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BERGMAN KERNELS AND SYMPLECTIC REDUCTION

XIAONAN MA AND WEIPING ZHANG

ABSTRACT. We generalize several recent results concerning the asymptotic expansions
of Bergman kernels to the framework of geometric quantization and establish an as-
ymptotic symplectic identification property. More precisely, we study the asymptotic
expansion of the G-invariant Bergman kernel of the spin® Dirac operator associated with
high tensor powers of a positive line bundle on a symplectic manifold. We also develop
a way to compute the coeflicients of the expansion, and compute the first few of them,
especially, we obtain the scalar curvature of the reduction space from the G-invariant
Bergman kernel on the total space. These results generalize the corresponding results
in the non-equivariant setting, which has played a crucial role in the recent work of
Donaldson on stability of projective manifolds, to the geometric quantization setting.
As another kind of application, we generalize some Toeplitz operator type properties
in semi-classical analysis to the framework of geometric quantization. The method we
use is inspired by Local Index Theory, especially by the analytic localization techniques
developed by Bismut and Lebeau.
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0. INTRODUCTION

The study of the Bergman kernel is a classical subject in the theory of several complex
variables, where usually it concerns the kernel function of the projection operator to an
infinite dimensional Hilbert space. The recent interest of the analogue of this concept in
complex geometry mainly started in the paper of Tian [BY], which was in turn inspired
by a question of Yau. Here, the projection is onto a finite dimensional space instead.

After [BY], the Bergman kernel has been studied extensively in BH], 2], [[4], B3],
establishing the diagonal asymptotic expansion for high powers of an ample line bundle.
Moreover, the coefficients in the asymptotic expansion encode geometric information of
the underlying complex projective manifolds. This asymptotic expansion plays a crucial
role in the recent work of Donaldson [1§], where the existence of Kéhler metrics with
constant scalar curvature is shown to be closely related to Chow-Mumford stability.

In [[7], [BG], BT, Dai, Liu, Ma and Marinescu studied the full off-diagonal asymptotic
expansion of the (generalized) Bergman kernel of the spin® Dirac operator and the renor-
malized Bochner—Laplacian associated to a positive line bundle on a compact symplectic
manifold. As a by product, they gave a new proof of the results mentioned in the pre-
vious paragraph. They find also various applications therein, especially as pointed out
in [B7], the full off-diagonal asymptotic expansion implies Toeplitz operator type prop-
erties. This approach is inspired by the Local Index Theory, especially by the analytic
localization techniques of Bismut-Lebeau [, §11]. We refer to the above papers and the
recent book [2§] for detail informations of the Bergman kernel on compact symplectic
manifolds.

In this paper, we generalize some of the results in [[7], [B§ and 7] to the framework
of geometric quantization, by studying the asymptotic expansion of the G-invariant
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Bergman kernel for high powers of an ample line bundle on symplectic manifolds admit-
ting a Hamiltonian group action.

To start with, let (X,w) be a compact symplectic manifold of real dimension 2n.
Assume that there exists a Hermitian line bundle L over X endowed with a Hermitian
connection V¥ with the property that
E RE = w,

27
where RY = (VF)? is the curvature of (L, V).
Let (E, h%) be a Hermitian vector bundle on X equipped with a Hermitian connection

(0.1)

V¥ and RF denotes the associated curvature.
Let ¢ be a Riemannian metric on X. Let J : TX — T X be the skew-adjoint linear
map which satisfies the relation

(0.2) w(,v) = g7 (Ju,v)
for u,v € TX.
Let J be an almost complex structure such that
(0.3) X (Ju, ) = g™ (u,v),  w(Ju, Jv) = w(u,v)

and that w(-, J-) defines a metric on 7X. Then .J commutes with J and J = J(—J?)~1/2
(ct. 1),

Let VT be the Levi-Civita connection on (T'X, g7*) with curvature RT* and scalar
curvature 7%. The connection V¥ induces a natural connection V9 on det(T™:% X)
with curvature R, and the Clifford connection VCHf on the Clifford module A(T*(*1 X)
with curvature RCHE (cf. Section 2.3).

The spin® Dirac operator D, acts on Q%*(X, [’®F) = @,_, Q%(X, L’®E), the direct
sum of spaces of (0, ¢)—forms with values in LF ® E. We denote by D; the restriction of
Dy, on Q*V"(X, L? ® E). The index of D, is defined by

(0.4) Ind(D;) = Ker D — Coker D"

Let G be a compact connected Lie group with Lie algebra g and dim G' = ny. Suppose
that GG acts on X and its action on X lifts on L and E. Moreover, we assume the G-
action preserves the above connections and metrics on T'X, L, E and J. Then Ind(D;) is
a virtual representation of G. Denote by (Ker D,)“, Ind(D;)“ the G-trivial components
of Ker Dy, Ind(D,") respectively.

The action of G on L induces naturally a moment map p: X — g* (cf. (B.14)). We
assume that 0 € g* is a regular value of pu.

Set P = p~1(0). Then the Marsden-Weinstein symplectic reduction (X¢ = P/G,wx,,)
is a symplectic orbifold (X is smooth if G acts freely on P).

Moreover, (L, V%), (E,VE) descend to (Lg,VL¢), (Eg, VE¢) over X so that the
corresponding curvature condition %RLG = wg holds (cf. [B0)). The G-invariant
almost complex structure J also descends to an almost complex structure Jg on T' X,
and h% h¥ g"* descend to htc, hFe gTXc respectively.

One can construct the corresponding spin® Dirac operator D¢, on X.
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The geometric quantization conjecture of Guillemin-Sternberg [{] can be stated as
follows: when F is the trivial bundle C on X, for any p > 0,

(0.5) dim (Ind(D;)G) = dim (Ind(D{,,)) -

When G is abelian, this conjecture was proved by Meinrenken [B]]] and Vergne [I]].
The remaining nonabelian case was proved by Meinrenken [BZ] using the symplectic cut
techniques of Lerman, and by Tian and Zhang [fi(] using analytic localization techniques.

More generally, by a result of Tian and Zhang [[f(}, Theorem 0.2], for any general vector
bundle F as above, there exists py > 0 such that for any p > po, (0.3) still holds.

On the other hand, by [R5, Theorem 2.5] (cf. (R.13)), which is a direct consequence
of the Lichnerowicz formula for D,, for p large enough, Coker D is null (cf. also [IT],
[M3]). Thus there exists pg > 0 such that for any p > po,

(0.6)
dim(Ker D,)¢ = dim(Ker D¢ ,) = dim (Ind(Dap)) = / Td(TX¢) ch(LY, ® E¢)
=y e =
+0(p ),

where ch(-), ¢1(+), Td(-) are the Chern character, the first Chern class and the Todd class
of the corresponding complex vector bundles (7'Xq is a complex vector bundle with
complex structure Jg).

Set E, := A(T*OVX)QLPQE. Let { ) be the L%scalar product on Q%*(X, [PQFE) =
%> (X, E,) induced by g?*, h* h¥ as in (L.I9).

Let PS be the orthogonal projection from (Q%*(X, LP ® E),( )) on (Ker D,)¢. The
G-invariant Bergman kernel is P{(x,a') (x,2' € X), the smooth kernel of P{ with
respect to the Riemannian volume form dvx(z').

Let pr; and pry, be the projections from X x X onto the first and second factor X
respectively. Then PE(x,2’) is a smooth section of pri(E,) ® prj(E;) on X x X. In
particular, PY(z, ) € End(E,), = End(A(T**VX) ® E),.

The G-invariant Bergman kernel P (x, 2') is an analytic version of (Ker D,,)¢. In view
of (0-9), it is natural to expect that the kernel B (z, z’) should be closely related to the
corresponding Bergman kernel on the symplectic reduction Xg. The purpose of this
paper is to study the asymptotic expansion of the G-invariant Bergman kernel PpG(x, x')
as p — 0o, and we will relate it to the asymptotic expansion of the Bergman kernel on
the symplectic reduction Xg.

Let dX(z,2') be the Riemannian distance between z, ' € X.

In Section P.4, we prove the following result which allows us to reduce our problem as
a problem near P = p~1(0).

Theorem 0.1. For any open G-neighborhood U of P in X, g > 0, I,m € N, there
exists Cy, > 0 (depend on U, &q) such that for p > 1, z,2’ € X,d*(Gz,2') > & or
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r, 2 € X\ U,
G -1
(0.7) |Py(x,2")|gm < Cimp™,
where €™ is the €™-norm induced by VY, VE, VTX hE hE and ¢gTx.

Assume for simplicity that G acts freely on P.

Let U be an open G-neighborhood of ;#71(0) such that G acts freely on U.

For any G-equivariant vector bundle (F, V) on U, we denote by Fp the bundle on
U/G = B induced naturally by G-invariant sections of F' on U. The connection V¥
induces canonically a connection VI% on F. Let R'® be its curvature. Let

(0.8) pf(K) = Vi« — Lig € End(F)

for K € g and K the corresponding vector field on U.

Note that P € (¢°°(U x U, pri E, ® pr3E7))“*¢, thus we can view P (z,2') (z, 2’ €
U) as a smooth section of pri(E,)p ® pry(E;)p on B x B.

Let g72 be the Riemannian metric on U/G = B induced by g7*. Let VI? be the
Levi-Civita connection on (T B, g7?) with curvature RT2. Let Ng be the normal bundle
to X¢g in B. We identify Ng with the orthogonal complement of TX¢ in (T'B|x,, g" ).

Let g7%¢, g™e be the metrics on T X, N¢ induced by g7 respectively.

Let PT¥c¢ PNc be the orthogonal projections from T'B|y, on T X, Ng respectively.
Set

(09) VNG — PNG(VTB|XG)PNG, vTXG _ PTXG (VTB|XG)PTXG,
OVTB _ VTXG D VNG, A — VTB|XG _ OvTB.

Then V¥e¢ 0V are Euclidean connections on Ng, TB|x, on X¢, VX6 is the Levi-

Civita connection on (T'Xg, g7X¢), and A is the associated second fundamental form.
Denote by vol(Gz) (x € U) the volume of the orbit Gz equipped with the metric

induced by ¢g7¥X. Following [0, (3.10)], let h(z) be the function on U defined by

(0.10) h(x) = (vol(Gz))Y2,

Then h reduces to a function on B.

Denote by Icgg the projection from A(T*OYX) ® E onto C ® E under the decom-
position A(T*CVX)® F = C® FE® A>°(T*®VX) ® F, and Igge, the corresponding
projection on B.

In the whole paper, for any zy € X¢g, Z € T,,B, we write Z = Z° + Z+, with
7% € Ty Xa, Z+ € Ng.ap-

Let 750Zt € N GexpC (20) be the parallel transport of Z+ with respect to the connection
Ve along the geodesic in X, [0,1] 3 t — expic(t2°).

Zo
For g9 > 0 small enough, we identify Z € T}, B, |Z| < &y with exp® XG(zO)(TZOZJ_) €
expg
B. Then forzy € X¢, Z,72' € T,,,B, | Z|,|Z'| < €¢, the map VU : TB|XG><TOB|XG — BXB,

U(Z,7") = (exp? TZoZl),expoXG T Z )
ex exPzg

pfOG(ZO)( (ZIO)(

is well defined.
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We identify (E,)pz to (E,)p.s, by using parallel transport with respect to V(Fr)z
along [0,1] 5 u — uZ.

Let mp : TB|x, x TB|x, — X¢ be the natural projection from the fiberwise product
of TB|x, on X¢ onto Xg.

From Theorem .}, we only need to understand PpG o ¥, and under our identification,
P& o W(Z,Z') is a smooth section of

15(End(E,)p) = 75 (End(A(T**V X) ® E)p)

on T'B|x., x TB|x,.

Let | |gm(x,) be the €™ -norm on €= (Xg, End(A(T**VX) ® E)g) induced by
Vvelifie 7P phE and g7, The norm | |Lgm X¢) Induces naturally a €™ -norm along X¢
on €=(TB|x. x TB|x,, 75 (End(A(T** 1)X) ® E)p)), we still denote it by | |gm (x,)-

Let dvg, dvx,, dun, be the Riemannian volume forms on (B, g8, (Xg, g7%¢), (Ng, g™¢)
respectively. Let k € € (T B|x,.,R), with kK = 1 on X, be defined by that for Z € T, B,
T € Xg,

(0.11) dvp(wo, Z) = k(x, Z)dvr, B(Z) = K(xo, Z)deG(xo)vaGwO.
The following result is one of the main results of this paper.

Theorem 0.2. Assume that G acts freely on p=(0) and J = J on u='(0). Then there
exist Q,(Z,7') € End(AMT*OVX) ® E)p., (19 € Xg,7 €N), polynomials in Z, 7' with
the same parity as r, whose coefficients are polynomials in A, RT2, RMfs  REz ,F
piE (resp. X, RIS RE: resp. h, RL, RF®; resp. u) and their derivatives at xq to

order r — 1 (resp. r —2; resp. r, resp. v+ 1), such that if we denote by

(0.12) PO(2,7") = Q(Z,Z\P(Z,7Z"), Qu(Z,Z') = Icom,,
with
(0.13) P(Z.7') =exp ( - g|Z° 2P — av/=1 (., 2", Z’°>>

x 2% exp (= (1242 + 127 P)),
then there exists C” > 0 such that for any k, m,m',m” € N, there exists C > 0 such that
forxg € Xg, Z,7' € T,,,B, |Z|,|7'| < &0, *
Blol+le]

0.14) (1 + /p|Z*+ + /p|Z+D)™"  su —
(0.14) (L +/plZ~| +/plZ~|) P |\ogaaze

la|+]|a/|[<m

<p—"+’2°(hKé)(Z)(hné)(Z)PG 0 U(Z,7') ZP(” (VPZ, \/ﬁZ')p_g>

¢ (Xa)
< Cp BT (14 /p| 20|+ /p| 27 PR R exp (= O/l Z = Z'|) + O (p7).

Furthermore, the expansion is uniform in the following sense: for any fixed k, m, m’,m” €
N, assume that the derivatives of ', h', V¥, h¥, V¥ and J with order < 2n + k +

In the exponential factor of [, (7)], we missed m’ as in the last line of (D.14)) here.
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m+m'+3 run over a set bounded in the €™ —norm taken with respect to the parameters
and, moreover, gt runs over a set bounded below. Then the constant C is independent
of gTX; and the €™ -norm in (0.14) includes also the derivatives on the parameters.

In (D.14), the term &(p~*°) means that for any [,l; € N, there exists Cj;, > 0 such
that its €"*-norm is dominated by Cii, pt

It is interesting to see that the kernel P(Z,Z’) is the product of two kernels : along
T,,X¢q, it is the classical Bergman kernel on 7,, X with complex structure .J,,, while
along N, it is the kernel of a harmonic oscillator on Ng 4.

Remark 0.3. i) Theorem .9 is a special case of Theorem P.23 where we do not assume
J=Jon P = pu%0). In Theorem B.2, we get explicit informations on P when J
verifies (B.3).

ii) If G does not act freely on P, then X is an orbifold. In Section [L.1, we explain how
to modify our arguments to get the asymptotic expansion, Theorem .1 Analogous to
the usual orbifold case [[7, (5.27)], P (x, z)(x € P) does not have a uniform asymptotic
expansion if the singular set of X is not empty.

iii) Let V be an irreducible representation of G, let Pz}) be the orthogonal projection
from Q%*(X,L? ® E) on Homg(V,Ker D,) ® V C Ker D,. In Section -3, we get the
asymptotic expansion of the kernel Pz}) (x,2') from Theorems D.1], 0.2.

iv) When G = {1}, Theorem 0.3 is [[[7, Theorem 4.18'].

v) If we take Z = Z' = 0 in (D.14)), then we get for zy € X,

(0.15) PO(0,0) =27 Ieop,,
and
(0.16) p~" 3 B2 (20) P (0, o) ZP(QT (0,0)p <Cp .

‘@”m/(XG) o

In Section .3, we show that (D.1§) and () are direct consequences of the full off-
diagonal asymptotic expansion of the Bergman kernel [[7, Theorem 4.18]. In fact, one
possible way to get Theorem .9 is to average the full off-diagonal asymptotic expansion
of the Bergman kernel on X [[[7J, Theorem 4.18'] with respect to a Haar measure on G.
However, we do not know how to get the full off-diagonal expansion, especially the fast
decay along N in (0.14) in this way.

In this paper we will apply the analytic localization techniques to get Theorem [.2}, and
this method also gives us an effective way to compute the coefficients in the asymptotic
expansion (cf. §B.2). The key observation is that the G-invariant Bergman kernel is
exactly the kernel of the orthogonal projection to the zero space of a deformation of D;
by the Casimir operator (i.e., to consider D; — pCas). This plays an essential role in

proving Theorems D.1], 0.2.
Let .7, be a section of End(A(T*®YX) ® E)p on Xg defined by

(0.17) Ip(xo) = /ZEN e hQ(;pO,Z)PpG o ¥ ((zo, Z), (0, Z))k(x0, Z)don,(Z).
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By Theorem D.I], modulo &(p~>), .#,(x) does not depend on &,, and

(0.18) dim(Ker D,)¢ = /X TY[PS (g, y)ldux (y) = / TPC(y, y)ldvx(y) + O(p)
Z/BhQ(y) Te[PY (y, y)ldvs(y) + O(p)

- / e[ (20)|dvxe (o) + O ().
Xa
A direct consequence of Theorem [0.9 is the following corollary.

Corollary 0.4. Taken Z = Z' € Ng 4., m =0 in (D.14), we get

¢ (Xa)

(0.19) |p™ 2 (R2k)(2)PS(2,2) = > PO(/pZ.\/pZ)p~"?

< Cp D14 \p|Z) ™™ + O(p).

In particular, there exist ®, € End(A(T*"YVX) ® E)p,, (r € N) which are polynomials
in A, RTB, RO REs P O (resp. rX R RE: resp. h, R¥®, RY; resp. u),
and their derivatives at xy up to order 2r — 1 (resp. 2r — 2; resp. 2r; resp. 2r + 1),
and ®y = Icgp,, such that for any k,m' € N, there exists C v > 0 such that for any
r9 € Xg, p €N,

k
(0.20) P S (a0) = 3 @plao)p

r=0

—k—1
o’ < Ck,m’p :

In the rest of Introduction, we will specify our results in the Kéahler case.

We suppose now that (X,w,J) is a compact Kéhler manifold and J = J on X.
Assume also that (L,hl, VL), (E,hP, VF) are holomorphic Hermitian vector bundles
with holomorphic Hermitian connections, and the action of G on X, L, F is holomorphic.

Let 3" 2% be the formal adjoint of the Dolbeault operator EL%E, then
(0.21) D, = \/Q(ELP@’E +5LP®E,*)’
and
(0.22) D2 =2 (ELP®E5LP®E,* N ELP®E7*5LP®E)

preserves the Z-grading of Q%*(X, [P @ E).
By the Kodaira vanishing theorem, for p large enough,

(0.23) (Ker D)% = HY(X, I” ® E)°.

