [0, 1] ∋ u→ uZ.

Under this identification, for Z,Z ′ ∈ BTy0X(0, ε), one has

Pp(Z,Z
′) ∈ End(Λ(T ∗(0,1)X) ⊗E)y0 .

Let κ1(Z) be the function on BTy0X(0, ε) defined by

dvX(Z) = κ1(Z)dvTx0X
.(4.14)

By [17, Theorem 4.18′] (i.e. Theorem 0.2 forG = {1}), there exist Jr(Z
′) ∈ End(Λ(T ∗(0,1)X)

⊗E)y0 , polynomials in Z ′ with the same parity as r, such that for any k,m′ ∈ N, there

exist C,M > 0 such that for Z ′ ∈ Ty0X, |Z ′| ≤ ε,

(4.15)

∣∣∣∣∣
1

pn
Pp(Z

′, 0) −
k∑

r=0

Jr(
√
pZ ′)κ−1

1 (Z ′)e−
π
2
p|Z′|2p−

r
2

∣∣∣∣∣
C m′ (P )

≤ Cp−(k+1)/2(1 +
√
p|Z ′|)M exp(−

√
C ′′ν

√
p|Z ′|) + O(p−∞),

and

J0(Z) = IC⊗E.(4.16)

For K ∈ g, |K| small, eK maps (Λ(T ∗(0,1)X)⊗E)e−Ky0 , Le−Ky0 to (Λ(T ∗(0,1)X)⊗E)y0 ,

Ly0 , and under our identification, we denote these maps by

fE(K) ∈ End(Λ(T ∗(0,1)X) ⊗ E)y0, fL(K) ∈ End(Ly0) ≃ C.(4.17)

By [1, Prop. 5.1], if we denote by

jg(K) = detg(
1 − e−adK

adK
)(4.18)

for K ∈ g, then in exponential coordinates of G,

d(eK) = jg(K)dK.(4.19)

By [17, Prop. 4.1] (i.e. Theorem 0.1 for G = {1}), (4.13), as G acts freely on P , we

know

PG
p (y0, y0) =

∫

K∈g,|K|≤ε
fE(K)(fL(K))pPp(e

−Ky0, y0)jg(K)dK + O(p−∞).(4.20)
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Let SL be the section of L on BTy0X(0, ε) obtained by parallel transport of a unit

vector of Ly0 with respect to the connection ∇L along the curve γZ . Let ΓL be the

connection form of L with respect to this trivialization.

Recall that for K ∈ g, the corresponding vector field KX on X is defined in Section

1.1. Recall that {Ki} is a basis of g.

By (2.105), for K ∈ g,

(eK · SL)(0) = eK · SL(e−Ky0) = fL(K)SL(0), with fL(0) = 1,

ΓLZ(KX) =
1

2
RL
y0

(Z,KX) + O(|Z|2).
(4.21)

By (2.14), (2.15), (4.21) and µ = 0 on P , we get

(4.22) (LKj
(LKi

SL))(0) = (∇L
KX

j
(∇L

KX
i
SL − 2π

√
−1µ(Ki)S

L))(0)

=
1

2
RL
y0

(KX
j , K

X
i )SL(0) = π

√
−1〈dµ(Ki), K

X
j 〉SL(0) = 0.

By (2.14), (4.21), (4.22) and µ = 0 on P , we get

∂fL

∂Ki

(0)SL(0) = (LKi
SL)(0) = (∇L

KX
i
SL)(0) = 0,

∂2fL

∂Ki∂Kj
(0)SL(0) =

∂2

∂t1∂t2
(et1Ki+t2Kj · SL)(0)|t1=t2=0

= (LKj
(LKi

SL) + LKi
(LKj

SL))(0) = 0.

(4.23)

Thus from (4.23),

(fL(K))p = (1 + O(|K|3))p.(4.24)

Moreover,

fE(K) = Id(Λ(T ∗(0,1)X)⊗E)x0
+ O(|K|), κ1(Z) = 1 + O(|Z|2).(4.25)

Let dvY be the Riemannian volume form on (TY, gTY ). Observe also that if we denote

by iy0 : G→ Gy0 the map defined by iy0(g) = gy0, then

1

h2(y)
dvY (y) = i−1

y0∗dg,(4.26)

this gives us a factor 1
h2(y0)

when we take the integral on g instead on the normal coor-

dinate on X.

By (4.13), (4.15), (4.20), (4.24)-(4.26) and the Taylor expansion for κ1, f
E, fL, as

in [1, Theorems 5.8, 5.9], we know that there exist J ′
r(Z) polynomials in Z with same

parity on r, and J ′
0 = IC⊗E, such that

PG
p (y0, y0) ∼ pn

1

h2(y0)

∫

K∈g,|K|≤ε
e−

π
2
p|K|2

∞∑

r=0

J ′
r(
√
pK)p−r/2dK.(4.27)

Moreover,
∫

K∈g

e−
π
2
p|K|2dK = 2

n0
2 p−

n0
2 .(4.28)
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After taking the integral on g, from (4.27) and (4.28), we get (0.15) and (0.16).

By (4.7), (4.27) and (4.28), we get also the asymptotic expansion for P V
p (y0, y0), y0 ∈ P .

4.4. Toeplitz operators on XG. In this Subsection, we suppose that (X,ω) is a Kähler

manifold, J = J , and L,E are holomorphic vector bundles with holomorphic Hermitian

connections ∇L,∇E . Let G be a compact connected Lie group acting holomorphically

on X,L,E which preserves hL and hE .

We suppose that G acts freely on P = µ−1(0). Then (XG, ωG) is Kähler and LG, EG
are holomorphic on XG.

In this case, there exists a natural isomorphism from (KerDp)
G onto KerDG,p.

At the end of this Subsection, we will explain the corresponding result in the symplectic

case, especially, for p ≫ 1, we construct a natural isomorphism from (KerDp)
G onto

KerDG,p.

In the current situation, the spinc Dirac operator Dp was given by (0.21) and D2
p

preserves the Z-grading of Ω0,•(X,Lp ⊗ E). Similar properties hold for DG,p.

As in Section 2.3, let PG,p be the orthogonal projection from Ω0,•(XG, L
p
G,⊗EG) onto

KerDG,p, and let PG,p(x, x
′) be the corresponding smooth kernel.

By the Kodaira vanishing theorem, for p large enough,

(KerDp)
G = H0(X,Lp ⊗E)G, KerDG,p = H0(XG, L

p
G ⊗ EG).(4.29)

As D2
p, D

2
G,p preserve the Z-gradings of Ω0,•(X,Lp⊗E), Ω0,•(XG, L

p
G⊗EG) respectively,

we only need to take care of their restrictions on C ∞(X,Lp⊗E) and C ∞(XG, L
p
G⊗EG).

In this way,

PG
p (x, x′) ∈ C

∞(X ×X, pr∗1(L
p ⊗ E) ⊗ pr∗2(L

p ⊗ E)∗),

PG,p(x0, x
′
0) ∈ C

∞(XG ×XG, pr∗1(L
p
G ⊗EG) ⊗ pr∗2(L

p
G ⊗ EG)∗).

(4.30)

Recall that the morphism σp : H0(X,Lp ⊗ E)G → H0(XG, L
p
G ⊗ EG) was defined in

(0.27). Set

σGp = σp ◦ PG
p : C

∞(X,Lp ⊗E) → H0(XG, L
p
G ⊗EG).(4.31)

Let σG∗
p be the adjoint of σGp with respect to the natural inner products (cf. (1.19))

on C ∞(X,Lp ⊗ E), C ∞(XG, L
p
G ⊗EG). Set

PXG
p := p−

n0
2 σGp ◦ σG∗

p .(4.32)

Let {sp,i}dp

i=1 be an orthonormal basis of H0(X,Lp ⊗ E)G. For y0 ∈ XG, x, x
′ ∈ X,

one verifies

PG
p (x, x′) =

dp∑

i=1

sp,i(x) ⊗ sp,i(x
′)∗,

σGp (y0, x) = PG
p (y0, x), σG∗

p (x, y0) = PG
p (x, y0),

(4.33)

where by PG
p (y0, x) (resp. PG

p (x, y0)) we mean PG
p (y, x) (resp. PG

p (x, y)) for any y ∈
π−1
G (y0), which is well-defined by the G-invariance of PG

p .
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From (0.27), we know that PXG
p commutes with the operator PG,p and

PXG
p = PG,pPXG

p PG,p.(4.34)

Let PG
p |P be the restriction of the smooth kernel PG

p (x, x′) on P × P . Then

PG
p |P (x, x′) ∈ C

∞(P × P, pr∗1(L
p ⊗ E) ⊗ pr∗2(L

p ⊗ E)∗)

is G×G-invariant. By composing with πG,

(πG ◦ PG
p |P )(x0, x

′
0) ∈ C

∞(XG ×XG, pr∗1(L
p
G ⊗ EG) ⊗ pr∗2(L

p
G ⊗ EG)∗).

We denote by πG ◦ PG
p |P the operator defined by the smooth kernel (πG ◦ PG

p |P )(x0, x
′
0)

and the volume form dvXG
(x′0). Then from (4.33), we verify that

PXG
p (x0, x

′
0) = p−

n0
2 PG

p (x0, x
′
0) = p−

n0
2 πG ◦ PG

p |P (x0, x
′
0).(4.35)

Definition 4.3. A family of operators Tp : H0(XG, L
p
G ⊗ EG) → H0(XG, L

p
G ⊗ EG) is a

Toeplitz operator if there exists a sequence of smooth sections gl ∈ C ∞(XG,End(EG))

with an asymptotic expansion g(·, p) of the form
∑∞

l=0 p
−lgl(x) such that for any k ∈ N∗,

there exists C > 0 such that for any p ∈ N,

‖Tp − PG,p

k∑

l=0

p−lgl(x)PG,p‖0,0 ≤ Cp−(k+1).(4.36)

Here ‖ ‖0,0 is the operator norm with respect to the norm ‖ ‖L2. We call g0(x) the

principal symbol of Tp. If Tp is self-adjoint, then we call Tp is a self-adjoint Toeplitz

operator.

Recall that h is the fiberwise volume function defined by (0.10).

Let dg be a Haar measure on G.

The main result of this Subsection is the following result.

Theorem 4.4. Let f be a smooth section of End(E) on X. Let fG ∈ C
∞(XG, End(EG))

be the G-invariant part of f on P defined by fG(x) =
∫
G
gf(g−1x)dg. Then Tf,p =

p−
n0
2 σGp fσ

G∗
p is a Toeplitz operator with principal symbol 2

n0
2
fG

h2 (x). In particular PXG
p is

a Toeplitz operator with principal symbol 2
n0
2 /h2(x).

Proof. Let f ∗ be the adjoint of f . By writing

f =
f + f ∗

2
+
√
−1

f − f ∗

2
√
−1

,

we may and we will assume from now on that f is self-adjoint.

We need to find a family of sections gl ∈ C ∞(XG,End(EG)) such that for any m ≥ 1,

Tf,p =
m∑

l=0

PG,p gl p
−l PG,p + O(p−m−1).(4.37)

Moreover, we can make these gl’s to be self-adjoint.

Let U be a G-neighborhood of P = µ−1(0) as in Theorem 0.2.

Let ψ be a G-invariant function on X such that ψ = 1 on a neighborhood of P and

supp(ψ) ⊂ {y ∈ X, d(y, P ) < ε0/2} ∩ U .



70 XIAONAN MA AND WEIPING ZHANG

Write

σGp fσ
G∗
p = σGp ψfσ

G∗
p + σGp (1 − ψ)fσG∗

p .(4.38)

For x0, x
′
0 ∈ XG, let x, x′ ∈ P such that π(x) = x0, π(x′) = x′0. By (4.33),

(σGp ((1 − ψ)f)σG∗
p )(x0, x

′
0) =

∫

X

PG
p (x, y)((1 − ψ)f)(y)PG

p (y, x′)dvX(y).(4.39)

From Theorem 0.1, (4.39) and supp((1−ψ)f)∩P = ∅, we know that for any l,m ∈ N,

there exists Cl,m > 0 such that for any p ∈ N, x0, x
′
0 ∈ XG,

|(σGp ((1 − ψ)f)σG∗
p )(x0, x

′
0)|C m(XG×XG) ≤ Cl,mp

−l.(4.40)

We define fB ∈ C ∞(B,End(EB)) by

fB(x0) =

∫

G

g(ψf)(g−1x)dg(4.41)

for x0 ∈ B, x ∈ U such that π(x) = x0. Clearly, if x0 ∈ P , as ψ|P = 1, one gets

fB(x0) = fG(x0).(4.42)

From (4.41), for x0, x
′
0 ∈ B, x, x′ ∈ U such that π(x) = x0, π(x′) = x′0, one gets

(4.43) σGp ψfσ
G∗
p (x0, x

′
0) =

∫

U

PG
p (x, y)(ψf)(y)PG

p (y, x′)dvX(y)

=

∫

B

PG
p (x0, y0)fB(y0)P

G
p (y0, x

′
0)h

2(y0)dvB(y0).

For x0 ∈ XG, we will work on the normal coordinate of XG with center x0 as in

Theorem 0.2.

Recall that PL (Z0, Z ′0) was defined by (3.19) with ai = a⊥i = 2π therein.

By (4.39), (4.40) and (4.43), for |Z0|, |Z ′0| ≤ ε0/2,

Tf,p(Z0, Z ′0) − p−n0/2

∫
|W |≤ε0,

W∈Tx0B

PG
p (Z0,W )(fBh

2)(W )PG
p (W,Z ′0)dvB(W ) = O(p−∞).

(4.44)

By Theorem 0.2, (4.44) and the Taylor expansion of fB, there exist Q0,r ∈ End(EG,x0)

polynomials on Z0, Z ′0 with same parity on r such that the following formula, obtained

through compositions, holds,

(4.45)

∣∣∣∣∣p
−n+n0Tf,p(Z0, Z ′0) −

k∑

r=0

(Q0,rPL )(
√
pZ0,

√
pZ ′0)p−

r
2

∣∣∣∣∣
C m′ (XG)

≤ Cp−(k+1)/2(1 +
√
p|Z0| + √

p|Z ′0|)M exp(−
√
C ′′ν

√
p|Z0 − Z ′0|) + O(p−∞).

On the normal coordinate in XG, under the trivialization induced by the parallel

transport of ∇(Lp⊗E)G along the geodesic, by [17, Theorem 4.18′] (i.e. Theorem 0.2 for

G = 1), we get : there exist Jr(Z
0, Z ′0) ∈ End(EG)x0, polynomials in Z0, Z ′0 with the
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same parity as r, such that for any k,m′ ∈ N, there exist M ∈ N, C > 0 such that for

x0 ∈ XG, Z0, Z ′0 ∈ Tx0XG, |Z0|, |Z ′0| ≤ ε,

(4.46)

∣∣∣∣∣p
−n+n0PG,p(Z

0, Z ′0) −
k∑

r=0

(JrPL )(
√
pZ0,

√
pZ ′0)κ−

1
2 (Z0)κ−

1
2 (Z ′0)p−

r
2

∣∣∣∣∣
C m′ (XG)

≤ Cp−(k+1)/2(1 +
√
p|Z0| + √

p|Z ′0|)M exp(−
√
C ′′ν

√
p|Z0 − Z ′0|) + O(p−∞).

By using the Taylor expansion of κ−1/2, from (4.46), there exist J0,r ∈ End(EG,x0),

polynomials on Z0, Z ′0 with same parity as r, such that
∣∣∣∣∣p

−n+n0PG,p(Z
0, Z ′0) −

k∑

r=0

(J0,rPL )(
√
pZ0,

√
pZ ′0)p−

r
2

∣∣∣∣∣
C m′ (XG)

(4.47)

≤ Cp−(k+1)/2(1 +
√
p|Z0| + √

p|Z ′0|)M exp(−
√
C ′′ν

√
p|Z0 − Z ′0|) + O(p−∞).

Moreover, by (0.13) and (4.42), for Q0,0, J0,0 in (4.45) and (4.47), we have

Q0,0 = 2
n0
2
fG

h2
(x0), J0,0 = IdEG

.(4.48)

In what follows, all operators will be defined by their kernels with respect to dvTx0XG
.

We will add a subscript z0 or z′0 when we need to specify the operator acting on the

variables Z0 or Z ′0.

By Theorem 3.1, we know that

b+j,z0PL = 0, (bjPL )(Z0, Z ′0) = bj,z0PL (Z0, Z ′0) = 2π(z0
j − z′0j )PL (Z0, Z ′0).(4.49)

Thus for F (Z0, Z ′0) a polynomial on Z0, Z ′0, by (3.9), Theorem 3.1, (4.49), we can

replace z0
j in F of (FPL )(Z0, Z ′0) by the combination of bj,z0 and z′0j , thus there exist

polynomials Fα0 (α0 ∈ N
n−n0) on z0, Z ′0 (resp. Fα0,0 on z0, z′0) such that

(FPL )(Z0, Z ′0) =
∑

α0

bα
0

z0 (Fα0PL )(Z0, Z ′0),

((FPL ) ◦ PL )(Z0, Z ′0) =
∑

α0

bα
0

z0Fα0,0(z
0, z′0)PL (Z0, Z ′0).

(4.50)

In fact, by Theorem 3.1, the coefficient of PL (Z0, Z ′0) in the right hand side of the second

equation of (4.50) is anti-holomorphic on z′0. Moreover, by Theorem 3.1, |α0|+deg Fα0 ,

|α0| + degFα0,0 have the same parity with the degree of F on Z0, Z ′0. In particular,

F0,0(z
0, z′0) is a polynomial on z0, z′0 and its degree has the same parity with deg F .

We will denote by

FL := F0, FL ,0 = F0,0.(4.51)

Let (FPL )p be the operator defined by the kernel pn−n0(FPL )(
√
pZ0,

√
pZ ′0).

By Theorem 3.1, (4.47), (4.49), there exist polynomials Hr(F ) on Z0, Z ′0 ∈ Tx0XG,

with the same parity with degF + r, such that we have the following asymptotic at
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center x0,

PG,p(FPL )pPG,p ∼
∞∑

r=0

(Hr(F )PL )pp
−r/2; H0(F ) = F0,0 = FL ,0,(4.52)

with the reminder term estimated in the sense of (4.45) and (4.47).

By Theorem 3.1, (4.47), (4.50) and (4.52), the coefficient of p−k/2 in the expansion

(4.52) of
∑k

r=0 PG,p(Q0,rPL )pp
− r

2PG,p is

((Q0,k)L ,0PL )p +
k∑

r=1

(Hr(Q0,k−r)PL )p.(4.53)

Now, by (4.31),

Tf,p = p−
n0
2 σGp fσ

G∗
p = PG,pTf,pPG,p.(4.54)

Thus by (4.45), (4.53) and (4.54), we get

Q0,k = (Q0,k)L ,0 +

k−1∑

r=0

Hk−r(Q0,r).(4.55)

By (4.47) and (4.48), for f ∈ C ∞(XG,End(EG)), there exist polynomialsGr(f)(Z
0, Z ′0)

with the same parity as r such that in the normal coordinates as above,

PG,pfPG,p ∼
∞∑

r=0

(Gr(f)PL )p p
− r

2 ; with G0(f)(Z
0, Z ′0) = f(x0).(4.56)

By (4.47), (4.56), (PG,p)
2 = PG,p and by proceeding as in (4.55), we get

Gr(f) =

r∑

i=0

Hi(Gr−i(f)) = (Gr(f))L ,0 +

r∑

i=1

Hi(Gr−i(f)).(4.57)

From (4.48), we define

g0(x) = 2
n0
2
fG

h2
(x).(4.58)

Assume that we have found gl ∈ C ∞(XG,End(EG)), (l ≤ k0), self-adjoint sections

such that (4.37) holds for m = k0.

We claim thatQ0,2k0+1 is determined by gl, (l ≤ k0), and there exists gk0+1 ∈ C ∞(XG,End(EG))

self-adjoint such that Q0,2k0+2 is determined by gl (l ≤ k0 + 1).

By (4.37), (4.45) and (4.56), for 0 < k ≤ 2k0,

Q0,k =
∑

2l+j=k

Gj(gl).(4.59)
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Then by (4.55), (4.57) and (4.59), for m = 2k0 + 1,

(4.60) Q0,m = (Q0,m)L ,0 +

m−1∑

r=0

Hm−r

( [r/2]∑

l=0

Gr−2l(gl)
)

= (Q0,m)L ,0 +

[ m−1
2

]∑

l=0

m−1∑

r=2l

Hm−r(Gr−2l(gl))

= (Q0,m)L ,0 +

[ m−1
2

]∑

l=0

(
Gm−2l(gl) − (Gm−2l(gl))L ,0

)
.

Set

Fm = (Q0,m)L ,0 −
[ m−1

2
]∑

l=0

(Gm−2l(gl))L ,0.(4.61)

Then by (4.45), (4.52), Fm is a polynomial on z0, z′0 with the same parity asm. Moreover,

as Tf,p and gl are self-adjoint, we know that

F (i)
m,x0

(z0, z′0) = (F (i)
m,x0

(z′0, z0))∗.(4.62)

Let F (i)
m be the degree i part of the polynomial Fm on z0, z′0.

We need to prove that for m = 2k0 + 1,

F (i)
m = 0 for i > 0.(4.63)

Set

F (i)
m (x0, y0) = F (i)

m,x0
(0, z′0) ∈ End(EG,x0),

F̃ (i)
m (x0, y0) = (F (i)

m (y0, x0))
∗ ∈ End(EG,y0),

(4.64)

with y0 = expXG
x0

(Z ′0), they define smooth sections on a neighborhood of the diagonal of

XG ×XG. Clearly, F̃
(i)
m (x0, y0)’s need not be polynomials of z0 and z′0.

Let ψ : R → [0, 1] be an even function such that ψ(u) = 1 for |u| ≤ ε0/4 and 0 for

|u| > ε0/2.

Let dX0(x0, y0) be the Riemannian distance on XG.

We denote by (ψF
(i)
m PG,p), (PG,pψF̃

(i)
m ) the operators defined by the kernel (ψ(dX0)F

(i)
m PG,p)(x0, y0),

(PG,pψ(dX0)F̃
(i)
m )(x0, y0) with respect to dvXG

(y0). Set

Pp,k0 = Tf,p − PG,p

k0∑

l=0

glp
−lPG,p −

∑

i

(ψF
(i)
2k0+1PG,p) p

(−2k0+i−1)/2.(4.65)

By (4.45), (4.56), (4.59) and (4.60),

(4.66)

∣∣∣∣∣p
−n+n0

(
Tf,p − PG,p

k0∑

l=0

glp
−lPG,p

)
(0, Z ′0) − p−(2k0+1)/2(F2k0+1PL )(0,

√
pZ ′0)

∣∣∣∣∣

≤ Cp−k0−1(1 +
√
p|Z ′0|)M exp(−

√
C ′′ν

√
p|Z ′0|) + O(p−∞).
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Then by (4.53) and (4.66), there exist polynomials Q0,r,k0 on Z0, Z ′0 with the same parity

as r such that for k > 2k0 + 2, the kernel of the operator Pp,k0 has the expansion at the

normal coordinate of x0, as

(4.67)
∣∣∣p−n+n0Pp,k0(0, Z

′0) −
k∑

r=2k0+2

(Q0,r,k0PL )(0,
√
pZ ′0)p−

r
2

∣∣∣

≤ Cp−(k+1)/2(1 +
√
p|Z ′0|)M exp(−

√
C ′′ν

√
p|Z ′0|) + O(p−∞).

We denote by Qp
0,r,k0

the operator defined as in (4.65) by the kernel Qp
0,r,k0

(x0, y0) =

pn−n0ψ(dX0(x0, y0))(Q0,r,k0PL )(0,
√
pZ ′0).

Set

Kp,k(x0, y) = ψ(dX0(x0, y))Pp,k0(x0, y) −
k∑

r=2k0+2

Qp
0,r,k0

p−
r
2 (x0, y).(4.68)

Then by (4.67),

(4.69) |Kp,k(x0, y)|
≤ Cpn−n0−(k+1)/2(1 +

√
pdX0(x0, y))

M exp(−
√
C ′′ν

√
pdX0(x0, y)) + O(p−∞).

Thus for any s ∈ C ∞(XG, L
p
G ⊗ EG),

‖Kp,ks‖2
L2 ≤

∫

x0∈XG

(∫

y0∈XG

|Kp,k(x0, y0)|dvXG
(y0)

)

×
(∫

y0∈XG

|Kp,k(x0, y0)||s|2(y0)dvXG
(y0)

)
dvXG

(x0)

≤ Cp−(k+1)‖s‖2
L2.

(4.70)

In the same way as in (4.70),

‖Qp
0,r,k0

s‖2
L2 ≤ C‖s‖2

L2.(4.71)

Moreover, by Theorem 0.1, (4.65), we get

|((1 − ψ(dX0))Pp,k0)(x0, y0)| = O(p−∞).(4.72)

From (4.69), (4.70), (4.71) and (4.72), we know that there exists C > 0 such that for

any s ∈ C ∞(XG, L
p
G ⊗ EG),

‖Pp,k0s‖L2 ≤ Cp−(k0+1)‖s‖L2.(4.73)

Let P ∗
p,k0

be the adjoint of Pp,k0. By (4.73),

‖P ∗
p,k0s‖L2 ≤ Cp−(k0+1)‖s‖L2.(4.74)

But

P ∗
p,k0

= Tf,p − PG,p

k0∑

l=0

glp
−lPG,p −

∑

i

(PG,pψF̃
(i)
2k0+1)p

(−2k0+i−1)/2.(4.75)
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By (4.47) and the Taylor expansion of F̃
(i)
2k0+1 under our trivialization of EG by using

parallel transport along the path [0, 1] ∋ u→ uZ ′0, we have that in the sense of (4.66),

(4.76) p−n+n0
∑

i

(PG,pF̃
(i)
2k0+1)(0, Z

′0)p(−2k0+i−1)/2

∼
∑

α,i,r

(J0,rPL ) (0,
√
pZ ′0)

∂αF̃
(i)
2k0+1

∂(Z ′0)α
(x0, 0)

(
√
pZ ′0)α

α!
p(−2k0+i−|α|−r−1)/2.