Thus for p large enough, PS(z,2') € (L ® E), ® (L? ® E)%, and so BY(z,z) € End(E,),
Fp(ro) € End(E,,). In particular, in (D.15),

(0.24) PO(0,0) = 27 1d .
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Remark 0.5. In the special case of £ = C, PpG (20, 20) is a non-negative function on
X, and (D.I6) has been proved in [B3, Theorem 1] without knowing the informations on
P27(0,0), while in [B4, Theorem 1], it was claimed that P{Y(0,0) = 1. In B3, Prop. 1],
Paoletti knew that for any I € N, there is C' > 0 such that for any p, |PS(z,z)| < Cp™
uniformly on any compact subset of X \ (#7'(0) U R), with R the subset of unstable
points of the action of G. In [B4], some Toeplitz operator type properties on Xg was also
claimed from the analysis of Toeplitz structures of Boutet de Monvel-Guillemin [IT]],
Boutet de Monvel-Sjostrand [[J] and Shiffman-Zelditch [Bg]. If we suppose moreover
that G is a torus, Charles [I5] has also a different version on the Toeplitz operator type
properties on Xg.

In Section .4, we will show that Theorem implies properties of Toeplitz operators
on X¢g (which also hold in the symplectic case). In particular, we recover the results on

Toeplitz operators [[3], [B4].

Let & denote the restriction to X¢ of the function h defined in (D2I0).
The second main result of this paper is that we can in fact obtain the scalar curvature
r*¢ on the symplectic reduction X¢ from .7,

Theorem 0.6. If (X,w) is a compact Kdihler manifold and L, E are holomorphic vector
bundles with holomorphic Hermitian connections VY, V¥, J = J, and G acts freely
on u=(0), then for p large enough, Z,(xo) € End(Eg)s,, and in (0:20), ®,(z0) €
End(Eg)., are polynomials in A, RT3, R¥5 u¥ RE (resp. h, R'5; resp. ) and their
derivatives at xo to order 2r — 1 (resp. 2r, resp. 2r + 1), and ®g = Idg,. Moreover

1 3 ~ 1 _
(0.25) Dy (z9) = S—Wriff’ + EAXG log h + %Rfog (w),w)).

Here rX¢ is the Riemannian scalar curvature of (TXg,g"~¢), Ax. is the Bochner-
Laplacian on X¢ (¢f. (C2)), and {w?} is an orthonormal basis of T X .

Since the non-equivariant version of this result has already played a crucial role in the
work of Donaldson mentioned before, we have reason to believe that Theorem [.6 might
also play a role in the study of stability of projective manifolds. Indeed, as Donaldson
usually interprets his results in the framework of geometric quantization, this seems
likely to be so.

We recover (0.§) from (0.29) after taking the trace, and then the integration on Xg.
Thus (0.23) is a local version of (0.4) in the spirit of the Local Index Theory. The ap-

pearance of the term %AXC log h is unexpected.

Let T be the torsion of the connection °V' ™ in (L.2) on U. The curvature © of the
principal bundle U — B relates to the torsion 7" by ([L.q).
Following (B:G) and (520), we choose {e; } to be an orthonormal basis of Ng 4, and

{%} el l% 9 X4 to be the holomorphic basis of the normal coordinate on X, and define
J

Tiim, ’j}kl as in (p-I4). In particular, by Remark (3, ’j}kl = 0 if G is abelian.
The G-invariant section i of TY @ End(E) on U is defined by ([[.LI3) and ([.19).
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If there is no other specific notification in the next formula (0.2¢), when we meet the

operation | |?, we will first do this operation, then take the sum of the indices.

Theorem 0.7. Under the assumption of Theorem[0.8, for p > 0 large enough, PpG(:U, x) €
End(E,) and P(0,0) € End(E,,). Moreover,

~ ~ ~ 1 5
Tﬁ%jk(gﬂji — Tijk) + 9 < f()"ufO>gTY

n % <[7E’T(i i)> + £ (", Jei ) Vi logh +\2—_ <J vjkfzzE>}.

Remark 0.8. Certainly, if we only assume that J = J on U, a neighborhood of P =
p~1(0), then we still have ®,(z¢) € End(Eg),,, as we work on the kernel of the Dirac
operator D,. Set Z,0 = Ilcgr,Fplcse,, the component of £, on C ® Eg. As the
computation is local, we still have Theorem [.q with .#, replaced by .%, o and .%,—.%, ¢ =
O(p~°) (cf. (5:18)). If we only work on the d-operator, i.e. the holomorphic sections,
in Section f.6, we explain how to reduce the case of general J to the case J = J. Same
remark holds for P& (g, zo).

Let ¢ : P — X be the natural injection.

Let mg : €°(P, [? @ E)¢ — ¢>(Xg, LL, @ Eg) be the natural identification.

By a result of Zhang [£3, Theorem 1.1 and Proposition 1.2], one sees that for p large
enough, the map

Tgoit: €7 (X, [P @ E)¢ — € (Xq, LY, ® Eg)
induces a natural isomorphism
(0.27) o, =mgoi*: H'(X, [’ ® E)° — H(X¢, LY, ® Eg).

(When E = C, this result was first proved in [2{, Theorem 3.8].)

The following result is a symplectic version of the above isomorphism which is proved
in Corollary [£.10, as a simple application of the Toeplitz operator type properties proved
in that subsection. It might be regarded as an “asymptotic symplectic quantization
identification”, generalizing the corresponding holomorphic identification (0.27).

Theorem 0.9. If X is a compact symplectic manifold and J = J, then the natural map
o, : (Ker D,)¢ — Ker D¢, defined in (FEI08) is an isomorphism for p large enough.

Let (, )rror, be the metric on Lf, ® Eq induced by h*¢ and h"e.
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In view of [0, (3.54)], the natural Hermitian product on € (X¢, Ly, ® E¢) is the
following weighted Hermitian product (, );:

(0.28) <51,52>7L:/X (51,52)L2®EG(3;0)%2(3:0) dvx, (o).

In fact, mg : (€°°(P,LF @ E)Y,(,)) — (€=(Xg, L, ® Eg), (, );) is an isometry.
We still denote by { ) the scalar product on H°(X, [”? @ E)% induced by (0-23).

Theorem 0.10. The isomorphism (2p)*n700p 1S an asymptotic isometry from (H°(X, LP®

E)¢,(,)) onto (H(Xq, LE @ Eg), (,):), i.e., if {s"}}, is an orthonormal basis of
(X, 10 @ B)° (), then

1
(029 2 oty =ag 40 (5 )

From the explicit formula (D.26), one can also get the coefficient of p~! in the expansion
(0:29). We leave it to the interested readers.

Let %XG denote the orthogonal projection from (¢ (X¢, LL®Eg), (, );) onto H(X, L.®
E¢q). Let ﬁpXG(xo, xy) (@, 2y € X¢) be the smooth kernel of the operator ﬁpXG with re-
spect to ﬁQ(xg)deG(xg).

The following result is an easy consequence of [, Theorem 1.3].

Theorem 0.11. Under the assumption of Theorem [0 [0-8, there exist smooth coefficients
O, (o) € End(Eg)., which are polynomials in RTXc | REG (resp. h), and their derivatives
at xo to order 2r — 1 (resp. 2r), and Py = Idg,,, such that for any k,l € N, there exists
Cry > 0 such that for any xo € X¢, p € N,

k
(0.30) p’”*”OhQ(xo)PpXC’ (20, z0) — Z D (wo)p™"| < Cpp !
r=0

cgl

Moreover, the following identity holds,

~ 1
(031) (131(l‘0) = 8_7TT§)G

Remark 0.12. From (0:25) and (0:31)), one sees that in general ®; # &, if & is not
constant on Xg. This reflects a subtle difference between the Bergman kernel and the

1 -
+ %AXG 10gh+ REG( 0 @0)

J

geometric quantization.

From the works [[[7], [BG] and the present paper, we see clearly that the asymptotic
expansion of Bergman kernel is parallel to the small time asymptotic expansion of the
heat kernel. To localize the problem, the spectral gap property (B.13) and the finite
propagation speed of solutions of hyperbolic equations play essential roles.

Let U be a G-neighborhood of 171(0) as in Theorem [.3, in this paper, we will then
work on U/G.

Indeed, after doing suitable rescaling on the coordinate, we get the limit operator %
(cf. (B-I3)) which is the sum of two parts, along T.,, X¢, its kernel is infinite dimensional
and gives us the classical Bergman kernel as in C"7"0 while along Ng, it is a harmonic



12 XTAONAN MA AND WEIPING ZHANG

oscillator and its kernel is one dimensional. This explains well why we can expect to get
the fast decay estimate along N¢ in (D.14).

This paper is organized as follows. In Section [, we study connections and Laplacians
associated to a principal bundle. In Section P}, we localize the problem by using the
spectral gap property and finite propagation speed, then we use the rescaling technique
in local index theory to prove Theorem which is a version of Theorem .9 without
assumption on J. We assume G acts freely on P = p~1(0) in Sections B3R, and in
Section 1] we explain Theorem [, the version of Theorem where we only assume
that p is regular at 0. In Section [J, we get explicit informations on the coefficients P")
when J verifies (B.9), thus we get an effective way to compute its first coefficients of the
asymptotic expansion ([.14). Especially, we establish (0.14) and (0.13). In Section H,
we explain various applications of our Theorem [0.3, including Toeplitz properties, etc.
In Section [, we compute the coefficients ®; in Theorem [0.§ and P2 (0,0) in Theorem
0.7 and in the general case: J # J. In Section [, we prove Theorems D.10, D.11].

Some results of this paper have been announced in [29, B(].

Notation : In the whole paper, if there is no other specific notification, when in a

formula a subscript index appears two times, we sum up with this index.
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1. CONNECTIONS AND LAPLACIANS ASSOCIATED TO A PRINCIPAL BUNDLE

In this Section, for 7 : X — B = X/G a G-principal bundle, we will study the
associated connections and Bochner-Laplacians. The results in this Section extend the
corresponding ones in [J, §1d)] and [, §5.1, 5.2] where the metric along the fiber is
parallel along the horizontal direction. These results will be used in Proposition .7 and
in Sections B.3, A

If G acts only infinitesimal freely on X, then B = X /G is an orbifold. The results in
this Section can be extended easily to this situation, as will be explained in Section [.1].

This Section is organized as follows. In Section [, we study the Levi-Civita con-
nection for a principal bundle which extends the results of [}, §1d)]. In Section [[.3, we
study the relation of the Laplacians on the total and base manifolds.

1.1. Connections associated to a principal bundle. Let a compact connected Lie
group G acts smoothly on the left on a smooth manifold X and dim G = ny. We suppose
temporary that G acts freely on X. Then

7: X —-B=X/G

is a G-principal bundle. We denote by T'Y the relative tangent bundle for the fibration
m: X — B.

Let g7* be a G-invariant metric on TX. Let VX be the Levi-Civita connection on
TX. By the explicit equation for <V_TX-, > in [fl, (1.18)], for W, Z, Z' vector fields on X,

(11) 2(VWZ2,2")=W(Z,Z"y+ Z{W,Z") — Z' (W, Z)
- W2, Z') = (Z,[W, Z')) + (Z', [W. Z]) .

Let T" X be the orthogonal complement of TY in TX.

For U € TB, let U% € THX be the lift of U.

Let g7Y, gTHX be G-invariant metrics on TY, T X induced by ¢?*. Let PTY, PToX
be the orthogonal projections from 7'X onto TY, THX.

Let g”® be the metric on T'B induced by gTHX . Let VT8 be the Levi-Civita connection
on (T'B, g"?) with curvature RT5. Set

(1.2) VTHX _ ﬂ_*vT37 VTY _ PTYVTXPTY’ OVTX _ VTY ® VTHX.

Then V"X , 07" define Euclidean connections on TH X , TX, and VTV is the connec-
tion on TY induced by VI¥ (cf. [B, Def. 1.6]).

Let T be the torsion of °V"~, and let 5 € T*X @ End(TX), ¢7¥ € T*B ® End(TY)
be defined by

(1.3) S=v¥_oy'¥ G = (g™ Y Lyug™) for U € TB.
Then S is a 1-form on X taking values in the skew-adjoint endomorphisms of T'X.

By [A, Theorem 1.2] (cf. [f, Theorems 1.1 and 1.2]) the proof of which can also be
found in [, Prop. 10.2] where one applies directly ([I), we know that VY is the
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Levi-Civita connection on T'Y along the fiber Y, and for U € T'B,

(1.4) Vih = Lyn + %(gTY)l(LUHgTY) = Lyn + %gg’”

Let g be the Lie algebra of G. For K € g, we denote by KX = Ze g, the
corresponding vector field on X, then gK = (Ady(K))J,. Thus we can identify the
trivial bundle X x g with Ad-action of G on g to the G-equivariant bundle 7Y by the
map K — KX,

Let 6 : TX — g be the connection form of the principal bundle 7 : X — B such that
THX = Kerf, and O its curvature.

For Ki,K, € g, U,V € TB, as U" is G-invariant, we have

(1.5) Lyn Ki¥ = —[KX, U] = 0.
By ([4), (), we get T € A*(T*X) @ TY and
(1.6) T, vt =W, v = —PY[U" VH], T(K,K;)=0,
1 1
TU KT = 5(9TY)’1(LUH9TY)K1X QQTYKX

And})by (L), (L4), (L.5) and (.G), for W € T'X, we have (cf. also [B, (1.28)], [fl, Prop.
10.6)),

SWYTY)cTHX, SWUTYWVH Ty,
(1.7) 2(S(UMKX, VT =2(S(KMUT VT =(T(U", vT),K"),
(S(KHU" K{¥) = —<S (K3 ) K, U™)
= SUM(RE K = (TWY, K, K5
Let {e;} be an orthonormal basis of T'B. By ([.3) and ([.7), for Y a section of TY,
1
(1.8) v%Y:V%Y+—<T U, eff),Y)el.

Proposition 1.1. Let {f;};°; be a G-invariant orthonormal frame of TY , then

(1.9) Zv YH=0.

Proof. (I.9) is analogue to the fact that any left invariant volume form on G is also right
invariant. We only need to work on a fiber Y}, b € B.

Let dvy be the Riemannian volume form on Y}.

By using Ly, fi = V1Y fi = VY fr and dvy is preserved by V¥ on Y;, we get

(110) de = Z(V fk,fl>d1}y

Now from Ly =iz d" + d iy and <VTY i, fi) is G-invariant and ([I0), we get

(1.11) oz/ Ly dvy = Z<v fk,fl>/ dvy.
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From ([[.11)), we get ([.9). O

Remark 1.2. If ¢7Y is induced by a family of Ad-invariant metric on g under the
isomorphism from X x g to TY defined by K — K then ([.9) is trivial. In this case,
as in [[9, Theorem 11.3], for Y3, Y, two G-invariant sections of 7Y, by ([[.1]), we have

1
(1.12) VY, = 51, Y3,

1.2. Curvatures and Laplacians associated to a principal bundle. Let (F, hf) be
a G-equivariant Hermitian vector bundle on X with a G-invariant Hermitian connection
V¥ on X. For any K € g, denote by Ly the infinitesimal action induced by K on the

corresponding vector bundles.
Let % be the section of g* ® End(F) on X defined by,

(1.13) pf(K)=Vhs — L for K € g.

By using the identification X x g — TY, u! defines a G-invariant section % of TY ®
End(F) on X such that

(1.14) (p", KXY = " (K).

The curvature Ri of the Hermitian connection V¥ — u'(0) on F is G-invariant. More-

over as V! is G-invariant, by ([13),

(1.15) R (K™, v) = [Lg, V" = " (0)](v) =0
for K € g,veTX, and
(1.16) R, = R" = V" (u"(0)) + 1" (0) A u"(0).

The Hermitian vector bundle (F, h") induces a Hermitian vector bundle (F, hf#) on
B by identifying G-invariant sections of F' on X.

For s € (B, Fg) ~ €~ (X, F), we define
(1.17) ViPs = Vs,
Then V¥# is a Hermitian connection on Fz with curvature R,

Observe that V¥Z is the restriction of the connection V¥ — uf'(6) to €>(X, F)“, and
R'® is the section induced by R[. From ([CIG), for Uy, U, € TB, we get

(1.18) RFE (U, Uy) = RE(UE,UF) — ¥ (0) (U, Us).
Let dvx be the Riemannian volume form on (X, g7%). We define a scalar product on
€ (X, F) by
(1.19) (s1,52) = / (s1,89)p(x) dvux(x).
X

As in ([C19), h*®, g7P induce a natural scalar product ( ) on (B, F).
Denote by vol(Gz) (x € X) the volume of the orbit Gz equipped with the metric
induced by ¢7X. The function

h(z) = y/vol(Gzx), e X,
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as in (0.10) is G-invariant and defines a function on B.
Denote by g : €°(X, F)¢ — €>(B, F) the natural identification. Then the map

(1.20) ® = hrg : (€°(X,F),(,)) = (€%(B, Fg),(,))

is an isometry.

Let {e,} ; be an orthonormal frame of T'X.

Let (E, h%) be a Hermitian vector bundle on X and let V¥ be a Hermitian connection
on E. The usual Bochner Laplacians A®, Ay are defined by

m

(1.21) AP = =3 ((VEP - VEL, ), Ax=A%
a=1
Let {f;}°, be a G-invariant orthonormal frame of TY, and {f'} its dual basis, and
let {e;} be an orthonormal frame of T B, then {e, f;} is an orthonormal frame of T'X.
To simplify the notation, for 1,05 € TY ®End(F'), we denote by (o1, 02),7v € End(F)
the contraction of o1 ® 05 on the part of TY by ¢’Y. In particular,

no

(1.22) (i i)y = S (i, f)? € End(F).

=1

The following result extends [[l, Prop. 5.6, 5.10] where FF = X xg V for a G-
representation V', and where ¢7Y is induced by a fixed Ad-invariant metric on g under
the isomorphism from X x g to TY defined by K — K~ (Thus h is constant on B).

Theorem 1.3. As an operator on €°°(B, Fg), we have

(1.23) PAFD™ = AFB — (" i) v — %ABh.
Proof. At first by ([.6)) and ([.7),
(124) (eih) = 5(Lpddoy)fdvy = 3 (L f' f’> = 2 (L 1)
= (Larg™) o ) = 5 (TG ). ) = =5 (S el

As g" is G-invariant, then (i, f;) is also a G—mvarlant section of End(F ).
By ([LI3), V§ = (i", fi) on €(X, )¢, and by (L3), VX fi = V3" fi+S(fi) fi, thus
by (L:20), we get for 1 <1 < ny,

(1-25> (I)[(Vfl> VVTXf] = </7F7 fl>2 - </7F7 V:]Clyfl> - hvg?fl)flh_l-
From (1), (LX), (L21), (23, (CZ) and (L23), we have

(1.26) @AT =~ 3" @[(VE)? - v@zgef,}@*l =S e[(vhy VVTXf] o
=1 g =1

- . - 1
= RATERTE =Y (i) = 2(eh) VIR = AT — (i i) oy — 2 Aph.
=1

OJ



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 17

2. G-INVARIANT BERGMAN KERNELS

In this Section, we study the uniform estimate with its derivatives on ¢t = % of the
G-invariant Bergman kernel P9 (z, 2') of D? as p — oc.

The first main difficulty is to localize the problem to arbitrary small neighborhoods
of P = u~1(0), so that one can study the G-invariant Bergman kernel in the spirit of
[[7. Our observation here is that the G-invariant Bergman kernel is exactly the kernel
of the orthogonal projection on the zero space of an operator £,, which is a deformation
of Df) by the Casimir operator. Moreover, £, has a spectral gap property (cf. (R.23),
(:23)). In the spirit of [[[7, §3], this allows us to localize the problem to a problem near
a G-neighborhood of Gz. By combining with the Lichnerowicz formula, we get Theorem
D.J] in Section 4.

After localizing the problem to a problem near P, we first replace X by G x R0,
then we reduce it to a problem on R?*~"_ On R?*'~"_ the problem in Section R.7 is
similar to a problem on R?*" considered in [[7, §3.3].

Comparing with the operator in [[[7], §3.3], we have an extra quadratic term along the
normal direction of Xg. This allows us to improve the estimate in the normal direction.
After suitable rescaling, we will introduce a family of Sobolev norms defined by the
rescaled connection on LP and the rescaled moment map in this situation, then we can
extend the functional analysis techniques developed in [, §3.3] and [{, §11].

This section is organized as follows. In Section P.], we recall a basic property on
the Casimir operator of a compact connected Lie group. In Section P.3, we recall the
definition of spin® Dirac operators for an almost complex manifold. In Section R.3,
we introduce the operator £, to study the G-invariant Bergman kernel PpG of Df). In
Section B4, we explain that the asymptotic expansion of PpG (x,2") is localized on a
G-neighborhood of Gz, and we establish Theorem D.]. In Section B.5, we show that
our problem near P is equivalent to a problem on U/G for any open G-neighborhood
U of P. In Section R.f, we derive an asymptotic expansion of ®£,®~! in coordinates
of U/G. In Section R.7, we study the uniform estimate with its derivatives on ¢ of the
Bergman kernel associated to the rescaled operator £} from ®L£,®~! using heat kernel.
In Theorem R.21], we estimate uniformly the remainder term of the Taylor expansion of
e~u%s for y > uy >0, 0 <t <ty <1. In Section P.§, we identify Jyu, the coefficient

¢
u;

of the Taylor expansion of e”**“2, with the Volterra expansion of the heat kernel, thus

giving a way to compute the coefficient P in Theorem 3. In Section B-g, we prove
Theorem [0.9 except (0.13) and (D.13).

We use the notation in Section [[. In Sections P.3P.§, we assume G acts freely on
P = 0).

2.1. Casimir operator. Let G be a compact connected Lie group with Lie algebra g
and dim G = ny. We choose an Ad-invariant metric on g such that it is the minus Killing
form on the semi-simple part of g.

Let {K;}§™% be an orthogonal basis of g and {K7} be its dual basis of g*.
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The Casimir operator Cas of g is defined as the following element of the universal
enveloping algebra U(g) of g,

dim G
(2.1) Cas := Z K;K;.
j=1
Then Cas is independent of the choice of {K;} and belongs to the center of U(g).
Let t be the Lie algebra of a maximum torus 7" of G, and t* its dual. Let | | denote
the norm on t* induced by the Ad-invariant metric on g.
Let W C t* be the fundamental Weyl chamber associated to the set of positive roots
At of G, and its closure W C t*.
Let I = {K € texp(2rK) = 1 € T} the integer lattice such that 7' = t/2x 1, and
P ={a e t;a(l) C Z} the lattice of integral forms.
Let og be the half sum of the positive roots of G.
By the Weyl character formula [[J, Theorem 8.21], the irreducible representations
correspond one to one to ¥ € W N P, the highest weight of the representation.
Moreover, for any irreducible representation p : G — End(FE) with highest weight
¥ € W N P, classically, the action of Cas on E is given by (cf. [I9, Theorem 10.6]),

(2.2) p(Cas) = —(|0 + oc|* — |oc|”) 1dp .
Set
(2.3) vio= inf  (J0+ al* —|ecl?) > 0.
0£9EWNP

By (B3), for any representation p : G — End(FE), if the G-invariant subspace E¢ of
FE is zero, then

(2.4) —p(Cas) > v Idg .

2.2. Spin‘ Dirac operator. Let (X,w) be a compact symplectic manifold of real di-
mension 2n. Assume that there exists a Hermitian line bundle L over X endowed with
a Hermitian connection V¥ with the property that

v =1
2T

where RY = (VF)? is the curvature of (L, V7).
Let (E,h%) be a Hermitian vector bundle on X with Hermitian connection V¥ and

RE = w,

its curvature RF.
Let g7 be a Riemannian metric on X.
Let J: TX — TX be the skew-adjoint linear map which satisfies the relation

(2.5) w(u,v) = g"* (Ju,v)

for u,v € TX.
Let J be an almost complex structure such that

(2.6) g™ (Ju, Jv) = g™ (u,v),  w(Ju, Jv) = w(u,v),
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and that w(-, J-) defines a metric on T'X. Then J commutes with J and
(I = w(, T

is positive by our assumption. Thus —JJ € End(7TX) is symmetric and positive, and
one verifies easily that

(2.7) —JI = (=J)V2 ] =J(=J*)V2
The almost complex structure J induces a splitting

TX @g C=TW0X ¢ TOV X,

where T X and TOD X are the eigenbundles of J corresponding to the eigenvalues

vV/—1 and —v/—1 respectively. Let T*19X and T*®DX be the corresponding dual
bundles.

For any v € TX ®g C with decomposition v = v+ vo; € TEOVX @ TOVX | let
Uy € T+ X be the metric dual of v, 9. Then

(2.8) c(v) = V2(T} g A v, )

defines the Clifford action of v on A(T*®YX), where A and i denote the exterior and
interior multiplications respectively.

Set
(2.9) vy 1= inf  Ry(u,7)/|ullrx > 0.

weTMO X, ze X

Let VTX be the Levi-Civita connection of the metric g7 with curvature RTX. We
denote by PT"”X the projection from TX ®g C to T X.

Let VI""X = pTtOX gTX pTX e the Hermitian connection on 709X induced
by VI¥ with curvature RTHOX

By [B2, pp.397-398], VIX induces canonically a Clifford connection Vi on A (701 X)
and its curvature R (cf. also [BF, §2]).

Let {e,}. be an orthonormal basis of TX. Then

. 1 1

(2.10) RO — — Z(RTXea, epycleq)c(ey) + = Tr [RT(I’O)X] :

4 2
ab

Let VE» be the connection on
(2.11) E, =ANT""YX)® [’ E

induced by Vi V£ and VF.

Let ( )p, be the metric on E, induced by ¢”*, h* and h”.

The L?-scalar product ( ) on Q%*(X, [P ® E), the space of smooth sections of E,,, is
given by ([.I9). We denote the corresponding norm by ||-||zz.

Definition 2.1. The spin® Dirac operator D, is defined by

2n
(2.12) Dy =Y clea)VE : Q"*(X, 1P ® E) — Q"*(X, L’ @ E).

a=1
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Clearly, D, is a formally self-adjoint, first order elliptic differential operator on Q%*(X, LP®
E), which interchanges Q%" (X, [? @ E) and Q%4 (X, [? @ F).

If A is any operator, we denote by Spec(A) the spectrum of A.

The following result was proved in [R5, Theorems 1.1, 2.5] by applying directly the
Lichnerowicz formula (cf. also [}, Theorem 1] in the holomorphic case).

Theorem 2.2. There exists C, > 0 such that for any p € N and any s € Q7% X, [P ®
E) = G9(121 Q%(X, P ® E),

(2.13) 1Dps|l72 > (2pro — Cr)|lsl2: -

Moreover Spec(D?2) C {0} U [2pry — C, +o0l.

2.3. G-invariant Bergman kernel. Suppose that the compact connected Lie group G
acts on the left of X, and the action of G lifts on L, E and preserves the metrics and

connections, w and the almost complex structure J.
Let p: X — g* be defined by

(2.14) 2my/—1u(K) == p"(K) = Vi« — Lk, K € g.
Then p is the corresponding moment map (cf. [, Example. 7.9]), i.e. for any K € g,
(2.15) du(K) =igxw.

For V a subspace of Q%*(X, L’ @ E), we denote by V1 the orthogonal complement of
Vin (Q%(X,LP @ E),{ )).

Let Q% (X, [P @ E)¢, (Ker D,)¢ be the G-invariant subspaces of Q%*(X, L @ E),
Ker D,,. Let PS be the orthogonal projection from Q%*(X, L? ® E) on (Ker D,)“.

Definition 2.3. The G-invariant Bergman kernel P{(x,2') (z,2' € X) of D, is the
smooth kernel of PS* with respect to the Riemannian volume form dvx (z).

Let {S? }?ﬁl (d, = dim(Ker D,)%) be any orthonormal basis of (Ker D,)¢ with respect
to the norm || ||z2, then

(2.16) P (aal) = 3 S@) @ (SH@))" € (B ® (B

Especially, PE(z,z) € End(E,), ~ End(A(T"*VX) ® E),.
We use the notation pf" in (1) now.
Recall that the Lie derivative Ly on T'X is given by

(2.17) LV =VixV — VIXKX.
Thus
(2.18) pt X (K) = VXK € End(TX),

and the action on A(7T*®VX) induced by u"X(K) is given by
2n
1 1
Z § C(ea)C(VZ;XKX) + 5 TI'[PT(LO)XV.TXKX].

a=1

(2.19) HO (K ) =
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Thus the action Lg of K on smooth sections of A(T*®VX) is given by (cf. [0, (1.24)])
(2.20) Ly = VA — u9(K).
By (B14) and (B20), the action Ly of K on Q0*(X, [P ® E) is Vi — pPr(K) with
(221) B () = 2/ ZTpp(IK) + 1 () + ().

Definition 2.4. The (formally) self-adjoint operator £, acting on (Q%*(X, [P Q E), (, ))
is defined by,

dim G
(2.22) L,=D.—p> LgLg,.
=1

The following result will play a crucial role in the whole paper.

Theorem 2.5. The projection PpG is the orthogonal projection from Q%*(X, LP @ E) onto
Ker(L,). Moreover, there exist v, Cp, > 0 such that for any p € N,
(2.23) Ker(£,) = (Ker D,)¢,

' Spec(L,)C{0}U2pr — Cp, +o0.

Proof. By (B:23), for any s € Q**(X, [? ® F),

dim G

(2.24) (Lps,s) = Dpsllze +p Y | Lwslze.
i=1

Thus £,s = 0 is equivalent to

(2.25) D,s = Lk,s = 0.

This means s is fixed by the G-action. Thus we get the first equation of (.23).
For s € (Ker £,)*, there exist s; € Q" (X, L? @ E)% N (Ker D,)*, s, € (Q%*(X, LP ®
E)%)L, such that s = s, + s5. Clearly,

Dys; € Q"*(X, [P ®@ E)Y, D,sy € (2"*(X,LF @ E)°)* .

By Theorem P.7 and (2.4),

(2.26) (Lps, 5) = —p(p(Cas)sa, s) + || Dpsal72 + | Dpsi 7
> pir|s2|z2 + (2pvo — Cp)lls1Z2,

from which we get (B.23). O

We assume that 0 € g* is a regular value of p. Then X¢ = p~1(0)/G is an orbifold
(X¢ is smooth if G acts freely on P = p~1(0)). Furthermore, w descends to a symplectic
form wg on Xg. Thus one gets the Marsden-Weinstein symplectic reduction (Xg,wg).

Moreover, (L, VL), (E,VF) descend to (Lg, VI¢), (Eg, VE¢) over X¢g so that the
corresponding curvature condition holds [B{] :

V-1
(2.27) ~—Rle = wg.
2w
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The G-invariant almost complex structure J also descends to an almost complex struc-
ture Jg on T Xq, and Y, hE, g7* descend to hte, hFe gT¥e.

We can construct the corresponding spin® Dirac operator D¢, on Xg.

Let Pg, be the orthogonal projection from 0% (Xg, L%, ® E¢) on Ker D¢, and let
P p(z,2") be the smooth kernel of Py, with respect to the Riemannian volume form
dvx.(z').

The purpose of this paper is to study the asymptotic expansion of PpG (x,2") when
p — oo, and we will relate it to the asymptotic expansion of the Bergman kernel Py,
on Xg.

2.4. Localization of the problem. Let a® be the injectivity radius of (X, g7%), and
e€(0,a®/4). fxe X, ZeT,X,let R>u— z,=expX(uZ) € X be the geodesic in
(X, gT™), such that z¢ = z, d;; w—o = 2.

For x € X, we denote by BX(z,¢) and B™=X(0,¢) the open balls in X and T, X
with center z and radius e, respectively. The map T,X > Z — exp2(Z) € X is a
diffeomorphism from B7*X(0,¢) on B¥(x,¢) for ¢ < a.

From now on, we identify BT=X(0,¢) with BX(z,¢) for ¢ < a* /4.

Let f:R — [0,1] be a smooth even function such that

(2.28) ) :{ 1 for |u] <g/2,

0 for |v]|>e.

Set
+oo

(2:20) Fay = ([ rwa)” [T e s

o0

Then F'(a) is an even function and lies in Schwartz space S(R) and F/(0) = 1.

Let F be the holomorphic function on C such that F(a2) = F(a). The restriction of
F to R lies in the Schwartz space S(R).

Let ﬁ(ﬁp)(x,x') be the smooth kernel of ﬁ(ﬁp) with respect to the volume form
dvx(z').

Proposition 2.6. For any l,m € N, there ezists Cy,, > 0 such that forp > Cp/v,
(2.30) |F(Ly)(z,2) — P (x,2)gmxxx) < Crmp™
Here the €™ norm is induced by V*, V¥, VU pl hE and g7~.

Proof. For a € R, set

(2.31) (@) = 1 4ooi(@) F (),
Then by Theorem R.§, for p > Cr /v,
(2-32) ﬁ(ﬁp) - PpG = (bp(/:p)-

By (B.29), for any m € N there exists C,,, > 0 such that
(2.33) sup |a|™|F(a)| < Cn.
a€R
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As X is compact, there exist {x;}7_; C X such that {U; = BX(x;,€)}"_, is a covering
of X. We identify B™=%X(0,¢) with B* (z;,¢) by geodesics as above.

We identify (E,)z for Z € B™%X(0,¢) to (E,)., by parallel transport with respect to
the connection V# along the curve vz : [0,1] 3 u — exp) (uZ).

Let {e;}3", be an orthonormal basis of T, X. Let €;(Z) be the parallel transport of
e; with respect to VI along the above curve.

Let TP, TF TCf be the corresponding connection forms of VF, V* and VCif with
respect to any fixed frame for £, L, A(T*®YX) which is parallel along the curve 7y
under the trivialization on U;. Then I'” is a usual 1-form.

Denote by Vi the ordinary differentiation operator on 7}, X in the direction U. Then

(2.34) VE = V4 plh 4 T4 TP D, = (&) V>

Let {y;} be a partition of unity subordinate to {U;}.
For [ € N, we define a Sobolev norm on the I-th Sobolev space H'(X, E,) by

(2.35) Isll7; = ZZ Z Ve, Ve, (0is)ll12

i k=0 i1, =1
Then by (£:34), there exist C,C’,C" > 0 such that for p > 1, s € H*(X, E,),
(2.36) C'|Dpslice = C"p?[Islz2 < lIsllaz < C(IIDpsllz2 + p°[Isll2).
Observe that D, commutes with the G-action, thus
(2.37) Dy, Li,] = 0.
By (B.22), (2.37), and the facts that D, is self-adjoint and Lg; is skew-adjoint, we

know

(2.38) ||Lsl32 = IID2sll72 + P> L, Li,sll32 — 2pRe Y (D2s, Ly, L s)

J J
= 1D7sl[%2 + P11 D Lie, Lieysll 72+ 20 ) | L, Dys|z-
J J
From (£-3), and (P-3§), there exists C' > 0 such that
(2.39) Isllzzz < CCILps]l L2 + p*[1sll22)-

Let @ be a differential operator of order m € N with scalar principal symbol and with
compact support in U;, then

(2.40) £,,Q] = Z Ly, Lx;,

is a differential operator of order m + 1. Moreover, by ()7 (2.34), the leading term of
order m — 1 differential operator in L, Lk, Q] is p*[((I'" — 2mv/—1p)(K;))?, Q]. Thus
by (B39) and (2.40),

(2.41) 1Qsllmz < CUIL,Qs] 2 + || @5l 12)

< CIQLysllLz + pllsll g+t + 17 sl + 17l sl gnr)-
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This means

m+1

(2.42) Isl] gz < Conp®™ Y |Lhs 112
j=0

Moreover, from
(L7 6,(L,)Qs,5') = (5,Q"dp(L,)LY'S),

(B31) and (B:33), we know that for any [,m’ € N, there exists Cj,, > 0 such that for
p=1

(2.43) 125" 6p(L3)Qsll 12 < Cogp™ I3 2.

We deduce from (P.42) and (P.43) that if 1, Qs are differential operators of order
m,m’ with compact support in U;, U; respectively, then for any [ > 0, there exists
C; > 0 such that for p > 1,

(2.44) 1Q16p(L) Q25|22 < Cop™ || 2.
On U; x U;, by using Sobolev inequality and (B.32), we get Proposition B.G. O

Observe that K JX are vector fields along the orbits of the G-action, thus the contribu-
tion of pLk, Lk, in the wave operator exp(y/—1t,/L,) will propagate along the G-orbits,
and the principal symbol of £, is given by

o(L,)(&) = €7 +p D (K€ for e T"X.

By the finite propagation speed for solutions of hyperbolic equations [I6, §7.8], [B7,
§4.4], BY, I §2.6, §2.8], F'(L,)(x, z') only depends on the restriction of £, to G- B*(z,¢)
and

(2.45) F(L)(z,2') =0, ifd*(Ge,2')>e.

(When we apply the proof of [BF, §2.6, §2.8], we need to suppose that 3,3, therein are
G-space-like surfaces for the operator g—; — Dg).
Combining with Proposition P.G, we know that the asymptotic of P{(x, ') as p — oo

is localized on a neighborhood of Gzx.

Proof of Theorem 1. From Proposition P.g and (2.43), we get (D.7) for any z,2’ € X,
dX(Gx,2") > 9. Now we will establish (0.7) for z,2’ € X \ U.

Recall that U is a G-open neighborhood of P = p~*(0).

As 0 is a regular value of p, there exists ¢y > 0 such that p : Xy, = = (B (0, 2¢)) —
B (0,2¢) is a submersion, Xo, is a G-open subset of X.

Fix €,€p > 0 small enough such that X, C U, and d*(x,y) > 4e for any z € X,,,
y€ X \U. Then V,, = X \ X, is a smooth G-manifold with boundary 9V,,.

Consider the operator £, on V., with the Dirichlet boundary condition. We denote it
by £, p. Note that £, p is self-adjoint.
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Still from [BY, §2.6, §2.8], the wave operator exp(v/—1ty/L, p) is well defined and
exp(v/—1t\/L, p)(z,2") only depends on the restriction of £, to G - BX(z,t) N V,,, and
is zero if dX(Gx, ') > t. Thus, by (2:29),

(2.46) F(L,)(x,2') = F(Lyp)(z,a'), ifz,2’ € X\U.

Now for s € 65°(V.,, E,), after taking an integration over G, we can get the de-
composition s = s; + sp with s, € Q"(X, [P ® E)¢, s, € (Q"*(X,L? @ E))t and
supp s; C Ve, \ OV, .