By (4.66), (4.74), (4.75) and (4.76), we know that all coefficients of p(−2k0−1+j)/2 for

j > 0 of the right hand side of (4.76) should be zero. Thus we get for any j > 0,

deg Fm∑

i=j

i−j∑

|α|+r=0

J0,r(0,
√
pZ ′0)

∂αF̃
(i)
2k0+1

∂(Z ′0)α
(x0, 0)

(
√
pZ ′0)α

α!
= 0.(4.77)

From (4.77), we will prove by recurrence that for any j > 0

∂αF̃
(i)
2k0+1

∂(Z ′0)α
(x0, 0) = 0 for i− |α| ≥ j > 0.(4.78)

In fact, for j = degF2k0+1 in (4.77), by (4.48), we get F̃
(degF2k0+1)

2k0+1 (x0, 0) = 0, thus

(4.78) holds for j = degF2k0+1.

Assume that for j > j0 > 0, (4.78) holds. Then for j = j0, the coefficient with r > 0

in (4.77) is zero, thus by (4.48), (4.77) reads as

∑

α

∂αF̃
(j0+|α|)
2k0+1

∂(Z ′0)α
(x0, 0)

(
√
pZ ′0)α

α!
= 0.(4.79)

From (4.79), we get (4.78) for j = j0. The proof of (4.78) is complete.

By (4.74), (4.76) and (4.78), by comparing the coefficient of p−(2k0+1)/2 in (4.66) and

(4.75), we get

F̃
(i)
2k0+1(x0, Z

′0) = F (i)
2k0+1,x0

(0, z′0) + O(|Z ′0|i+1).(4.80)

Thus from (4.64) and (4.80)

F
(i)
2k0+1(Z

′0, x0) = (F (i)
2k0+1,x0

(0, z′0))∗ + O(|Z ′0|i+1).(4.81)

Let jXG
: XG → XG ×XG be the diagonal injection. By (4.64),

∂

∂z′0j
F

(i)
2k0+1 = 0 near jXG

(XG).(4.82)

By (4.64) again and recurrence, for α ∈ Nn−n0, if αj > 0, by taking α′ = (α0, · · · , αj−
1, · · · , αn−n0), one has

∂α

∂z0,α
F

(i)
2k0+1(·, x0)|x0 =

∂

∂z0
j

j∗XG

( ∂α
′

∂z0,α′ F
(i)
2k0+1

)∣∣∣
x0

− ∂α
′

∂z0,α′

∂

∂z′0j
F

(i)
2k0+1(·, ·)

∣∣∣
0,0

= 0.(4.83)

But by (4.81), for |α| ≤ i,

∂α

∂z0,α
F

(i)
2k0+1(·, x0)|x0 =

(( ∂α

∂z′0,α
F (i)

2k0+1,x0

)
(0, z′0)

)∗
.(4.84)
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From (4.83) and (4.84), the α-derivative for |α| ≤ i of F
(i)
m,x0(x0, ·) is zero at x0. Thus

F (i)
m,x0

(0, z′0) = F (i)
m,x0

(z0, 0) = 0.(4.85)

Now, we consider the operator

1√
p
PG,p

(
∇Lp⊗E
ϕ(dX0 (x0,y0))(

∂

∂z0
j

+ ∂

∂z0
j

)x0

(
Tf,p −

k0∑

l=0

PG,pglp
−lPG,p

))
PG,p,(4.86)

then the leading term of its asymptotic expansion as in (4.45) is

( ∂
∂z0j

F2k0+1,x0)(
√
pz0,

√
pz′0)PL (

√
pz0,

√
pz′0)p−(2k0+1)/2.(4.87)

Here by (4.85)), ( ∂
∂z0j

F2k0+1,x0)(z
0, z′0) is an even degree polynomial on z0, z′0, and its

constant term is zero. Now, by proceeding as (4.65)–(4.84) for the operator (4.86), by

(4.62), we get

∂

∂z0
j

F (i)
2k0+1,x0

(z0, z′0) =
∂

∂z′0j
F (i)

2k0+1,x0
(z0, z′0) = 0.(4.88)

By continous this processus, we get (4.63).

This means that Q0,2k0+1 verifies also (4.59).

By the same argument, (4.60) still holds for m = 2k0 + 2. Thus we can define

gk0+1(x0) = F (0)
2k0+2,x0

= F (0)
2k0+2,x0

(0, 0).(4.89)

By proceeding exactly the same proof as before, we get (4.63) for m = 2k0 +2. Thus for

k = 2k0 + 2, (4.59) still holds.

As πG,p, Tf,p, gl (1 ≤ l ≤ k0) are self-adjoint, gk0+1 is also self-adjoint.

By recurrence, we know that there exist gl’s such that (4.37) holds for any m.

The proof of Theorem 4.4 is complete. �

Corollary 4.5. For f1, f2 ∈ C
∞(X), we have

[Tf1,p, Tf2,p] =
2n0

√
−1 p

PG,p

{
fG1
h2
,
fG2
h2

}
PG,p + O(p−2).(4.90)

Here { , } is the Poisson bracket on (XG, 2πωG): for g1, g2 ∈ C ∞(XG), if ξg2 is the

Hamiltonian vector field generated by g2 which is defined by 2πiξg2ωG = dg2, then

{g1, g2} = ξg2(dg1).(4.91)

Proof. By applying [27] or [28, §5.5], (cf. [9] for another approach where they worked

for E = C), from Theorem 4.4, we get immediately (4.90). �

Lemma 4.6. Let

Tp =
∞∑

l=0

PG,pglp
−lPG,p + O(p−∞) : H0(XG, L

p
G ⊗ EG) → H0(XG, L

p
G ⊗EG)

be a Toeplitz operator with principal symbol g0 ∈ C
∞(XG,End(EG)) . Then

i) If g0 is invertible, then T−1
p is a Toeplitz operator with principal symbol g−1 IdEG

.
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ii) If g0 = g IdEG
with g ∈ C ∞(XG), g > 0, and Tp is self-adjoint, then T

1/2
p is a

self-adjoint Toeplitz operator with principal symbol g1/2 IdEG
.

Proof. We only prove ii), the proof of i) is similar and simpler.

As g > 0, there exist C0, C1 > 0 such that C0 < g < C1. Thus for any s ∈ H0(XG, L
p
G⊗

EG),

〈Tps, s〉 = 〈g0s, s〉 + O

(
1

p

)
‖s‖2

L2 ≥
(
C0 + O

(
1

p

))
‖s‖2

L2 .(4.92)

Thus for p large enough, T
1/2
p : H0(XG, L

p
G ⊗ EG) → H0(XG, L

p
G ⊗EG) is well defined.

Let δ1 be the smooth bounded closed contour on {λ ∈ C,Re(λ) > 0} such that

[1
2
C0, 2C1] is in the interior domain got by δ1.

As in the proof of Theorem 4.4, by recurrence, we will find fl ∈ C ∞(XG,End(EG))

such that

Tp = (Tm,p)
2 + O(p−m−1) with Tm,p =

m∑

l=0

PG,pflp
−lPG,p.(4.93)

Then for p large enough,

(4.94) T 1/2
p − Tm,p =

1

2πi

∫

λ∈δ1
λ1/2

[
(λ− Tp)

−1 − (λ− (Tm,p)
2)−1

]
dλ

=
1

2πi

∫

λ∈δ1
λ1/2(λ− Tp)

−1(Tp − (Tm,p)
2)(λ− (Tm,p)

2)−1dλ.

If (4.93) holds, then by (4.94) we know that in the sense of the operator norm,

T 1/2
p − Tm,p = O(p−m−1).(4.95)

To complete the proof of Lemma 4.6, it remains to establish (4.93).

By (4.47), there exist Q0,r ∈ End(EG)x0 such that in the sense of (4.45), (4.47) and

(4.52),

Tp ∼
∞∑

r=0

(Q0,rPL )pp
−r/2.(4.96)

We will prove by recurrence that there exist fl ∈ C ∞(XG,End(EG)) self-adjoint such

that for any k ∈ N,

(4.97)
∣∣∣p−n+n0(Tp − (Tk,p)

2)(
√
pZ0,

√
pZ ′0)

∣∣∣

≤ p−(2k+1)/2(1 +
√
p|Z0| + √

p|Z ′0|)M exp(−
√
C ′′ν

√
p|Z0 − Z ′0|) + O(p−∞).

Set f0 = g1/2 IdEG
. Then (4.93) is verified for m = 0.

Assume that for k ≤ m, we have found fl such that (4.93) holds. If we denote the

expansion of (Tm,p)
2 in the sense of (4.47),

(Tm,p)
2 ∼

∞∑

r=0

(Q̃m
0,rPL )pp

−r/2.(4.98)
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Then by the proof of (4.59) for 2k0 + 1,

Q̃m
0,2m+1 =

∑

2l+r=2m+1

Gr(gl) = Q0,2m+1.(4.99)

Thus by (4.99), (4.97) stills holds when we replace the factor p−(2m+1)/2 by p−m−1 at the

right hand side of (4.97). Thus

Tp − (Tk,p)
2 ∼

∞∑

r=2m+2

((Q0,r − Q̃m
0,r)PL )pp

−r/2.(4.100)

By (4.52), (4.100), we know that

Q0,2m+2 − Q̃m
0,2m+2 = (Q0,2m+2 − Q̃m

0,2m+2)L ,0.(4.101)

This means that Q0,2m+2 − Q̃m
0,2m+2 is a polynomial on z0, z′0 with even degree.

Set

fm+1(x0) = −1

2
g−1/2(Q0,2m+2 − Q̃m

0,2m+2)(0, 0).(4.102)

Then by the proof of (4.59), for 2k0 +2, we know that the polynomial Q0,2m+2 − Q̃m
0,2m+2

equals to the constant −2g1/2fm+1. Thus we prove (4.97) for k = m+ 1.

By the above argument, we have established (4.93), thus Lemma 4.6. �

Since the isomorphism σp : H0(X,Lp ⊗ E)G → H0(XG, L
p
G ⊗ EG) is not an isometry,

we define the associated unitary operator,

Σp = σG∗
p (σGp ◦ σG∗

p )−1/2 : H0(XG, L
p
G ⊗ EG) → H0(X,Lp ⊗ E)G.(4.103)

Theorem 4.7. Let f be a C ∞ section of End(E) on X. Then

TGf,p = Σ∗
pfΣp : H0(XG, L

p
G ⊗EG) → H0(XG, L

p
G ⊗EG)(4.104)

is a Toeplitz operator on XG. Its principal symbol is fG ∈ C ∞(XG,End(EG)).

Proof. By (4.34) and (4.103),

TGf,p = (PXG
p )−

1
2Tf,p(PXG

p )−
1
2 .(4.105)

By Theorem 4.4, (4.32), PXG
p = p−

n0
2 σGp ◦ σG∗

p , Tf,p are Toeplitz operators on XG with

principal symbols 2n0/2/h2(x), 2n0/2 f
G

h2 (x) respectively.

By Lemma 4.6, we know that (PXG
p )−

1
2 is a Toeplitz operator on XG.

By (4.105), TGf,p has the expansion as (4.45). By the proof of Theorem 4.4, we then

know that TGf,p is a Toeplitz operator. �

Remark 4.8. i) Certainly, by combining the argument here and Section 4.1, we can get

the corresponding version when XG is an orbifold.

ii) When E = C, and f = 1, from Theorem 4.4, PXG
p is an elliptic (i.e. its principal

symbol is invertible) Toeplitz operator. This is the analytic core result claimed in [34,

§8].
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iii) When E = C and G is the torus Tn0 , Theorem 4.7 is one of the main results of

Charles [15, Theorem 1.2], and in [15, §5.6], he knew also that PXG
p is an elliptic Toeplitz

operator. Moreover, he established the corresponding version when XG is an orbifold.

If X is only symplectic and J = J , then as the argument in [40, §3e)], J induces

an almost complex structure JG on (TX)B, and JG preserves NG,J = NG ⊕ JGNG and

TXG. Thus one can construct canonically the Hermitian vector bundles N
(1,0)
G,J etc, which

further gives the canonical identification of Hermitian vector bundles

Λ(T ∗(0,1)X)B|XG
= Λ(N

∗(0,1)
G,J )⊗̂Λ(T ∗(0,1)XG).(4.106)

Let q be the canonical orthogonal projection

q : Λ(N
∗(0,1)
G,J )⊗̂Λ(T ∗(0,1)XG) ⊗ LpG ⊗ EG → Λ(T ∗(0,1)XG) ⊗ LpG ⊗ EG(4.107)

which acts as identity on Λ(T ∗(0,1)XG)⊗LpG⊗EG and maps each Λi(N
∗(0,1)
G,J )⊗̂Λ(T ∗(0,1)XG)

⊗LpG ⊗EG, i ≥ 1, to zero.

We define

σp := PG,pqπGi
∗PG

p : (KerDp)
G → KerDG,p.(4.108)

Certainly in the Kähler case, σp coincides with (0.27).

By using Theorems 0.1, 0.2 as in the proof of Theorem 4.4 (cf. [27], [28, §5.5] for more

details on the Toeplitz operators in the symplectic setting), we get

Theorem 4.9. Let f be a smooth section of End(E) on X, then Tf,p = σpfσ
∗
p :

KerDG,p → KerDG,p is a Toeplitz operator with principal symbol 2n0/2 f
G

h2 (x)IC⊗EG
∈

End(Λ(T ∗(0,1)XG) ⊗ EG).

Corollary 4.10. For p large enough, σp in (4.108) is an isomorphism. Thus σp defines

a natural identification for ‘quantization commutes with reduction’ in the (asymptotic)

symplectic case.

Proof. From Theorem 4.9 for f = 1, we get

σpσ
∗
p = 2n0/2PG,ph

−2IC⊗EG
PG,p + O(

1

p
).(4.109)

But from the argument as (4.71) and Theorem 0.2 for G = 1, we get for any s ∈
Ω0,•(XG, L

p
G ⊗EG), we have

‖(IC⊗EG
PG,p − PG,p)s‖L2 ≤ C√

p
‖s‖L2 .(4.110)

Thus for p large enough, σpσ
∗
p is an isomorphism. Thus σp is surjective.

In view of (0.6), σp in (4.108) is an isomorphism. �

Remark 4.11. If we replace the condition J = J by (3.2), then the canonical map σp
in (4.108) is still well defined. From the argument here, we still know that σp is an

isomorphism for p large enough,.
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4.5. Generalization to non-compact manifolds. In this Subsection, let (X,ω) be

a symplectic manifold, and (L,∇L) (resp. (E,∇E)) be Hermitian line (vector) bundle

on X, and the compact connected Lie group G acts on X as in Introduction, especially,

ω =
√
−1
2π
RL. But we only suppose that (X, gTX) is a complete manifold.

If G = 1, these kind results were studied in [26, §3].

By the argument in Section 2.3, if the square of the spinc Dirac operator D2
p has a

spectral gap as in (2.13), then we can localize our problem and get a version of Theorems

0.1, 0.2 from Section 2.6. In particular, if the geometric data on X verify the bounded

geometry, then D2
p verify the spectral gap (2.13).

We explain in more detail now.

We suppose

i) The tensors RE , rX,Tr[RT (1,0)X ] are uniformly bounded with respect on (X, gTX).

ii) There exists c > 0 such that
√
−1RL(·, J ·) ≥ cgTX(·, ·).(4.111)

Remark 4.12. For the operator Dp =
√

2(∂
Lp⊗E

+ ∂
Lp⊗E,∗

) in the holomorphic case,

the above condition i) can be replaced by

i’) The tensors RE , RT (1,0)X , ∂T is uniformly bounded with respect to (X, gTX), here

T is the torsion of (X,ω) as in [26, §3.5].

Then by the argument in [25, p. 656] (cf. [26, §3]), we know that Theorem 2.2 still

holds. Thus Theorem 2.5 still holds.

Let PG
p be the orthogonal projection from L2(X,Ep) onto (KerDp)

G, and PG
p (x, x′)

(x, x ∈ X) be its kernel as in Def. 2.3.

Note that KerDp and (KerDp)
G need not be finite dimensional.

By the proof of Prop. 2.6, we know that for any compact set K ⊂ X, l,m ∈ N, there

exist Cl,m(K) > 0 such that for p ≥ CL/ν,

|F̃ (Lp)(x, x′) − PG
p (x, x′)|C m(K×K) ≤ Cl,m(K)p−l.(4.112)

By the proof of Theorem 0.1, we get

Theorem 4.13. For any compact set K ⊂ X, 0 < ε0 ≤ δ0, l,m ∈ N, there exists

Cl,m > 0 (depend on K, ε) such that for p ≥ 1, x, x′ ∈ K, dX(Gx, x′) ≥ ε0 or x, x′ ∈
(X \X2ε0) ∩K,

|PG
p (x, x′)|C m ≤ Cl,mp

−l.(4.113)

From Section 2.6, we get Theorem 0.2, but now the norm C
m′

(XG) in (0.14) should

be replaced by Cm′
(K) for any compact set K ⊂ XG.

One interesting case of the above discussion is when P = µ−1(0) is compact, by the

same argument as in Theorems 4.4, 4.9, we can prove a version of Section 4.4.

In fact, when X = Cn, G = Tn0 , L is the trivial line bundle with the metric |1|hL(Z) =

e−|z|2, the Toeplitz operator type properties was studied by Charles [15].

Another interesting case is a version of Theorem 0.2 for covering manifolds.
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Let X̃ be a para-compact smooth manifold, such that there is a discrete group Γ acting

freely on X̃ with a compact quotient X = X̃/Γ.

Let πΓ : X̃ −→ X be the projection. Assume that all above geometric data on X can

be lift on X̃. We denote by J̃, gTX̃, ω̃, J̃ , L̃, Ẽ the pull-back of the corresponding objects

in Section 0 by the projection πΓ : X̃ → X, moreover, we assume that the G-action and

the Γ-action on them commute.

By the above arguments (cf. [25, Theorems 4.4 and 4.6]), there exists a spectral gap

for the square of the spinc Dirac operator D̃p on X̃.

By the finite propagation speed of solutions of hyperbolic equations (2.75), we get an

extension of [26, Theorem 3.13] where G = 1.

Theorem 4.14. We fix 0 < ε0 < infx∈X{injectivity radius of x}. For any compact set

K ⊂ X̃ and k, l ∈ N, there exists Ck, l,K > 0 such that for x, x′ ∈ K, p ∈ N,
∣∣∣P̃G

p (x, x′) − PG
p (πΓ(x), πΓ(x′))

∣∣∣
C l(K×K)

6 Ck, l,K p−k−1 , if dX(x, x′) < ε0,

∣∣∣P̃G
p (x, x′)

∣∣∣
C l(K×K)

6 Ck, l,K p−k−1 , if dX(x, x′) > ε0.
(4.114)

Especially, P̃G
p (x, x) has the same asymptotic expansion as PG

p (πΓ(x), πΓ(x)) in Corollary

0.4 on any compact set K ⊂ X̃.

4.6. Relation on the Bergman kernel on XG. From (2.60), if the operator ΦLpΦ−1

has the form D2
G,p + ∆N + 4π|µ|2 − 2πn0 under the splitting (4.106), then we will find

the full asymptotic expansion of the Bergman kernel on XG from PG
p (x, x′).

In this Subsection, we suppose that X is compact and G is a torus Tn0 = Rn0/Zn0 .

Let θ : TP → g be a connection form for the G-principal bundle π : P = µ−1(0) → XG

with curvature Θ. Let THP = Ker θ ⊂ TP .

Set M = P × g∗, q : M → g∗ be the natural projection and

ωM = π∗ωG + d〈q, θ〉 = π∗ωG + 〈q,Θ〉 + 〈dq, θ〉.(4.115)

By the normal crossing formula [21, Prop. 40.1], we know there exists a symplectic

diffeomorphism such that on a neighborhood U of P ,

Ψsym : (X,ω) ≃ (M,ωM),(4.116)

and under this identification, the moment map µ (cf. (2.14)) is defined by −q.

From now on, we use this neighborhood of P and we will choose metrics and connec-

tions.

Let gg be the metric on g induced by the canonical flat metric on R
n0 , and {Ki} be

the canonical unitary basis of Rn0.

Now we choose J an almost -complex structure on TX compatible with ω such that on

THP on U , J is induced by an almost-complex structure on TXG which is compatible

with ωG, and on g ⊕ g∗, for K ∈ g, JK ∈ g∗ is defined by (JK,K ′) = 〈K,K ′〉g for

K ′ ∈ g.

We also suppose Θ is J-invariant.
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Let gTX be a J-invariant metric on TX such that

gTX = π∗gTXG ⊕ gg ⊕ gg
∗

on U.(4.117)

As gg is a constant metric on TY = g, ∇TY is the trivial connection on TY . By (1.7),

on U ,

∇TP
UH

1
= ∇TXG

UH
1

+ ∇TY
UH

1
+ S(UH

1 ).(4.118)

Let ∇Λ(N
∗(0,1)
G,J

) be the trivial connection on the trivial bundle Λ(N
∗(0,1)
G,J ) (cf. (4.106))

on U , and ∇CliffXG be the Clifford connection on Λ(T ∗(0,1)XG).

By (4.118), under the identification (4.106), on U , we have

∇Cliff
eH
i

= ∇CliffXG

eH
i

⊗ Id + Id ⊗∇Λ(N
∗(0,1)
G,J

)

eH
i

+
1

2
〈S(eHi )eHj , Kl〉c(eHj )c(Kl)(4.119)

= ∇CliffXG

eH
i

⊗ Id + Id ⊗∇Λ(N
∗(0,1)
G,J

)

eH
i

+
1

4
〈Θ(ei, ej), Kl〉c(eHj )c(Kl).

However, the last term does not preserve Λ(T ∗(0,1)XG) and Λ(N
∗(0,1)
G,J ).

From (2.60) and (4.119), in general, ΦLpΦ−1 will not preserve Λ(T ∗(0,1)XG) and

Λ(N
∗(0,1)
G,J ) if Θ is not null.

Now, we suppose that Θ = 0 on XG.

In this situation, on B = U/G ⊂ XG × g∗, by (2.60), we have

ΦLpΦ−1 = D2
G,p −

∑

l

(∇Λ(N
∗(0,1)
G,J

)

Kl
)2 + 4π2|q|2 − 2n0π.(4.120)

By Theorem 0.2, Section 3.2 and (3.19), we know that the asymptotic expansion of

the Bergman kernel has the following relation for (x, Z⊥) ∈ NG,x, (x′, Z ′⊥) ∈ NG,x′,

PG
p ((x, Z⊥), (x′, Z ′⊥)) = PG,p(x, x

′)PL (Z⊥, Z ′⊥) + O(p−∞).(4.121)



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 83

5. Computing the coefficient Φ1 and P (2)(0, 0)

In this Section, (X,ω, J) is a compact Kähler manifold, gTX is a G-invariant Rie-

mannian metric on TX which is compatible with J . (E, hE), (L, hL) are holomorphic

Hermitian vector bundles on X, and ∇E,∇L are the holomorphic Hermitian connections

on (E, hE), (L, hL). Moreover, √
−1

2π
RL = ω.

The action of G is holomorphic and G acts freely on P = µ−1(0). Thus (XG, ωG, JG)

is a compact Kähler manifold.

In Sections 5.1-5.5, we suppose that in (0.2), J = J on a G-neighborhood U of P =

µ−1(0).

The main purpose here is to compute the coefficient Φ1 in (0.20) and P (2)(0, 0) in

(0.16).

By (0.19) (cf. also Theorem 2.23),

Φ1(x0) =

∫

Z∈NG,x0

P (2)
x0

(Z,Z)dvNG
(Z).(5.1)

We will first compute explicitly the terms O1 and O2 involved in P (2) in (3.32), (3.62),

and then compute the integration of P (2) along the normal spaces to XG.

Sometimes the computations seem to be long and tedious, involving many subtle

relations between metrics, connections and curvatures near XG, but fortunately the final

result on Φ1 is still of a simple form, as expected.

Throughout the computations below, a key idea is to rewrite all operators by using

the creation and annihilation operators bi, b
+
i , b⊥j , b

⊥+
j , then under the help of (3.9) and

Theorem 3.1, we can do the operations and to obtain the crucial Lemmas 5.9, 5.11.

To get the final simple formula (0.25), we still need to prove a highly non-trivial

identity (5.130).

The formula for P (2)(0, 0) in Theorem 0.7 is quite complicate, it involves h, the volume

function of the orbit and the curvature for the principal bundle P → XG.

This Section is organized as follows. In Section 5.1, we explain various relations of the

curvature of the fibration P → XG and the second fundamental form of P . In Section

5.2, we obtain the explicit formulas for the operators O1, O2. In Section 5.3, we apply

the formulas in Section 5.2 and (5.1) to (3.31), and we get a formula for the coefficient

Φ1. In Section 5.4, we compute finally Φ1, thus prove Theorem 0.6. In Section 5.5, we

compute P (2)(0, 0) in Theorem 0.7. In Section 5.6, we explain how to reduce the general

case to the case J = J which has been worked out in Sections 5.1-5.4.

In the whole Section, if there is no other specific notification, when we meet the

operation | |2, we will first do this operation, then take the sum of the indices.

5.1. The second fundamental form of P . We use the notations in Sections 2.2, 2.3.

Then the normal bundle NG of XG in U/G is (JTY )G.

Let ι : XG → U/G be the natural embedding.

We will apply the notation in Section 1.1 to B = U/G.
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Let ∇TXG , ∇NG be connections on TXG, NG on XG induced by projections of ∇TB|XG
.

Then ∇TXG is the Levi-Civita connection on (TXG, g
TXG).

Let

0∇TB
= ∇TXG ⊕∇NG(5.2)

be the connection on TB on XG induced by ∇TXG, ∇NG with curvature 0RTB.