Since ™% Ly, L, commutes with the G-action, £,s1 € Q¥*(X, P @ E)C¢, L,s, €
(0*(X, T @ B)°)* and, by (E22), (E20),

(2.47) (Lys,s) = (Lps1,81) + (L2, S2)
= || Dys2l|z2 — p(p(Cas)sa, s2) + (Dpsy, s1)
> pl/1”82H%2 + <D12)81, 81>.

To estimate the term (D2s1, s1), we will use the Lichnerowicz formula.
Recall that the Bochner-Laplacian A®r on E, is defined by ([[.21)).
Let r* be the Riemannian scalar curvature of (T'X, g7™).

Let {w,} be an orthonormal frame of (T4 X, g7X). Set

wa=— Y R'we, ) 0" A iz, ,
a,b
(2.48) T(z) = Z R (w,,w,) RE = Z R (wq,W,)
c(R) = Z (RE + 3 Tr[RT(l’O)XD (€q,ep) c(eq) c(ep) .

a<b

The Lichnerowicz formula [[, Theorem 3.52] (cf. [25, Theorem 2.2]) for D? is

(2.49) D2 = AP — 2pwg — pr + 2r¥ 4 ¢(R).
Especially, as supp s; C V, \ 9V, from (B.49), we get
(2.50) (D2sy,51) = [|[Vs1]|72 — p((2waq + 7)s1, 51) + (3r™ + c(R))s1, s1).

Since s; € Q% (X, [P @ E)Y, from ([[13), for any K € g,
(2.51) Vines) = (L + p (K))s; = p (K)s,.

From (R.21)) and (R.51]), there exist C,C” > 0 such that

By ;
(2.52) IV sill7: = C ) IV ixsullze = C Y " (K;)sll7
J J

> Cp?||ulsilzz — C'llsillz2 = Cegp®llsallze — C'llsallZe-

From (R.47)-(B.59), for p large enough,
(2.53) (Lps, s) = prillsalzz + Cp?[ls1z-.
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Thus there are C',C’ > 0 such that for p > 1,
(2.54) Spec(L,p) C [Cp—C', x|.

At first as K jX € TOV,, for any j, thus Lk, preserves the Dirichlet boundary condition.
We get for [ € N,

(2-55) LKJ- ¢p(£p,D) = gbp(‘cva)LKj’ (LP,D)ZQ%(‘C%D) = ¢p(£p,D)(£p,D)l-
Thus from (R.22) and (R.53),
(2.56) D>, < Ly p,

and for I € N, (D2 ;,)' commutes with the operator ¢,(L, p).

Let ¢,(L, p)(x,2") be the smooth kernel of ¢,(L, p) with respect to dvx(2').

Then from the above argument we get that for any [, k € N, (D2 )'(D2 ,)*é,(Ly p)(z, 2")
verifies the Dirichlet boundary condition for x, 2’ respectively.

By (B-34) and the elliptic estimate for Laplacian with Dirichlet boundary condition
[BY, Theorem 5.1.3], there exists C' > 0 such that for s € H*""*(X, E,) N Hy(X, E,),
p € N, we have

(2.57) 8[| sr2msz < C(| D28 g + P[] 2 1)

Thus if @1, Q)2 are differential operators of order 2m, 2m’ with compact support in Uj,

U; respectively, by (B.57) and (R.5G), as in (R.49), we get for s € €5°(Ve,, Ep),

(2.58) [|Q10p(Ly.0)Qasll12 < CP*™ ™ > (D) p) 6(Ly.0) (D p) 5] 12

71=0 72=0

<Op N N I(Ly0) " 6p(Lp,0)(Ly0) "5 12

71=0 j2=0

From (2.54), (2.59), as in (2.49), we get
(2.59) 1Q104(Ly.0) Q|22 < Cip™ 5]l 2.

By using Sobolev inequality as in the proof of Proposition B.6, from (-30), (B.4G) and
(2:59), we get Theorem D.T]. O

2.5. Induced operator on U/G. Let U be a G-neighborhood of P = ;~'(0) in X such
that G acts freely on U, the closure of U. We will use the notation as in Introduction
and Sections [[1], with X therein replaced by U, especially B = U/G.

Let 7 : U — B be the natural projection with fiber Y. Let T'Y be the sub-bundle of
TU generated by the G-action, let g, ¥ be the metrics on TY, TP induced by g7*.

Let THU, T" P be the orthogonal complements of TY in TU, (TP, ¢"F). Let g7V
be the metric on 77U induced by ¢7*, and it induces naturally a Riemannian metric
g'P on B.

Let dvg be the Riemannian volume form on (B, g7?).

Recall that in ([:20), we defined the isometry ® = hrg : (€U, E,)%,(,)) —
((goo<Bv EZLB)v < ) >)



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 27

By ([ZI4), p"» defines a G-invariant section i of TY ® End(E,) on U.

Remark that wy, 7, ¢(R) in (£.49) are G-invariant. We still denote by wg, 7, ¢(R) the
induced sections on B.

As a direct corollary of Theorem [[.3 and (2.49), we get the following result,

Proposition 2.7. As an operator on €*°(B, E, p),
(2.60) OL,7' = 0D}
~E ~ 1
= APer — (0P 0Pv) oy — EABh — 2pwq — p7 + ¥ + c(R).

From Theorem D.1], Prop. B.6 and (R.43), modulo &(p~>), PpG (x,2") depends only the
restriction of £, on U.

To get a complete picture on P (x,2’), we explain now that modulo &(p=>), P& (x, 2')
depends only on the restriction of ®£,0! on any neighborhood of X in B.

As in the proof of Theorem 0., we will fix ¢y > 0 small enough such that X, =
p~H(B¥(0,2¢))C U, and the constant € > 0 which will be fixed later, verifying that
dX(z,y) > 4e for any v € X,,, y € X \ U. Set B, = 7(X,)-

First we will extend all objects from a neighborhood of P to the total space of the
normal bundle N of P in X.

Let 7y : N — P be the normal bundle of P in X. We identify N to the orthogonal
complement of TP in (T'X, g™*). Then G acts on N and the action extends naturally
on 7 (Llp), mh(Elp).

By (B3), we have an orthogonal decomposition of TX,
(2.61) TX|p=TIP&TY|p®N, andTY|p~Pxg, N=JTY|p~Pxg.

Denote by PTY | PP PNr the orthogonal projections from TX on TY, TP and N|p by
this identification.
From (R.61]), we have

(2.62) TN ~ayTX|p~7y(TP & g).

For £ > 0, we denote by BY ={(y,Z) € N,y € P,|Z|x < e}.

Then for gy small enough, the map (y,Z) € N — expf (Z) € X is a diffeomorphism
from Bj. onto a tubular neighborhood Us., of P in X.

From now on, we use the notation (y, Z) instead of expi( (7). We identify y € P with
(y,0) € N. From (P:61)), (2:62), we may and we will identify T'N to & TP @ g.

For Z € N,, |Z| < 2¢g, we identify Ly, E; to L,, E, by using parallel transport
with respect to VX, VE along the curve [0,1] 3 v — uZ. In this way, we identify the
Hermitian bundles (7} L|p, 7y h"), (75 E|p, 75h") to (L, h"), (E,h") on BY .

Let ¢ > 0 with € < g¢/2. Let ¢ : R — [0, 1] be a smooth even function such that

(2.63) ev)=11if |v] <2; @) =0 if |v] > 4.

Let 9. : N — N be the map defined by ¢.(Z) = ¢(|Z|/c)Z € N, for Z € N,,.
Let 97" = 9z 72 = Jy.(z) be the induced metric and almost-complex structure
on N.
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Let V™NE = *V¥ then V™~ is the extension of V¥ on BY.
Let V™~ be the Hermitian connection on (7} L, mih") defined by that for Z € N,,

. 1
(2.64) V= IVE 4 (1— p(E)RY(Z, P + -y 2(Z)Ry (2, PN,
Then by using the identification (B.61]), and (R.63), we calculate directly that its curvature
RW;‘VL — (Vﬂ;‘vL)2 is

(265) B = wiR +d((1— () RE(Z. P77 + (1~ (2 RE(Z, PP-))

9
=R}z (P"" PTP) + RL(PN" ) + 0*(E) (R, ) — R)) (PP, PP
+o(E) (R, () — RY)(PNP-, PTP.)

*

Z
_ (p/(%)g‘Z‘ A [Rj(Z, pTPy — Rig(Z)(Za PP

*

~ (o)D) AREZ P™) = RE (2. PV

4, (1= p(Z)RE(Z, P77 4 51— (2 RE(Z, PP-)).

Here Z* € N* is the dual of Z € N with respect to the metric g".

From (P.63), one deduces that R™' is positive in the sense of (B-9) when ¢ is small
enough, with the corresponding constant vy for R™* being larger than 5u4.

Note that G acts naturally on the normal bundle N, and under our identification, the
G-actions on L, E on BY are exactly the G-actions on L|p, E|p on P.

Now we define the G-actions on 7y L, 7y E by their G-actions on P, then they extend
the G-actions on L, E on BY to N.

By (R.14), the moment map uy : N — g* of the G-action on N is defined by

(2.66) —omV/—lun(K) = L — Vi, K € g.
Observe that @De*K(J;Z) = K € TP, thus from ([2:14), (261, and (2:64),
(2.67) 27V =1un(K) .z = (L= (1Z2]/2)) Ry (Z, K) + 27V =1 (K ) . 2)
=R/ (Z, K") + 0(*(1Z| /)| Z]").
Thus ' (0) = u~1(0) = P for € small enough, and for |Z| > 4e,
(2.68) 21V =1pun(K)(y,2) = RL(Z, K").

From now on, we fix € as above.

Let F(®L,® 1) (z,2') (z,2' € B,) be the smooth kernel of F(®L£,d~1) with respect
to dvg(z’'). We will also view F (PL,P7) as a G x G-invariant section of prE, ® prsEy
on X, X X,.

Theorem 2.8. For any l,m € N, there exists Cy,, > 0 such that forp > 1, x,2" € X,

(2.69) |h(x)h(:p')PpG(:p,x') — F((I)Ep(b_l)(ﬂ'(l‘), 7(z"))]4 xXey) < Crmp™"
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Proof. Let Dév be the Dirac operator on NV associated to the above data by the construc-
tion in Section P.3. By the argument in B3, p. 656-657] and the proof of Theorem P.3,
we know that Theorems [.3, B3 still hold for Dév .

Let Eév be the operator on N defined as in (B.29). Then there exists C' > 0 such that
for p > 1,

(2.70) Spec (L)) € {0} U [pr — C, +o0l.

Let P% be the orthogonal projection from Q%*(N, 7% (L” ® E)) on (Ker D)), then
by (B-70) and the arguments as in the proof of Theorem P.G, for any I,m € N,V C N a
compact subset of N, there exists Cj,, > 0 such that for p > 1, z,2’ € V,

(271) |ﬁ(£§)\7)(l‘, IL‘I) - PpN7G("L‘7 x,)|‘b”m(V><V) < Cl,mp_l'

Let B¢ be the projection from (L*(N/G, (MT*®VN) @ w4 (L @ E))n/c), {, ) onto
Ker(®L) @), and let PéV/G(z, 2') be the smooth kernel of the operator PY% with
respect to dvn/q(2').

We still denote by pry, pry the projections from N x N onto the first and second factor
N. We will also view P,/ “(2,2') as a G x G-invariant section of

pri(A(T*OVN) @ my (1P @ E)) @ pry(MT"OVN) @ i (L @ E))*

on N x N.
As @ in ([C20) defines an isometry from (Ker D)% = Ker £ onto Ker(®L) @), one
has

(2.72) h(z)h(z) PN (z,2) = PpN/G(W(x), m(z)).
On N/G, by the arguments as in the proof of Theorem P.G, we get
(2.73) |F(®L,27 ") (2,2) — PNC(2, ) lemuvaxvic) < Crmp ™

By the finite propagation speed (R.45), we know that for z, 2" € X,

(2.74) F(LY)(z,2") = F(L,)(z,2').
Now we get (B.69) from (£.30), (B.71)-(R.74). O

Let d?(-,+) be the Riemannian distance on B.

By (B.60) and the finite propagation speed for solutions of hyperbolic equations [,
§7.8], B7, §4.4], F(®L,9~1)(x,2’) only depends on the restriction of ®L,0~! to BB (z,¢)
and

(2.75) F(OL, )z, 2') =0, if dP(x,2') > e.

Thus we have localized our problem near Xg.

Theorem P.§ helps us to understand that the asymptotic of PpG(a:, x') is local near Xg.
In the rest, we will not use directly Theorem P.§, but the argument of its proof will be
used in Section P.6.



30 XTAONAN MA AND WEIPING ZHANG

2.6. Rescaling and a Taylor expansion of the operator ®L£,®!. Recall that Ng
is the normal bundle of Xy in B, and we identify Ng as the orthogonal complement of
TXq in (TB, g"8).

Let PTXa_ PNc be the orthogonal projection from 7B on T X, Ng on Xg.

Recall that VNG,OVTB are connections on Ng, T'B on Xg, and A is the associated
second fundamental form defined in (0.9).

We fix g € Xg.

tweTl, Xg,let Rt — 2 = expfOG (tW) € X¢ be the geodesic in X such that
$t|t:0 = Ty, Cfl—ﬂt:o =W.

W e Ty Xe, W[ <e, V€ Ny, let wV €N,

Xa
yeXPx(y w
port of V with respect to the connection V¢ along the curve [0,1] 3 t — expic (tW).

0

IfZeTl,B,Z=2+2+ 2° € T,, Xg, Z+ € Ny, | Z2°],|Z+| < ¢, we identify Z with

eprXpXG(ZO)(TZo Z*). This identification is a diffeomorphism from B¢ (0, ) x BY¢ (0, ¢)
0

into an open neighborhood % (x) of zo in B. We denote it by ¥, and % (zo) N X =
BI¥Xe(0,e) x {0}.
From now on, we use indifferently the notation B1*¢(0,¢) x B¢ (0,¢) or % (x0), %o

) be the natural parallel trans-

or(Q, ---.

We identify (Lg)z, (Fg)z and (E, 5)z t0 (L) (EB)s, and (E, 5)., by using parallel
transport with respect to VE8, VE& and VEr& along the curve 7, : [0,1] 2 u — uZ.

Recall that THU C TX is the horizontal bundle for 7 : U — B defined in Section -3.

Let PT"V be the orthogonal projection from T'X onto THU.

For W € TB, let WH € THU be the lift of W.

For yy € 7 (), we define the curve 7, : [0,1] — X to be the lift of the curve v, with
Y = Yo and % € THU. Then on 7= 1(BT5(0,¢)), we use the parallel transport with
respect to VI, V¥ and VE» along the curve 7, to trivialized the corresponding bundles.
By ([[.I7), the previous trivialization is naturally induced by this one.

Let {el}, {e;} be orthonormal basis of Ty, Xa, Ny, then {e;} = {e},ej} is an

orthonormal basis of T, B. Let {e’} be its dual basis. We will also denote W, (e), U, (e;)
by €?, ejL. Thus in our coordinate,
(2.76) % =e), azi.i = ejL.

For ¢ > 0 small enough, we will extend the geometric objects on BT5(xz,¢) to
R0 ~ T, B (here we identify (Zi,- -+, Zop—n,) € R* ™ to Y. Ze; € T,,B) such
that D, will become the restriction of a spin® Dirac operator on G x R?*"~" associated
to a Hermitian line bundle with positive curvature. In this way, we can replace X by
G x R#—o,

First of all, we denote by Ly, Ey the trivial bundles L|gy,, Flay, on Xo = G x R0,
and we still denote by V¥ V¥, A etc. the connections and metrics on Ly, Fy on
71 (BTB(0, 4¢)) induced by the above identification. Then h*, h¥ is identified with
the constant metrics A’ = hfw  hFo = hFw .
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Set
(2.77) Zzii 7t RO=> Z))=2"°, R=R'+R' =7

Then R is the radial vector field on R**~"m0,

Let ¢, : Xo — Xo be the map defined by ¢.(9,2) = (9,9(|Z|/e)Z) for (9,2) €
G x R0,

Let ¢g7%(g,Z) = g"%(0.(g9,2)), Jo(g,Z) = J(p.(g,7Z)) be the metric and almost-
complex structure on Xj.

Let VEo = o*V¥ then V0 is the extension of VE on 771(BT=58(0, ¢)).

Let V0 be the Hermitian connection on (Lg, k) on G x R?**~ defined by for Z €
R2n-n0

(2.78) VI = 'V 4 (1 — (‘Z'))RL (RH, PTY.) + %(1 s (‘Z'))RL (RH, PT0.),

As in (B.63), its curvature R™ is positive in the sense of (R.9) for & small enough, and
the corresponding constant 1 for R is bigger than £ uniformly for yo € P.

From now on, we fix € as above.

Now G acts naturally on Xy, and under our identification, the G-action on L, E on
G x BT208(0,¢) is exactly the G-action on L|ay,, E|gy,-

We define a G-action on Ly, FEy by its G-action on Gyyg, then it extends the G-action
on L, E on G x BT=B(0,¢) to X,.

By (BI9), for any K € g, W € TP on P = p~(0), we have

RE(W, KX = =21/ —1w(W, K*) = 27v/—1W (u(K)) = 0,
R{i 70)(R", K™) = R 70, (RM)", K7).

Observe that for (1,7) € G x R, o K)° 7 = = K\ for K € g, by (219), the
moment map px, : Xo — g* of the G-action on X is given by

(2.80) 21V~ Lpix, (K) 1,29 = (1 — o(Z)RE (RT, K2X) + 207/ = 1K) .1, 2).

Now from the choice of our coordinate, we know that py, = 0 on G x R?"72m0 x {(}.

(2.79)

Moreover,

@81)  20VTTu(K) s = Bh o (0(Z)RYH, KX) + 6(p(2)) 2] 24))
From our construction, (£:80) and (P-81]), we know that

(2.82) pxe(0) = G x R* 72" x {0}

By (B79) and (B-80), for Z € T,,, B, |Z| > 4e,

(2.83) 21V~ Lpxy (K)1,2) = Ry, (R, K).

Let D;(O be the Dirac operator on X, associated to the above data by the construction
in Section 2.9. As in (2.70), the analogue of Theorems 2.3, .3 still holds for DX

Let g7P° be the metric on By = R?*"~™ induced by g”*°, and let dvpg, be the Rie-
mannian volume form on (By, g* %).

The operator (IDE;(O(I)*l is also well-defined on T}, B ~ R?"~"0,



32 XTAONAN MA AND WEIPING ZHANG

Let P,,, be the orthogonal projection from L*(R?*~"0 (A(T*OVX,) ® Lh @ Ey)p,)
onto Ker(®LY®™") on R**"™. Let P, ,(Z, 2") (Z,Z' € R*"™) be the smooth kernel
of P,,, with respect to dvg,(Z’). As before, we view P, , as a G x G-invariant section
of

pri(A(T"*V Xo) @ L @ Ep) @ pra(MT* "V Xo) © Lf @ Ey)*
on XO X X(].

Let Py, be the orthogonal projection from Q%*(X,, Lj ® Ey) onto (Ker D)% and let
P (z,2") be the smooth kernel of P§/, with respect to the volume form dvx,(z').

Note that @ in ([20)) defines an isometry from (Ker D;°)¢ = Ker £, onto Ker(®L)°®),
as in (2.73), we get
(2.84) h(x)h(x')P(fp(x, t') = Py p(m(z), m(2")).

Proposition 2.9. For any [,m € N, there ezists Cy,, > 0 such that for x,2" € G X
BT=B(0, ¢),

G G I
(2.85) (Py, — By )(w,a") o < Crmp™".

O

Proof. By the analogue of Theorems 2.3, B-j, we know that for z,z’ € G x BT=5(0,¢),
P§i, — F(L;°) verifies also (R:30), and for z,2" € G x B ?(0,¢),

F(Ly)(@,a') = F(L,)(x,2")
by finite propagation speed. Thus we get (R.85). O

Let T*(Y X be the anti-holomorphic cotangent bundle of (X, Jy). Since Jo(g, Z) =
J(oe(g,2)), T;EO(’)DXO is naturally identified with T;i(();,)Z),JXO'

Let V¢iffo be the Clifford connection on A(T*®Y X)) induced by the Levi-Civita con-
nection V7*0 on (X, g7*0). Let RFo, RTXo RCffo he the corresponding curvatures on
Ey, T Xy and A(T*OV Xg) (cf. (BI0)).

We identify A(T**V X)), 7) with A(T(;(g’)l)X) by identifying first A(T**V X)), 7) with
A(T;S?;)Z), ;Xo), which in turn is identified with A(Tégﬁ)’l)X ) by using parallel transport
along u — uy.(g, Z) with respect to VCifo We also trivialize A(T*V X;) in this way.

Let S, be a G-invariant unit section of L|gy,. Using Sy, and the above discussion, we
get an isometry

A(T*(O’I)Xo) ® Fy ® L ~ (A(T*(O’I)X) ® E)|r-1(00) = Elz-1(a0)-

For any 1 <i < 2n — ng, let €;(Z) be the parallel transport of e; with respect to the
connection "VTB along [0,1] > u — uZ°, and with respect to the connection VI along
1,2 2u— Z°+ (u—1)Z*+.

If @ = (i, ,024_n,) is a multi-index, set Z = Z{ - -+ Zy" 0.

Recall that A, R+ have been defined in (D.9), (B-77).

The following Lemma extends [, Prop. 1.28] (cf. also [[74, Lemma 4.5]).

Lemma 2.10. The Taylor expansion of €;(Z) with respect to the basis {e;} to order r is
a polynomial of the Taylor expansion of the curvature coefficients of RTP to order r — 2
and A to order r — 1.
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Proof. Let 0; = V., be the partial derivatives along e;.

Let T'75 be the connection form of V' with respect to the frame {¢;} of TB. By the
definition of our fixed frame, we have iz 7% = 0. As in [, (1.12)],
(2.86) L T8 = [ig dITTP = ig. (dT"P + TP ATTP) = i RTP.

Let ©(Z) = (0:(Z ))f? 1% be the (2n — ng) X (2n — ng)-matrix such that

(2.87) (=Y B2DE(2). &§(2)=(©(2) Ve

Set 07(Z) = .. 07 (Z)e! and
(2.88) 0=> cl@e =Y 05 cT"BRTBH.
] J
As VT8 is torsion free, VIP0 = 0. Thus the R*~"_valued one-form 6§ = (67(Z))
satisfies the structure equation,

(2.89) do+TTP NG = 0.
By the same proof of [El Prop. 1.27], we have

(2.90) Z ZIEr(Z), igil = Z Zter =

Here under our trivialization by {e€;}, we consider Zl = (0,Z{,--,Z;) as a R* -
valued function.

Substituting (2:90) and (L. — 1)Z+ = 0 into the identity igi (df +TTB A0) =0, we
obtain

(2.91) (Lgr — 1)Lgif = (Lgr — 1)(dZ+ +TTBZ4) = (Lo TTP) 2+ = (igu RTP) 2+

Here we consider R7? as a matrix of 2-forms, so that R”2Z* is a vector of 2-forms, and
0 is a R?""_valued 1-form.

By (B.90) and (2.91)), we get
(2.92) ie,(Lre — 1)Lg16'(Z) = (RTP(R*, ;)R &) (2).

We will denote by 9+, 9° the partlal derivatives along Ng, T' X respectively. Then
we have the following Taylor expansions of (B.92): for j € {2(n —ng) +1,---,2n —no},
ie. e; € Ng, by Lriel =€’ we have
299 X (0t lath@ ez Il - (Rt )R E) (2)

' J at! '

lat]>1

and for j € {1,--+,2(n —ny)}, i.e. ¢ € TXg, by Lrrel =0, we have

L ZL at _
@on) 3 (- (@ e L = (R R )R E) (2).
at|>1 '
From (2.93), (B-94), we still need to obtain the Taylor expansions for Qj(Zo), (1<
1,j < 2n = mng) and (9;:05)(2%), (1 < j < 2(n — no)).
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By our construction, we know that for i or j € {2(n —mng) +1,--+,2n —ng},
(2.95) (2% = e (2%, 04(2°) =4,

By [, (1.21)] (cf. [[7, (4.35)]), we know that on R*"~2"0 x {0}, for 4,5 € {1,---,2(n—
o)},

05(0) = 0,
(2.96) Z (|a0|2 + |a0|)((80)0‘09§,)(0) (Z2°)~ — <RTXG(RO,€j)RO,€i> (ZO).
laf|>1

while by (0.9), (2:87), and [e;-, ej] = 0, we get
(2.97) (Gp0))(Z°) = eji (€}, &)(2°) = (V e, &) (Z°)

3% €€

= (Ve 6)(2°) = (V& e )(2°) = —(A(ef)e], e )(2°).

3/
Let RTX¢ RN¢ be the curvatures of VI¥¢ Ve By (0.9),
(2.98) R™c 4 RNe 4 A2 4 OVTB A = RTP| . € A*(TXg) ® End(TB).
For 1 < j < 2(n—mng), 2(n—ng) +1 <i < 2n—ng, 7' =1i—2(n—np), by [ej, €] =0,
as in (2.97), we get
(2.99) (0 05)(2°) = e (], & )(2°) = (Vi ey &) (2°) = (Voileic, e ) (2°).

)
J J

By [[, Prop. 1.18] (cf. (104)) and (299), the Taylor expansion of (0;65)(Z°) at 0 to
order r only determines by those of RV¢ to order r — 1.

Now by (2.87), (2.93)-(2.99) determine the Taylor expansion of 65(Z) to order m in
terms of the Taylor expansion of the curvature coefficients of RT® to order m — 2 and A

to order m — 1.

By (R.87), we get Lemma R.10. O

Let dvrp be the Riemannian volume form on (T, B, g*?).
Let x(Z) (Z € R?>" ™) be the smooth positive function defined by the equation

(2100) d’lJBO<Z) = K(Z)dUTB<Z),
with x(0) = 1.
For s € ¢°(R* ™ E, ) and Z € R*"™™ for t = 7, set

(S15)(Z) = s(Z/t), V=S8 "tk2VFrrog 23,
L= S P RIOD20 k38,

As in ([CI§), we denote by R*2, RP5 RCHfz the curvatures on Lp, Ep, A(T**VX)p
induced by V¥, VE VOt on X

Asin (CIA), 1 € TY, i € TY @ End(E), i € TY @ End(A(T*%V X)) are sections
induced by g, p¥, p™ in £13), @221).

Denote by Vy the ordinary differentiation operator on 7, B in the direction V.
Denote by (9*RE2),, the tensor (0 RYE), (e;, ;) := O(RE (€, €5))uy-

(2.101)



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 35

Theorem 2.11. There exist A, j, ( resp. Bi,, C.) (r € Nyi,j € {1,---,2n —no})
polynomials in Z, and A ;, is a monomial in Z with degree r, the degree on Z of B,
(resp. C,.) has the same parity with r — 1 (resp. r), with the following properties:

~ the coefficients of A, j, are polynomials in RTP (resp. A) and their derivatives at
xo to order v —2 (resp. v —1);

— the coefficients of B;, are polynomials in RTB, A, RMs REs  (resp. RE®) and
their derivatives at xo to order r — 1 (resp. r);

~ the coefficients of C,. are polynomials in RTP, A, R%s  REs ;F GO (resp. X
Tr[RT(l’O)X], RE; resp. h, RL, RL5; resp. p) and their derivatives at xq to order r — 1
(resp. 7 —2; resp. r; resp. v+ 1).

—if we denote by

O, =Aij:Ve Ve, + B Ve, +C,,

2.102 2n—no 1 2
( ) L= — Z (vej + 5355 (R, ej)) — Wz — Tao + 47| PTY I R,
j=1

then

(2.103) L =L+ 10+ 0™

r=1
Moreover, there exists m’ € N such that for any k € N, t <1, [tZ]| < e, the derivatives of
order < k of the coefficients of the operator O (t™ ) are dominated by Ct™+(1+|Z|)™.

Proof. Let P8, Tl and I'°5 be the connection forms of VF8, VX5 and VCifls with re-
spect to any fixed frames for E, Lp and A(T*1% X))z which are parallel along the curve
Yu i [0,1] > u — uZ under our trivialization on B=05(0,¢). Then I'’# is End(C4™F)-
valued 1-form on R?"~"0 and I'*2 is 1-form on R?" "0,

Now for I'* = I'Ps T'ls or TCfls and R* = RFs, R's or RCM5 respectively, by the
definition of our fixed frame and [, Proposition 1.18] (cf. also [[[7, (4.45)]), the Taylor
coefficients of I'*(e;)(Z) at zy to order r only determines by those of R® to order r — 1,

and
(2.104) ;(aar)m(ej)% - l;;_l<aa3°>mo(7z, )2
Especially,
(2.105) Dh(e)) = 3 B2, (Roe;) + 0(12P).
By (B.I01), for t = 1/,/p, if |Z| < |/pe, then
(2.106) V, = k2 (t2) (V + (10Nl 44T P 4 %PLB)(tZ)> KT2(tZ).
Moreover, set
(2.107) (Vele)(2) =T5(Z)er,  9i5(Z) = 9" P (ei,¢))(Z) = 0565(2),

then I‘Z is the connection form of V' with respect to the frame {e;}.
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Let (¢g%) be the inverse matrix of (g;;), then
(2.108) APrr = — 37 gi (vgp,svgp,a _ rgvip,a)
ij

and by (L)), (2.100),

K(Z) = (det g;j)"*(2),
(2.109) [
Ll = 59" (0ign + 0390 — 0igyy).

By (B.60), (E.I0T) and (.I08),

(2.110) L(Z) = —g"(tZ)(V1.e;Vie, — thj (tZ)V1e,) — (LR t0"P) yrv (L Z)
1

 %u(tZ) — T(t7) + 12 (%«X Fe(R)— 5

Ap, h) (t2).
By (R:21),

o~ 1 _ , ~By ol ~
(" A7) gry = —Am®| il gy 4 (/=1 + £ 4 ), i 4 i) g

)
By (.9), (B.I7), and 1, = 0, for yo € P, 7(yo) = o, we get for K € g,
)

(2112 (Il KXY, = (KX elf) = Vo (u(K)) = (VT KX),,
thus
(2113) [l (2) = [V filZe + 6(2F) = |PTY 3, RE + 6 2],

By Lemma P.I0, (P.104), (B.106), (B.110) and (R.113), we know that % has the
expansion (2.103), in particular, we get the formula £ in (2:102).

By (£.93), (2.104) and (R.110), we get the properties on A; ;, Bi.

By (2.99), (B.110) and (2.111)), we get the properties on C,.

The proof of Theorem P.17] is complete. 0

2.7. Uniform estimate on the G-invariant Bergman kernel. Recall that the op-
erators .2}, V; were defined in (2-101)), and Eg = A(T**Y X)) ® E;. We have trivialized
the bundle Ej g, to Eg ., in Section P.§. We still denote by h¥o.B0 the metric on the
trivial bundle Ep ,, on R27=m0 induced by the corresponding metric on Ej p,. Note that
hEo.50 is not a constant metric on R??~ "0,

We also denote by (, ), 2 and || [lo,z2 the scalar product and the L? norm on
€ (Ty B, Ep.s,) induced by gT=oB hEoso as in ([L19).

Let fix,, 1¥» be the G-invariant sections of TY, TY ® End(Ejy,) on X, induced by
Ux,, For as in ([L14).

Let {f;} be a G-invariant orthonormal frame of TY on 7' (B?(x,¢)), then (fo,)7z =
(f1)p.(2) is a G-invariant orthonormal frame of 7'Y; on Xj.

Definition 2.12. Set

1 .
(2114) Dt - {Vt,eia 1 S ? S 2n — No; ;(”Xoa fO,l)(tZ)v 1 S J S nO}'
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For k € N*, let DF be the family of operators acting on (T}, B, Ep_,,) which can be
written in the form QQ = Q1 - - Qy, Q; € D;.

For s € (T, B,Ep,), k > 1, set

Islio= [, 15(2)r e m(2) = £ Sis]f o
nfno

k
IsliZs = llslZo + > D 1Qsllzo-

=1 QeD}

(2.115)

We denote by (s', s), ; the inner product on (T, B, Ep4,) corresponding to || [|7,.
Let H™ be the Sobolev space of order m with norm || ||;,. Let H; ' be the Sobolev
space of order —1 and let || ||;_; be the norm on H; ' defined by ||s||;_1 = SUP(.£ye

[ (55800 /1111

If Ae ZL(H™ H™) (m,m' € Z), we denote by ||A[|/™™ the norm of A with respect
to the norms || ||¢mm and || ||em-

Then %5 is a formally self-adjoint elliptic operator with respect to || ||7,, and is a
smooth family of operators with respect to the parameter zo € Xg.

Theorem 2.13. There exist constants C1,Cy,C3 > 0 such that for t €]0,1] and any
s,s € CP(R*™ ™ Ep,.),

(L25,8),0 2 Cullsllzy — CollsllZ,

(2.116)
[(Z35,8"), 01 < Callsllealls'llea-

Proof. By (E-83) and our construction for Ly, Ey on Xy, we know for Z € T, B, |Z] > 4e,
(2.117) por (K) .z = p Ry (RHT KXY,
Thus from (R.I10) and (E.1173),

(2.118) (&', s>t70 = |Visll7o — 6 ((@"0r, iP0r) oy (t2)s, s>t70

1
+ <(—25{1wd — S+ 287 (A + ¢(R) — %ABOh)) s,s> .
t,0

From (£.80), (R-111)), (B-117), and our construction on Vo,

o ~ (|1 2
(2119)  —# (00, i) grv (12)s,5),, 2272 || S Gixes fo) (12)s]|, = Ctlsle

=1

From (ZIT9) and (EIT9), we get (ZIT0). O

Recall that v is the constant in (.23).
Let 0 be the counterclockwise oriented circle in C of center 0 and radius v/4, and let

A be the oriented path in C which goes parallel to the real axis from +oo +i to § + i
then parallel to the imaginary axis to § — ¢ and the parallel to the real axis to +oo — .
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A

an
K y vid | vi2

Theorem 2.14. There exist to > 0, C' > 0 such that for t €]0,t], N € § UA and
z9 € Xg, (N — L)~ exists and

I —2) I < ¢,
I =2 7M™ < C+AP).
Proof. By (.23), (2.60) for Dz)fo, and (R.101)), there exists to > 0 such that for ¢ €]0, ¢y],
(2.121) Spec (Z5) C {0} U [v, +o0[.
Thus (A — &) 7! exists for A € § U A.
The first inequality of (R.120) is from (R.121]).
By (BII0), for Ay € R, Ny < —2C5, (Ao — &)7! exists, and we have ||[(\g —
2 < & Now,
(2122) A=Z) '=N—-ZL) ' —A-X)A-ZL) T N—-Z)"
Thus for A € 6 UA, from (B.122), we get

(2.120)

1 4
(2.123) IO =27 170 < o (1S ] = ).
Cl 14
Now we change the last two factors in (.122), and apply (.123), we get
e o1 A=Ay, 4
2.124 A= 2O < = S(1+=1A= o))
(2.124) 1A =25)"ll; <ot oo + - ol
<C(1+|AP).
The proof of our Theorem is complete. O

Proposition 2.15. Take m € N*. There exists C,, > 0 such that for t €]0,1],
Q1,, Qum €Dy U{Z}2"™ and 5,8 € €5°(R™ ™ Ep,,),

(2.125) ’<[Q1, Q2. [Qm, L] .. s, Sl>t,0

Proof. Note that [V, Z;] = 6;;. By (B.110), we know that [Z;, %] verifies (.127).
Recall that by (2:80) and (£.83), (Ve (fix,, fo))(tZ) is uniformly bounded with its

derivatives for ¢t € [0, 1] and

(2.126) Ve (bixos fog) = (€i{fixo, fo))ze = W(fou, €i)o

for |Z| > 4e. Thus [} (fix,, fou)(tZ), Z4] also verifies (2-129).

< Crllslle,alls[l¢,1-
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Note that by (R.101),
(2.127) [Vies, Vie,) = (RFP0(tZ) + P RP0%0 (12)) (€5, €5).

Thus from (B.110), (.126) and (R-127), we know that [V, ,.-Z5] has the same structure
as &y for t €]0,1], i.e. [Vie,,-Z5] has the type as

(2128) Y ai(t,tZ2) Ve, Vi, +Zcz (t,t2) Ve,

]

+ 3 [t 12) 5 i, fo)(12) + al i v (02)] + el £2),

where a € C; ay(t, Z),ci(t, Z),cj(t, Z),c(t, Z) and their derivatives on Z are uniformly
bounded for Z € R?"~™ ¢ € [0, 1]; moreover, they are polynomials in ¢. In fact, for
[vt,emgzt]a a=0in ()

Let (Vie,)* be the adjoint of V., with respect to ( , ),, then by (R.113),

(2.129) (Vie) = —Vie, —t(k7'V k) (tZ),
the last term of (2-129) and its derivatives in Z are uniformly bounded in Z € R?""0 ¢ €
[0, 1].

By (R.12§) and (.129), (B.125) is verified for m = 1.

By iteration, we know that [Q1, [Qs, ..., [Qm,-Z4]] .. ] has the same structure (P-123)
as £}, By (B.129), we get Proposition R.15. O
Theorem 2.16. For any t €]0,ty], A € 6 UA, m € N, the resolvent (A — Z3)~" maps

H™ into H"™. Moreover for any o € Z*"~™ there exist N € N, Cy,n > 0 such that
fort €]0,t], \€ JUA, s € €5°(R*™ ™, Ep,,),

(2.130) 12O = Z3)  slltmsr < Can(L+ MDY D128 ltm-

o' <a

P’f’OOf. For Ql)"' an € Dta Qm-l—la" Qm+|a\ S {Z o no? we call express Ql
Qm+ja|(A — Z3) 7! as a linear combination of operators of the type

(2131) [Ql, [QQ, e [Qm/7 ()\ — 3225),1“ .. -]Qm’Jrl s Qm+\a|7 m/ S m + ‘Oé|
Let Z; be the family of operators

H = 1@ Qs - 1@ B3] - 1}

Clearly, any commutator [Q1, [Qa, . .. [Qm, (A —Z3)7].. ] is a linear combination of
operators of the form

(2.132) A= 2N RN — LD Ry Ry (N — .27

with Ry, -+, Ry € %

By Proposition BT, the norm || ||;~" of the operators R; € %, is uniformly bound
by C.