Set

A = ∇TB|XG
− 0∇TB

.(5.3)

Then A is a 1-form on XG taking values in the skew-adjoint endomorphisms of (TB)|XG

which exchange TXG and NG.

We recall the following properties of RTB: for U, V,W,W2 ∈ TB,
〈
RTB(U, V )W,W2

〉
=
〈
RTB(W,W2)U, V

〉
,

RTB(U, V )W +RTB(V,W )U +RTB(W,U)V = 0.
(5.4)

On XG, let {e0i } be an orthonormal frame of TXG, let {e⊥j } be an orthonormal frame

of NG, then {ei} = {e0i , e⊥j } is an orthonormal frame of TB.

The following result gives detail informations on the torsion T of the fibration, as well

as the second fundamental form A.

Theorem 5.1. On P , the restriction of the tensor 〈JT (·, J ·), ·〉 on (NG)⊗ 3 is symmetric,

and

(A(e0i )e
0
j)
H =

1

2
JT (e0,Hi , Je0,Hj ),(5.5a)

T (e0,Hi , e0,Hj ) = T ((JGe
0
i )
H , (JGe

0
j )
H),(5.5b)

T (e0,Hi , e⊥,Hj ) = 2T ((JGe
0
i )
H , Je⊥,Hj ),(5.5c)

〈
T (e0,Hi , e⊥,Hj ), Je⊥,Hk

〉
=
〈
T (e0,Hi , e⊥,Hk ), Je⊥,Hj

〉
,(5.5d)

∑

k

〈
T (e⊥,Hk , e⊥,Hj ), Je⊥,Hk

〉
= 0.(5.5e)

Proof. Observe first that we have

∇TXJ = 0;(5.6a)

(JGe
0
i )
H = Je0,Hi on P.(5.6b)

Let Z be a smooth section of TY , then JZ ∈ JTY ⊂ THX on P , by (1.7), (3.1) and

(5.6a), on P , we have

(5.7)
〈
J(A(e0i )e

0
j)
H , Z

〉
= −

〈
∇THX
e0,H
i

e0,Hj , JZ
〉

= −
〈
∇TX
e0,H
i

e0,Hj , JZ
〉

=
〈
∇TX
e0,H
i

(Je0,Hj ), Z
〉

=
〈
S(e0,Hi )Je0,Hj , Z

〉
= −1

2

〈
T (e0,Hi , Je0,Hj ), Z

〉
.

Thus we get (5.5a), as A(e0i )e
0
j ∈ NG.
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Note that [Z, eHi ] ∈ TY , by (1.5), (1.7) and (5.6a),

〈
T (eHi , e

H
j ), Z

〉
= 2

〈
∇TX
eH
i
Z, eHj

〉
= 2

〈
∇TX
Z eHi , e

H
j

〉
= 2

〈
∇TX
Z (JeHi ), JeHj

〉
.(5.8)

From (5.6b) and (5.8), we get (5.5b).

From (1.7), (5.8) and Je⊥,Hj , Je⊥,Hk ∈ TY on P , we get

〈
T (e0,Hi , e⊥,Hj ), Z

〉
= 2

〈
S(Z)(Je0,Hi ), Je⊥,Hj

〉
= 2

〈
T (Je0,Hi , Je⊥,Hj ), Z

〉
.(5.9)

Thus we get (5.5c). By (1.6), (5.9), we get

〈
T (e0,Hi , e⊥,Hj ), Je⊥,Hk

〉
= 2

〈
T (Je0,Hi , Je⊥,Hj ), Je⊥,Hk

〉
=
〈
T (e0,Hi , e⊥,Hk ), Je⊥,Hj

〉
.(5.10)

Thus we get (5.5d). By (1.7), (5.6a) and Je⊥,Hj ∈ TY on P ,

(5.11)
〈
T (e⊥,Hi , Je⊥,Hj ), Je⊥,Hk

〉
=
〈
∇TX
Je⊥,H

k

e⊥,Hi , Je⊥,Hj

〉

= −
〈
∇TX
Je⊥,H

k

(Je⊥,Hi ), e⊥,Hj

〉
=
〈
∇TX
Je⊥,H

k

e⊥,Hj , Je⊥,Hi

〉
=
〈
T (e⊥,Hj , Je⊥,Hi ), Je⊥,Hk

〉
.

By (1.6) and (5.11), 〈JT (·, J ·), ·〉 is symmetric on the horizontal lift of N⊗ 3
G .

Note that {Je⊥,Hk } is a G-invariant orthonormal frame of TY on P , by (5.8),

〈
T (e⊥,Hi , e⊥,Hj ), Je⊥,Hk

〉
= 2

〈
∇TY
Je⊥,H

k

(Je⊥,Hi ), Je⊥,Hj

〉
.(5.12)

By (1.9) and (5.12), we get (5.5e). The proof of Theorem 5.1 is complete. �

Remark 5.2. From (1.6) and (5.5b), Θ|XG
is a (1, 1)-form on XG. Especially, for any

complex representation V of G, P×GV is a holomorphic vector bundle onXG. Moreover,

by (5.5a), for U ∈ TXG, V ∈ NG, we have at x0,

A(U)V =
〈
A(U)V, e0j

〉
e0j = −

〈
V,A(U)e0j

〉
e0j =

1

2

〈
T (U, Je0j), JV

〉
e0j .(5.13)

For x0 ∈ XG, if {e⊥j } is a fixed orthonormal basis of NG,x0 as above, then for U ∈ Tx0XG,

we will denote by

Tijk =
〈
JT (e⊥i , Je

⊥
j ), e⊥k

〉
, T̃ijk =

〈
JT (e⊥i , e

⊥
j ), e⊥k

〉
, Tjk(U) =

〈
JT (U, e⊥j ), e⊥k

〉
.(5.14)

By Theorem 5.1, Tijk is symmetric on i, j, k and Tjk ∈ T ∗
x0
XG is symmetric on j, k, T̃ijk

is anti-symmetric on i, j.

Remark 5.3. From Remark 1.2 and (5.12), we know that 〈JT (·, ·), ·〉 is anti-symmetric

on (NG)⊗ 3 if gTY is induced by a family of Ad-invariant metric on g. If G is abelian,

then by (1.12), (5.12), T (·, ·) = 0 on (NG)⊗ 2, thus T̃ijk = 0.
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5.2. Operators O1, O2 in (2.103). We use the notation in Sections 2.6, 3.1, and all

tensors will be evaluated at x0 ∈ XG.

Recall that (X,ω) is Kähler and J = J on a G-neighborhood U of P = µ−1(0), then

in (3.5)

ai = a⊥j = 2π.(5.15)

Clearly, on U , the Levi-Civita connection ∇TX preserves T (1,0)X and T (0,1)X, and

∇T (1,0)X = P T (1,0)X∇TXP T (1,0)X is the holomorphic Hermitian connection on T (1,0)X,

while the Clifford connection ∇Cliff on Λ(T ∗(0,1)X) is ∇Λ(T ∗(0,1)X), the natural connection

induced by ∇T (1,0)X .

Let ∂
Lp⊗E,∗

be the canonical formal adjoint of the Dolbeault operator ∂
Lp⊗E

on

Ω0,•(U,Lp ⊗ E). Then the operator Dp in (2.12) is

Dp =
√

2
(
∂
Lp⊗E

+ ∂
Lp⊗E,∗)

.(5.16)

Note that D2
p preserves the Z-grading of Ω0,•(U,Lp ⊗ E).

Set

D2
p,i = D2

p|Ω0,i(U,Lp⊗E).(5.17)

Since ∇Cliff preserves the Z-grading of Λ(T ∗(0,1)X), the operator L t
2 in (2.101) also

preserves the Z-grading on Λ(T ∗(0,1)X0). Moreover, L t
2 is invertible on ⊕n

q=1Ω
0,q(X0, L

p
0⊗

E0) for t small enough.

From Section 3.2, for P (r) in (0.12),

P (r) = IC⊗EG
P (r)IC⊗EG

.(5.18)

Thus we only need to do the computation for D2
p,0.

In what follows, we compute everything on C ∞(U,Lp ⊗ E).

Take x0 ∈ XG.

If Z ∈ Tx0B, Z = Z0 + Z⊥, Z0 ∈ Tx0XG, Z⊥ ∈ Nx0 , |Z0|, |Z⊥| ≤ ε, in Section 2.6,

we identify Z with expB
exp

XG
x0

(Z0)
τZ0(Z⊥). This identification is a diffeomorphism from

BTXG
x0

(0, ε)×BN
x0

(0, ε) into an open neighborhood U (x0) of x0 in B, we denote it by Ψ.

Then U (x0) ∩XG = BTXG
x0

(0, ε) × {0}.
In what follows, we use indifferently the notation BTXG

x0
(0, ε)×BN

x0
(0, ε) or U (x0), x0

or 0, · · · .
From now on, we replace U/G by R2n−n0 ≃ Tx0B as in Section 2.6, and we use the

notation therein. Especially,

∇t = tS−1
t κ1/2∇(Lp⊗E)Bκ−1/2St,(5.19)

and Or in (2.103) takes value in End(EB).

Let {e0i }, {e⊥j } be orthonormal basis of Tx0XG, NG,x0 respectively. We will also denote

Ψ∗(e
0
i ), Ψ∗(e

⊥
j ) by e0i , e

⊥
j .

Let {ei} denote the basis {e0i , e⊥j }. Thus in our coordinates,

∂
∂Z0

i

= e0i ,
∂

∂Z⊥
j

= e⊥j .(5.20)
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We denote by (gij(Z)) the inverse of the matrix (gij(Z)) = (gTBij (Z)).

Recall Γlij is the connection form of ∇TB, with respect to the frame {ei}, defined in

(2.107). Also recall that R, R0 and R⊥ are defined in (2.77).

As in (1.14), the moment map µ induces a G-invariant C ∞ section µ̃ of TY on U .

Note also that by (2.48), RE
τ ∈ End(E) defines a section of End(EB) on B = U/G.

Set

L
t
3 (Z) = −gij(tZ)

(
∇t,ei

∇t,ej
− tΓkij(tZ)∇t,ek

)
(5.21)

+ t2
(1

h
gij(∇ei

∇ej
h− Γkij∇ek

h)
)
(tZ) − t2RE

τ (tZ) − 2πn.

By (2.60), (2.101) and (5.21), we can reformulate (2.102), (2.110), in using the nota-

tions in (3.10), as follows,

∇0,· = ∇· +
1

2
RLB
x0

(R, ·) = ∇· − π
√
−1
〈
Jx0Z

0, ·
〉
x0
,

L
0
2 =

n−n0∑

j=1

bjb
+
j +

n0∑

j=1

b⊥j b
⊥+
j = −

∑

j

(∇0,ej
)2 + 4π2|Z⊥|2 − 2πn,

L
t
2 (Z) = L

t
3 (Z) + 4π2

∣∣∣
1

t
µ̃
∣∣∣
2

gTY
(tZ) −

〈
4π

√
−1µ̃+ t2µ̃E , µ̃E

〉
gTY (tZ).

(5.22)

If there is no another specification, we will evaluate our tensors at x0, and most of

time, we will omit the subscript x0.

Set h0 = hx0 , and for U ∈ Tx0B, set

B(Z,U) =
1

2

∑

|α|=2

(∂αRLB)x0

Zα

α!
(R, U),

I1 = −B(Z, ei)∇0,ei
− 1

2
∇ei

(B(Z, ei)),

I2 =
(〈1

3
RTXG(R0, e0i )R0 + ∇TXG

R0 (A(e0i )R⊥), e0j

〉
+
〈
e0i ,∇TXG

R0 (A(e0j )R⊥)
〉

− 3
〈
A(e0i )R⊥, A(e0j)R⊥〉+

〈
RTB(R⊥, e0i )R⊥, e0j

〉 )
∇0,e0i

∇0,e0j

+
( 〈
RNG(R0, e0j )R⊥, e⊥i

〉
+

4

3

〈
RTB(R⊥, e0j)R⊥, e⊥i

〉 )
∇0,e⊥i

∇0,e0j

+
1

3

〈
RTB(R⊥, e⊥i )R⊥, e⊥j

〉
∇0,e⊥i

∇0,e⊥j
.

(5.23)

Recall that the operator L has been defined in (3.10).
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Set also

Γii(R) =
2

3
RTXG
x0

(R0, e0i )e
0
i + ∇TB

R0 (A(e0i )e
0
i ) +RTB(R⊥, e0i )e

0
i

+ A(e0i )A(e0i )R⊥ + ∇TXG

e0i
(A(e0i )R⊥) − A(R0)A(e0i )e

0
i ,

K2(R) =
1

3

〈
RTXG(R0, e0i )R0, e0i

〉
+
〈
RTB(R⊥, e0i )R⊥, e0i

〉

+
1

3

〈
RTB(R⊥, e⊥i )R⊥, e⊥i

〉
+ 2
(∑

i

〈
A(e0i )e

0
i ,R⊥〉 )2

− |A(e0i )R⊥|2 + 2
〈
∇TXG

R0 (A(e0i )R⊥), e0i
〉
.

(5.24)

Lemma 5.4. There exist second order differential operators O′
r as in Theorem 2.11 such

that for |t| ≤ 1,

L
t
3 = L

0
3 +

m∑

r=1

trO′
r + O(tm+1),(5.25)

with

L
0
3 =L −

n0∑

j=1

(∇e⊥j
)2 − 2πn0 = L

0
2 − 4π2|Z⊥|2,

(5.26)

O′
1 = − 2

3
(∂jR

LB)x0(R, ei)Zj∇0,ei
− 1

3
(∂iR

LB)x0(R, ei) − 2
〈
A(e0i )e

0
j ,R⊥〉∇0,e0i

∇0,e0j
,

O′
2 =I1 + I2 +

[1
4
K2(R) − 3

8

(∑

l

〈
A(e0l )e

0
l ,R⊥〉 )2

,L 0
2

]

− 2
〈
A(e0i )e

0
j ,R⊥〉 (2

3
(∂kR

LB)x0(R, e0j )Zk∇0,e0i
+

1

3
(∂0
jR

LB)x0(R, e0i )
)

+ 〈Γii(R), ej〉∇0,ej
− 1

2

〈
A(e0l )e

0
l ,R⊥〉∇A(e0

k
)e0

k
+ 2

〈
A(e0i )e

0
j ,R⊥〉∇A(e0i )e0j

+
2

3

〈
RTB(R⊥, e⊥i )e⊥i , ej

〉
∇0,ej

−REB
x0

(R, ei)∇0,ei
−REB

τ,x0

− 1

9

∑

i

[∑

j

(∂jR
LB)x0(R, ei)Zj

]2
+

1

h0
(∇ej

∇ej
h−∇A(e0i )e0i

h)x0 .

Proof. By (2.104) and (5.19),

(5.27) ∇t,ei
= κ1/2(tZ)

(
∇ei

+
(1

2
RLB
x0

+
t

3
(∂kR

LB)x0Zk

+
t2

4

∑

|α|=2

(∂αRLB)x0

Zα

α!
+
t2

2
REB
x0

)
(R, ei) + O(t3)

)
κ−1/2(tZ).

To get (5.26), we could use (2.93)-(2.97), while here we will get it directly from the

local computation.
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By [1, Prop. 1.28] (cf. [26, (1.31)]) and (2.104),

〈
e0i , e

0
j

〉
Z0 = δij +

1

3

〈
RTXG
x0

(R0, e0i )R0, e0j
〉
x0

+ O(|Z0|3),

(∇NG

e0
k

∇NG

e0i
e⊥j )x0 =

1

2
RNG
x0

(e0k, e
0
i )e

⊥
j .

(5.28)

Moreover, for W,V ∈ Nx0, γs(t) = (Z0, t(W + sV )) is a family of geodesics from (Z0, 0).

Set Y = ∂
∂t
γs(t), X(γs(t)) = ∂

∂s
γs(t) = tV .

Since ∇TB
Y Y = 0, ∇TB

Y X −∇TB
X Y = [Y,X] = γ∗[

∂
∂t
, ∂
∂s

] = 0, we get

0 = ∇TB
X ∇TB

Y Y = ∇TB
Y ∇TB

Y X − RTB(Y,X)Y.(5.29)

Take V = e⊥i , we get at s = t = 0,

(∇TB
W ∇TB

W e⊥i )Z0 =
1

3
∇TB
Y ∇TB

Y ∇TB
Y X =

1

3
RTB(W, e⊥i )W.(5.30)

Under our coordinate, we have

(∇TB
e⊥
j
e⊥i )x0 = (∇TXG

e0i
e0j)x0 = (∇NG

e0j
e⊥i )x0 = 0, (∇TB

e0i
e0j )x0 = Ax0(e

0
i )e

0
j ,

(∇TB
e⊥j
e0i )x0 = (∇TB

e0i
e⊥j )x0 = Ax0(e

0
i )e

⊥
j ,

(∇TB
R⊥e

⊥
i )Z = 0,(5.31)

(∇TB
e⊥j
e⊥i )Z0 = (∇NG

R0 e
⊥
i )Z0 = 0.

Moreover, by (5.4), (5.28), (5.30) and (5.31) (comparing with [26, (1.31)]), we have at

x0 that

∇TB
e⊥
k
∇TB
e⊥j
e⊥i =

1

3
RTB(e⊥k , e

⊥
j )e⊥i +

1

3
RTB(e⊥k , e

⊥
i )e⊥j ,

∇TB
e0
k
∇TB
e⊥j
e⊥i = 0,

∇TB
e⊥
k
∇TB
e⊥j
e0i = ∇TB

e⊥
k
∇TB
e0i
e⊥j = RTB(e⊥k , e

0
i )e

⊥
j ,

∇TB
e0
k
∇TB
e⊥j
e0i = ∇TB

e0
k
∇TB
e0i
e⊥j = ∇NG

e0
k

∇NG

e0i
e⊥j + A(e0k)A(e0i )e

⊥
j + ∇TXG

e0
k

(A(e0i )e
⊥
j )

=
1

2
RNG(e0k, e

0
i )e

⊥
j + A(e0k)A(e0i )e

⊥
j + ∇TXG

e0
k

(A(e0i )e
⊥
j ),

∇TB
e⊥j

∇TB
e0
k
e0i = RTB(e⊥j , e

0
k)e

0
i + ∇TB

e0
k
∇TB
e⊥j
e0i ,

∇TB
e0
k
∇TB
e0j
e0i = ∇TXG

e0
k

∇TXG

e0j
e0i + ∇TB

e0
k

(A(e0j )e
0
i )

=
1

3
RTXG(e0k, e

0
j)e

0
i +

1

3
RTXG(e0k, e

0
i )e

0
j + ∇TB

e0
k

(A(e0j )e
0
i ).

(5.32)

In the following, for a tensor ψ and the covariant derivative ∇B acting on ψ induced

by ∇TB, we denote by

(∇B∇Bψ)(cjej ,c′kek) = cjc
′
k(∇B

ej
∇B
ek
ψ)x0 .
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From (5.32), we get at x0 the following formula which will be used in (5.37), (5.38),

(5.55), (5.56) and (5.157),

(∇TB∇TBe0i )(R0,R0) =
1

3
RTXG(R0, e0i )R0 + ∇TB

R0 (A(e0j)e
0
i )Z

0
j ,

(∇TB∇TBe0i )(R0,R⊥) =
1

2
RNG(R0, e0i )R⊥ + A(R0)A(e0i )R⊥ + ∇TXG

R0 (A(e0i )R⊥),

(∇TB∇TBe0i )(R⊥,R⊥) = RTB(R⊥, e0i )R⊥,

(∇TB∇TBe⊥j )(R0,R0) = A(R0)A(R0)e⊥j + ∇TXG

R0 (A(e0k)e
⊥
j )Z0

k ,

(∇TB∇TBe⊥j )(R0,R⊥) = 0,

(∇TB∇TBe⊥j )(R⊥,R⊥) =
1

3
RTB(R⊥, e⊥j )R⊥,

(∇TB∇TBej)(R⊥,R0) = (∇TB∇TBej)(R0,R⊥) +RTB(R⊥,R0)ej.

(5.33)

Note that by (5.31), ∇TB
R (Ax0(e

0
i )e

0
i ) = A(R0)Ax0(e

0
i )e

0
i .

From (5.31), (5.32), we get

(∇TB
e⊥i
e⊥i )Z =

2

3
RTB(R⊥, e⊥i )e⊥i + O(|Z|2),

(∇TB
e0i
e0i )Z = Ax0(e

0
i )e

0
i −∇TB

R (Ax0(e
0
i )e

0
i ) +

2

3
RTXG(R0, e0i )e

0
i + ∇TB

R0 (A(e0i )e
0
i )

+ A(e0i )A(e0i )R⊥ + ∇TXG

e0
i

(A(e0i )R⊥) +RTB(R⊥, e0i )e
0
i + O(|Z|2)

= Ax0(e
0
i )e

0
i + Γii(R) + O(|Z|2),

(5.34)

Thus by (5.31), (5.32) and (5.33), at x0,

∇R0∇R⊥

〈
e⊥j , e

0
i

〉
=
〈
∇TB

R0 e⊥j ,∇TB
R⊥e

0
i

〉
+
〈
e⊥j ,∇TB

R0 ∇TB
R⊥e

0
i

〉
(5.35)

=
1

2

〈
RNG(R0, e0i )R⊥, e⊥j

〉
.

On the other hand, we have the following expansion for 〈ej, ei〉Z ,

(5.36) 〈ei, ej〉Z = 〈ei, ej〉Z0 + (∇R⊥ 〈ei, ej〉)Z0 +
1

2
(∇∇〈ei, ej〉)(R⊥,R⊥),x0

+ O(|Z|3)

= 〈ei, ej〉Z0 + (∇R⊥ 〈ei, ej〉)x0 + (∇R0∇R⊥ 〈ei, ej〉)x0 +
〈
∇TB

R⊥ei,∇TB
R⊥ej

〉
x0

+
1

2

〈
(∇TB∇TBei)(R⊥,R⊥), ej

〉
+

1

2

〈
ei, (∇TB∇TBej)(R⊥,R⊥)

〉
+ O(|Z|3).

Thus by (5.28), (5.31), (5.33) and (5.35)-(5.36),

(5.37)
〈
e0i , e

0
j

〉
Z

= δij − 2
〈
Ax0(e

0
i )e

0
j ,R⊥〉 +

1

3

〈
RTXG(R0, e0i )R0, e0j

〉

+
〈
∇TXG

R0 (A(e0i )R⊥), e0j
〉

+
〈
e0i ,∇TXG

R0 (A(e0j )R⊥)
〉

+
〈
A(e0i )R⊥, A(e0j )R⊥〉+

〈
RTB(R⊥, e0i )R⊥, e0j

〉
+ O(|Z|3),
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and

〈
e0i , e

⊥
j

〉
Z

=
1

2

〈
RNG(R0, e0i )R⊥, e⊥j

〉
+

2

3

〈
RTB(R⊥, e0i )R⊥, e⊥j

〉
+ O(|Z|3),

〈
e⊥i , e

⊥
j

〉
Z

= δij +
1

3

〈
RTB(R⊥, e⊥i )R⊥, e⊥j

〉
+ O(|Z|3).

(5.38)

From (5.24), (5.37) and (5.38), we get

det gij(Z) = 1 − 2
〈
Ax0(e

0
i )e

0
i ,R⊥〉+K2(R) + O(|Z|3),

(5.39)

κ
1
2 (tZ) = (det gij)

1/4(tZ)

= 1 − t

2

〈
A(e0i )e

0
i ,R⊥〉− 3t2

8

(∑

i

〈
A(e0i )e

0
i ,R⊥〉 )2

+
t2

4
K2(R) + O(t3),

κ−
1
2 (tZ) = 1 +

t

2

〈
A(e0i )e

0
i ,R⊥〉+

5t2

8

(∑

i

〈
A(e0i )e

0
i ,R⊥〉 )2

− t2

4
K2(R) + O(t3).

Moreover, as a 2(n− n0) × 2(n− n0)-matrix, we have

(5.40)
(
(δij − 2

〈
Ax0(e

0
i )e

0
j ,R⊥〉)

)−1

=
(
δij + 2

〈
Ax0(e

0
i )e

0
j ,R⊥〉)

+ 4
(〈
Ax0(e

0
i )R⊥, Ax0(e

0
j )R⊥〉 )+ O(|Z|3).

Note that from (3.9), (5.22),

[
〈
A(e0i )e

0
i ,R⊥〉 ,L 0

2 ] = 2
〈
A(e0i )e

0
i , e

⊥
k

〉
∇0,e⊥

k
.(5.41)

Thus from (5.24), (5.27), (5.34), (5.37)-(5.39), the coefficients of t, t2 in the expansion

of gij(tZ)tΓkij(tZ)∇t,ek
= tgij(tZ)∇t,(∇TB

ei
ej)(tZ) are

〈
A(e0i )e

0
i , e

⊥
k

〉
∇0,e⊥

k
;(5.42)

2
〈
A(e0i )e

0
j ,R⊥〉∇A(e0i )e0j

+ 〈Γii(R), ej〉∇0,ej
+

2

3

〈
RTB(R⊥, e⊥i )e⊥i , ej

〉
∇0,ej

−
[1
2

〈
A(e0l )e

0
l ,R⊥〉 ,∇A(e0i )e0i

]
+

1

3
(∂kR

LB)x0Zk(R, A(e0i )e
0
i ).

By (5.21), (5.27) and (5.37)-(5.42), the coefficient of t in the expansion of L t
3 is O′

1 in

(5.26).