By Theorem P14, we find that there exist C' > 0, N € N such that the norm || ||
of operators (2.132) is dominated by C'(1 + |A]?)Y. O
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Let g : TB xg T B — B be the natural projection from the fiberwise product of T'B
on B.

Let e "%(Z,2"), (Lte %) (Z,Z") be the smooth kernels of the operators e *%,
Lle~"% with respect to dvr, B(Z').

Note that £ are families of differential operators with coefficients in End(Eg ,,) =
End(A(T*®VX) ® E)p.4,. Thus we can view e “% (Z, Z'), (Lie %) (Z, Z') as smooth
sections of 7% (End(A(T*OVX) ® E)p) on TB xp T'B.

Let VEd(Ez) he the connection on End(A(T*Y X)® E) g induced by VO and V5,
And VEEB) hE and ¢"X induce naturally a €™-norm for the parameter x4 € X¢.

As in Introduction, for Z € T, B, we will write Z = Z° + Z+, with Z2° € T, ,Xg,
71+ € Ngap-

Theorem 2.17. There exists C" > 0 such that for any m,m',m" r € N, ug > 0, there
exists C' > 0 such that for t €]0,t], u > wy, Z, 7' € T,,B,

glal+ll gr

!

sup (L4 |2+ 2™ e (2,2))

o]+ |[<m YA YA ¢ (Xa)
0 101\ 2(n+r+m'+1)+m 1 20" 12
<C(1+|Z°|+|Z7)) exp(ayu— |Z—Z|>,
U

(2.133) Slai] g

sup  (L+ |2+ |2 )™ (Lye ) (2,2')

o]+ |[<m YA YA ¢ (Xa)
0 101\ 2(n+r+m/+1)+m 1 2C" 112
<CA+|Z°|+|Z2"7)) exp(—zl/u— |Z—Z|>,
U

where €™ (Xg) is the €™ norm for the parameter oy € Xg.

Proof. By (R.121), for any k € N*,

t —1)F1(k = 1)!
efu_iﬂQ — ( ) : ( - ) / €7u)\<)\ . g;)fkd)\’
27T'luk 1 SUA

(—1)*1(k — 1)

2miuk—1

From Theorem P18, we deduce that if Q@ € U™ Dl there are N € N, C},, > 0 such
that for any A € 0 U A,

(2.135) IR =)™ < Cun(1 + NN,

Recall that £ is self-adjoint with respect to || ||;0. After taking the adjoint of (2:137),
we get

(2.136) I =) QI < C(1 + AP,
From (B134), (B137) and (2:136), we get if Q, Q" € U™ D!,
”Qefung/Hg,O < Cmeil/uj

1Q(Lhe ) Q|| < Cpe 7™,

(2.134)
.,nge_“% =

/ e~ [)\()\ (A~ .,zﬂ;)—k“] d.

(2.137)



BERGMAN KERNELS AND SYMPLECTIC REDUCTION 41

Let | |n be the usual Sobolev norm on €*(R?**~™ Eg,,) induced by hEsz =
AT OV X)®E)Bs and the volume form dvr, B(Z) as in (E119).
Observe that by (B.106), (B.113), there exists C' > 0 such that for s € €°>°(T,, B, Ep ,),
supp(s) C B™5(0,q), m > 0,
1 —m m
(2.138) A+ " sllem < Islm < C(1+¢)"Isllem.
Now (2:137), (B-I39) together with Sobolev’s inequalities imply that if Q, Q' € U™, D!,

1 _uot 1 _ut
for IC, (L)) = e”3"%e %% or ezV" Lle "% we have

(2.139) Lo Q2Q%Ku(L3)(2, Z))] < C(1+ )"
Z|,12"1<q
By (B.80), (B-81) and (2.83),
no 1

~ 21
(o, fotd(t2)| = |, 2 (42) = C1 22

(2.140) >

=1

t

Thus by (2.106), (P-139), (-140), we derive (P.I33) with the exponentials e%”u, e~ 3V

for the case when r = m/ =0 and C” =0, i.e.

Hlal+la’|
YA Y
S C(l + |ZO‘ 4 ‘Z/O‘)2n+m+2.

To obtain (.133) in general, we proceed as in the proof of [, Theorem 11.14].
Note that the function f is defined in (R.2§). For ¢ > 1, put

(2.141) sup (14|24 + |z+)™"

laf+|a’|<m

Ku(£)(2,2')

(2.142) ng(a):/_ Ooexp(iv 2ua)exp(—%2)<1—f($ 2uv)>\;l;}_7r.

Then there exist C’, C7 > 0 such that for any ¢ > 0, m, m’ € N, there is C' > 0 such that
for u > g, a € C,|Im(a)| < ¢, we have

: C
m m 2 1 2
(2.143) |al |K1(L7Q)(a)| < Cexp (C'c U= -0 )
For any ¢ > 0, let V. be the images of {\ € C, |Im()\)| < ¢} by the map A — A2. Then
1
V. ={A e C,Re(A) > 4—621m()\)2 — ),

and 0 UA C V. for ¢ large enough. N
Let K, , be the holomorphic function such that K, ,(a*) = K, ,(a).

By (BI43), for A € V,
(2.144) IA™EI ()] < Cexp (C’czu - %f).

Using finite propagation speed of solutions of hyperbolic equations and (R.143), we
find that there exists a fixed constant (which depends on ¢) ¢ > 0 such that

(2.145) Ko (LN2,2" = e (2,2') it |Z2—-2'|> "o
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By (BI43), we see that given k € N, there is a unique holomorphic function [?u,g,k()\)
defined on a neighborhood of V. such that it verifies the same estimates as K, , in (P.144)
and K, ,1(\) — 0 as A — +00; moreover

(2.146) KE D)/ (k= 1)1 = Ky ().

u,0,k

Thus as in (2.134),

~ 1 ~

Rusl ) = 5 [ RussNO = 2
(2.147) N 1‘“ N
Ly KoL) = 5 /A Ko k(A [A()\ — )= (A - gg)—kﬂ] dA.

By (B.I39), (B.I3d) and by proceeding as in (P.137)-(.139), we find that for K, (a) =

K, o(a) or aK, ,(a), for |Z|,|Z'| <q,

glol+o’|

2.148 su 1+ Zl + Z/L 2n+m-4m' 42 A
(2.148) p (1+[24+1]27)) o

|lal+|a’|<m

K.(Z)(Z.7)

C
< C(1+ q)* ™ exp(C'Pu — =L 0%).
u
Setting o € N*, [o— +|Z — Z'|| < 1 in (R.14]), we get for o, o verifying || + |o/| < m,
glal+la]
02202

C
< C(1+ 2% 4 |2))2+m+2 exp(C'Pu — 5 1z - Z'P).
c U

1

(2.149) (1 + |ZH| +|Z2+)™ K.(Z)(Z,7")

Take 0, = g% from (ETAN)% x (BIAY)' % and (EI49), we get (EI33) for r =

1.9
2V

m' = 0.

To get (R.I33) for » > 1, note that from (B.134), for & > 1

O (=) k=1) [ o .
21 ~ u — uX o o t\—k )
(2.150) € ST /(SUA - (A= L) "dA

We have the similar equation for %(zge—ufé ).
Set
J J
(2151) Iy = {6 1) = (b r)| D ki =k +5. > ri =, kir €N},
i=0

i=1

Then there exist aX € R such that

1 t 7 t
A0 = 0= ) RO 2y TR - 2,
(2.152) o
ST = T Ak,

(kJ‘)EIk’r
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We claim that AX(\, ¢) is well defined and for any m € N, k > 2(m +r +1), Q,Q' €
U™, DL, there exist C' > 0, N € N such that for A € 6 U A,

(2.153) |QAFA )@ slleo < CAL+IANY D 112%5o.
|B8|<2r
In fact, by (BI10), 2-.% is a combination of 2(¢"(t2)), (25 Vie), o (q(t2)),

D ("™, fou(tZ))), where g runs over the functions 7¥, etc., appearing in (2-I10).

Now 22 (q(tZ)) (vesp. oo (t(", fou)(tZ)), 25Vye,) (r1 > 1) are functions of the
type as ¢'(tZ2)Z°, |B| < r1 (resp. 1 + 1) (where ¢/, as g, runs over the functions r¥,
ete., appearing in (R.110)), with ¢/(Z) and its derivatives on Z being bounded smooth
functions on Z.

Let %, be the family of operators of the type

‘@g = {[flej17 [f]éij - [flejNthH . ]}

with f;, smooth bounded (with its derivatives) functions and Q;, € D, U {Z;}7"7™.
Now for the operator AX(\,¢)Q’, we will move first all the term Z” in d/(tZ)Zﬁ as
above to the right hand side of this operator, to do so, we always use the commutator

trick, i.e., each time, we consider only the commutation for Z;, not for Z? with |g| > 1.

Then Ak()\ 1)@’ is as the form Z\BIQ LyQ% 78 and Q% is obtained from Q" and its
commutation with Z°.

Now we move all the terms V., (171, fo,)(tZ) in at JQ to the right hand side of the
operator L.

Then as in the proof of Theorem P10, we get finally that QAX(\,¢)Q’ is as the form
> 5 L57 # where Zj is a linear combination of operators of the form

(2.154) QN — ZLH RN — L) ™Ry Ry(N— L) Q"Q",

with Ry,---, Ry € #Z}, Q" € U D, Q" € U, D., |8] < 2r, and Q" is obtained from
Q' and its commutation with Z5.
By the argument as in (R.135) and (R.136)), as k > 2(m+r+ 1), we can split the above

operator to two parts
QN — LY MRI(N— L) MRy - RN — LM
()\ — f;)*(k‘;*kgl) .. 'Rl/()\ _ g;)fk;,Q///Q//’

and the || ||?""-norm of each part is bounded by C/(1 + |A[?)Y

Thus the proof of (R.153) is complete.

By (.1 (]) (B.153) and (R.153), we get the similar estimate (R.141)), (R.149) for
g; et 2 = (Le —u%3) with the exponential 2n + m + 2r + 2 instead of 2n + m + 2
therein.

Thus we get (R.133) for m’ = 0.
Finally, for U € T X4 a vector on Xg,

: (=1 (k- 1)) .
(2155) Vg End(EB)efu_fQ _ ( ) ( ) / efu)\vgv E d(EB)<)\ _ g;)fkd)\
SUA

2miuk—1
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Now, by using the similar formula (2:152) for VZ* End(Ep )()\—.,%t)_k by replacing a;f?t
by Vi #EB) 2t and remark that Vi, ™5 £t is a differential operator on Ty, B with
the same structure as .Z5.

Then by the above argument, we get (R.133) for m’ > 1. O

Let Py; be the orthogonal projection from €*°(T,,B, Eg .,) to the kernel of £} with
respect to (, ), . Set

1
(2.156) Fu(Ll) = = / e — 2
21 JA
By (E121)),
t Foo t
(2.157) F (L) =e"% - Py, = Lle 1%y,

u

Let Po(Z,2"), Fu(£5)(Z,Z") be the smooth kernels of Py, F,,(:£4) with respect to
dUTzOB<Z,>-

Corollary 2.18. With the notation in Theorem [2.17,

L1 Qe+l gr
2.158 sup  (1+|ZH + |2 | ———=—F, (&) (2,2’
( ) \a|+\(f|)gm( 1Z7|+ 1Z2"]) 57592 Bir (-Z5) ( )%ﬂm,(P)

/ 1
< O+ 12% + |20 P22 exp(— cvu — V| Z = 7).

Proof. Note that gvu + %”\Z — 7' > C"v|Z — Z'|, thus

+o0 +oo
(2.159) / iA=L g VT2 Z"/ e F My,

u

— §6—§Vu—\/c’”u|Z—Z’|
v

By (£133), (B.157) and (R.159), we get (R.15). D

For k large enough, set

(1 ak Ak
Fru= 27Tzr'uk 1 Z rAr (A, 0)dA,

(kl‘ Elkr
—1)1 (k= 1)
(2.160) g = & 2) (k1) / e S GRAK(L, 0)dN,
LT U SUA
(kvr)elk,r
10 10 ¢
Fru = A gt ru Jru = - 7ug2_t]ru-
ot = e ) = Frae I = e ’

Certainly, as t — 0, the limit of || ||, exists, and we denote it by || |/o.m-
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Theorem 2.19. For any r > 0, k > 0, there exist C > 0, N € N such that for
tE[O to] A€EIUA,

(2.161)
8’1,2“ 8”3’5
< (6%
H otr otr |t 0) o — Ct Z ||Z 5||0,17
’ |oo| <r+3
8 t k 4k 2\N fe
H(@t”o\ MDY arAr()"O)>5H070 <CtA+ PPN Y 1127l
(kvr)elk,r \a|§4r+3
Proof. Note that by (B109), (B-119), for t € [0,1], k > 1
(2.162) Islleo < Cllslloo,  slles < C D 12%slox-

lal<k

An application of Taylor expansion for (EI10) leads to the following equation, if s, s’
have compact support,

T t r Pt
(2.163) ’<(8852 - aaf 1= 0) > ’ < Ct||s']|ea Z 1 Z%5]]0,1-
0,0

|oo| <r+3

Thus we get the first inequality of (R.I61]).

Note that
(2.164) A=ZH1-—N-L) =\ -LH YL - LN - L))
Now from (P.120), (P.163) and (R.164),
(2.165) [(A=Z) = (A=) ) sllyo < CHA+ AN D 12%]loo-

|| <3
After taking the limit, we know that Theorems still hold for ¢ = 0.
Note that Vo, = Ve, + 3RE2(R, ¢;) by (100).
If we denote by £\, = A — %4, then

oty 72,
otri otri =0

0 anﬂgt —k;
+Z$,\tk ’ g)\tk _"%)\0 ) (Tﬁ‘t 0) g,\,o :

Now from the first inequality of (E-I6]), (B-120), (B:I53), (2-169) and (B-I6G), we get
(R.167). 0

Theorem 2.20. There exist C > 0, N € N such that for t €]0,ty], u > ug, ¢ € N,
2,7 € B, 20,12 < q,

(2.167) Frus(Z, 2')| <Ct7@mmm (1 4 g)Ne 37,

Sctm (1 + q)NG%V“_

Jr,u,t(Za Z/)
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Proof. Let J, , be the vector space of square integrable sections of Ep,, over {Z €
T..B,|Z| < q+1}.
If s € J9, . put ||s]?%, f\Z|§q+1 |s|]23B’x0dvTB(Z). Let ||A||(g) be the operator norm of

Ae Z(JQ ) with respect to || lg)-

By (I50), (P-I60) and (P-I6]]), we get: there exist C' > 0,N € N such that for
t E]O,to],u > Ug,

(2.168) | Frtll ) < Ct(1 + q)Ne 2,
lou
[ Jrutll @) < CHL + @)™ ™.

Let ¢ : R — [0, 1] be a smooth function with compact support, equal 1 near 0, such
that szoB Qb(Z)dUTxOB(Z) =1.

Take ¢ €]0,1].

By the proof of Theorem R.17, F,, verifies the similar inequality as in (R.I5§). Thus
by (B.I5§), there exists C' > 0 such that if |Z|,|Z'| < ¢, U,U’" € Ep 4,

(2.169) ‘ (Frus(Z, 20U, U"Y — / (Frut(Z — W, 2Z' — WU, U')

Tuo BXTxy B
m¢<w/g)¢(wl/g>dszoB(W)dszoB(WI) < Cs(1+ Q)N€7%W|U||UI|-
On the other hand, by (£.169),

1
(2.170) ’/ (Frut(Z =W, Z' = W)U, U"Y ——d(W/<)p(W'/<)
Tyo Bx Ty B s ’

1 )
dvr,, 5(W)dvr, s(W')| < Ct—goe(1+q) Ve 72" |U||U|.

By taking ¢ = t1/2@n=m0+1) we get (R.167).
In the same way, we get (:167) for J, .. O

Theorem 2.21. There exists C" > 0 such that for any k,m,m’,m" € N, there exist
N eN, C > 0 such that if t €]0,t0],u > uy, Z,Z2' € THU, o, € Z2” a4+ || < m,

1 ol
14 |24+ |24 7( (L) — Fmt”> (2,7
(L+[z7|+ 127 Y Py ; ) o o)
/ 1
< Ot (1 4|20 + | 2702tk 24m oxn(——vu — VCO'W|Z — Z')),
(2.171) 8
(1124 412y [ L (et ZJ r)@.2)
N~ A e U
02292" ' (Xe)

) 1 C/I
< O |Z0] 4 |20 exp Sy —
Proof. By (.160) and (2.167),

10 10 ¢
- gt ru7 ———e % =0 — Jru-
Fop D)l = RETAL

—|Z2-2'7).

(2.172)
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Now by Theorem R.17 and (2.I60), J, ., F:. have the same estimates as We*”%
81&’" F.(&)) in (R.133), (E 158)

Again from (R.133), (R.158), (B.160), (B.167), and the Taylor expansion
rtoG¢, . 1/ LG
(2.173) G(t) - Z— GO = 55 [ = 0 T (i
we get (R.I7). O
2.8. Evaluation of J,,. Foru > 0, we will write uA; for the rescaled simplex {(uy, - - ,u;)|

0<u <uy <--- <y <ul
Let ¢4 (Z, Z') be the smooth kernel of e=*% with respect to dvr, B(Z').
Recall that the O,’s have been defined in (R.103).

Theorem 2.22. Forr > 0, we have

2174) Ju= Y (1) /A e~ A 0 =)

Zzzl ri=r,r;>1 J
. ~(9he*”1$20du1 --eduy,
where the product in the integrand is the convolution product. Moreover,

(2.175) Jo 2,2y = (=1 Jpu(—2Z,—=2").

Proof. We introduce an even extra-variable o such that o"! = 0.
Set [ ]I the coefficient of 0", &, = £ + > iy 007
From (160), (B-177), we know
1o
rlotr
Now from (P-I7§) and the Volterra expansion of e=“%= (cf. [, §2.4]), we get (B-174).
We prove (B.179) by iteration.

(2.176) Jeul Z,7') = e (72, 7 1o = [e "2 (Z, Z").

From (R.102)
2n—ng
(2177) L ==Y (V)2 —a{((PT"VIPTV)2 4 4PtV PTY PV, R, R)
j=1

_'_ 27'(' V _1VPTHUJPTHUR - 2wd,x0 - Txo.

Here the matrix ((PT"VIPT V)24 pT"U I pTY 3 pPT"V)_ need not commute with P77V JpT"U.
Thus [B, (6.37), (6.38)] does not apply directly here, and we could not get a precise

formula for e=*% as in [[7, (4.106)].

By the uniqueness of the solution of heat equations and (BI77), we know
(2.178) 2,7y = e (—2, - 2").

By (R.179),
(2.179) Jou(Z,2") = e (2, 7).
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Thus we get (R.179) for r = 0.
If (B.173) holds for r < k, then by (2.174), (R.179),

k+1
(2.180) Jet1u = _Z/ —(u— u1)$2(9 Js 1 iy

By the iteration, Theorem P.TT and (P.I79), and note that V., in O; will change the
parity of the polynomials we obtained, we get (R.179)) for r = k + 1. O

2.9. Proof of Theorem D.2. By (.1I57) and (.I71)), for any u > 0 fixed, there exists

Cu>()suchthatfort_\[,ZZ’ETmOB o € P, a, o’ € Z*"7™ |a| + || < m, we
have

fladta| | /
8ZaaZ,a( Ot_zt rau T ru)(Zuz)
¢ (Xa)

S Cvutk—l—l(l+ |ZO| + |Z/O|) (n+k+m’ +2)+meXp(_ /C”I/|Z—Z,|).

1

(2.181) (1 +|ZH + |2+ )™

Set
(2.182) P") = J,. — Fry

Then P does not depend on u > 0 by (ZI81)), as Py, does not depend on u.
Moreover, by taking the limit of (R.158) as t — 0,

(2.183) (1 + |24+ |Z2*)™ |F.u(Z, Z")

¢ (Xg)
/ 1
C(l + |ZO| + |ZIO|)2n+2r+2m +2 eXp(—gl/u _ /C”I/|Z _ Z/|)
Thus
(2.184) 1ral2,2') = PO(Z,2)) + F(2.2') = P2, Z') + Ofe™s™),

uniformly on any compact set of T,,, B x T, B.

Especially, from (R.179), (B.184), we get
(2.185) P72 7" = (—1)"P" (-2, ~-2").
By (R.1I01), for Z,Z' € T, B,
(2.186) Poyp(2,2') = p" 2 k73 (2) Roy(Z/1, Z' [t)K2 (2)).

We note in passing that, as a consequence of (B.I8T]) and (B.I8@), we obtain the
following estimate.
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Theorem 2.23. For any k, m,m',m" € N, there ezists C > 0 such that for Z, 7' € T, B,
Z],|Z'| < &, w0 € X,
Blal+l]

2.187 su 1+ plZ + ol 2 )™ | ——
( ) p (I+plZ7 |+ /plZ7]) Y

|lal+|a’|<m

k
o . 1 _1 —r
(p TP (2,2) = 3 POWBZ B2 )R (Z)RH (2 /2>
r=0

em (Xq)

< Cp (1 |20 + |20 exp (T Bl Z = 2.

From (£.84), (B.89), (.109) and (R.1I87), we get Theorem without knowing the
properties (0-12), (0-13) for P™.

To prove the uniformity part of Theorem [.9, we notice that in the proof of Theorem
P17, we only use the derivatives of the coefficients of £ with order < 2n+m—+m'+r+2.
Thus the constants in Theorems and B.20, (resp. Theorem R.21) are uniformly
bounded, if with respect to a fixed metric g7 X, the @2 m+m 4742 (pegp, @2rtmtm'+htd)
norms on X of the data (¢7*, ht, VL, hE V¥ J) are bounded, and g7¥ is bounded
below.

Moreover, taking derivatives with respect to the parameters we obtain a similar equa-
tion as (2.154), where 2, € X¢ plays now a role of a parameter. Thus the €™ —norm in
(B187) can also include the parameters if the €™~ norms (with respect to the parameter
xo € X¢) of the derivatives of above data with order < 2n + k + m + 3 are bounded.

Thus we can take Cy ; in (0-10) independent of g~ under our condition.

This achieves the proof of Theorem .9 except (D.12) and (D.13) which will be proved
in Theorem B.3 under the condition in Theorem [.2.
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3. EVALUATION oF P(™)

In this Section, inspired by the method in [P, §1.4, 1.5], we develop a direct and
effective method to compute P™. In particular, we get (0.13) and (0.13) under the
condition in Theorem [.3.

This section is organized as follows. In Section B.]], we study the spectrum of the
limited operator .£Y. In Section B3, we get a direct method to evaluate P in (0.12),
especially, we prove (0.12) and (0.13). In Section B.3, we compute explicitly O; in (.103),
and get a general formula for P by using the operators O;, O,. In Section B4, we
compute explicitly an interesting example: the line bundle O(2) on (CP!,2wrg). We
verify that Theorem [.J coincides with our computation here if 0 is a regular value of
the moment map p, but it does not hold if 0 is a singular value.

We use the notations in Section B.§, and we suppose that (B.9) is verified.

3.1. Spectrum of .%. Recall that T P is the orthogonal complement of TY in (TP, g77).
Note that by (.3) and (R.13), we have the following orthogonal splitting of vector bundles
on P = j1(0),

(3.1) TX =T'P@TY @ JTY, TP=T"PaTY.
In the rest of this Section, we suppose that on P

(3.2) JTp=T"P, J*TY =TY.

(27) and (B.2) imply that —JJ preserves TY and JTY.

As g7 is J-invariant, we get
(3.3) JTYy =JTY, JToP=T"P.

Thus (JTY)|x, is the orthogonal complement of 7' X¢ in T'B, and J induces naturally
Jo € End(T'X¢). We will identify (JTY)p|x, to the normal bundle of X¢ in B.
For U,V €T, B, xy € X, we have

(3.4) w(UH VHY = wg(PT¥eU, PTXeV).

n—no

From the above discussion, for zy € X¢, we can choose {w?}j:1 ,

basis of Tio” X, (JTY )B4, C TB such that

{e5}72, orthonormal

V= .
J] Wdlag(al, Cer  Opp,) € End(Téé’O)Xg),

1,0 —
T X,

(3.5)
—1

J2‘(JTY)B = —diag(af’Q, s CLJ_’2) € End((JTY)B7mO),
T

b no

with aj,a; > 0, and let {w®7}721", {e1/}72 be their dual basis, then

0 10,0 =0 0 —1/,0 -0
j=1,...,n—ng, forms an orthonormal basis of T},, X¢.

From now on, we use the coordinate in Section P.g induced by the above basis.
Denote by Z° = (Z0,--- , Z3 ), Z+ = (Zi, -, Z,.), then Z = (Z°,Z*).

2n—2ng
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In what follows we will use the complex coordinates z° = (2{,---,25_, ), thus Z° =
20+ 7% and w? = 28%), wY = 2%, and
(3.6) i1 = 820 - azo’ €3 = V —1(329 B 0)-
We will also identify 2° to 2? - 0 and z° to ), 70 W when we consider z° and z° as
vector fields. Remark that

2 2 1
0 0 012 _ 50|2 02

(3.7) a0| = |am| =50 80 that |27 = 2] = \Z |=.

It is very useful to rewrite %) by using the creation and annihilation operators. Set

1
5 ‘Z‘O b - (b17' o 7bn7no)i

bJJ_ aZi + QJ_ZJ_ bJ_+ azl + aJ.zJ_ bJ_ — (bf_, . bJ_)

s Yng

1
bi = -2 60 + 5611'5?, bJr =

(3.8)

Then for any polynomial g(Z° Z+) on Z° and Z+,

[bi, 0] = bib} — bib; = —2a;6,, [bi,b;] = b7, 671 =0,
(3.9) l9:b;] = 25209, 19,01 = =559,
b, b7 ] = —2a;-6;, b5, b = [b; T, b, T =0,
9,671 = —l9,b57"] = 5779
Set
(3.10) & = ni bibf, £+ = ibjbj*, Vo.=V. + %Rﬁf (R,).
=1 =1

From ([L.1§) and (B.4), for U,V € T, B, we get
(3.11) REB(U,V) = =2my/—1(JP"™ U, PTXeV) .

By (248), (B-3), (B-3), (B10) and (B.1I1)), we have
b; ——QV a ) b+—2v R V07ej_izvej_i,

’8
ZMZ -

(3.12) '
From (R.102), (B.10) and (), we get

2n—2ng no
(313) A== 3 (Vo)=Y (V) = laf ZH2) = 2040, — 7,
i=1 i=1

== g—i-gj_ — 2wd,x0.
By BS, §8.6], [4, Theorem 1.15], we know

Theorem 3.1. The spectrum of the restriction of £ on L?(R*"~2"0) is given by
n—ng

(3.14) Spec (L2 g2n-2m0)) = {2 Z oaja; = (af, - ,ad_, )€ N"’"O},
i=1

n
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and an orthogonal basis of the eigenspace of 2 1" ada; is given by

(3.15) b’ ((zo)ﬁ exp (—i Zai|z?|2>) ,  with e N"7"0,

7

The spectrum of the restriction of £+ on L*(R™) is given by

no
(3.16) Spec ($L|L2(Rno)) = {22:0#(%l cat = (af, - ,ozio) € N"O},
i=1

1

and the eigenspace of 2> ° aitai- is one dimensional and an orthonormal basis is given

by

n L T2 et 1 1oL
(3.17) ‘/? (2a ' by exp (-52% \Z; |2).

Especially, the orthonormal basis of Ker(.Z|2g2n-2n0)); Ker(Z*|r2rno)) are

n—no

(2|ﬁﬁl nﬁ ) ( exp(— i Zl aj|z?|2>, 8 e Nvno.

(3.18) | =

no 1 0o
Lizl @i \4 1 LiyLl2
= (1) e (- S5ere)
o) = (11%) e (5 w12

Let Py(Z°,Z°), Pyi(Z+,Z'Y) (resp. P(Z,Z')) be the kernels of the orthogonal
projections Py, Py1 (resp. P) from L*(R?"~2") onto Ker(.#), L*(R™) onto Ker(.£4)
(resp. L*(R?"~™) onto Ker(.Z + £71)).

From (B.1§), we get

n—no n—nmo
0 0 a; 1 02 010
Pe(2°,27) = (H2—> exp(‘zzf”('z‘ FIE - 220,
(3.19) Iy 1 Lz anp
Py (2+,2 H —52% (127 + 12 |)>

P(z,7") Pg(ZO ’)P (Z+, 2.

Let PN be the orthogonal projection from L2(R**~™ (A(T**VX)® E),,) onto N =
Ker(£). Let PN(Z,Z") be the associated kernel.

Recall that the projection Icgp, from (A(T*OVX)® E)p onto C® Ep is defined in
Introduction.

By (7). (29), £.49) and (B.9),
(3.20) ~Waay > v on AO(TOV X)),
thus

(3.21) PN(Z,72") = P(Z, 7 )Icon,.
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If J = J on P, then by (B.19) and (B:21),
n—no

PYZ,2) = exp (=5 30 (120P + 202 - 2:020) )
2 4
(3.22) P

x 27 exp ( — 7T(|ZL|2 + |Z’l|2)>IC®EB,
PN((0,2%), (0, 2%)) = 2% exp (= 271241 Ieery.

3.2. Evaluation of P(™: a proof of (0.12) and (D.13). Recall that ¢ is the counter-
clockwise oriented circle in C of center 0 and radius v/4.

By (E121),
(3.23) Py = QL (A —Z)H) A

™ Js

Let f(\,t) be a formal power series with values in End(L?(R?*"~" (A(T*OVX) ®
E)Ba))

(3:24) fA ) = Dt fr(N), f(N) € End(L*(R*"™™ (A(T"*VX) © E)p,))-
r=0
By (B.I03), consider the equation of formal power series for A € 9,

(325) ()\ — 9%20 — Z trOr)f()\y t) = IdLQ(R2n7n0,(A(T*(O’I)X)®E)B7x0) .
r=1

Let N'* be the orthogonal space of N in L2(R**~" (A(T*®VX) ® E)p.,), and PN
be the orthogonal projection from L*(R**~"0 (A(T**VX)® E)p,,) onto N*.

We decompose f(A,t) according the splitting L2(R?*™0 (A(T*OVX) @ E)p,,) =
N@ N+,

(3.26) 9N = PVED), ) = PV,

Using Theorem B.1], (B:13), (B-20), (B-2G) and identifying the powers of ¢ in (B.2]), we
find that

Qo) = 1 PY, ) = (- 2) P

T

FF) = =2 PV 0 £,

J=1

3N) = 3 3 PRO )

(3.27)

Recall that P (r € N) is defined in (R-182) and (2.187).

Theorem 3.2. There exist J.(Z,Z") polynomials in Z,Z' with the same parity as r,
whose coefficients are polynomials in A, RTB, R REs F - Cllt ( RTMOX),

R resp. h, RE, RL5; resp. u) and their derivatives at xg up to order r —1 (resp. r —2;

resp. v, Tr|
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resp. r; resp. v+ 1), and in the inverses of the linear combination of the eigenvalues of
J at xqy, such that

(3.28) P"Nz,7") = J.(Z,Z\P(Z,Z').
Moreover,
(3.29) POz, 2"Y=PN(Z,2") = P(Z,Z)Icep,.

Proof. By (B.23), for M > 0, by combining Theorems 2.13-P.16 and the argument as in
[B4, §1.3], we get another proof of the existence of the asymptotic expansion of Py (Z, Z")
for |Z],1Z'| < M when t — 0.

By (R.84), (B.85) and (R.186), this gives another proof of Theorems .4, for
170,12 < M/ /. Moreover, by (ET50), (ET6) and (B29),

1 1
(3.30) PY = _— [ g, (\)d\+ — / FEN)a.
271 5 271 5
From (EZ0), (B30), we get (B2,
Generally, from Theorems R.11], B, (B.9), (B:27), (B:30) and the residue formula, we

conclude Theorem B.2. O
Proof of (013) and (0:13). As J = J on u~'(0), the condition (B:2) is verified.
From Theorem B.2, (B:23), we get (0.19) and (D.13). 0O

From Theorem B.1], (B27), (B-30), and the residue formula, we can get P") by using
the operators (Z9)~!, PN PN" O, (k <r).
This gives us a direct method to compute P in view of Theorem B.I|. In particular,

(331) P(l) - PNOIPNL (‘32520)71PNl - PNL <$20>71PNL01PN,
and
1 L 1
PO == [ [\ = Z0) PV (Oufi + O2fo) N) + 1P (Oufi + Oz o) (V)] d
d
_L _ ¢p0\—1 pN+ _ ¢p0\—1 pN+ lN
- 6{@ L0)-1p [(’)1<()\ L) PO+ 1P 01) +<92}

5 + %PN [01 (()\ _ )PV O, 4 %PNQ) + 02] }()\ )
=)' PN o) PN 0 PY — PN (2) 20PN O, PY
+ (L) TP O PN O TP — ()T PN 0P
+ PNO(LY PN O (L) PN — PNO(L0) 2PN 0 PN
— PNOPNO, (L) 2PN — PNOL(£0) PN,
In the next Subsection we will prove PYO; PY = 0, thus the second and seventh terms

in (B.32) are zero.
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3.3. A formula for O;. We will use the notation in Section [ All tensors in this
Subsection will be evaluated at the base point xq € Xg.

For 1) a tensor on X, we denote by VX4 its covariant derivative induced by V¥,

If 4 is a G-equivariant tensor, then we can consider it as a tensor on B = U/G with
the covariant derivative V5, we will denote by

(vaBwl)(Cjej,c;ﬂek) = Cjck<vB VB 1/}1):1307

etc.

We denote by {e,} an orthonormal basis of (T'X, g7¥).

To simplify the notation, we often denote by U the lift U of U € T'B.

Recall that iz € TY is defined by ([.14) and the moment map p (R.14), and that A is
the second fundamental form of X defined by (0.10).

Lemma 3.3. The following identities hold,
(VR )z = —IR™,
(3.33) (VEV Iy = (Ve Ver BaoZi Zi
= —P" (Vo) (R +2R*) + (VAL )RY)
— JA(R")R? — %T(RO, JR?) + T(R*+, IRS).

Proof. Recall that PTY, PT"X are the orthogonal projections from T'X onto TV, TH X
defined in Section [.T. Note that on P, by (B.9),

(3.34) Jerery, JedT = (Jae))H e THP.
By ([.I4) and (£.I9), for K € g,
(3.35) — (Iel! KXY = V() = (VI i, K) + (3, VIV K ).
From ([L4), (L.3), (L.6) and (B.39),
(3.36) Ven i = =P Jej' — ; gen i = —P™ Je! = T(e]', o).

From (B.3G) and the fact that = 0 on P, one gets the first equation in (B.33).
Now for W (resp. Y') a smooth section of TX (resp. TY), by ([§),

(3.37) <v§,}” PIYW, Y> = e (WYY — <PTYW, vy Y>
J J
_ <VZ;I§W, Y> + % <T(ef, PrXw, Y> .

(3.38) Vi PTYW = PTYVTXW+2T( , PTX).
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By (B-36) and (B.39),

(3.39) VTYVTY”“ PTY(VX el — PTYIVTEel

1 H 1 ~
= 5T(ef!, PP R Iel!) - (V%TJ)M 5 9ett (Vert ).
By (L.3) and ([L.7), for Uy, Us sections of TB on B,
1
(3.40) ViUl = (Vi U)" — —T(UQH, Uh.

By the definition of our basis {€?, e} in Section P.0,

79 _]

(341) (Veef)ey = Ale)e], (Ve ei )y = (VoL eD)ay = Aled)ey, (Vi€ )ay = 0.

(3 77

Thus by (I.6), (B-2), (B-36), (B:39), (B-40), (B-41) and the facts that A exchanges N¢ and
TXg on Xg, and that g =0 on P, we get

1
(3.42) (VI'VI" ) rr) = —P"™(VRI)R — JA(RO)R® — 5T(R, IR 4+ T(R,IR™).

We use the closeness of w to complete the proof of (B.33).
From (D.9), for U, V,W € TX,

(3.43) (VEDV, W) = (Viw)(V. W),
thus
(3.44) (VEDV, WY + (Ve )W, U) + (Vi DU, V) = dw(U, V, W) = 0.

By (L.3), (T.7), (B.44) and (B.34), for Y a smooth section of TY,
(IVIXEY ey = <V£Xe?,.]ef> = —<T(62,Jef),Y)

3o i

and

(3.45) (T(ef,Je?),Y} :—2(V$X(Je?),ef> —2((Vyd)el, ) + 2(T (e?,JeiL),Y>

g G
= 2((Vad)er,Y) = 2((VLJ)e],Y) + 2T (e], Je;), Y).
From (B.49), (B.47), we get the second equation of (B.33). O

Theorem 3.4. The following identity holds,

2 1
(346) 01 = — —(8'RLB)10(R, €i>Z‘v0 e; —(82‘RLB)$O(’R,, 62‘)
—2(A(e])e], RY) Voo Voo — v/ =1 {(Vd)ea, en) clea) c(en)
+ 472 ((VRod)(RY 4+ 2R*) + (Vi  H)RE — (Rl,mL ), IR)

1 .
+ 4n? <JA(R°)R° + 5T(RO, JRY), JRi> + 4/ =1 (a9 + @P IR
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Proof. For ¢ € (T*X ® End(A(T*OY X)) ~ (T*X @ (C(TX) ®g C))p, where C(TX)
is the Clifford bundle of TX, we denote by VX1 the covariant derivative of 1) induced
by vTX
From [V$ET c(e,)] = ¢(VEXe,), we observe that for W € T'B,
(347)  Vip(¥(ea)e(ea)) = (Vipw)(ea)e(ea) + U (Vighea)e(ea) + v (ea)e(Vigiea)
= (Vive))(ea)c(ea)-

Thus by (B-48) and (B.47), for k& > 2,

(348) — (2wa+7)(t2) = % (RE(ea, &) cle) cley)) (2)
k
= o 3 2 (R (ew ) clea) clen)(t2)] o'y + O

1
- (Rgo + t(ngL)m) (ea, €5) clea) cley) + O(12).
By Lemma and (B.111]), we have

1 0F

(3.49) (i i) (12) =472y o (e (12))|

t=0

< k! ot
+ 4m/ Lt (" ", IRY)  + O(8).