We denote by [A,B]+ = AB +BA.
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By (5.21), (5.27), (5.34) and (5.37)-(5.40), the coefficient of t2 in the expansion of

L
t
3 − (gijtΓkij)(tZ)∇t,ek

is

(5.43) I2 − 2
〈
A(e0i )e

0
j ,R⊥〉 [1

3
∇0,e0i

(∂kR
LB)x0(R, e0j )Zk

+
1

3
(∂kR

LB)x0(R, e0i )Zk∇0,e0j
− 1

2
[
〈
A(e0l )e

0
l ,R⊥〉 ,∇0,e0i

∇0,e0j
]
]

+ I1 +
[1
2

〈
A(e0l )e

0
l ,R⊥〉 , [1

3
(∂kR

LB)x0(R, ei)Zk,∇0,ei
]+

]

+
[1
4
K2(R) − 3

8

(∑

l

〈
A(e0l )e

0
l ,R⊥〉 )2

,L 0
2

]

− 1

4
[
〈
A(e0l )e

0
l ,R⊥〉 ,L 0

2 ]
〈
A(e0k)e

0
k,R⊥〉− REB

x0
(R, ei)∇0,ei

− 1

9

∑

i

[∑

j

(∂jR
LB)x0(R, ei)Zj

]2
− RE

τ,x0
+

1

h0
(∇ej

∇ej
h−∇A(e0i )e0i

h)x0 .

Here I2 is from the coefficient of t2 in the expansion of gij, the second term is the product

of the coefficients of t1 in the expansion of gij and ∇t,ei
∇t,ej

; I1 is from the coefficient of

t2 in the expansion of RLB , the fourth term is from the product of the coefficients of t1

in κ1/2, κ−1/2 and in κ−1/2∇t,ei
∇t,ei

κ1/2 (cf. (5.27)), the fifth and sixth terms is from the

coefficients of t2 in the expansion of κ1/2, κ−1/2 and the product of the coefficients of t1

in the expansion of κ1/2 and κ−1/2; the seventh term is from REB , and the eighth term

is from the product of the coefficients of t1 in the expansion of RLB .

Certainly,

1

6

[ 〈
A(e0l )e

0
l ,R⊥〉 , [(∂kRLB)x0(R, ei)Zk,∇0,ei

]+

]
= −1

3
(∂kR

LB)x0(R, A(e0l )e
0
l )Zk.(5.44)

By (5.41), (5.42), (5.44) and by the fact that A(e0i )e
0
j is symmetric on i, j, we see that

the coefficient of t2 in the expansion of L t
3 is O′

2 in (5.26). �

To simplify the notation, we will often denote by ei the lift eHi of ei.
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Lemma 5.5. The following identities hold,

(∂iR
LB)x0(R, el)Zi = −3

√
−1π

〈
JT (R, el) − JT (R0, P TXGel),R⊥〉 ,(5.45a)

√
−1

π
B(Z, e0l ) =

1

6

〈
RTXG(R0, JR0)R0, e0l

〉
− 5

4

〈
JR⊥,∇TY

R (T (ei, e
0
l ))Zi

〉
(5.45b)

+
1

2

〈
2∇TXG

R0 (A(e0l )e
⊥
j )Z⊥

j +RTB(R⊥, e0l )R⊥ +RTB(R⊥,R0)e0l , JR0
〉

− 1

2

〈
3∇TXG

R0 (A(e0i )e
⊥
j )Z0

i Z
⊥
j + 2RTB(R⊥,R0)R⊥ +RTB(R⊥,R0)R0, Je0l

〉

+
1

2

〈
JR⊥, T (R0 − 1

4
R, e0i )

〉〈
JR⊥, T (e0i , Je

0
l )
〉

+
1

8

〈
T (R0,R⊥), T (e0l , JR0)

〉
+

1

8

〈
T (R0, JR0), T (R⊥, e0l )

〉

− 1

8

〈
T (R⊥, JR0), T (R, e0l )

〉
+

1

2

〈
T (R⊥, JR⊥), T (R, e0l )

〉

− 1

8

〈
T (e0l , JR0), e⊥j

〉 〈
JR⊥, T (R⊥, e⊥j )

〉
.

Proof. By (1.6), (1.14), (1.18) and (2.14),

√
−1

2π
RLB(ek, el) =

〈
JeHk , e

H
l

〉
+ µ(Θ)(ek, el)(5.46)

=
〈
JeHk , e

H
l

〉
+ 〈µ̃, T (ek, el)〉 .

Thus by (3.33), (5.5a) and (5.6a), we get at x0 the following formulas which will be

used in (5.61),

µ̃x0 = 0, (∇TY
R µ̃)x0 = −JR⊥, (∇TY

· ∇TY
· µ̃)(R,R) = T (R⊥, JR⊥).(5.47)

By (3.36) and µ = 0 on P , we have at x0,

(∇ei
〈µ̃, T (ek, el)〉)x0 =

〈
∇TY
eH
i
µ̃, T (ek, el)

〉
+
〈
µ̃,∇TY

eH
i

(T (ek, el))
〉

(5.48)

= 〈JT (ek, el), ei〉 .

By (3.40), (5.6a) and (5.31), we have

(5.49) (∇eH
i

〈
JeHk , e

H
l

〉
)x0 =

〈
J∇TX

eH
i
eHk , e

H
l

〉

x0

+
〈
JeHk ,∇TX

eH
i
eHl

〉

x0

= −1

2
〈JT (ei, ek), el〉 −

1

2
〈Jek, T (ei, el)〉

+
〈
JA(P TXGei)P

NGek + JA(P TXGek)P
NGei, P

TXGel
〉

+
〈
JP TXGek, A(P TXGei)P

NGel + A(P TXGel)P
NGei

〉
.
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By (5.5a), (5.46), (5.48) and (5.49), for U ∈ Tx0B,

(5.50)

√
−1

2π
(∂UR

LB)x0(U, el) =
3

2
〈JT (U, el), U〉 − 2

〈
A(P TXGU)PNGU, JP TXGel

〉

+
〈
JP TXGU,A(P TXGU)PNGel + A(P TXGel)P

NGU
〉

=
3

2

〈
JT (U, el) − JT (P TXGU, P TXGel), U

〉
.

Note that (JTY )G = NG on XG, by (5.50), we get (5.45a).

By (5.23) and (5.46), one gets at x0,
√
−1

π
B(Z, el) =

1

2

(
∇∇〈Jek, el〉 + ∇∇〈µ̃, T (ek, el)〉

)

(R,R)
Zk.(5.51)

From (5.6a) we have

(5.52)
(
∇∇

〈
JeHk , e

H
l

〉 )

(R,R)
Zk = 〈JR, (∇TX∇TXeHl )(R,R)〉

+ 〈J(∇TX∇TXeHk )(R,R), e
H
l 〉Zk + 2〈J∇TX

R eHk ,∇TX
R eHl 〉Zk.

From (1.2), (5.31), one finds at x0 that

JR⊥ ∈ TY, JR0 ∈ TXG,

∇TB
R e0i = A(e0i )R, ∇TB

R e⊥i = A(R0)e⊥i ,(5.53)

(∇THX
eH
j

eHi )ZiZj = (∇TB
ej
ei)

HZiZj = 2A(R0)R⊥ + A(R0)R0.

Now by (3.40),

(∇TX
eH
j
∇TX
eH
i
eHk )x0 = ∇THX

eH
j

∇THX
eH
i

eHk − 1

2
T (eHj ,∇THX

eH
i

eHk ) − 1

2
∇TX
eH
j

(T (eHi , e
H
k )).(5.54)

By (5.33), we get

(∇TB∇TBek)(R,R)Zk = ∇TB
R0 (A(e0j)e

0
i )Z

0
jZ

0
i + 3A(R0)A(R0)R⊥(5.55)

+ 3∇TXG

R0 (A(e0i )R⊥)Z0
i + 2RTB(R⊥,R0)R⊥ +RTB(R⊥,R0)R0.

From (5.33), (5.53), (5.54), (5.55), the anti-symmetric property of the torsion tensor

T and the fact that A exchanges TXG and NG, we get

〈JR, (∇TX∇TXe0,Hl )(R,R)〉 =

〈
1

3
RTXG(R0, e0l )R0 + ∇TB

R0 (A(e0j )e
0
l )Z

0
j , JR0

〉
(5.56)

+
〈
2∇TXG

R0 (A(e0l )e
⊥
j )Z⊥

j +RTB(R⊥, e0l )R⊥ +RTB(R⊥,R0)e0l , JR0
〉

− 1

2

〈
JR⊥, T (R, A(e0l )R)

〉
− 1

2

〈
JR,∇TX

R (T (ei, e
0
l ))Zi

〉
,

〈J(∇TX∇TXeHk )(R,R), e
0,H
l 〉Zk =

〈
2JRTB(R⊥,R0)R⊥ + JRTB(R⊥,R0)R0, e0l

〉

+
〈
J∇TB

R0 (A(e0j )e
0
i )Z

0
jZ

0
i + 3J∇TXG

R0 (A(e0i )e
⊥
j )Z0

i Z
⊥
j , e

0
l

〉
.
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Note that from (1.8), (5.3), (5.5a), (5.53) and A exchanges TXG and NG,
〈
JR,∇TX

R (T (ei, e
0
l ))Zi

〉
=
〈
JR⊥,∇TY

R (T (ei, e
0
l ))Zi

〉
(5.57)

+
1

2

〈
T (R, JR0), T (R, e0l )

〉
,

〈
J∇TB

R0 (A(e0j)e
0
i )Z

0
jZ

0
i , e

0
l

〉
= −

〈
A(R0)A(R0)R0, Je0l

〉

= −1

4

〈
T (R0, JR0), T (R0, e0l )

〉
,

〈
∇TB

R0 (A(e0j )e
0
l ), JR0

〉
= −

〈
A(e0j)e

0
l , A(R0)JR0

〉
= 0.

By (3.40), (5.6a), (5.13), (5.53) and the fact that A exchanges TXG and NG, at x0,
〈
J∇TX

R eHk ,∇TX
R e0,Hl

〉
Zk =

〈
J∇TB

R ek, A(e0l )R− 1

2
T (R, e0l )

〉
Zk(5.58)

=
〈
JA(R0)R0,−1

2
T (R, e0l )

〉
+ 2

〈
JA(R0)R⊥, A(e0l )R⊥〉

=
1

4

〈
T (R0, JR0), T (R, e0l )

〉
+

1

2

〈
JR⊥, T (R0, e0j)

〉 〈
JR⊥, T (e0l , Je

0
j)
〉
.

By (5.52), (5.56)-(5.58), at x0,

(5.59)
(
∇∇

〈
JeHk , e

0,H
l

〉)
(R,R)

Zk =
1

3

〈
RTXG(R0, e0l )R0, JR0

〉

+
〈
2∇TXG

R0 (A(e0l )e
⊥
j )Z⊥

j +RTB(R⊥, e0l )R⊥ +RTB(R⊥,R0)e0l , JR0
〉

−
〈
2RTB(R⊥,R0)R⊥ +RTB(R⊥,R0)R0 + 3∇TXG

R0 (A(e0i )e
⊥
j )Z0

i Z
⊥
j , Je

0
l

〉

− 1

2

〈
JR⊥, T (R, A(e0l )R) + ∇TY

R (T (ei, e
0
l ))Zi

〉
+

1

4

〈
T (R0, JR0), T (R⊥, e0l )

〉

− 1

4

〈
T (R⊥, JR0), T (R, e0l )

〉
+
〈
JR⊥, T (R0, e0j)

〉 〈
JR⊥, T (e0l , Je

0
j)
〉
.

Observe that A(e0i )R0 ∈ NG, A(e0i )R⊥ ∈ TXG. By (5.5a), (5.5b), (5.5d) and (5.13),

(5.60)
〈
JR⊥, T (R, A(e0l )R)

〉
= 〈JR⊥, T (R, A(e0l )R0)〉 + 〈JR⊥, T (R, A(e0l )R⊥)〉

=
1

2

〈
JT (e0l , JR0), e⊥j

〉 〈
JR⊥, T (R, e⊥j )

〉
+
〈
JR⊥, T (R, A(e0l )R⊥)

〉

= −1

2

〈
T (e0l , JR0), T (R0,R⊥)

〉
+

1

2

〈
JR⊥, T (R, e0j)

〉 〈
JR⊥, T (e0l , Je

0
j )
〉

+
1

2

〈
JT (e0l , JR0), e⊥j

〉 〈
JR⊥, T (R⊥, e⊥j )

〉
.

From (5.47), at x0,

(5.61) (∇∇〈µ̃, T (ek, el)〉)(R,R)

=
〈
(∇TY

· ∇TY
· µ̃)(R,R), T (ek, el)

〉
+ 2

〈
∇TY

R µ̃,∇TY
R (T (ek, el))

〉

=
〈
T (R⊥, JR⊥), T (ek, el)

〉
− 2

〈
∇TY

R (T (ek, el)), JR⊥〉 .

Finally, by (5.4), (5.51), (5.59), (5.60) and (5.61), we get (5.45b). �
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We now examine the coefficients in the expansion of terms involving the moment map

µ̃.

Set

(5.62) O′′
2 = −1

3

〈
(∇TY

· ġTY· )(R,R)JR⊥, JR⊥〉+
1

6

〈
∇TY

R (T (ej, Jx0e
0
i )), JR⊥〉ZjZ0

i

+
1

3

〈
∇NG

R0 (A(e0j )e
0
i )Z

0
jZ

0
i +RTB(R⊥,R0)R0,R⊥〉

− 1

12

∑

l

〈
T (R, el), JR⊥〉2 +

1

4

〈
JR⊥, T (R⊥, e0l )

〉 〈
JR⊥, T (R0, e0l )

〉

+
7

12
|T (R⊥, JR⊥)|2 +

1

3

〈
T (R0, JR⊥), T (R⊥, JR⊥)

〉
.

Lemma 5.6. For |t| ≤ 1, we have

|1
t
µ̃|2gTY (tZ) = |Z⊥|2 − t

〈
T (R⊥, JR⊥), JR⊥〉+ t2O′′

2 + O(t3),(5.63)
〈
µ̃, µ̃E

〉
gTY (tZ) = −t

〈
JR⊥, µ̃Ex0

〉

+ t2
(1

2

〈
T (R⊥, JR⊥), µ̃Ex0

〉
−
〈
JR⊥,∇TY

R µ̃E
〉
x0

)
+ O(t3).

Proof. By (3.36), (3.38), (3.39), (5.6a), (5.53), J = J and µ̃ = 0 on P , we get, at x0,

(5.64) (∇TY
eH
k
∇TY
eH
j
∇TY
eH
i
µ̃)x0 = −P TY J∇TX

eH
k
∇TX
eH
j
eHi − 1

2
T (eHk , P

THXJ∇TX
eH
j
eHi )

− 1

2
∇TY
eH
k

(T (eHj , P
THXJeHi )) − 1

2
(∇TY

eH
j
ġTYeH

i
)(∇TY

eH
k
µ̃)

− 1

2
(∇TY

eH
k
ġTYeH

i
)(∇TY

eH
j
µ̃) − 1

2
ġTYeH

i
(∇TY

eH
k
∇TY
eH
j
µ̃).

From (3.40), (5.47), (5.53), (5.54), (5.55) and (5.64), we have

(5.65) (∇TY
· ∇TY

· ∇TY
· µ̃)(R,R,R) := (∇TY

eH
k
∇TY
eH
j
∇TY
eH
i
µ̃)x0ZkZjZi

= −J∇NG

R0 (A(e0j)e
0
i )Z

0
jZ

0
i − 3JA(R0)A(R0)R⊥ − 2P TY JRTB(R⊥,R0)R⊥

− P TY JRTB(R⊥,R0)R0 − T (R, JA(R0)R⊥)

− 1

2
∇TY

R (T (eHj , P
THXJeHi ))ZjZi + (∇TY

· ġTY· )(R,R)JR⊥ − 1

2
ġTYR (T (R⊥, JR⊥)).

Now by (3.50), (5.47), (5.65), and µ̃ = 0 on P , we have

(5.66) |1
t
µ̃|2gTY (tZ) =

4∑

k=2

1

k!

∂k

∂tk

(
|µ̃|2gTY (tZ)

)
|t=0 t

k−2 + O(t3)

= |∇TY
R µ̃|2x0

+ t
〈
(∇TY

· ∇TY
· µ̃)(R,R),∇TY

R µ̃
〉
x0

+
t2

4!

(
8
〈
(∇TY

· ∇TY
· ∇TY

· µ̃)(R,R,R),∇TY
R µ̃

〉
x0

+ 6|(∇TY
· ∇TY

· µ̃)(R,R)|2x0

)
+ O(t3).
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By (5.5c),

T (R0, JR⊥) =
1

2
T (R⊥, JR0).(5.67)

From (1.6), (5.13), (5.47), (5.65), (5.66) and (5.67), we get the coefficients of t0, t1 in

the expansion of |1
t
µ̃|2gTY (tZ) in (5.63), and the coefficients of t2 is

(5.68)
1

3

〈
J∇NG

R0 (A(e0j )e
0
i )Z

0
jZ

0
i + 3JA(R0)A(R0)R⊥ + JRTB(R⊥,R0)R0, JR⊥〉

+
1

3

〈
2JRTB(R⊥,R0)R⊥ + T (R, JA(R0)R⊥), JR⊥〉

− 1

3

〈
(∇TY

· ġTY· )(R,R)JR⊥, JR⊥〉+
1

6

〈
∇TY

R (T (eHj , P
THXJeHi ))ZjZi, JR⊥

〉

+
1

3

〈
T (R, JR⊥), T (R⊥, JR⊥)

〉
+

1

4

∣∣∣T (R⊥, JR⊥)
∣∣∣
2

= −1

3

〈
(∇TY

· ġTY· )(R,R)JR⊥, JR⊥〉 +
1

6

〈
∇TY

R (T (eHj , P
THXJeHi ))ZjZi, JR⊥

〉

+
1

3

〈
∇NG

R0 (A(e0j )e
0
i )Z

0
jZ

0
i +RTB(R⊥,R0)R0,R⊥〉

− 1

4

∑

j

〈
T (R0, e0j ), JR⊥〉2 +

1

6

〈
T (R, e0j), JR⊥〉 〈T (R0, e0j), JR⊥〉

+
7

12

∣∣∣T (R⊥, JR⊥)
∣∣∣
2

+
1

3

〈
T (R0, JR⊥), T (R⊥, JR⊥)

〉
.

To get (5.63) from (5.68), we need to compute ∇TY
eH
k

(T (eHj , P
THXJeHi )).

For W a section of TX, U a section of TB, we have

(5.69)
〈
∇THX
eH
k

P THXW,UH
〉

= eHk
〈
W,UH

〉
−
〈
P THXW,∇TX

eH
k
UH
〉

=
〈
P THX∇TX

eH
k
W,UH

〉
+
〈
P TYW,∇TX

eH
k
UH
〉
.

From (1.7), (5.69), we get at x0,

∇THX
eH
k

P THXW = P THX∇TX
eH
k
W − 1

2

〈
T (eHk , e

H
l ), P TYW

〉
eHl .(5.70)

Remark that Je⊥,Hi ∈ TY, Je0i ∈ THX only hold on P .

From (3.40), (5.5b), (5.6a), (5.13), (5.31) and (5.70),

(∇THX
eH
k

P THXJe⊥,Hi )x0 = JA(P TXGek)e
⊥
i − 1

2
JT (ek, e

⊥
i ) − 1

2

〈
T (ek, el), Je

⊥
i

〉
el

= −1

2
JT (ek, e

⊥
i ) − 1

2

〈
T (ek, el) − T (P TXGek, P

TXGel), Je
⊥
i

〉
el,

(∇THX
ek

P THXJe0i )x0 = P THXJ∇TX
eH
k
e0,Hi = JA(e0i )P

NGek −
1

2
JT (ek, e

0
i )

= −1

2
JT (ek, e

0
i ) +

1

2

〈
JPNGek, T (e0i , e

0
l )
〉
e0l ,

(∇TB
ek
Jx0e

0
i )x0 = A(Jx0e

0
i )ek = −1

2
JT (P TXGek, e

0
i ) +

1

2

〈
JPNGek, T (e0i , e

0
l )
〉
e0l .

(5.71)
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From (5.71), we get at x0 that

(5.72)
〈
∇TY

R (T (eHj , P
THXJeHi ))ZjZi, JR⊥

〉
−
〈
∇TY

R (T (ej, Jx0e
0
i ))ZjZ

0
i , JR⊥〉

=
〈
T (ej,∇THX

R P THXJeHi −∇THX
R (Jx0P

THXei)
H)ZjZi, JR⊥

〉

=

〈
T

(
R,−1

2
JT (R,R⊥) − 1

2

〈
T (R, el) − T (R0, P TXGel), JR⊥〉 el

)
, JR⊥

〉

+

〈
T

(
ej ,−

1

2
JT (ek, e

0
i ) +

1

2
JT (P TXGek, e

0
i )

)
ZkZjZ

0
i , JR⊥

〉

= −1

2

∑

l

〈
T (R, el), JR⊥〉2 +

1

2

〈
T (R, e0l ), JR⊥〉 〈T (R0, e0l ), JR⊥〉 .

From (5.68) and (5.72), O′′
2 is the coefficient of t2 in the expansion of |1

t
µ̃|2gTY (tZ).

By (5.47), we get also the second equation of (5.63).

The proof of Lemma 5.6 is completed. �

The following is the main result of this Subsection.

Theorem 5.7. The following identities hold,

O1 =2π
√
−1
〈
JT (R⊥, e0i ),R⊥〉∇0,e0i

+ 2π
√
−1
〈
JT (R, e⊥i ),R⊥〉∇0,e⊥i

+ π
√
−1
〈
JT (R0, e⊥i ), e⊥i

〉
−
〈
JT (e0i , Je

0
j ),R⊥〉∇0,e0

i
∇0,e0

j

+ 4π2
〈
JT (R⊥, JR⊥),R⊥〉+ 4π

√
−1
〈
JR⊥, µ̃Ex0

〉
,

O2 =O′
2 + 4π2O′′

2 − 4π
√
−1
(1

2

〈
T (R⊥, JR⊥), µ̃Ex0

〉
−
〈
JR⊥,∇TY

R µ̃E
〉 )

−
〈
µ̃Ex0

, µ̃Ex0

〉
gTY .

(5.73)

Proof. By (5.5e),

〈JT (R, ei), ei〉 =
〈
JT (R0, e⊥i ), e⊥i

〉
.(5.74)

By (5.45a), (5.50) and (5.74),

− 2

3
(∂RR

LB)x0(R, ei)∇0,ei

= 2π
√
−1
( 〈
JT (R⊥, e0i ),R⊥〉∇0,e0i

+
〈
JT (R, e⊥i ),R⊥〉∇0,e⊥i

)
,

− 1

3
(∂iR

LB)x0(R, ei) = π
√
−1
〈
JT (R0, e⊥i ), e⊥i

〉
.

(5.75)

From (5.22), (5.26), (5.63) and (5.75), we get (5.73). �

5.3. Computation of the coefficient Φ1. Recall that the operator L 0
2 is defined in

(5.22), PL ⊥ is the orthogonal projection from L2(Rn0) onto Ker L ⊥ and PL is the

orthogonal projection from L2(R2n−2n0) onto KerL as in (3.19).
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For Z⊥ ∈ Rn0, set

Ψ1,1(Z
⊥) =

(
(L 0

2 )−1PN⊥O1(L
0
2 )−1PN⊥O1P

N
) (

(0, Z⊥), (0, Z⊥)
)
,

Ψ1,2(Z
⊥) = −

(
(L 0

2 )−1PN⊥O2P
N
) (

(0, Z⊥), (0, Z⊥)
)
,

Ψ1,3(Z
⊥) =

(
(L 0

2 )−1PN⊥O1P
NO1(L

0
2 )−1PN⊥

) (
(0, Z⊥), (0, Z⊥)

)
,

Ψ1,4(Z
⊥) =

(
PNO1(L

0
2 )−2PN⊥O1P

N
) (

(0, Z⊥), (0, Z⊥)
)
,

Ψ̃1,1(Z
⊥) =

(
(L 0

2 )−1PN⊥

PL ⊥O1(L
0
2 )−1PN⊥O1P

N
) (

(0, Z⊥), (0, Z⊥)
)
,

Ψ̃1,2(Z
⊥) = −

(
(L 0

2 )−1PN⊥

PL ⊥O2P
N
) (

(0, Z⊥), (0, Z⊥)
)
,

Φ1,i =

∫

Rn0

Ψ1,i(Z
⊥)dvNG

(Z⊥), for i = 1, 2, 3, 4.

(5.76)

Proposition 5.8. The following two identities hold for i = 1, 2,
∫

Rn0

Ψ̃1,i(Z
⊥)dvNG

(Z⊥) = Φ1,i.(5.77)

Proof. In fact, in our case, by (3.21), PN = PL ⊗ PL ⊥ ⊗ IdE .

By (3.18), (3.19),
(
(L 0

2 )−1PN⊥O2P
N
)

(Z, (0, Z ′⊥)) =
(
(L 0

2 )−1PN⊥O2PL (·, 0)G⊥
)

(Z)G⊥(Z ′⊥).(5.78)

From Theorem 3.1, (5.78),

(5.79) Φ1,2 =
〈(

−(L 0
2 )−1PN⊥O2PL (·, 0)G⊥

)
(0, Z⊥), G⊥(Z⊥)

〉

L2(Rn0 )

=
〈(

−(L 0
2 )−1PN⊥

PL ⊥O2PL (·, 0)G⊥
)

(0, Z⊥), G⊥(Z⊥)
〉
L2(Rn0 )

=

∫

Rn0

Ψ̃1,2(Z
⊥)dvNG

(Z⊥).

In the same way, we get (5.77) for i = 1. �

Note that the restriction of ‖ · ‖t,0 in (2.115) on C
∞(R2n−n0 , EG,x0) does not depend

on t and we denote it by ‖ · ‖0.

Since L t
2 in (5.22) is a self-adjoint elliptic operator with respect to ‖ · ‖0 as we conju-

gated the operator with κ1/2, L 0
2 and Or are also formally self-adjoint with respect to

‖ · ‖0. Thus in the right hand side of (3.62), the third and fourth terms are the adjoints

of the first two terms.

From (3.62), (5.1) and (5.76), we get

Φ1 = Φ1,1 + Φ1,2 + (Φ1,1 + Φ1,2)
∗ + Φ1,3 − Φ1,4.(5.80)

From (5.76), (5.77), (5.80), we learn that in order to compute Φ1, we only need to

evaluate Ψ1,i and Ψ̃1,i (i ∈ {1, 2, 3, 4}).
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Lemma 5.9. The following identity holds,

Ψ̃1,1(Z
⊥) = − 1

8π

∣∣∣T ( ∂
∂z0j
, e⊥k )

∣∣∣
2

PL ⊥(Z⊥, Z⊥).(5.81)

Proof. Recall that the operators bi, b
+
i , b⊥j and b⊥+

j have been defined in (3.8). In

particular, by (5.15), one has

4πZ⊥
j = b⊥j + b⊥+

j , ∇0,e⊥j
= ∂

∂Z⊥
j

= 1
2
(b⊥+
j − b⊥j ).(5.82)

By (3.8), (3.9) and (5.82), set

B⊥
jk = (4π)2Z⊥

j Z
⊥
k = b⊥+

j b⊥+
k + b⊥k b

⊥+
j + b⊥j b

⊥+
k + b⊥j b

⊥
k + 4πδjk,

B⊥
ijk = b⊥i b

⊥
j b

⊥
k + 3b⊥i b

⊥
j b

⊥+
k + 3b⊥i b

⊥+
j b⊥+

k + b⊥+
i b⊥+

j b⊥+
k .

(5.83)

If aijk is symmetric on i, j, k, then by (3.8), (3.9), (5.82) and (5.83), one verifies

aijk(4π)3Z⊥
i Z

⊥
j Z

⊥
k = aijkB

⊥
ijk + 12πaijj(b

⊥
i + b⊥+

i ).(5.84)

By (3.9), (5.5e), (5.14), (5.82), (5.83) and the fact that T ( , ) is anti-symmetric, we

get

(5.85) 2π
〈
JT (R⊥, e⊥i ),R⊥〉∇0,e⊥i

=
1

16π
T̃jikB⊥

jk(b
⊥+
i − b⊥i )

=
1

16π
T̃jik

[
(b⊥j b

⊥+
k + b⊥j b

⊥
k )b⊥+

i − (b⊥+
j b⊥+

k + b⊥k b
⊥+
j + b⊥j b

⊥+
k )b⊥i

]

= − 1

8π
T̃ijk(b⊥j b⊥+

k + b⊥j b
⊥
k )b⊥+

i .

By Theorem 5.1, Remark 5.2, (3.9), (3.12), (5.14), (5.73), (5.83)-(5.85), we can re-

formulate O1 as follows by using the creation and annihilation operators introduced in

(3.8),

(5.86) O1 = −
√
−1

8π

〈
JT ( ∂

∂z0i
, e⊥j ), e⊥k

〉
B⊥
jkb

+
i + bi

√
−1

8π

〈
JT ( ∂

∂z0i
, e⊥j ), e⊥k

〉
B⊥
jk

+

√
−1

4

〈
JT (R0, e⊥i ), e⊥j

〉
(b⊥+
i b⊥+

j − b⊥i b
⊥
j ) −

√
−1

8π
T̃ijk(b⊥j b⊥+

k + b⊥j b
⊥
k )b⊥+

i

−
√
−1

4π

〈
JT ( ∂

∂z0i
, ∂
∂z0j

), e⊥k

〉
(b⊥+
k + b⊥k )(2bjb

+
i + 4πδij) +

√
−1
〈
Je⊥j , µ̃

E
x0

〉
(b⊥+
j + b⊥j )

+
1

16π

〈
JT (e⊥i , Je

⊥
j ), e⊥k

〉
[B⊥

ijk + 12πδik(b
⊥+
j + b⊥j )]

= −
√
−1

8π
Tjk( ∂

∂z0i
)B⊥

jkb
+
i +

√
−1

8π
Tjk( ∂

∂z0i
)biB

⊥
jk +

√
−1

4
Tij(R0)(b⊥+

i b⊥+
j − b⊥i b

⊥
j )

+
√
−1
〈
Je⊥j , µ̃

E
x0

〉
(b⊥+
j + b⊥j ) −

√
−1

4π

〈
JT ( ∂

∂z0i
, ∂
∂z0j

), e⊥k

〉
(b⊥+
k + b⊥k )(2bjb

+
i + 4πδij)

−
√
−1

8π
T̃ijk(b⊥j b⊥+

k + b⊥j b
⊥
k )b⊥+

i +
1

16π
Tijk[B⊥

ijk + 12πδik(b
⊥+
j + b⊥j )].
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From Theorem 3.1, (3.54), (5.83), (5.86) and ai = a+
i = 2π, we get

(5.87)
(
(L 0

2 )−1O1P
N
)
(Z,Z ′) =

√
−1
{ bl

8π
Tkk( ∂

∂z0
l

) +
〈
Je⊥k , µ̃

E
x0

〉 b⊥k
4π

−
〈
JT ( ∂

∂z0
l

, ∂
∂z0

l

), e⊥k

〉 b⊥k
4π

− b⊥l b
⊥
k

32π
Tkl(z0 + z′0)

−
√
−1

16π
Tklm

[b⊥mb⊥l b⊥k
12π

+ 3b⊥k δlm

]}
PN(Z,Z ′).

By Theorem 3.1, (3.55), (5.83) and (5.86),

(5.88) PN⊥

PL ⊥O1 =
√
−1PN⊥

PL ⊥

{
− 1

2
Tjj( ∂

∂z0i
)b+i +

1

2
Tjj( ∂

∂z0i
)bi +

〈
Je⊥j , µ̃

E
x0

〉
b⊥+
j

− 1

4π

〈
JT ( ∂

∂z0i
, ∂
∂z0j

), e⊥j′
〉
b⊥+
j′ (2bjb

+
i + 4πδij)

+
1

4

(
Tjj′(R0) − Tjj′( ∂

∂z0i
)
b+i
2π

+ Tjj′( ∂
∂z0i

)
bi
2π

)
b⊥+
j b⊥+

j′

−
√
−1

16π
Tijj′[b⊥+

i b⊥+
j b⊥+

j′ + 12πδij′b
⊥+
j ].

In the following equation, by (3.9), (3.54), (3.55), we only need to pair the terms in

(5.87) and (5.88) which have the same length on b⊥+
j and b⊥j , and the total degree on

bi, b
+
i , z

0, z0 should not be zero. Thus by (3.9), (3.54), (5.87) and (5.88),

(5.89)
(
PN⊥

PL ⊥O1(L
0
2 )−1O1P

N
)

(Z, (0, Z ′⊥)) =

{
PN⊥

[
− 1

16π

(∑

ij

biTjj( ∂
∂z0i

)
)2

+
1

128π

(
Tjj′(R0) +

bi
2π

Tjj′( ∂
∂z0i

)
)
b⊥+
j b⊥+

j′ ·b⊥l b⊥k Tkl(z0)
]
PN
}

(Z, (0, Z ′⊥)).

From (3.9), (3.54), (5.5d), (5.14), (5.89) and ai = a+
i = 2π, one gets

(5.90)
(
PN⊥

PL ⊥O1(L
0
2 )−1O1P

N
)

(Z, (0, Z ′⊥)) =

{
PN⊥

[
− 1

16π

(∑

ij

biTjj( ∂
∂z0i

)
)2

+
1

8

〈
2πJT (R0, e⊥l ) + biJT ( ∂

∂z0i
, e⊥l ), JT (z0, e⊥l )

〉]
PN

}
(Z, (0, Z ′⊥)).

Set P⊥
L

= IdL2(R2n−2n0 ) − PL .

Let hi(Z
0) (resp. F (Z0)) be polynomials in Z0 with degree 1 (resp. 2) and aij ∈ C.

By Theorem 3.1, (3.9) and (3.54),

(
F (Z0)PL

)
(Z0, 0) =

(1

2

∂2F

∂z0
i ∂z

0
j

z0
i z

0
j +

∂2F

∂z0
i ∂z

0
j

z0
i

bj
aj

+
1

2

∂2F

∂z0
i ∂z

0
j

bibj
aiaj

)
PL (Z0, 0).(5.91)
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By Theorem 3.1, (3.8), (3.9), (3.19), (3.54), (5.91) and aj = 2π, we have

(P⊥
L
FPL )(0, 0) = −1

π

∂2F

∂z0
i ∂z

0
i

,

(
L

−1P⊥
L
aijbibjPL

)
(0, 0) =

(
L

−1P⊥
L
hiPL

)
(0, 0) = 0,

(
L

−1P⊥
L hibiPL

)
(0, 0) =

(
L

−1P⊥
L bihiPL

)
(0, 0) = − 1

2π

∂hi
∂z0

i

,

(
L

−1P⊥
L
FPL

)
(0, 0) = − 1

4π2

∂2F

∂z0
i ∂z

0
i

,

(
L

−1P⊥
L biFbjPL

)
(0, 0) = −

(
L

−1P⊥
L bibjFPL

)
(0, 0) = − 1

2π

∂2F

∂z0
i ∂z

0
j

,

(
L

−1P⊥
L
FbibjPL

)
(0, 0) = − 3

2π

∂2F

∂z0
i ∂z

0
j

,

(
L

−1P⊥
L

(∑

i

bihi

)2

PL

)
(0, 0) = − 1

2π

(∂hi
∂z0

j

∂hj
∂z0

i

−
(∑

i

∂hi
∂z0

i

)2)
.

(5.92)

Finally by (5.77), (5.90), (5.92) and L 0
2 = L + L ⊥ , we get (5.81). �

Lemma 5.10. The following identity holds,

Φ1,3 = Φ1,4.(5.93)

Proof. Let F2 ∈ T ∗
x0
XG with values in real polynomials on Z⊥ with even degree, F1 ∈

N∗
G,x0

, F3(Z
⊥) a polynomial on Z⊥ with odd degree, be defined by

F1(e
⊥
k ) =

√
−1
〈
Je⊥k , µ̃

E
x0

〉
−

√
−1
〈
JT ( ∂

∂z0
l

, ∂
∂z0

l

), e⊥k

〉
+

3

4
Tllk,

F2(·, Z⊥)PN(Z,Z ′) =
(
Tkl(·)

b⊥l b
⊥
k

32π
PN
)
(Z,Z ′),

F3(Z
⊥)PN(Z,Z ′) =

1

16π

(
Tklm

b⊥mb
⊥
l b

⊥
k

12π
PN
)
(Z,Z ′).

(5.94)

Then from (3.54), (5.87) and (5.94),

(5.95)
(
(L 0

2 )−1O1P
N
)
(Z,Z ′) =

(√−1

4
Tkk(z0 − z′0) −

√
−1F2(z

0 + z′0, Z⊥)

+
(
F1 + F3

)
(Z⊥)

)
PN(Z,Z ′).

Observe that Fi(Z
⊥)∗ = Fi(Z

⊥) for i = 1, 3, thus from (5.87) and (5.95),

(5.96)
(
PNO1(L

0
2 )−1

)
(Z ′, Z) =

((
(L 0

2 )−1O1P
N
)
(Z,Z ′)

)∗

=
(
−

√
−1

4
Tkk(z0 − z′0) +

√
−1F2(z

0 + z′0, Z⊥) +
(
F1 + F3

)
(Z⊥)

)
PN(Z ′, Z).

For h1(z
0), h2(z

0) two linear functions on z0, z0, by Theorem 3.1, (3.54),

(PLh1(z
0)h2(z

0)PL )(0, 0) =
(
PL h1(z

0)
∂h2

∂z0
i

bi
2π
PL

)
(0, 0) =

1

π

∂h1

∂z0
i

∂h2

∂z0
i

.(5.97)
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From (5.76), (5.95)-(5.97),

Ψ1,3(Z
⊥) =

[(
(F1 + F3)(Z

⊥)
)2

+
1

π

∣∣∣
1

4

∑

k

Tkk( ∂
∂z0i

) + F2(
∂
∂z0i
, Z⊥)

∣∣∣
2]
G⊥(Z⊥)2.(5.98)

By Theorem 3.1, (3.18), (5.93), FjG
⊥, (j = 1, 3), F2(

∂
∂z0i
, ·)G⊥ are eigenfunctions of

L
⊥ with eigenvalues 4πj, 8π, thus they are orthogonal to each other.

From (5.76), (5.95)-(5.97), we have

(5.99) Ψ1,4(Z
⊥) = G⊥(Z⊥)2

∫

Rn0

{(
(F1G

⊥)(Z ′⊥)
)2

+
(
(F3G

⊥)(Z ′⊥)
)2

+
1

16π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)G⊥
∣∣∣
2

(Z ′⊥) +
1

π

∣∣∣F2(
∂
∂z0i
, ·)G⊥

∣∣∣
2

(Z ′⊥)
}
dvNG

(Z ′⊥).

From (3.18), (5.76), (5.98), (5.99) and the above discussion, we get (5.93). �

Now we need to compute the contribution from −(L 0
2 )−1PN⊥O2P

N .

Lemma 5.11. The following identity holds,

(5.100) Ψ̃1,2(Z
⊥) =

{ 1

2π

〈
RTXG( ∂

∂z0
j

, ∂
∂z0i

) ∂
∂z0

i

, ∂
∂z0j

〉
+

1

48π

〈
RTB(e⊥k ,

∂
∂z0

j

)e⊥k ,
∂
∂z0j

〉

+
1

96π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

−
√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉

+
13

192π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

+

√
−1

96π

〈
11∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + 4∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + 7∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉

− 2

3π
∇ ∂

∂z0
j

∇ ∂
∂z0j

log h +
1

2π
REB( ∂

∂z0
j

, ∂
∂z0j

)
}
PL ⊥(Z⊥, Z⊥).

Proof. By (3.9), (3.12), (3.54), (5.23) and (5.82),

I1P
N =

{1

2
b⊥i B(Z, ∂

∂Z⊥
i

) + bjB(Z, ∂
∂z0j

) + ∂
∂z0j

(
B(Z, ∂

∂z0j
)
)
− ∂

∂z0j

(
B(Z, ∂

∂z0j
)
)}
PN .

(5.101)

By (3.55) and (5.101),

PL ⊥I1P
N = PL ⊥

{
bjB(Z, ∂

∂z0j
) + ∂

∂z0j

(
B(Z, ∂

∂z0j
)
)
− ∂

∂z0j

(
B(Z, ∂

∂z0j
)
)}
PN .(5.102)

By (5.45b), and observe that from Theorem 3.1, only the monomials which have even

degree on Z⊥ and ∇e⊥j
, and which have also strictly positive degree on Z0 and ∇0,e0j

,

have contributions in PN⊥
PL ⊥I1P

N .

By Remark 5.2, (3.55) and (5.45b),

(5.103) PN⊥

PL ⊥

(
∂
∂z0j

(
B(Z, ∂

∂z0j
)
)
− ∂

∂z0j

(
B(Z, ∂

∂z0j
)
))
PN = −π

√
−1PN⊥

PL ⊥

1

6

{
∂
∂z0j

〈
RTXG(R0, JR0)R0, ∂

∂z0j

〉
− ∂

∂z0j

〈
RTXG(R0, JR0)R0, ∂

∂z0j

〉}
PN

= −π
3
PN⊥

〈
2RTXG(z0, z0) ∂

∂z0
j

+RTXG( ∂
∂z0

j

,R0)z0 +RTXG( ∂
∂z0

j

, z0)R0, ∂
∂z0j

〉
PN .
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By (5.22), (5.92) and (5.103),

(5.104)

−
(
(L 0

2 )−1PN⊥

PL ⊥

(
∂
∂z0j

(
B(Z, ∂

∂z0j
)
)
− ∂

∂z0j

(
B(Z, ∂

∂z0j
)
))
PN
)

((0, Z⊥), (0, Z⊥))

= − 1

6π

〈
RTXG( ∂

∂z0i
, ∂
∂z0i

) ∂
∂z0j

+RTXG( ∂
∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉
PL ⊥(Z⊥, Z⊥).

Observe that if Q is an odd degree monomial on bj , b
+
j , z

0
j , z

0
j , then

(
QPN

) ((
0, Z⊥) ,

(
0, Z ′⊥)) = 0.(5.105)

By using this observation and (5.45b), we get

(5.106) −
(
(L 0

2 )−1PN⊥

bjB(Z, ∂
∂z0j

)PN
)

((0, Z⊥), (0, Z ′⊥))

= π
√
−1

{
(L 0

2 )−1PN⊥

bj

[1
6

〈
RTXG(R0, JR0)R0, ∂

∂z0j

〉

− 5

4

〈
∇TY

R0 (T (e⊥k ,
∂
∂z0j

))Z⊥
k + ∇TY

R⊥(T (e0k,
∂
∂z0j

))Z0
k , JR⊥

〉

+

〈
1

2
RTB(R⊥, JR0)R⊥ +

√
−1RTB(R⊥,R0)R⊥, ∂

∂z0j

〉

− 3

8

√
−1
〈
JR⊥, T (R0, e0i )

〉 〈
JR⊥, T (e0i ,

∂
∂z0j

)
〉

− 1

8

〈
T (R⊥, JR0), T (R⊥, ∂

∂z0j
)
〉

+
1

2

〈
T (R⊥, JR⊥), T (R0, ∂

∂z0j
)
〉

−1

8

〈
JT ( ∂

∂z0j
, JR0), e⊥j

〉〈
JR⊥, T (R⊥, e⊥j )

〉 ]
PN

}
((0, Z⊥), (0, Z ′⊥)).

From (3.6), (3.54), (5.5b) and (5.83), we have

〈
T ( ∂

∂z0j
, e0i ), T (e0i ,

∂
∂z0j

)
〉

= −2
∣∣∣T ( ∂

∂z0i
, ∂
∂z0j

)
∣∣∣
2

,(5.107a)

PL ⊥Z⊥
k Z

⊥
l PL ⊥ =

δkl
4π
PL ⊥.(5.107b)



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 105

By (3.54), (5.5e), (5.92), (5.106) and (5.107a),

(5.108) −
(
(L 0

2 )−1PN⊥

PL ⊥bjB(Z, ∂
∂z0j

)PN
)

((0, Z⊥), (0, Z⊥))

=
{

(L 0
2 )−1PN⊥

bj

[π
3

〈
RTXG(z0, z0)R0, ∂

∂z0j

〉

− 5
√
−1

16

〈
∇TY

R0 (T (e⊥k ,
∂
∂z0j

)) + ∇TY
e⊥
k

(T (e0i ,
∂
∂z0j

))Z0
i , Je

⊥
k

〉

+
1

8

〈√
−1RTB(e⊥k , JR0)e⊥k − 2RTB(e⊥k ,R0)e⊥k ,

∂
∂z0j

〉

+
3

32

〈
T (R0, e0i ), T (e0i ,

∂
∂z0j

)
〉
−

√
−1

32

〈
T (e⊥k , JR0), T (e⊥k ,

∂
∂z0j

)
〉

+

√
−1

8

〈
T (e⊥k , Je

⊥
k ), T (R0, ∂

∂z0j
)
〉]
PN

}
((0, Z⊥), (0, Z⊥))

=
{
− 1

12π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i

+RTXG( ∂
∂z0i
, ∂
∂z0i

) ∂
∂z0j
, ∂
∂z0j

〉

+
5
√
−1

32π

〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + ∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉

+
3

16π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

3

32π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

− 1

64π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

−
√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉}

PL ⊥(Z⊥, Z⊥).

For G1(Z) (resp. G2(Z)) polynomials on Z with degree 1 (resp. 2) and F ∈ T ∗
x0
XG⊗

T ∗
x0
XG, by Theorem 3.1, (3.9), (3.12), (3.19), (3.54) and (3.55), for any k, l, k′, l′,

∇0,e⊥
j
PN = −2πZ⊥

j P
N ,

PN⊥

PL ⊥(G1(Z)b⊥k +G2(Z)b⊥k b
⊥
l + Z⊥

k′bl′)P
N = 0,

1

3

〈
RTB(R⊥, e⊥i )R⊥, e⊥j

〉
∇0,e⊥i

∇0,e⊥j
PN = −2π

3

〈
RTB(R⊥, e⊥j )R⊥, e⊥j

〉
PN ,

F (e0i , e
0
j)∇0,e0i

∇0,e0j
PN =

[
F ( ∂

∂z0i
, ∂
∂z0j

)bibj − 4πF ( ∂
∂z0j
, ∂
∂z0j

)
]
PN .

(5.109)

By (5.23), (5.109), we get

(5.110) I2P
N =

{(〈1

3
RTXG(R0, ∂

∂z0i
)R0 +RTB(R⊥, ∂

∂z0i
)R⊥ + ∇TXG

R0 (A( ∂
∂z0i

)R⊥), ∂
∂z0j

〉

− 3
〈
A( ∂

∂z0i
)R⊥, A( ∂

∂z0j
)R⊥

〉
+
〈

∂
∂z0i
,∇TXG

R0 (A( ∂
∂z0j

)R⊥)
〉)
bibj

− 4π
〈1

3
RTXG(R0, ∂

∂z0j
)R0 +RTB(R⊥, ∂

∂z0j
)R⊥ + ∇TXG

R0 (A( ∂
∂z0j

)R⊥), ∂
∂z0j

〉

+ 12π|A( ∂
∂z0j

)R⊥|2 − 4π
〈

∂
∂z0j
,∇TXG

R0 (A( ∂
∂z0j

)R⊥)
〉
− 2π

3

〈
RTB(R⊥, e⊥j )R⊥, e⊥j

〉}
PN .

Observe that as A(e0i )e
0
i ∈ NG, we have at x0,

〈
∇TB

R0 (A(e0i )e
0
i ), e

0
j

〉
=
〈
A(R0)A(e0i )e

0
i , e

0
j

〉
.(5.111)
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Thus by (3.12), (3.54), (3.55), (5.24), (5.107b), (5.109)-(5.111), aj = a⊥j = 2π, and the

arguments above (5.103),

PN⊥

PL ⊥ 〈Γii(R), el〉∇0,el
PN = −2

3
PN⊥

〈
RTXG(R0, e0i )e

0
i ,

∂
∂z0j

〉
bjP

N ,(5.112a)

PN⊥

PL ⊥I2P
N = PN⊥

{(〈1

3
RTXG(R0, ∂

∂z0i
)R0 +

1

4π
RTB(e⊥k ,

∂
∂z0i

)e⊥k ,
∂
∂z0j

〉
(5.112b)

− 3

4π

〈
A( ∂

∂z0i
)e⊥k , A( ∂

∂z0j
)e⊥k

〉)
bibj −

4π

3

〈
RTXG(R0, ∂

∂z0j
)R0, ∂

∂z0j

〉}
PN .

By (3.6), (5.4), (5.92), (5.112a), (5.112b) and the fact that RTXG( , ) is (1, 1)-form, we

get

(5.113) −
(
(L 0

2 )−1PN⊥

PL ⊥(I2 + 〈Γii(R), el〉∇0,el
)PN

)
((0, Z⊥), (0, Z⊥))

=
1

6π

{
3
〈
RTXG( ∂

∂z0i
, ∂
∂z0i

) ∂
∂z0j

+RTXG( ∂
∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉

− 2
〈
RTXG( ∂

∂z0j
, e0i )e

0
i +RTXG( ∂

∂z0i
, ∂
∂z0j

) ∂
∂z0i
, ∂
∂z0j

〉}
PL ⊥(Z⊥, Z⊥)

=
2

3π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉
PL ⊥(Z⊥, Z⊥).

Now by (5.45a), (5.83), (5.107b) and (5.109),

− PN⊥

PL ⊥

1

9

∑

i

[∑

j

(∂jR
LB)x0(R, ei)Zj

]2
PN =

π

4
PN⊥

∣∣∣T (R0, e⊥i )
∣∣∣
2

PN ,

− 1

4
(L 0

2 )−1PN⊥

PL ⊥[K2(R),L 0
2 ]PN =

1

4
PN⊥

PL ⊥K2(R)PN

=
1

12
PN⊥ 〈

RTXG(R0, e0i )R0, e0i
〉
PN .

(5.114)

By (5.13), (5.46), (5.48) and (5.49), we get

√
−1

2π
(∂0
jR

LB)x0(R, e0i ) = −1

2

〈
JR⊥, T (e0j , e

0
i )
〉

+
〈
JA(e0j )R⊥, e0i

〉
= 0.(5.115)

Thus by (3.9), (5.26), (5.45a), (5.114) and (5.115), we get

(5.116) − PN⊥

PL ⊥O′
2P

N = PN⊥

PL ⊥

{
− I1 − (I2 + 〈Γii(R), el〉∇0,el

)

− 1

4
[K2(R),L 0

2 ] − REB(R, ∂
∂z0j

)bj −
π

4

∣∣∣T (R0, e⊥i )
∣∣∣
2}
PN .
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Note that RTXG(·, ·) is a (1, 1)-form, by (3.54), (5.4), (5.92), (5.102), (5.104), (5.108),

(5.113) and (5.116),

(5.117) −
(
(L 0

2 )−1PN⊥

PL ⊥O′
2P

N
)

((0, Z⊥), (0, Z⊥))

= −
(
(L 0

2 )−1PN⊥

PL ⊥(I1 + I2 + 〈Γii(R), el〉∇0,el
)PN

)
((0, Z⊥), (0, Z⊥))

+
1

2π

{
REB( ∂

∂z0j
, ∂
∂z0j

) +
1

3

〈
RTXG( ∂

∂z0j
, e0i )e

0
i ,

∂
∂z0j

〉
+

1

4

∣∣∣T ( ∂
∂z0j
, e⊥i )

∣∣∣
2}
PL ⊥(Z⊥, Z⊥)

=
{ 1

2π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉
+

3

16π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉

+
3

32π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

−
√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉

+
7

64π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

+
5
√
−1

32π

〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + ∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉
+

1

2π
REB( ∂

∂z0j
, ∂
∂z0j

)
}
PL ⊥(Z⊥, Z⊥).

By (3.54), (5.62), (5.83), (5.107b), (5.109) and the arguments above (5.103),

(5.118) 4π2PN⊥

PL ⊥O′′
2P

N = 4π2PN⊥

PL ⊥

{
− 1

3

〈
(∇TY

· ġTY· )(R0,R0)JR⊥, JR⊥〉

+
1

6

〈
∇TY

R0 (T (e⊥j , Jx0e
0
i ))Z

⊥
j Z

0
i + ∇TY

R⊥(T (e0j , Jx0e
0
i ))Z

0
jZ

0
i , JR⊥〉

+
1

3

〈
RTB(R⊥,R0)R0,R⊥〉− 1

12

∑

l

〈
T (R0, el), JR⊥〉2 }PN

=
π

3
PN⊥

{1

2

〈
∇TY

R0 (T (e⊥k , Jx0e
0
i ))Z

0
i + ∇TY

e⊥
k

(T (e0j , Jx0e
0
i ))Z

0
jZ

0
i , Je

⊥
k

〉

−
〈
(∇TY

· ġTY· )(R0,R0)Je
⊥
k , Je

⊥
k

〉
+
〈
RTB(e⊥k ,R0)R0, e⊥k

〉
− 1

4
|T (R0, el)|2

}
PN .

Let {fl} be an orthonormal frame of TY on X.

As ∇TY preserves the metric gTY , by (1.4), (1.24),
〈
(∇TY

e0i
ġTYe0j

)fl, fl

〉
= ∇e0

i

〈
ġTYe0j

fl, fl

〉
= 4∇e0

i
∇e0

j
log h.(5.119)

Now {Je⊥k } is an orthonormal basis of TY along the fiber Yx0 and {el} = {e0i }∪{e⊥k }.
By (3.54), (5.92), (5.107a), (5.118) and (5.119),

(5.120) − 4π2
(
(L 0

2 )−1PN⊥

PL ⊥O′′
2P

N
)

((0, Z⊥), (0, Z⊥))

=
1

4π

{√−1

6

〈
−∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + ∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) − 2∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉

− 8

3
∇ ∂

∂z0j

∇ ∂
∂z0j

log h− 1

3

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

− 1

6

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

− 2

3

〈
RTB(e⊥k ,

∂
∂z0

j

)e⊥k ,
∂
∂z0j

〉}
PL ⊥(Z⊥, Z⊥).
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By (5.73), (5.76), (5.117) and (5.120), we get (5.100). The proof of Lemma 5.11 is

complete. �

5.4. Final computations: the proof of Theorem 0.6. By (3.40), (5.3), (5.5a), (5.6a)

and (5.31), as Je⊥k ∈ TY on P , we get at x0,

∇TY
e0i
Je⊥k = P TY∇TX

e0i
Je⊥k = P TY J∇TX

e0i
e⊥k = 0,

∇TB
e0i
Je0j = ∇TXG

e0
i

Je0j + A(e0i )Je
0
j = −1

2
JT (e0i , e

0
j) = ∇TB

e0i
(Jx0e

0
j ).

(5.121)

By (1.6), (1.24), (5.5c) and (5.121), as in (5.119), at x0,

(5.122)
〈
∇TY
e0i

(T (e⊥k , e
0
j)), Je

⊥
k

〉

x0

= −2
〈
∇TY
e0i

(T (Je0j , Je
⊥
k )), Je⊥k

〉

= −
〈
(∇TY

e0i
ġTYJe0j

)Je⊥k , Je
⊥
k

〉
= −4∇e0i

∇Jx0e
0
j
log h.

By (1.21) and (5.122), we get
√
−1
〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)), Je⊥k

〉
= −4∇ ∂

∂z0j

∇ ∂
∂z0j

log h = ∆XG
log h,

√
−1
〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)), Je⊥k

〉
= −∆XG

log h.
(5.123)

Note that T (ei, ej) = −[eHi , e
H
j ], as [ei, ej ] = 0. By (1.4) and (1.6),

(5.124) ∇TY
e⊥,H
k

(T (e0,Hi , e0,Hj )) = −
[
e⊥,Hk , [e0,Hi , e0,Hj ]

]
+ T (e⊥,Hk , T (e0,Hi , e0,Hj ))

= Le0,H
i

(T (e⊥,Hk , e0,Hj )) − Le0,H
j

(T (e⊥,Hk , e0,Hi )) + T (e⊥,Hk , T (e0,Hi , e0,Hj ))

= ∇TY
e0,H
i

(T (e⊥,Hk , e0,Hj )) −∇TY
e0,H
j

(T (e⊥,Hk , e0,Hi )) − T (e0,Hi , T (e⊥,Hk , e0,Hj ))

+ T (e0,Hj , T (e⊥,Hk , e0,Hi )) + T (e⊥,Hk , T (e0,Hi , e0,Hj )).

Thus by Theorem 5.1, (5.123) and (5.124),

(5.125)
√
−1
〈
∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉
=

√
−1
{

2
〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)), Je⊥k

〉

−
〈
T ( ∂

∂z0j
, Je⊥k ), T (e⊥k ,

∂
∂z0j

)
〉

+
〈
T ( ∂

∂z0j
, Je⊥k ), T (e⊥k ,

∂
∂z0j

)
〉

+
〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉}

= 2∆XG
log h+ |T (e⊥k ,

∂
∂z0j

)|2 +
√
−1
〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉
.

By T (ei, ej) = −[eHi , e
H
j ], (3.40) and (5.54), we have

RTX(eHk , e
H
j )eHi = ∇TX

eH
k
∇TX
eH
j
eHi −∇TX

eH
j
∇TX
eH
k
eHi −∇TX

[eH
k
,eH

j ]e
H
i(5.126)

= RTB(ek, ej)ei −
1

2
T (ek,∇TB

ej
ei) +

1

2
T (ej ,∇TB

ek
ei)

− 1

2
∇TX
eH
k

(T (ej, ei)) +
1

2
∇TX
eH
j

(T (ek, ei)) + ∇TX
T (eH

k
,eH

j )e
H
i ,

〈
RTX(e⊥,Hk , e0,Hj )(Jx0e

0
j)
H , Jx0e

⊥,H
k

〉
=
〈
RTX(e⊥,Hk , e0,Hj )e0,Hj , e⊥,Hk

〉
.
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By (5.5a), (5.6a), (5.13), (5.121) and T (e⊥k , e
0
i ) ∈ TY , at x0, we get

∇TB
e0j

(Jx0e
0
j) = 0, ∇TB

e⊥
k

(Jx0e
0
j ) =

1

2

〈
T (e0j , e

0
l ), Je

⊥
k

〉
e0l ,

〈
∇TX
T (e⊥

k
,e0i )

(Jx0e
0
i )
H , Jx0e

⊥
k

〉
=
〈
∇TX
T (e⊥

k
,e0i )e

0,H
i , e⊥k

〉
.

(5.127)

We apply now the first equation of (5.126) into the second equation of (5.126), by using

(1.8) and (5.133) and T ( , ) is (1, 1)-form, we get at x0,

(5.128)
1

4
|T (e0j , e

0
l )|2 −

1

2

〈
∇TY
e⊥
k

(T (e0j , Jx0e
0
j)), Je

⊥
k

〉
+

1

2

〈
∇TY
e0j

(T (e⊥k , Jx0e
0
j )), Je

⊥
k

〉

=
〈
RTB(e⊥k , e

0
j)e

0
j , e

⊥
k

〉
+

1

2

〈
∇TX
e0j

(T (e⊥k , e
0
j)), e

⊥
k

〉

=
〈
RTB(e⊥k , e

0
j )e

0
j , e

⊥
k

〉
− 1

4
|T (e⊥k , e

0
l )|2.

Finally from (3.6), (5.123), (5.125) and (5.128) and T ( , ) is (1, 1)-form, we get

(5.129) 2
〈
RTB(e⊥k ,

∂
∂z0j

) ∂
∂z0j
, e⊥k

〉
=

√
−1
〈
∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉

−
√
−1
〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)), Je⊥k

〉
+

1

2
|T (e⊥k ,

∂
∂z0j

)|2 +
∣∣∣T ( ∂

∂z0i
, ∂
∂z0j

)
∣∣∣
2

= ∆XG
log h+

3

2
|T (e⊥k ,

∂
∂z0j

)|2 +
∣∣∣T ( ∂

∂z0i
, ∂
∂z0j

)
∣∣∣
2

+
√
−1
〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉
.

From (5.123)-(5.129),

(5.130)

√
−1

96π

〈
11∇TY

∂
∂z0

j

(T (e⊥k ,
∂
∂z0j

)) + 4∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + 7∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉

+
1

48π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
−

√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉

=
5

24π
∆XG

log h+
11

192π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

− 1

96π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

.

By (3.19), (5.76), (5.81), (5.100) and (5.130),

Φ1,1 + Φ1,2 =
1

2π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉
+

3

8π
∆XG

log h +
1

2π
REB( ∂

∂z0j
, ∂
∂z0j

)(5.131)

=
1

16π
rXG
x0

+
3

8π
∆XG

log h +
1

4π
REG
x0

(w0
j , w

0
j).

From Lemma 5.10, (5.80) and (5.131), we get (0.25).

Recall that we compute everything on C ∞(X,Lp ⊗ E).

From (5.18), (5.21), (5.22), comparing to (2.110), we know that in (0.20), Φr(x0) ∈
End(EG)x0, and the term rX , Rdet will not appear here, and τ = 2πn, thus we get the

remainder part of Theorem 0.6 from Corollary 0.4.

The proof of Theorem 0.6 is complete.
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5.5. Coefficient P (2)(0, 0). As in (5.80), we have

P (2)(0, 0) = (Ψ1,1 + Ψ1,2)(0) + (Ψ1,1 + Ψ1,2)
∗(0) + (Ψ1,3 − Ψ1,4)(0).(5.132)

For k ∈ N, let Hk(x) be the Hermite polynomial,

Hk(x) =

[k/2]∑

j=0

(−1)j
k! (2x)k−2j

j! (k − 2j)!
.(5.133)

By [38, §8.6], (3.8) and a⊥l = 2π, we have

(b⊥l )ke−π|Z
⊥
l
|2 = (2π)k/2Hk(

√
2πZ⊥

l )e−π|Z
⊥
l
|2.(5.134)

Especially, for l fixed, i ∈ N,

((b⊥l )2i+1e−π|Z
⊥
l
|2)(0) = 0,

((b⊥l )2e−π|Z
⊥
l
|2)(0) = −4π, ((b⊥l )4e−π|Z

⊥
l
|2)(0) = 3 · (4π)2,(5.135)

((b⊥l )6e−π|Z
⊥
l
|2)(0) = 15 · (−4π)3.

Recall that when we meet the operation | |2, we will first do this operation, then take

the sum of the indices. Thus |Tijk|2 means
∑

ijk |Tijk|2, etc.

By (3.22), (5.94) and (5.135),

F2(·, 0) = −1

8
Tkk; PN(0, 0) = 2n0/2.(5.136)

By (5.98), (5.135) and (5.136), we know

Ψ1,3(0) =
2n0/2

π

∣∣∣
1

4

∑

k

Tkk( ∂
∂z0i

) + F2(
∂
∂z0i
, 0)
∣∣∣
2

=
2n0/2

64π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2

.(5.137)

and from (3.17), (3.18), (3.54), (5.99), (5.136) and a⊥i = 2π,

(5.138) Ψ1,4(0) = G⊥(0)2
{ 1

4π

∑

k

F1(e
⊥
k )2 +

6 · (4π)3

(192π2)2
|Tklm|2

+
1

16π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2

+
2 · (4π)2

π · (32π)2

∣∣∣Tkl( ∂
∂z0i

)
∣∣∣
2}

=
2n0/2

4π

{∑

k

F1(e
⊥
k )2 +

1

24
|Tklm|2 +

1

4

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2

+
1

8

∣∣∣Tkl( ∂
∂z0i

)
∣∣∣
2}
.

Lemma 5.12. The following identity holds,

(5.139) Ψ1,1(0) =
{
− 19

26 · 3π |Tjj′(
∂
∂z0i

)|2 − 11

27 · 3πT
2
klm +

1

28π
TkkmTllm

− 5

27π
Tjj( ∂

∂z0
l

)Tkk( ∂
∂z0

l

) − 1

8π

∑

k

F1(e
⊥
k )2 − 1

16π
F1(e

⊥
k )Tkll

}
PN(0, 0).
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Proof. Set

I1 = −
√
−1
(
Tjj′( ∂

∂z0i
)
b+i
8π

+
1

4
Tjj′(z0)

)
b⊥j b

⊥
j′

√
−1

8π
blTkk( ∂

∂z0
l

)

I2 =
√
−1
(
Tjj′( ∂

∂z0i
)bi
B⊥
jj′

8π
+

1

4
Tjj′(z0)(b⊥+

j b⊥+
j′ − b⊥j b

⊥
j′)
)−

√
−1

32π
Tkl(z0)b⊥k b

⊥
l ,

I3 = −
√
−1

8π
T̃ijj′(b⊥j b⊥+

j′ + b⊥j b
⊥
j′)b

⊥+
i

(
F1(e

⊥
k )
b⊥k
4π

+ Tklm
b⊥k b

⊥
l b

⊥
m

192π2

)
.

(5.140)

Observe that by (5.92), when we evaluate Ψ1,1 in (5.76), in each monomial, if the total

degree of bl, z
0 is not as same as the total degree of b+l , z0, then the contribution of this

term is 0. Thus by (3.9), (3.54), (5.76), (5.83), (5.86), (5.87), (5.94) and (5.140),

(5.141) Ψ1,1(Z
⊥) =

{
(L 0

2 )−1PN⊥
[
I1 + I2 + I3

+
(
F1(e

⊥
j )(b⊥+

j + b⊥j ) + Tijj′
B⊥
ijj′

16π

)(
F1(e

⊥
k )
b⊥k
4π

+ Tklm
b⊥k b

⊥
l b

⊥
m

192π2

)]
PN
}

(Z⊥, Z⊥).

By (3.8), (3.19) and (5.135),

(bjz
0
i P

N)(0, 0) = −2δijP
N(0, 0), (b⊥k b

⊥
l bjz

0
i P

N)(0, 0) = 8πδijδklP
N(0, 0).(5.142)

From Theorem 3.1, (3.9), (3.54), (5.135), (5.140) and (5.142),

(5.143) ((L 0
2 )−1PN⊥I1P

N)(0, 0)

=
1

32π

{
(L 0

2 )−1PN⊥Tkk( ∂
∂z0

l

)
(
4Tjj′( ∂

∂z0
l

)b⊥j b
⊥
j′ + blb

⊥
j b

⊥
j′Tjj′(z0)

)
PN
}

(0, 0)

=
1

32π
Tkk( ∂

∂z0
l

)
{(

Tjj′( ∂
∂z0

l

)
b⊥j b

⊥
j′

2π
+
blb

⊥
j b

⊥
j′

12π
Tjj′(z0)

)
PN
}

(0, 0)

= − 1

24π
Tjj( ∂

∂z0
l

)Tkk( ∂
∂z0

l

)PN(0, 0).

By (3.9), (3.54), (5.83) and (5.140),

(5.144) (PN⊥I2P
N)(Z, (0, Z ′⊥)) =

1

28π2

{
PN⊥Tjj′( ∂

∂z0i
)

[
biTkl(z0)B⊥

jj′ + (b⊥+
j b⊥+

j′ − b⊥j b
⊥
j′)Tkl(z0)bi

]
b⊥k b

⊥
l P

N
}

(Z, (0, Z ′⊥))

=
1

28π2
Tjj′( ∂

∂z0i
)
{
PN⊥

[
biTkl(z0)(2b⊥+

j b⊥+
j′ + 2b⊥j b

⊥+
j′ + 4πδjj′)

+ 2Tkl( ∂
∂z0i

)(b⊥+
j b⊥+

j′ − b⊥j b
⊥
j′)
]
b⊥k b

⊥
l P

N
}

(Z, (0, Z ′⊥))

=
1

28π2
Tjj′( ∂

∂z0i
)
{
bi

(
64π2Tjj′(z0) + 16πTkj′(z0)b⊥j b

⊥
k + 4πδjj′Tkl(z0)b⊥k b

⊥
l

)

− 2Tkl( ∂
∂z0i

)b⊥j b
⊥
j′b

⊥
k b

⊥
l P

N
}

(Z, (0, Z ′⊥)).
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Thus by Theorem 3.1, (3.8), (5.135), (5.142), (5.144) and use a similar equation as

(5.152) for Tjj′( ∂
∂z0i

)Tkl( ∂
∂z0i

)b⊥j b
⊥
j′b

⊥
k b

⊥
l , we get

(5.145) ((L 0
2 )−1PN⊥I2P

N)(0, 0) =
1

28π2
Tjj′( ∂

∂z0i
)
[(

16πbiTjj′(z0)

+
4

3
biTkj′(z0)b⊥j b

⊥
k +

1

3
δjj′biTkl(z0)b⊥k b

⊥
l − 1

8π
Tkl( ∂

∂z0i
)b⊥j b

⊥
j′b

⊥
k b

⊥
l

)
PN

]
(0, 0)

=
1

28π2

[
−64π

3
|Tjj′( ∂

∂z0i
)|2 +

8π

3
Tjj( ∂

∂z0i
)Tkk( ∂

∂z0i
)

−2π
(
2|Tjj′( ∂

∂z0i
)|2 + Tjj( ∂

∂z0i
)Tkk( ∂

∂z0i
)
)]
PN(0, 0)

=
1

28 · 3π
[
−76|Tjj′( ∂

∂z0i
)|2 + 2Tjj( ∂

∂z0i
)Tkk( ∂

∂z0i
)
]
PN(0, 0).

By (3.9), (3.54), (5.140), we get

I3P
N = −

√
−1

8π
T̃ijj′

[
b⊥j b

⊥
j′F1(e

⊥
i ) + Tilmb⊥j b⊥j′

b⊥l b
⊥
m

16π
+

1

2
Tilj′b⊥j b⊥l

]
PN .(5.146)

By (5.5e), (5.14), (5.135), (5.146) and a similar equation as (5.152) for T̃jij′Tklib⊥j b⊥j′b⊥k b⊥l ,

we get

(
(L 0

2 )−1PN⊥I3P
N
)

(0, 0) =

√
−1

64π
T̃ijj′Tijj′PN(0, 0) = 0,(5.147)

as T̃ijj′ is anti-symmetric on i, j and Tijj′ is symmetric on i, j.

By Theorem 3.1, (3.9), (3.54) and (5.135),

(5.148)
(
(L 0

2 )−1PN⊥F1(e
⊥
j )(b⊥+

j + b⊥j )F1(e
⊥
k )
b⊥k
4π
PN
)
(0, 0)

=
1

32π2

(
F1(e

⊥
j )2(b⊥j )2PN

)
(0, 0) = − 1

8π

∑

j

F1(e
⊥
j )2PN(0, 0).

Recall that Tklm is symmetric on k, l,m.

By Theorem 3.1, (3.9), (3.54), (5.83) and (5.135),

(5.149)
{

(L 0
2 )−1PN⊥

(
F1(e

⊥
j )(b⊥+

j + b⊥j )Tklm
b⊥mb

⊥
l b

⊥
k

192π2
+ Tijj′

B⊥
ijj′

64π2
F1(e

⊥
k )b⊥k

)
PN
}

(0, 0)

=
{

(L 0
2 )−1PN⊥F1(e

⊥
j )
(
b⊥j Tklm

b⊥k b
⊥
l b

⊥
m

48π2
+ Tjlm

b⊥l b
⊥
m

4π

)
PN
}

(0, 0)

=
1

32π2

{
F1(e

⊥
j )
(
Tklm

b⊥j b
⊥
k b

⊥
l b

⊥
m

24π
+ Tjlmb⊥l b⊥m

)
PN
}

(0, 0)

=
1

32π2

{
F1(e

⊥
j )
(∑

l 6=j
Tjll

(b⊥j )2(b⊥l )2

8π
+ Tjjj

(b⊥j )4

24π
+ Tjll(b⊥l )2

)
PN
}

(0, 0)

= − 1

16π
F1(e

⊥
j )TjllPN(0, 0).
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As Tklm is symmetric on k, l,m, we know that

T 2
klm = 6

∑

k<l<m

T 2
klm + 3

∑

k 6=m
T 2
kkm + T 2

mmm,(5.150)

TkkmTllm =
∑

k 6=l 6=m6=k
TkkmTllm +

∑

k 6=m
(2TkkmTmmm + T 2

kkm) + T 2
mmm.

From (5.135), (5.150),

(5.151)
(
Tijj′Tklmb⊥i b⊥j b⊥j′b⊥k b⊥l b⊥mPN

)
(0, 0) =

{(
36

∑

k<l<m

T 2
klm(b⊥k )2(b⊥l )2(b⊥m)2

+ 9
∑

k 6=l 6=m6=k
TkkmTllm(b⊥k )2(b⊥l )2(b⊥m)2 + 6

∑

k 6=m
TkkmTmmm(b⊥k )2(b⊥m)4

+9
∑

k 6=m
TmmkTmmk(b⊥k )2(b⊥m)4 + T 2

mmm(b⊥m)6
)
PN

}
(0, 0)

= (−4π)3
(
36

∑

k<l<m

T 2
klm + 9

∑

k 6=l 6=m6=k
TkkmTllm

+ 3
∑

k 6=m
(6TkkmTmmm + 9TmmkTmmk) + 15T 2

mmm

)
PN(0, 0)

= (−4π)3 · 3
(
2T 2

klm + 3TkkmTllm
)
PN(0, 0).

By (5.135),

(5.152)
(
TijmTklmb⊥i b⊥j b⊥k b⊥l PN

)
(0, 0)

=

{[
∑

k 6=l

(
2T 2

klm + TkkmTllm
)
(b⊥k )2(b⊥l )2 + T 2

llm(b⊥l )4

]
PN

}
(0, 0)

= (4π)2
(∑

k 6=l
(2T 2

klm + TkkmTllm) + 3T 2
llm

)
PN(0, 0)

= (4π)2(2T 2
klm + TkkmTllm)PN(0, 0).

By (3.9), (3.54) and (5.83), we have also

(5.153) PN⊥Tijj′B⊥
ijj′Tklmb⊥k b⊥l b⊥mPN =

(
Tijj′Tklmb⊥i b⊥j b⊥j′b⊥k b⊥l b⊥m

+ 36πTijmTklmb⊥i b⊥j b⊥k b⊥l + 36π · 8πTilmTklmb⊥i b⊥k
)
PN .
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Thus from Theorem 3.1, (5.151)-(5.153),

(5.154)

{(
(L 0

2 )−1PN⊥ 1

16π
Tijj′B⊥

ijj′Tklm
b⊥k b

⊥
l b

⊥
m

192π2

)
PN

}
(0, 0)

=
1

210 · 3π3

{( 1

24π
Tijj′Tklmb⊥i b⊥j b⊥j′b⊥k b⊥l b⊥m +

9

4
TijmTklmb⊥i b⊥j b⊥k b⊥l

+36πTilmTklmb⊥i b⊥k
)
PN
}

(0, 0)

=
1

210 · 3π
{
−8(2T 2

klm + 3TkkmTllm) + 36(2T 2
klm + TkkmTllm) − 144T 2

klm

}
PN(0, 0)

=
1

28 · 3π
(
−22T 2

klm + 3TkkmTllm
)
PN(0, 0).

From (5.141), (5.143), (5.145), (5.147), (5.148), (5.149) and (5.154), we get

(5.155) Ψ1,1(0) =
{ 1

28 · 3π
[
−76|Tjj′( ∂

∂z0i
)|2 + 2Tjj( ∂

∂z0i
)Tkk( ∂

∂z0i
) − 22T 2

klm + 3TkkmTllm
]

− 1

24π
Tjj( ∂

∂z0
l

)Tkk( ∂
∂z0

l

) − 1

8π

∑

j

F1(e
⊥
j )2 − 1

16π
F1(e

⊥
j )Tjll

}
PN(0, 0).

From (5.155) we get (5.139). �

Recall that B(Z, e⊥l ) was defined in (5.23).

Lemma 5.13. The following identity holds,

(5.156)

√
−1

π
B(Z, e⊥l ) =

1

2

〈
RTB(R⊥,R0)e⊥l , JR0

〉
− 5

4

〈
∇TY

R (T (ek, e
⊥
l )), JR⊥〉Zk

+
1

2

〈
1

3
RTB(R⊥, e⊥l )R⊥ + ∇TXG

R0 (A(e0k)e
⊥
l )Z0

k , JR0

〉

+
1

8

〈
T (R0, e0j), Je

⊥
l

〉 〈
T (R⊥ −R0, Je0j), JR⊥〉

+
1

4

〈
T (R⊥, e0j ), Je

⊥
l

〉 〈
T (R0, Je0j), JR⊥〉

+
1

8

〈
T (R0, JR0), T (R⊥, e⊥l )

〉
− 1

8

〈
T (R, e⊥l ), T (R⊥, JR0)

〉

+
1

8

〈
T (R⊥, JT (R0, JR0)), Je⊥l

〉
+

1

2

〈
T (R⊥, JR⊥), T (R, e⊥l )

〉
.

Proof. By (5.33), (5.54) and A(R0)A(R0)e⊥l ∈ NG, as A exchanges TXG and NG, we get

(5.157) 〈JR, (∇TX∇TXe⊥,Hl )(R,R)〉 = −1

2

〈
JR, T (R,∇TB

R e⊥l ) + ∇TX
R (T (eHi , e

⊥
l ))Zi

〉

+

〈
JR0,

1

3
RTB(R⊥, e⊥l )R⊥ +RTB(R⊥,R0)e⊥l + ∇TXG

R0 (A(e0k)e
⊥
l )Z0

k

〉
.
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By (1.8), (5.13), (5.53), we have at x0,

− 1

2

〈
JR⊥, T (R,∇TB

R e⊥l )
〉

=
1

4

〈
Je⊥l , T (R0, e0j)

〉 〈
JR⊥, T (R, Je0j )

〉
,(5.158)

− 1

2

〈
JR0,∇TX

R (T (eHi , e
⊥,H
l ))Zi

〉
= −1

4

〈
T (R, e⊥l ), T (R, JR0)

〉
.

By (5.5a), (5.5d), (5.13), (5.53), (5.54) and ∇TX
R (T (eHi , e

H
k ))ZiZk = 0, we have

(5.159) 〈J(∇TX∇TXeHk )(R,R), e
⊥
l 〉Zk =

1

2

〈
T (R,∇TB

R ek), Je
⊥
l

〉
Zk

=
1

2

〈
T (R, 2A(R0)R⊥ + A(R0)R0), Je⊥l

〉

=
1

2

〈
T (R, e0j ), Je⊥l

〉 〈
T (R0, Je0j), JR⊥〉

− 1

4

〈
T (R0, e⊥l ), T (R0, JR0)

〉
+

1

4

〈
T (R⊥, JT (R0, JR0)), Je⊥l

〉
.

From (3.40), (5.5a), (5.13), (5.53) and the fact that A exchanges TXG and NG, we get

〈
J∇TX

R eHk ,∇TX
R e⊥,Hl

〉
Zk =

〈
J∇TB

R ek, A(R0)e⊥l − 1

2
T (R, e⊥l )

〉
Zk(5.160)

=

〈
JA(R0)R0,−1

2
T (R, e⊥l )

〉
+ 2

〈
JA(R0)R⊥, A(R0)e⊥l

〉
,

=
1

4

〈
T (R0, JR0), T (R, e⊥l )

〉
− 1

2

〈
Je⊥l , T (R0, e0j)

〉 〈
JR⊥, T (R0, Je0j)

〉
.

From (5.51), (5.52), (5.61), (5.157)-(5.160), we get

(5.161)

√
−1

π
B(Z, e⊥l ) =

1

8

〈
Je⊥l , T (R0, e0j)

〉 〈
JR⊥, T (R, Je0j)

〉

− 1

4

〈
JR⊥,∇TY

R (T (ei, e
⊥
l ))Zi

〉
− 1

8

〈
T (R, e⊥l ), T (R, JR0)

〉

+
1

2

〈
JR0,

1

3
RTB(R⊥, e⊥l )R⊥ +RTB(R⊥,R0)e⊥l + ∇TXG

R0 (A(e0k)e
⊥
l )Z0

k

〉

+
1

4

〈
T (R, e0j), Je⊥l

〉 〈
T (R0, Je0j ), JR⊥〉− 1

8

〈
T (R0, e⊥l ), T (R0, JR0)

〉

+
1

8

〈
T (R⊥, JT (R0, JR0)), Je⊥l

〉
+

1

4

〈
T (R0, JR0), T (R, e⊥l )

〉

− 1

2

〈
Je⊥l , T (R0, e0j )

〉 〈
JR⊥, T (R0, Je0j )

〉

+
1

2

〈
T (R⊥, JR⊥), T (R, e⊥l )

〉
−
〈
∇TY

R (T (ek, e
⊥
l )), JR⊥〉Zk.

From (5.161) we get (5.156). �

Now we need to compute the contribution from −(L 0
2 )−1PN⊥O2P

N .
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Lemma 5.14. The following identity holds,

(5.162) Ψ1,2(0) =

{
1

16π
rXG
x0

+
1

2π
REG( ∂

∂z0j
, ∂
∂z0j

) +
1

2π
∆XG

log h+
29

25 · 3π |T (e⊥k ,
∂
∂z0j

)|2

+

√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉

+
1

4π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

+
1

32π

∣∣∣
∑

j

Tjj( ∂
∂z0i

)
∣∣∣
2

− 1

26π

〈
(∇TY

· ġTY· )(e⊥j ,e
⊥
j )Je

⊥
k , Je

⊥
k

〉
− 1

25π

〈
(∇TY

· ġTY· )(e⊥j ,e
⊥
k

)Je
⊥
j , Je

⊥
k

〉

+
1

27π
T̃ijk(T̃kji + T̃ijk) +

7

28π

(
2T 2

jkm + TjjmTkkm
)

−
√
−1

16π

( 〈
T (e⊥j , Je

⊥
j ), µ̃E

〉
− 2

〈
Je⊥j ,∇TY

e⊥
j
µ̃E
〉)}

PN(0, 0).

Proof. From Theorem 3.1, (3.9), (3.54), (5.15) and (5.135),

(5.163) 4π
(
(L 0

2 )−1PN⊥

Z⊥
k Z

⊥
l P

N
)

(0, 0) =
(
(L 0

2 )−1PN⊥

Z⊥
l b

⊥
k P

N
)

(0, 0)

=
(
(L 0

2 )−1b⊥k Z
⊥
l P

N
)
(0, 0) =

(b⊥k b⊥l
32π2

PN
)
(0, 0) = −δkl

8π
PN(0, 0).

Set

I4 = −
{

(L 0
2 )−1PN⊥

(
∂
∂z0j

(
B(Z, ∂

∂z0j
)
)
− ∂

∂z0j

(
B(Z, ∂

∂z0j
)
))
PN
}

(0, 0).(5.164)

At first, if Q is a monomial on bi, b
+
i , b⊥j , b

⊥+
j , Zi and the total degree of bi, b

+
i , Z

0
i or

b⊥j , b
⊥+
j , Z⊥

j is odd, then by Theorem 3.1,

(
(L 0

2 )−1PN⊥

QPN
)

(0, 0) = 0.(5.165)

By (5.165), only the monomials of B(Z, e0l ) with odd degree on Z0 have contributions

for I4.

If we denote by B̃Z(e0l ) the odd degree component on Z0 of the difference of B(Z, e0l )

and of the sum the the first two and the last terms of B(Z, e0l ) in (5.45b), then by (5.45b)

we know that B̃Z(e0l ) is a linear function on Z0 and ∂
∂z0j

(
B̃Z( ∂

∂z0j
)
)

and − ∂
∂z0j

(
B̃Z( ∂

∂z0j
)
)

are equal.

Moreover, by (5.5e), (5.163), we know the contribution of the last term of B(Z, e0l ) in

(5.45b) is zero in I4.
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Thus by Remark 5.2, (5.45b) and (5.164),

(5.166) I4 = π
√
−1

{
(L 0

2 )−1PN⊥

[
1

6
∂
∂z0j

〈
RTXG(R0, JR0)R0, ∂

∂z0j

〉

− 1

6
∂
∂z0j

〈
RTXG(R0, JR0)R0, ∂

∂z0j

〉

− 5

4

〈
JR⊥, 2∇TY

R⊥(T ( ∂
∂z0j
, ∂
∂z0j

)) + ∇TY
∂
∂z0

j

(T (e⊥i ,
∂
∂z0j

))Z⊥
i −∇TY

∂
∂z0j

(T (e⊥i ,
∂
∂z0j

))Z⊥
i

〉

+ 3
√
−1
〈
RTB(R⊥, ∂

∂z0j
)R⊥, ∂

∂z0j

〉
− 3

√
−1

4

〈
JR⊥, T ( ∂

∂z0j
, e0i )

〉〈
JR⊥, T (e0i ,

∂
∂z0j

)
〉

−
√
−1

4

〈
T (R⊥, ∂

∂z0j
), T (R⊥, ∂

∂z0
j

)
〉

+
〈
T (R⊥, JR⊥), T ( ∂

∂z0
j

, ∂
∂z0j

)
〉]
PN
}

(0, 0).

By (5.92), (5.107a), (5.163) and (5.166), comparing with (5.103) and (5.104), we get

(5.167) I4 =

{
− 1

6π

〈
RTXG( ∂

∂z0i
, ∂
∂z0i

) ∂
∂z0j

+RTXG( ∂
∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉

+
5
√
−1

27π

〈
Je⊥k , 2∇TY

e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)) + ∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) −∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

))

〉

+
3

32π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

3

64π
|T ( ∂

∂z0i
, ∂
∂z0j

)|2

− 1

27π
|T (e⊥k ,

∂
∂z0j

)|2 −
√
−1

32π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉}

PN(0, 0).

By (3.9), (3.54) and (5.83),

(z0
i z

0
jP

N)(Z, 0) = (z0
i

bj
2π
PN)(Z, 0) =

1

2π
((bjz

0
i + 2δij)P

N)(Z, 0),

Z⊥
k Z

⊥
l P

N =
1

16π2
(b⊥k b

⊥
l + 4πδkl)P

N ,

(4π)4(Z⊥
k )4PN =

(
(b⊥k )4 + 24π(b⊥k )2 + 3 · (4π)2

)
PN .

(5.168)
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From Theorem 3.1, (3.9), (3.54), (5.92), (5.135), (5.142) and (5.168),

(PN⊥

Z⊥
k Z

⊥
l P

N)(0, 0) =
1

16π2
(b⊥k b

⊥
l P

N)(0, 0) = −δkl
4π
,

(
(L 0

2 )−1PN⊥

bjz
0
iZ

⊥
k Z

⊥
l P

N
)

(0, 0)(5.169)

=
1

16π2

{( 1

12π
b⊥k b

⊥
l bjz

0
i + δklbjz

0
i

)
PN
}

(0, 0) = − 1

12π2
δijδklP

N(0, 0),

(
(L 0

2 )−1b⊥l Z
⊥
k z

0
i z

0
jP

N
)
(0, 0) =

1

8π2

{
b⊥l b

⊥
k

( bj
12π

z0
i +

2

8π
δij

)
PN

}
(0, 0)

= − 1

24π2
δijδklP

N(0, 0),
(
(L 0

2 )−1PN⊥

Z⊥
l Z

⊥
k z

0
i z

0
jP

N
)

(0, 0)

=
1

4π

{
(L 0

2 )−1PN⊥

(b⊥l Z
⊥
k + δkl)z

0
i z

0
jP

N
}

(0, 0) =
−7

96π3
δijδklP

N(0, 0).

By (5.5e), (5.106), (5.107a), (5.169) and comparing with (5.108), we get

(5.170) −
(
(L 0

2 )−1PN⊥

bjB(Z, ∂
∂z0j

)PN
)

(0, 0)

=
{
− 1

12π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i

+RTXG( ∂
∂z0i
, ∂
∂z0i

) ∂
∂z0j
, ∂
∂z0j

〉

+
5
√
−1

48π

〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + ∇TY
e⊥
k

(T ( ∂
∂z0

j

, ∂
∂z0j

)), Je⊥k

〉

+
1

8π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

1

16π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

− 1

96π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

−
√
−1

24π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉}

P (0, 0).

From (5.156) and (5.165),

(5.171)
(
(L 0

2 )−1b⊥l B(Z, e⊥l )PN
)
(0, 0) = −π

√
−1
{
(L 0

2 )−1b⊥l
[1
2

〈
RTB(R⊥,R0)e⊥l , JR0

〉
− 5

4

〈
∇TY

R⊥(T (e⊥k , e
⊥
l )), JR⊥〉Z⊥

k

− 5

4

〈
∇TY

R0 (T (e0k, e
⊥
l )), JR⊥〉Z0

k −
1

8

〈
T (R0, e0j), Je

⊥
l

〉 〈
T (R0, Je0j ), JR⊥〉

+
1

8

〈
T (R0, JR0), T (R⊥, e⊥l )

〉
− 1

8

〈
T (R0, e⊥l ), T (R⊥, JR0)

〉

+
1

8

〈
T (R⊥, JT (R0, JR0)), Je⊥l

〉
+

1

2

〈
T (R⊥, JR⊥), T (R⊥, e⊥l )

〉 ]
PN

}
(0, 0).

As T is anti-symmetric, from (3.9), (3.54), we get

b⊥l
〈
∇TY

R⊥(T (e⊥k , e
⊥
l )), JR⊥〉Z⊥

k P
N = −

(
∂

∂Z⊥
l

〈
∇TY

R⊥(T (e⊥k , e
⊥
l )), JR⊥〉 )Z⊥

k P
N ,(5.172)

b⊥l
〈
T (R⊥, JR⊥), T (R⊥, e⊥l )

〉
PN = −

〈
T (R⊥, Je⊥l ) + T (e⊥l , JR⊥), T (R⊥, e⊥l )

〉
PN .
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From (5.5e), (5.123), (5.163), (5.169), (5.171), (5.172) and the anti-symmetric property

of T , we get

(5.173) − 1

2

(
(L 0

2 )−1b⊥l B(Z, e⊥l )PN
)
(0, 0)

=

√
−1

2π

{
− 5

27

(〈
∇TY
e⊥
k

(T (e⊥k , e
⊥
l )), Je⊥l

〉
+
〈
∇TY
e⊥
l

(T (e⊥k , e
⊥
l )), Je⊥k

〉)

+
5

96

〈
∇TY

∂
∂z0j

(T ( ∂
∂z0j
, e⊥l )) + ∇TY

∂
∂z0j

(T ( ∂
∂z0j
, e⊥l )), Je⊥l

〉

+
1

26

〈
T (e⊥k , Je

⊥
l ) + T (e⊥l , Je

⊥
k ), T (e⊥k , e

⊥
l )
〉}

PN(0, 0) = 0.

By (5.101), (5.123), (5.164), (5.167), (5.170), (5.173) and since RTXG(·, ·) is a (1, 1)-

form, comparing with (5.104) and (5.108), we get

(5.174) −
(
(L 0

2 )−1PN⊥

I1P
N
)

(0, 0) =

{
− 1

2π

〈
RTXG( ∂

∂z0i
, ∂
∂z0i

) ∂
∂z0j
, ∂
∂z0j

〉

+
7

6

[
5
√
−1

25π

〈
Je⊥k ,∇TY

e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)) + ∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

))

〉

+
3

16π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

3

32π
|T ( ∂

∂z0i
, ∂
∂z0j

)|2

− 1

26π
|T (e⊥k ,

∂
∂z0j

)|2 −
√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉]}

PN(0, 0).

Recall that from (3.6), (5.5a), (5.5b) and (5.13),

|A(e0i )e
⊥
k |2 = 4|A( ∂

∂z0i
)e⊥k |2 = |T ( ∂

∂z0i
, Je0j )|2 = 2|T ( ∂

∂z0i
, ∂
∂z0j

)|2,
〈
A(e0i )e

0
i , A(e0j )e

0
j

〉
= 4
∣∣∣
∑

i

T ( ∂
∂z0i
, ∂
∂z0i

)
∣∣∣
2

,

|A(e0i )e
0
j |2 =

1

4
|T (e0i , Je

0
j)|2 = |T ( ∂

∂z0i
, Je0j)|2 = 2|T ( ∂

∂z0i
, ∂
∂z0j

)|2.

(5.175)

From (5.92), (5.110), (5.163), (5.175) and since RTXG(·, ·) is a (1, 1)-form (comparing

with (5.112b), (5.113)), we get

(5.176) −
(
(L 0

2 )−1PN⊥

I2P
N
)

(0, 0) =

{
4

3π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉

− 1

8π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
− 1

48π

〈
RTB(e⊥k , e

⊥
j )e⊥k , e

⊥
j

〉
+

3

16π
|T ( ∂

∂z0i
, ∂
∂z0j

)|2
}
PN(0, 0).
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By (3.6), (3.54), (5.24), (5.82), (5.92), (5.111), (5.163), (5.175) and since RTXG(·, ·) is

a (1, 1)-form (comparing with (5.112a)), we get

(5.177) −
(
(L 0

2 )−1PN⊥ 〈Γii(R), el〉∇0,el
PN
)

(0, 0)

=
{

(L 0
2 )−1PN⊥

(2

3

〈
RTXG(R0, e0i )e

0
i ,

∂
∂z0j

〉
bj

+
1

2

〈
RTB(R⊥, e0i )e

0
i + A(e0i )A(e0i )R⊥, e⊥k

〉
b⊥k

)
PN

}
(0, 0)

=

{
− 1

3π

〈
RTXG( ∂

∂z0j
, e0i )e

0
i ,

∂
∂z0j

〉
− 1

16π

〈
RTB(e⊥k , e

0
i )e

0
i , e

⊥
k

〉
+

1

16π
|A(e0i )e

⊥
k |2
}
PN(0, 0)

=

{〈
− 2

3π
RTXG( ∂

∂z0
j

, ∂
∂z0i

) ∂
∂z0

i

+
1

4π
RTB(e⊥k ,

∂
∂z0

j

)e⊥k ,
∂
∂z0j

〉
+

1

8π
|T ( ∂

∂z0
i

, ∂
∂z0j

)|2
}
PN(0, 0).

By L
0
2 P

N = 0, (5.24), (5.92), (5.169), (5.175) and since RTXG(·, ·) is a (1, 1)-form

(comparing with (5.114)), we get

(5.178) −
{

(L 0
2 )−1PN⊥

[1
4
K2(R) − 3

8

(∑

l

〈
A(e0l )e

0
l ,R⊥〉)2

,L 0
2

]
PN
}

(0, 0)

=
{
PN⊥

[1
4
K2(R) − 3

8

(∑

l

〈
A(e0l )e

0
l ,R⊥〉 )2]

PN
}

(0, 0)

=
1

4

{
PN⊥

[〈
1

3
RTXG(R0, e0i )R0 +RTB(R⊥, e0i )R⊥, e0i

〉

+
1

3

〈
RTB(R⊥, e⊥i )R⊥, e⊥i

〉
+

1

2

(∑

i

〈
A(e0i )e

0
i ,R⊥〉 )2

− |A(e0i )R⊥|2
]
PN

}
(0, 0)

=
( 1

6π

〈
RTXG( ∂

∂z0j
, e0i )e

0
i ,

∂
∂z0j

〉
− 1

16π

〈
RTB(e⊥k , e

0
i )e

⊥
k , e

0
i

〉

− 1

48π

〈
RTB(e⊥k , e

⊥
i )e⊥k , e

⊥
i

〉
− 1

32π

∣∣∣
∑

i

A(e0i )e
0
i

∣∣∣
2

+
1

16π
|A(e0i )e

⊥
k |2
)
PN(0, 0),

=
( 1

3π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉
− 1

4π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉

− 1

8π

∣∣∣
∑

i

T ( ∂
∂z0

i

, ∂
∂z0i

)
∣∣∣
2

+
1

8π
|T ( ∂

∂z0
i

, ∂
∂z0j

)|2 − 1

48π

〈
RTB(e⊥k , e

⊥
j )e⊥k , e

⊥
j

〉 )
PN(0, 0).
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By (3.12), (3.54), (5.82), (5.92), (5.163) and (5.175),

−
{

(L 0
2 )−1PN⊥

(
− 1

2

〈
A(e0l )e

0
l ,R⊥〉∇A(e0

k
)e0

k
+ 2

〈
A(e0i )e

0
j ,R⊥〉∇A(e0i )e0j

(5.179)

+
2

3

〈
RTB(R⊥, e⊥i )e⊥i , ej

〉
∇0,ej

)
PN
}

(0, 0)

= − 1

16π

(
− 1

2

∣∣∣
∑

l

A(e0l )e
0
l

∣∣∣
2

+ 2|A(e0i )e
0
j |2 +

2

3

〈
RTB(e⊥j , e

⊥
i )e⊥i , e

⊥
j

〉 )
PN(0, 0),

=
( 1

8π

∣∣∣
∑

i

T ( ∂
∂z0i
, ∂
∂z0i

)
∣∣∣
2

− 1

4π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

+
1

24π

〈
RTB(e⊥k , e

⊥
j )e⊥k , e

⊥
j

〉)
PN(0, 0),

−
{

(L 0
2 )−1PN⊥

(−REB(R, ei))∇0,ei
PN
}

(0, 0) =
1

2π
REB( ∂

∂z0j
, ∂
∂z0j

)PN(0, 0).

For Fij;kl ∈ C, from Theorem 3.1, (5.15), (5.135), (5.168) and comparing with (5.152),

we get

(5.180)
{

(L 0
2 )−1PN⊥

Fij;klZ
⊥
i Z

⊥
j Z

⊥
k Z

⊥
l P

N
}

(0, 0)

=
{

(L 0
2 )−1PN⊥

[∑

j 6=k
(Fjj;kk + Fkj;kj + Fkj;jk)(Z

⊥
j )2(Z⊥

k )2 + Fkk;kk(Z
⊥
k )4
]
PN
}

(0, 0)

=
1

28π4

{
PN⊥

[∑

j 6=k
(Fjj;kk + Fkj;kj + Fkj;jk)

((b⊥j )2(b⊥k )2

16π
+

1

2
((b⊥j )2 + (b⊥k )2)

)

+Fkk;kk

((b⊥k )4

16π
+ 3(b⊥k )2

)]
PN

}
(0, 0)

=
−3

28π3
(Fjj;kk + Fkj;kj + Fkj;jk)P

N(0, 0).

By (5.45a), (5.74),

1

9

∑

i

[
(∂RR

LB)x0(R, ei)
]2

= − π2
∑

i

〈
JT (R⊥, e0i ),R⊥〉2(5.181)

− π2
∑

j

〈
JT (R, e⊥j ),R⊥〉2 .

By (3.6), (5.14), (5.180) and Tkl(e0i ) is symmetric on k, l, we get

(5.182) − π2
∑

i

(
(L 0

2 )−1PN⊥ 〈
JT (R⊥, e0i ),R⊥〉2 PN

)
(0, 0)

= −π2
(
(L 0

2 )−1PN⊥Tjj′(e0i )Tkl(e0i )Z⊥
j Z

⊥
j′Z

⊥
k Z

⊥
l P

N
)

(0, 0)

=
3

28π

(
2Tjk(e0i )2 + Tjj(e0i )Tkk(e0i )

)
PN(0, 0)

=
3

26π

(
2|T (e⊥k ,

∂
∂z0j

)|2 +
∣∣∣
∑

j

Tjj( ∂
∂z0i

)
∣∣∣
2)
PN(0, 0).
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In the same way, by (5.5e), (5.14), (5.180), we get

(5.183) − π2
∑

j

(
(L 0

2 )−1PN⊥ 〈
JT (R⊥, e⊥j ),R⊥〉2 PN

)
(0, 0)

=
3

28π
T̃ijk(T̃ijk + T̃kji)PN(0, 0).

By (5.14), (5.169),

(5.184) − π2
∑

j

(
(L 0

2 )−1PN⊥ 〈
JT (R0, e⊥j ),R⊥〉2 PN

)
(0, 0)

=
7

48π
|Tjk( ∂

∂z0i
)|2PN(0, 0) =

7

48π
|T (e⊥k ,

∂
∂z0j

)|2PN(0, 0).

By (5.45a) and (5.115), the total degree of Z0, ∇0,e0i
in the fourth term of O′

2 in (5.26) is

1, thus the contribution of the fourth term of O′
2 in (5.26) for −((L 0

2 )−1PN⊥O′
2P

N)(0, 0)

is zero. By (5.26), (5.174), (5.176)-(5.179) and (5.181)-(5.184), comparing with (5.117),

we get

(5.185) −
(
(L 0

2 )−1PN⊥O′
2P

N
)

(0, 0) =

{
1

2π

〈
RTXG( ∂

∂z0
j

, ∂
∂z0i

) ∂
∂z0

i

, ∂
∂z0j

〉

+
7

6

[
5
√
−1

25π

〈
Je⊥k ,∇TY

e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)) + ∇TY
∂
∂z0j

(T (e⊥k ,
∂
∂z0j

))

〉
+

3

32π
|T ( ∂

∂z0i
, ∂
∂z0j

)|2

+
3

16π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

7

26π
|T (e⊥k ,

∂
∂z0j

)|2 −
√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉]

− 1

8π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

3

16π
|T ( ∂

∂z0i
, ∂
∂z0j

)|2 +
3

32π
|T (e⊥k ,

∂
∂z0j

)|2

+
3

64π

∣∣∣
∑

j

Tjj( ∂
∂z0i

)
∣∣∣
2

+
3

28π
T̃ijk(T̃ijk + T̃kji) +

1

2π
REG( ∂

∂z0j
, ∂
∂z0j

)

}
PN(0, 0).

By (5.62) and (5.165),

(5.186) − 4π2
(
(L 0

2 )−1PN⊥O′′
2P

N
)

(0, 0) = −4π2
{

(L 0
2 )−1PN⊥

[
− 1

3

〈
(∇TY

· ġTY· )(R0,R0)JR⊥ + (∇TY
· ġTY· )(R⊥,R⊥)JR⊥, JR⊥〉

+
1

6

〈
∇TY

R0 (T (e⊥j , Jx0e
0
i ))Z

⊥
j Z

0
i + ∇TY

R⊥(T (e0j , Jx0e
0
i ))Z

0
jZ

0
i , JR⊥〉

+
1

3

〈
RTB(R⊥,R0)R0,R⊥〉− 1

12

∑

l

〈
T (R0, el), JR⊥〉2

− 1

12

∑

l

〈
T (R⊥, el), JR⊥〉2 +

7

12
|T (R⊥, JR⊥)|2

]
PN

}
(0, 0).

Now {el} = {e0i } ∪ {e⊥k }.
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By (5.107a), (5.119), (5.123), (5.169), (5.180), (5.182), (5.183), (5.186) and comparing

with (5.120),

(5.187) − 4π2
(
(L 0

2 )−1PN⊥O′′
2P

N
)

(0, 0) =

{
7

24π

[
−8

3
∇ ∂

∂z0
j

∇ ∂
∂z0j

log h

+

√
−1

3

〈
−∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) −∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉

−1

3

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

− 1

6

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

− 2

3

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉]

− 1

26π

〈
(∇TY

· ġTY· )(e⊥j ,e
⊥
j )Je

⊥
k , Je

⊥
k

〉
− 1

25π

〈
(∇TY

· ġTY· )(e⊥j ,e
⊥
k

)Je
⊥
j , Je

⊥
k

〉

− 1

28π

(
8|T (e⊥k ,

∂
∂z0j

)|2 + 4
∣∣∣
∑

j

Tjj( ∂
∂z0i

)
∣∣∣
2

+ T̃ijk(T̃ijk + T̃kji)
)

+
7

28π

(
2T 2

jkm + TjjmTkkm
)}

PN(0, 0).

By (5.73), (5.76), (5.163), (5.185) and (5.187), comparing with (5.100), we have

(5.188) Ψ1,2(0) = −
(
(L 0

2 )−1PN⊥

(O′
2 + 4π2O′′

2)P
N
)

(0, 0)

−
√
−1

16π

( 〈
T (e⊥j , Je

⊥
j ), µ̃E

〉
− 2

〈
Je⊥j ,∇TY

e⊥j
µ̃E
〉)

PN(0, 0)

=

{
1

2π

〈
RTXG( ∂

∂z0j
, ∂
∂z0i

) ∂
∂z0i
, ∂
∂z0j

〉
+

1

2π
REG( ∂

∂z0j
, ∂
∂z0j

)

+
7

6

[
1

6π
∆XG

log h +
1

48π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

1

96π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

−
√
−1

16π

〈
T (e⊥k , Je

⊥
k ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉

+
13

192π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

+
7
√
−1

96π

〈
∇TY

∂
∂z0j

(T (e⊥k ,
∂
∂z0j

)) + ∇TY
e⊥
k

(T ( ∂
∂z0j
, ∂
∂z0j

)), Je⊥k

〉]

− 1

8π

〈
RTB(e⊥k ,

∂
∂z0j

)e⊥k ,
∂
∂z0j

〉
+

3

16π
|T ( ∂

∂z0i
, ∂
∂z0j

)|2 +
1

16π
|T (e⊥k ,

∂
∂z0j

)|2

+
1

32π

∣∣∣
∑

j

Tjj( ∂
∂z0i

)
∣∣∣
2

+
1

27π
T̃ijk(T̃ijk + T̃kji) +

7

28π

(
2T 2

jkm + TjjmTkkm
)

− 1

26π

〈
(∇TY

· ġTY· )(e⊥j ,e
⊥
j )Je

⊥
k , Je

⊥
k

〉
− 1

25π

〈
(∇TY

· ġTY· )(e⊥j ,e
⊥
k

)Je
⊥
j , Je

⊥
k

〉

−
√
−1

16π

( 〈
T (e⊥j , Je

⊥
j ), µ̃E

〉
− 2

〈
Je⊥j ,∇TY

e⊥
j
µ̃E
〉)}

PN(0, 0).

By (5.123), (5.130), the term 7
6
[· · · ] in (5.188) is 7

6

(
3
8π

∆XG
log h+ 1

8π
|T (e⊥k ,

∂
∂z0j

)|2
)
.

By (5.129) and (5.188), we get (5.162).

The proof of Lemma 5.14 is complete. �
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Lemma 5.15. The following identity holds,
〈
(∇TY

e⊥
k
ġTYe⊥

k
)Je⊥l , Je

⊥
l

〉
=4∇e⊥

k
∇e⊥

k
log h,

〈
(∇TY

e⊥
k
ġTYe⊥

l
)Je⊥l , Je

⊥
k

〉
=4∇e⊥

k
∇e⊥

k
log h + 2

∣∣∣
∑

l

Tll( ∂
∂z0j

)
∣∣∣
2

(5.189)

− 2|T (e⊥k ,
∂
∂z0j

)|2 +
1

2
(T̃jki + T̃ijk)T̃ijk.

Proof. By using the same argument as in (5.119), we get the first equation of (5.189).

Recall that P THX , P TY are the projections from TX = THX ⊕ TY onto THX,TY .

By (1.3), (1.7), (3.1), (3.40) and (3.41) (cf. also (5.31)),

(P THXJe⊥,Hl )|µ−1(0) = 0, (Je⊥,Hl )x0 ∈ TY,(5.190a)

(∇TX
e⊥,H
k

e⊥,Hl )x0 = −1

2
T (e⊥k , e

⊥
l ),(5.190b)

(∇TX
e0
j
e⊥,Hl )x0 = (A(e0j )e

⊥
l )H − 1

2
T (e0j , e

⊥
l ),

(∇TX
Je⊥,H

l

eHk )x0 =
1

2

〈
T (ek, ej), Je

⊥
l

〉
eHj +

〈
T (ek, Je

⊥
l ), Je⊥j

〉
Je⊥j .(5.190c)

From (5.190a), we get

∇TX
e0i
P THXJe⊥,Hl = ∇TX

Je⊥,H
k

P THXJe⊥,Hl = 0.(5.191)

By (3.40), (5.14), (5.71) and (5.190b), we get at x0,

∇TX
e⊥,H
k

P THXJe⊥,Hl = ∇THX
e⊥,H
k

P THXJe⊥,Hl(5.192)

= −1

2
JT (e⊥k , e

⊥
l ) +

1

2

〈
JT (e⊥k , ej), e

⊥
l

〉
ej

= −1

2
(T̃klj − T̃kjl)e⊥j +

1

2

〈
JT (e⊥k , e

0
j), e

⊥
l

〉
e0j .

By (5.6a), (5.190b) and (5.190c), at x0,

(5.193) [e⊥,Hk , Je⊥,Hl ] = ∇TX

e⊥,H
k

Je⊥,Hl −∇TX

Je⊥,H
l

e⊥,Hk = J∇TX

e⊥,H
k

e⊥,Hl −∇TX

Je⊥,H
l

e⊥,Hk

= −1

2
JT (e⊥k , e

⊥
l ) +

1

2

〈
JT (e⊥k , ej), e

⊥
l

〉
ej −

〈
T (e⊥k , Je

⊥
j ), Je⊥l

〉
Je⊥,Hj .

By (5.14), (5.191), (5.192) and (5.193), we get at x0,

(5.194)
〈
∇TX

[e⊥,H
k

,Je⊥,H
l

]
P THXJe⊥,Hl , e⊥,Hk

〉

= −1

2

〈
∇TX
JT (e⊥

k
,e⊥

l
)−〈JT (e⊥

k
,e⊥j ),e⊥

l 〉e⊥j P
THXJe⊥,Hl , e⊥,Hk

〉

=
1

4
(T̃klj − T̃kjl)(T̃jlk − T̃jkl).
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By (5.6a), (5.190b), (5.191) and (5.192), at x0,

∇TX
e0,H
j

P TY Je⊥,Hl = J∇TX
e0,H
j

e⊥,Hl = JA(e0j )e
⊥
l − 1

2
JT (e0j , e

⊥
l ),

∇TX
e⊥,H
k

P TY Je⊥,Hl = J∇TX
e⊥,H
k

e⊥,Hl −∇TX
e⊥,H
k

P THXJe⊥,Hl(5.195)

= −1

2

〈
JT (e⊥k , ej), e

⊥
l

〉
ej = −1

2
T̃kjle⊥j − 1

2

〈
JT (e⊥k , e

0
j), e

⊥
l

〉
e0j .

Thus by (5.195), at x0,

∇TY
e⊥,H
k

P TY Je⊥,Hl = P TY∇TX
e⊥,H
k

P TY Je⊥,Hl = 0.(5.196)

By (1.3), (1.6), (1.7) and (5.196), at x0,

(5.197)〈
(∇TY

e⊥
k
ġTYe⊥

l
)Je⊥l , Je

⊥
k

〉
= e⊥k

〈
ġTYe⊥

l
P TY Je⊥l , P

TY Je⊥k

〉
= 2e⊥k

〈
∇TX
PTY Je⊥

l
e⊥l , P

TY Je⊥k

〉

= 2e⊥k

〈
∇TX
Je⊥

l
e⊥l , Je

⊥
k

〉
− 2e⊥k

〈
∇TX
PTHXJe⊥

l

e⊥l , Je
⊥
k

〉
− 2e⊥k

〈
∇TX
PTY Je⊥

l
e⊥l , P

THXJe⊥k

〉
.

By (5.5d), (5.14), (5.190a), (5.190b) and (5.192), at x0

(5.198) − 2e⊥k

〈
∇TX
PTHXJe⊥

l

e⊥l , Je
⊥
k

〉
= −2

〈
∇TX

∇TX

e⊥
k

PTHXJe⊥
l

e⊥l , Je
⊥
k

〉

=

〈
T
(
− 1

2
(T̃klj − T̃kjl)e⊥j +

1

2

〈
JT (e⊥k , e

0
j), e

⊥
l

〉
e0j , e

⊥
l

)
, Je⊥k

〉

=
1

2
(T̃klj − T̃kjl)T̃jlk +

1

2

〈
T (e0j , e

⊥
l ), Je⊥k

〉 〈
JT (e⊥k , e

0
j ), e

⊥
l

〉

=
1

2
(T̃klj − T̃kjl)T̃jlk +

1

2
|T (e⊥k , e

0
j )|2.

By (5.5e), (5.14), (5.190a), (5.190b) and (5.192), at x0, we have

(5.199) − 2e⊥k

〈
∇TX
PTY Je⊥

l
e⊥l , P

THXJe⊥k

〉
= −2

〈
∇TX
PTY Je⊥

l
e⊥l ,∇TX

e⊥
k
P THXJe⊥k

〉

= −1

2

〈
JT (e⊥k , ej), e

⊥
k

〉 〈
T (e⊥l , ej), Je

⊥
l

〉
=

1

2
Tll(e0j )Tkk(e0j ).

Now by (5.6a),

(5.200) e⊥k

〈
∇TX
Je⊥

l
e⊥l , Je

⊥
k

〉
= −e⊥k

〈
∇TX
Je⊥

l
Je⊥l , e

⊥
k

〉

= −e⊥k
〈
∇TX
PTY Je⊥

l
P TY Je⊥l + ∇TX

PTHXJe⊥
l

P TY Je⊥l + ∇TX
Je⊥

l
P THXJe⊥l , e

⊥
k

〉
.
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By Theorem 5.1, (1.7), (5.190a) and (5.192), at x0,

(5.201) − 2e⊥k

〈
∇TX
PTHXJe⊥

l

P TY Je⊥l , e
⊥
k

〉
= −2

〈
∇TX

∇TX

e⊥
k

PTHXJe⊥
l

P TY Je⊥l , e
⊥
k

〉

= −
〈
T
(
− 1

2
(T̃klj − T̃kjl)e⊥j +

1

2

〈
JT (e⊥k , e

0
j), e

⊥
l

〉
e0j , e

⊥
k

)
, Je⊥l

〉

= −1

2
(T̃klj − T̃kjl)T̃jkl −

1

2
|T (e⊥k , e

0
j )|2.

And by (5.5d), (5.190a)-(5.190c), (5.191), (5.192), (5.194) and (5.201), at x0,

(5.202)

− 2e⊥k

〈
∇TX
Je⊥

l
P THXJe⊥l , e

⊥
k

〉
= −2

〈(
∇TX
Je⊥

l
∇TX
e⊥
k

+ ∇TX
[e⊥,H

k
,Je⊥,H

l
]

)
P THXJe⊥,Hl , e⊥k

〉

= −
〈
T
(
− 1

2
(T̃klj − T̃kjl)e⊥j +

1

2

〈
JT (e⊥k , ej), e

⊥
l

〉
ej , e

⊥
k

)
, Je⊥l

〉
−1

2
(T̃klj−T̃kjl)(T̃jlk−T̃jkl)

= −1

2
(T̃klj − T̃kjl)T̃jlk −

1

2
|T (e⊥k , e

0
j )|2.

Finally, by (1.4), (1.7), (1.24) and (5.196), as in (5.119),

(5.203) − 2e⊥k

〈
∇TX
PTY Je⊥

l
P TY Je⊥l , e

⊥
k

〉
= 2e⊥k

〈
T (e⊥k , P

TY Je⊥l ), P TY Je⊥l
〉

=
〈
(∇TY

e⊥
k
ġTYe⊥

k
)Je⊥l , Je

⊥
l

〉
= 4∇e⊥

k
∇e⊥

k
log h.

Thus by (5.197)-(5.203),

(5.204)
〈
(∇TY

e⊥
k
ġTYe⊥

l
)Je⊥l , Je

⊥
k

〉
= 4∇e⊥

k
∇e⊥

k
log h− 1

2
|T (e⊥k , e

0
j )|2

+
1

2
Tll(e0j)Tkk(e0j) −

1

2
(T̃klj − T̃kjl)T̃jkl.

From (3.6) and (5.204), we get (5.189). �

Proof of Theorem 0.7. By (5.14), (5.94),

∑

k

F1(e
⊥
k )2 = −

〈
µ̃Ex0

, µ̃Ex0

〉
gTY −

〈
µ̃E,

3

2

√
−1T (e⊥l , Je

⊥
l ) + 2T ( ∂

∂z0j
, ∂
∂z0j

)

〉

+
∣∣∣
∑

j

T ( ∂
∂z0j
, ∂
∂z0j

)
∣∣∣
2

+
9

16
TllmTkkm − 3

√
−1

2

〈
T (e⊥l , Je

⊥
l ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉
,

F1(e
⊥
k )Tkll = −

√
−1
〈
T (e⊥l , Je

⊥
l ), µ̃E + T ( ∂

∂z0
j

, ∂
∂z0j

)
〉

+
3

4
TllmTkkm.

(5.205)
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By (5.137), (5.138), (5.139) and (5.205), we have

(5.206) (Ψ1,1 + Ψ∗
1,1 + Ψ1,3 − Ψ1,4)(0) =

{
− 1

2π

∑

k

F1(e
⊥
k )2 − 1

8π
F1(e

⊥
k )Tkll

− 13

26 · 3πT
2
klm +

1

27π
TkkmTllm − 11

48π

∣∣∣Tkl( ∂
∂z0i

)
∣∣∣
2

− 1

8π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2
}
PN(0, 0)

=

{
1

2π

〈
µ̃Ex0

, µ̃Ex0

〉
gTY +

1

π

〈
µ̃E ,

7

8

√
−1T (e⊥l , Je

⊥
l ) + T ( ∂

∂z0
l

, ∂
∂z0

l

)

〉

− 1

2π

∣∣∣
∑

j

T ( ∂
∂z0j
, ∂
∂z0j

)
∣∣∣
2

+
7
√
−1

8π

〈
T (e⊥l , Je

⊥
l ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉
− 47

27π
TkkmTllm

− 13

26 · 3πT
2
klm − 11

48π

∣∣∣T (e⊥k ,
∂
∂z0j

)
∣∣∣
2

− 1

8π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2
}
PN(0, 0).

By (5.162) and (5.189), we get

(5.207) Ψ1,2(0) + Ψ1,2(0)∗ =

{
1

8π
rXG
x0

+
1

π
REG( ∂

∂z0j
, ∂
∂z0j

) +
1

π
∆XG

log h

− 3

8π
∇e⊥

k
∇e⊥

k
log h +

35

48π
|T (e⊥k ,

∂
∂z0j

)|2 +

√
−1

8π

〈
T (e⊥l , Je

⊥
l ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉

+
1

2π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

− 1

16π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2

+
1

26π

[
T̃ijk(T̃kji + T̃ijk) − 2(T̃jki + T̃ijk)T̃ijk

]

+
7

27π

(
2T 2

jkm + TjjmTkkm
)
−
√
−1

8π

( 〈
T (e⊥l , Je

⊥
l ), µ̃E

〉
− 2

〈
Je⊥k ,∇TY

e⊥
k
µ̃E
〉)}

PN(0, 0).

Thus by (5.132), (5.206) and (5.207), as T̃ijk is anti-symmetric on i, j, we get

(5.208) P (2)(0, 0) =

{
1

8π
rXG
x0

+
1

π
REG( ∂

∂z0j
, ∂
∂z0j

) +
1

π
∆XG

log h− 3

8π
∇e⊥

k
∇e⊥

k
log h

+
1

2π
|T (e⊥k ,

∂
∂z0j

)|2 +
1

2π

∣∣∣T ( ∂
∂z0i
, ∂
∂z0j

)
∣∣∣
2

− 1

2π

∣∣∣
∑

j

T ( ∂
∂z0j
, ∂
∂z0j

)
∣∣∣
2

+

√
−1

π

〈
T (e⊥l , Je

⊥
l ), T ( ∂

∂z0j
, ∂
∂z0j

)
〉
− 3

16π

∣∣∣
∑

k

Tkk( ∂
∂z0i

)
∣∣∣
2

+
1

24π
T 2
klm

− 5

16π
TkkmTllm +

1

26π
T̃ijk(3T̃kji − T̃ijk) +

1

2π

〈
µ̃Ex0

, µ̃Ex0

〉
gTY

+
1

π

〈
µ̃E,

3

4

√
−1T (e⊥l , Je

⊥
l ) + T ( ∂

∂z0
l

, ∂
∂z0

l

)

〉
+

√
−1

4π

〈
Je⊥k ,∇TY

e⊥
k
µ̃E
〉}

PN(0, 0).

By Theorem 5.1, (1.4), (1.24), (5.5c) and (5.14), as same as in (5.119), we get for

U ∈ Tx0XG,

Tllm =
〈
T (e⊥m, Je

⊥
l ), Je⊥l

〉
= 2∇e⊥m

log h, T (e⊥l , Je
⊥
l ) = 2(∇e⊥

k
log h)Je⊥k ,

Tkk(U) = −2
〈
T (JU, Je⊥k ), Je⊥k

〉
= −

〈
ġTYJU Je

⊥
k , Je

⊥
k

〉
= −4∇JU log h.

(5.209)
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By (5.136), (5.208) and (5.209), we get Theorem 0.7. �

5.6. Coefficient Φ1: general case. We use the general assumption at the beginning

of this Section, but we do not suppose that J = J in (0.2).

Let ∂
Lp⊗E,∗

be the formal adjoint of the Dolbeault operator ∂
Lp⊗E

on the Dolbeault

complex Ω0,•(X,Lp ⊗ E) with the scalar product 〈 〉 induced by gTX , hL, hE as in

Section 2.2.

Set

Dp =
√

2
(
∂
Lp⊗E

+ ∂
Lp⊗E,∗)

(5.210)

Then

D2
p = 2

(
∂
Lp⊗E

∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E)

(5.211)

preserves the Z-grading of Ω0,•(X,Lp ⊗ E).

For p large enough,

(5.212) KerDp = KerD2
p = H0(X,Lp ⊗E).

Here Dp need not be a spinc Dirac operator on Ω0,•(X,Lp ⊗ E).

Let PG
p (x, x′) (x, x′ ∈ X) be the smooth kernel of the orthogonal projection PG

p from

(C ∞(X,Lp ⊗ E), 〈 〉) onto (KerD2
p)
G with respect to the Riemannian volume form

dvX(x′) for p large enough.

We explain now how to reduce the study of the asymptotic expansion of PG
p (x, x′) to

the J = J case.

Let gTXω (·, ·) := ω(·, J ·) be the metric on TX induced by ω, J . We will use a subscript

ω to indicate the objects corresponding to gTXω , especially rXω is the scalar curvature of

(TX, gTXω ), and ∆XG,ω is the Bochner-Laplace operator on XG as in (1.21) associated to

gTXG
ω .

Let detC denote the determinant function on the complex bundle T (1,0)X, and |J| =

(−J2)−1/2.

Let hEω := (detC|J|)−1hE define a metric on E. Let RE
ω be the curvature associated to

the holomorphic Hermitian connection on (E, hEω ).

Let 〈 〉ω be the Hermitian product on C ∞(X,Lp ⊗ E) induced by gTXω , hL, hEω as in

(1.19), then

(5.213) (C ∞(X,Lp ⊗ E), 〈 〉ω) = (C ∞(X,Lp ⊗ E), 〈 〉), dvX,ω = (detC|J|)dvX.
Observe that H0(X,Lp ⊗ E) does not depend on gTX , hL, hE.

Let PG
ω,p(x, x

′) (x, x′ ∈ X) be the smooth kernel of the orthogonal projection PG
ω,p from

(C ∞(X,Lp ⊗E), 〈 〉ω) onto H0(X,Lp ⊗E)G with respect to dvX,ω(x).

By (5.213),

(5.214) PG
p (x, x′) = (detC|J|)(x′)PG

ω,p(x, x
′).

We will use the trivialization in Introduction corresponding to gTXω .

Since gTXω (·, ·) = ω(·, J ·) is a Kähler metric on TX, Dω,p is a Dirac operator (cf. Def.

2.1). Thus Theorems 0.1, 0.2 hold for PG
ω,p(x, x

′).



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 129

Let dvB be the volume form on B induced by gTX as in Introduction.

As in (0.11), let κ̃ ∈ C
∞(TB|XG

,R) be defined by for Z ∈ Tx0B, x0 ∈ XG,

dvB(x0, Z) = κ̃(x0, Z)dvXG,ω(x0)dvNG,ω,x0
.(5.215)

As in (0.17), we introduce Ip(x0) a section of End(EG) on XG,

Ip(x0) =

∫

Z∈NG,|Z|≤ε0
h2(x0, Z)PG

p ◦ Ψ((x0, Z), (x0, Z))κ̃(x0, Z)dvNG,ω,x0
.(5.216)

Then (0.18) still holds.

Summarizes, we have the following result,

Theorem 5.16. The smooth kernel PG
p (x, x′) has a full off–diagonal asymptotic expan-

sion analogous to (0.14) with Q0 = (detC |J|) IdEG
as p → ∞ . There exist Φr(x0) ∈

End(EG)x0 polynomials in Aω, R
TB
ω , REB , µE, RE (resp. hω, R

LB ; resp. µ) and their

derivatives at x0 to order 2r−1 (resp. 2r, resp. 2r+1), and Φ0 = IdEG
such that (0.25)

holds for Ip. Moreover

Φ1(x0) =
1

8π

[
rXG
ω + 6∆XG,ω log (hω|XG

) − 2∆XG,ω

(
log(detC|J|)

)
+ 4REG(w0

ω,j, w
0
ω,j)
]
.

(5.217)

Here {wω,j} is an orthogonal basis of (T (1,0)XG, g
TXG
ω ).

Proof. By (5.213)-(5.216),

Ip(x0) =

∫

Z∈NG,|Z|≤ε0
h2
ω(x0, Z)PG

ω,p ◦ Ψ((x0, Z), (x0, Z))κω(x0, Z)dvNG,ω(Z).(5.218)

From the above discussion, only (5.217) reminds to be proved. But

(5.219) REG
ω = REG − ∂∂ log(detC|J|),

Thus

(5.220) 2REG
ω (w0

ω,j, w
0
ω,j) = 2REG(w0

ω,j, w
0
ω,j) − ∆XG,ω log(detC|J|),

and (5.217) is from (0.7) and (5.218). �

6. Bergman kernel and geometric quantization

In this Section, we prove Theorems 0.10, 0.11.

Proof of Theorem 0.10. We use the notation in Section 4.4.

By Theorem 4.4 and Lemma 4.6, we know that p−
n0
4 (σp ◦ σ∗

p)
1
2 is a Toeplitz operator

with principal symbol (2
n0
4 /h̃(x0)) IdEG

in the sense of Def. 4.3, and its kernel has an

expansion analogous to (4.45) and Q0,0 therein is 2
n0
4 /h̃(x0).

We claim that

Tp = p−
n0
2 (σp ◦ σ∗

p)
1
2 h̃2(σp ◦ σ∗

p)
1
2(6.1)

is a Toeplitz operator with principal symbol 2
n0
2 IdEG

.

Indeed, when E = C, this is a consequence of [9] on the composition of the Toeplitz

operators.
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To get the above claim for general E, we need just keep in mind that the kernel

Tp(x0, x
′
0) of Tp with respect dvXG

(x′0) has the expansion analogous to (4.45) and Q0,0

therein is 2
n0
2 IdEG

.

Our claim then follows from the composition of the expansion of the kernel of p−
n0
4 (σp◦

σ∗
p)

1
2 , as well as the Taylor expansion of h̃2 (cf. also the recent book [28] for a more

detailed proof).

Now we still denote by 〈 , 〉 the L2-scalar product on C ∞(XG, L
p
G ⊗ EG) induced by

hL
p
G , hEG , gTXG as in (1.19).

Let {spi } be an orthonormal basis of (H0(X,Lp⊗E)G, 〈 , 〉), then ϕpi = (σp ◦σ∗
p)

− 1
2σps

p
i

is an orthonormal basis of (H0(XG, L
p
G ⊗ EG), 〈 , 〉).

From Def. 4.3, (0.28), (1.19) and (6.1), we get

(6.2) (2p)−
n0
2

〈
σps

p
i , σps

p
j

〉
h̃

= (2p)−
n0
2

〈
(σp ◦ σ∗

p)
1
2ϕpi , (σp ◦ σ∗

p)
1
2ϕpj

〉

h̃

= 2−
n0
2

〈
Tpϕ

p
i , ϕ

p
j

〉
= δij + O

(
1

p

)
.

The proof of Theorem 0.10 is complete. �

Proof of Theorem 0.11. Set

h̃EG = h̃2hEG.

Then P̃XG
p is the orthogonal projection from C ∞(XG, L

p
G ⊗ EG) onto H0(X,LpG ⊗ EG),

associated to the Hermitian product on C ∞(XG, L
p
G ⊗EG) induced by the metrics hLG ,

h̃EG, gTXG as in (1.19).

Let P̃XG
p,ω (x0, x

′
0) be the smooth kernel of P̃XG

p with respect to dvXG
(x′0). Then

P̃XG
p,ω (x0, x

′
0) = h̃2(x′0)P̃

XG
p (x0, x

′
0).(6.3)

Let ∇̃EG be the Hermitian holomorphic connection on (EG, h̃
EG) with curvature R̃EG .

Then

∇̃EG = ∇EG + ∂ log(h̃2), R̃EG = REG + 2∂∂ log h̃.(6.4)

Thus from (6.4),

R̃EG(w0
j , w

0
j) = 2R̃EG( ∂

∂z0j
, ∂
∂z0j

) = REG(w0
j , w

0
j ) + ∆XG

log h̃.(6.5)

By (5.18), (6.3) and (6.5), Theorem 0.11 is a direct consequence of [17, Theorem 1.3]

(or Theorem 0.6 with G = {1}) for P̃XG
p,ω (x0, x0). �
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