The following two formulas are clear,

1 02 1 - -
3 sl 12| =3 (VYA () g |, = IR TP
t=0 -
(3.50) L 1
3 opl i 02)| =5 (VI (2) e |,

= ((V"V i) rr), VR 1)

From Lemma B.3 and (B.49)-(B-50), we see that the contribution from —t2 (% i*»)(t2)
is the last three terms of (B.48).

By (.104), (R.106) and (B.10), we have
(351) vt,ei = Voﬁi + %(8JRLB)$OZJ (Rv ei) - %(%v&ﬁ) (tZ) + ﬁ<t2)'

By ¢,;(Z) = Qf(Z)Qf(Z) and (R.95)-(R.97), we know
Gi;(Z) =0;; — 2 <A(e?)e?,72l> +0(|Z)?) for1<i,j<2(n—ng),
(3.52) §ij + O0(]Z)*)  otherwise;
R(Z) =det(g;;(2))"? =1 — (A(e))e], RY) + (|1 Z?).

From (B.41)), (B.51]) and (B.59), the first three terms of the right hand side of (B.46) is
the coefficient ' of the Taylor expansion of —g"(tZ)(Vie,Vie, —tVivrse,iz))-
By (B.110), (B-43) and the above argument, the proof of Theorem B.4 is complete. [
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Theorem 3.5. We have the relation
(3.53) PYO, PN =0.
Proof. By (B.§) and (B.19),

b PY = b PY =0, (5L PN)(2,2)) = 20t 2PV (2, 2),

(3'54) N / =0  —=/0\ pN /
6:PV)(Z,2") = a;(20 — Z°)PN (2, 7).

We learn from (B54) that for any polynomial g(Z+) in Z+, we can write g(Z+) PN (Z, Z")
as sums of gBL(bl)BLPN(Z, Z') with constants gz.. By Theorem B.1],

(3.55) Py (bH)* g(ZH)PN =0, for || > 0.

Let {w,} be an orthonormal basis of (739X, g7%).
Note that if f, g are two C-linear forms, then

flea)g(ea) = f(wa)g(Wa) + f(Wa)g(wa).
Thus by Theorem B.1, (B.§), (B.21]) and (B.54),

(3.56) PN {(VET)eq, en) c(eq) clep) PN = —2PN ((VRI)w,, w,) PN
= _2< z0+_’0J waawa> PN v—1Tr |TX[ ( z0+_/OJ)]PN

By (B3), B13), (B-2T), B.-44), (B-54)-(B-50), we get

1

2
(3.57) PNO,PN = PN{—(aRRLB)mO(R, )b = 2 (D R™)y (R, €])

F S (ORRI)0, (R, e} of — 3 (0, RY7)0y (RO, )

oalr—‘

+ 7 Tr [T (VD)) + 872 (VEJ)RE, IRS) }PN
By (B.9), (B:54) and (B.59),

1
(3.58) PNZ:Z PN =

1
—PNZ by PN =
ag,

— 6 P".
k

For 7 a tensor on Xg, let VX6 be the covariant derivative of 1 induced by the
Levi-Civita connection V7¥¢,

For U,V,W € T,,X¢, by (B-2), (B:3) and (B.1T), we have
(3.59)  (QuR™)ay(V,W) = =21/ =1 {(V3Jq)V. W) = =20V =1 ((VFIV,W).
From (B.2), (B.H), we know that

(3.60) Jeb = 2 jelk.

7 2
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By Theorem [, (CT8), @), (B9, (B) and (E53)- @), we get
dmy/—1
(3.61) PNOPY = PN{ = o= [2 (Vi) o ) + (V% DR, )

i 0
0z;

- <(VX3 IR, >} + 7T |x [T (V)] + 27 (VEoT e Jel>}pN

879
:71'[—4\/—1 <( ZO+Z/0J>BZO’8;; >—|—TI'|T)([ (VZQ+Z/0J 2<J vzo+zloJ)€j_,€j_>]PN =
The proof of Theorem B.3 is complete. O

From (B-33) and Theorem B.5, we get the following general formula which will be used
in Section [,

:(XQO)APNLC’% (D%O)APNLOIPN _ (D%O)APNLOQPN
(3.62) + PN01<$20)71PNL01 (‘,2520)71PNL . PN(/)2<D§/p20)71PNL
4 (95%0)71PNL(/)IPN(/)I(Dg%O)flPNL - PN01<320)72PNL01PN.

3.4. Example (CP',2wpg). Let wps be the Kihler form associated to the Fubini-Study
metric gLSF" on CP!. We will use the metric g7 = 2 gZSP" on CP! in this Subsection.
Let L be the holomorphic line bundle O(2) on CP!. Recall that O(—1) is the tauto-
logical line bundle of CP!.
We will use the homogeneous coordinate (zg,2;) € C? for CP! ~ (C?\ {0})/C*.
Denote by U; = {[z0, 21] € CP'; z; # 0}, (i = 0, 1), the open subsets of CP!, and the
two coordinate charts are defined by ¢; : U; ~ C, ¢;([z0, z1]) = i—j, J# 1.
For any ig, i1 € N, 2{°2!" is naturally identified to a holomorphic section of O(—ig—i;)*
on CP!. For any k € N, we have

(3.63) H(CPY, O(k)) = C{spiy = 20023, dg +1i1 = k, and ip,4; € N}.

On U;, the trivialization of the line bundle L is defined by L 3 s — s/2?, here 2?7 is
considered as a holomorphic section of O(2).
In the following, we will work on C by using ¢, : Uy — C. Then for z € C,

vV—1= o1 v—=1 dzNdz
.64 = ——001 1 = .
(3 6 ) WFS(Z) o 00 Og(( + |Z| ) ) ot (1 + ‘Z|2)2
Let h* be the smooth Hermitian metric on L on CP! defined by for z € C,
(3.65) |s2.0[2(2) = (1 +]2]*)~

Let VL be the holomorphic Hermitian connection of (L, h%) with its curvature R”.
By (B:64) and (B:63), under our trivialization on C

(3.66) VE =0+ 0+ dlog(|sz0lhe),
Vol \/—
2

Let K be the canonical basis of Lie S' =R, i.e. for t € R, exp(tK) = 2"Vt ¢ S,
We define an S'-action on CP! by g - [20, 21] = [g20, 21] for g € S*.

8810g|320|hL =2wps =: W.
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On our local coordinate, -z = gz, and the vector field K€" on CP! induced by K is

(3.67) K (2) 1= & exp(—tK) - oo = 2/ "1 (2 ~ 72).
Set o
2 20
K — =1
1(K)([20, 21]) = |20[2 + |21 2
Then, on C,
(3.68) p(K) = 202* (1 + ]2 = L.

By (B-64), (B.67) and (B.6§), we verify easily that u is a moment map associated to
the S'-action on (CP!,w) in the sense of (B.13).

The Lie S*-action on the sections of L defined by (P:I4) induces a holomorphical S*-
action on L. In particular, from (B.60)-(B.69),

(369) % exp(—tK) . 327j|t:0 = LKSQJ‘ = 27'('\/ —]_(1 — j) 59,5-
By (B-69), the Sl-invariant sub-space of H(CP!, L?) and p~*(0) are
(3.70) HY(CPY, IP)S = Csypp pH(0) = {2 €C, 2| = 1},

and S acts freely on p~1(0), thus (CP')g1 = {pt}.
Under our trivialization of L, sy, ; € H*(CP!, L) is the function 2/, and from (B.69),

2j * 2t dt 25! (2p — j)!
3.71 12 = [ 2, :/ = :
( ) ”SQPJHL2 /C(l + |Z‘2)2p wWrs 0 (1 +t)2p+2 (2p+ 1)[

Thus ((51(’;)12)!)1/2521,4, is an orthonormal basis of HO(CP', L?)S".

Let " be the formal adjoint of the Dolbeault operator 3", For p > 1, the spin®
Dirac operator D, in (B.19) and its kernel are given by

(3.72) D, =2 (9" +9""), KerD, = H(CP', 7).
Finally, by Def. .3, for p > 1, we get
(2p+1)! .
PpG(Z, Z,) = W@pm(z) (%9 52]),])(2,) s
(3.73) | %
PG(Z Z)— (2p+1) |S | p(Z): <2p+1>' |Z‘
r 2(phy2 T 2(ph)? (1+]e]2)%’

Note that our trivialization by sy is not unitary, thus we do not see directly the

off-diagonal decay (0.14) from (B.73).
Here we will only verify that (B.73) is compatible with (0.13), (0.1) and (D.16).
Recall that Stirling’s formula [Bg, (3.A.40)] tells us that as p — +o0,

(3.74) pl = (2mp) V2P e7P (1 +0 (%)) .

(3.75) (2;(;)12)! - \/\/56 9% (1 + %)Zp@ + ﬁ(%)) - \/22217(1 + ﬁ(%)).
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Now, C* is an open neighborhood of ;1~1(0) and B = C*/S! ~ R* by mapping z € C*
tor = |z| € RT.

By (B64), the metrics on {|z| = r} = {re*V=1.0 € R/Z}, B ~ R* induced by
w=2wpg is

2
(3.76) 8mr?(1+7r*)"2df @ db, g =Z(1+r))2dr @dr.
7r
From (B.76), the fiberwise volume function A%(r) in (0I0) on R* is
(3.77) h*(r) = V8rr (1 + 7))L

From (B73), (B7H) and (B77), we get for [z| =,
+1), 1\t 2r  \2pt1 1
F e Y 1C LT S L7 e SIS}
B18) (0)PE(2) = VEr At (o ()" (o)
When |z| = 1, from (B.7§), we re-find (D.15) and (0.14).
From (B70), V272 is an orthonormal basis of (B, ¢"?) at r = 1, thus the normal
coordinate Z+ has the form r — 1 = 2r(Z+ + O0(|Z+|?). Thus

(3.79> (27, (1 + 7,2)71)2p+1 _ e(2p+1)log(lfw(ZL)mrﬁ(\le)) _ 6727rp(ZL)2 .

This means that (B.79), (B-79) are compatible with (0.13) and (B.22).

If we consider the sub-space H°(CP!, LP)_, of H°(CP', L) with the weight —p of
St-action, then by (R-I4) as in (B.69), and (B.71), y/p + 3 S2p0 is an orthonormal basis
of HO(CP', LP)_,.

Thus the smooth kernel P;?(z,2’) of the orthogonal projection from €>(CP!, LP)
onto H°(CP!, LP)_, is

(B80) PP ) = (0 3)smpol2) @ smpol2)', FP(2) = (b4 5)(1+ o)

Note that p=*(—1) = {0}, i.e. —1 is a singular value of u.

Let 1 be the moment map defined by p;(K) = u(K) + 1, then H°(CP!, L?)_,, is the
corresponding S!-invariant holomorphic sections of LP with respect to the corresponding
Sl-action.

Thus 0 is a singular value of p; and this explains why we have a factor p in (B.80)

instead of p'/? in (B.79).

4. APPLICATIONS

This Section is organized as follows. In Section [L.1], we explain Theorem [}, the
version of Theorem when we only assume that p is regular at 0. In Section .9, We
explain how to handle the ¥-weight Bergman kernel. In Section .3, we deduce (0.13),
and (D.16) from [, Theorem 4.18]. In Section .4, we explain Theorem D.4 implies
Toeplitz operator type properties on X¢. In Section f.J, we extend our results for non-
compact manifolds and for covering spaces. In Section .6, we explain the relation on
the G-invariant Bergman kernel on X and the Bergman kernel on Xg.

We use the notation in Introduction.
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4.1. Orbifold case. In this Subsection, we only suppose that 0 € g* is a regular value
of i, then G acts only infinitesimal freely on P = p~1(0), thus X¢ = P/G is a compact
symplectic orbifold.

Let G ={g € G,g-x = x for anyx € P}, then G is a finite normal sub-group of G
and G /G, acts effectively on P.

We will use the notation for the orbifold as in |24, §1], [I7, §4.2].

Let U be a G-neighborhood of P = ;~1(0) in X such that G acts infinitesimal freely
on U, the closure of U. From the construction in Section [, any G-equivariant vector
bundle F' on U induces an orbifold vector bundle F on the orbifold B = U/G.

The function A in (0.I0) is only €*° on the regular part of the orbifold B, and we
extend contmuously h to U/G from its regular part, which is > and we denote it by
h then A is also € on U.

As we work on P in Section P.H, we need not to modify this part.

We need to modify Section P.g as follows.

Observe first that the construction in Section [[.1] works well if we only assume that G
acts locally freely on X therein.

Denote by VT"U the connection on TH#U as in Section [T, and on P, let V¥, VTHP,
0v™"Y be the connections on N, THU in Section P.§ as in (D-9).

For yo € P, W € THU (resp.T" P), we define R > t — z; = eXpZOHU(tW) € U (resp.
expgoHP(tW) € P) the curve such that @|,—o = yo, |0 = W, & € THU, VTHUdm =0

(resp. % e TP, VTHPd—”C =0).

’dt

By proceedlng as in Section P.G, we identify BTHU(yO, £) to a subset of U as follow-
ing, for Z € BTHU(yO,s), Z =7+7+ 7° ¢ TylgP, Z+ € N,,, we identify Z with

THU 1
Xpexpggfp(zo) (T70Z+).

Set Gy, = {g € G,gy0 = wo}, then G - BT"V(yg,¢) = G X Gy BT"U(yy,¢) is a G-
neighborhood of Gy, and (G,,, BTV (yo,€)) is a local coordinate of B.

As the construction in Section .G is G,-equivariant, we extend the geometric objects
on G xg,, BTHU(yO,e) to G Xg,, R2r—0 = X,.

Thus we get the corresponding geometric objects on G x R**~" by using the covering
G xR ™ - @G X Gy, R27=m0  especially, 21))(0 (where we use the ~ notation to indicate
the modification) is defined similarly on G x R*"~™_and Theorem B3 holds for E;(o_

Let g : G x R?"7"0 — R?""7 be the natural projection and as in ([20), we define
® = h7ig, then the operator Q),CXOCD is well-defined on T,/ U ~ R*"~"0.

Let gT X0 be the metric on Rzn "0 induced by g7*°, and let dvys x, be the Riemannian
volume form on (R2—70 ¢T"Xo),

Let Py, be the orthogonal projection from L2(R2—mo (A(T*OVX) ® LP ® E),,) onto
Ker(cbﬁg(oq) 1) on R, Let Py, ,(Z,Z') (Z,Z' € R* ™) be the smooth kernel of
P, » with respect to dvpux,(Z').

Let P§ be the orthogonal projection from Q%*(Xo, Lf ® Ey) on (Ker D)%, and let
P§ (z,2) be the smooth kernel of P/, with respect to the volume form dvx,(z').
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Let P, Xo/G (y, ') (y y" € Xo/G) be the smooth kernel associated to the operator on
Xo/G induced by Q)EXOCD as in (R.72).

Note that our tr1v1ahzat10n of the restriction of L on BTHU(yO, g) as in Section .G is
not G, -invariant, except that G, acts trivially on L.

For x,2' € X,, with their representatives 7,7’ € R?*~" we have

(41)  h(@)h(x) P, (x.2) = PX/%(n(z), n(2)) = Z (9:1) - Pyoplg ', 7).
gEGyO
The second equation of (f.]]) is from direct computation (cf. [[7, (5.19)]).
As we work on G x R?"~"0_ for the operator &)E;(“&)_l, Prop. B.9 and Sections R.4-P.9
still holds.
From Theorem R.23 for P, , and (L), we get

Theorem 4.1. Under the same notation in Theorems [0.3, B-23, for a,o/ € N?"—mo,

la| + /| < m, we have

(42) (14 plZ*| + vplZ2H )™ p R (hwt)(2)(he2 ) (Z')PE 0 (2, Z')

k
1 r
_ 1). PO (g /pZ, \/pZ' *)‘
1G] Z Z (9,1) Yo (9 V/PZ,\/pZ )p 2 o ()
_'_

< Cpf(k+lfm)/2 (1

VBIZ] 4 BIZO) D (/T i g2~ 2
Yo
+ O (p™).

If Z =2 =Z°then for g € G, gZ° = Z°, we use Theorem R23 for Z = Z' = 0 with
the base point Z 0, and for the rest element in G, we use Theorem .23 for Z = 7' = Z°
with the base point yp, then we get

(4.3) |p "t (WR)(2°) P o W(2°, 2°) ——Z S (9.1 PR0,0)p

0
|G | =0 geGy,,92°=20

°|Z D R N N A A

r= OgEGy ,gZ9+£270
< Cp—(2k+1)/2(1+(1+\/]—)|ZO|)2(n+2k+2) exp(—\/CTyp|Z0|)>.

Note that if g € G, acts as the multiplication by e on L, then (g, 1)~Py(g), (g, 1)~Pg))
in (.3) have a factor €? which depends on p.

Of course, after replacing L by some power of L, we can assume that G, acts as

Yo>

identity on L for any yo € P, in this case, (g, 1) - Py(g), (g,1) - Pé? do not depend on p.

From Theorem B.9 and ([£.3), if the singular set of X is not empty, analogous to the
usual orbifold case [, (5.27)], p™""2 P& (Yo, 40), (yo € P) does not have a uniform
asymptotic expansion in the form Y 2 ¢, (yo)p™"
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4.2. ¥-weight Bergman kernel on X. In this section, we assume that G acts on
P = p71(0) freely.

Let V be a finite dimensional irreducible representation of G, we denote it by pY :
G — End(V). Let ¢ be the highest weight of the representation V. Let V* be the trivial
bundle on X with G-action p¥" induced by p”.

Let P) be the orthogonal projection from Q%*(X, L? ® E) on Homg(V, Ker D,) ®V C
Ker D,,. Let PY(x,2'), (x,2' € X), be the smooth kernel of PY with respect to dvx(a).

We call PY(x,2') the ¥-weight Bergman kernel of D,,.

We explain now the asymptotic expansion of va(x, x') as p — oo.

We will consider the corresponding objects in Sections [IHJ by replacing F by E ® V*.
Especially, we denote by D;f " the corresponding spin® Dirac operator associated to the
bundle I? @ ' ® V*.

Certainly, all results in Sections [[-§ still hold for the bundle F ® V*.

Let P? be the orthogonal projection from 4>(X, E, ® V*) onto (Ker DY")“, and
P?(x,2'), (z,2" € X) the smooth kernel of PY with respect to dvx(z').

As V is an irreducible representation of G, we get

(4.4) Ker D)" = (Ker D,) ® V*, (Ker D}")“ = Homg(V, Ker D).

Let {v;} be an orthonormal basis of V with respect to a G-invariant metric on V' and
{v}} the corresponding dual basis.
Let dg be a Haar measure on G. By Schur Lemma,

1
4.5 (v, Ndg = ——0;; Idy.
(4.5) [ g+ @idg = o1y

Thus if W is a finite dimensional representation of G with the highest weight ¥, then for
any s € W, we have
(4.6) s = (dim¢ V) (/ g-(s® vf)dg) ®v; € Homg(V, W)@V = W.

G

From (f£@) and the G' x G-invariance of the kernel PY(z, '), we get

P:(I, 7') = (dim¢ V) Z(Pﬁ(w,x’)vf, v;),
(4.7) i

PY(z,z) = (dim¢ V) Try- Pg(x, z) € End(A(T**VX) @ E),.
In fact, let {1;} be an orthonormal basis of Ker(D)" )¢, then for any j fixed, in view of
the second equality in ([L.4]), one sees that

(4.8) Uiy € Endg(V) and  Try[g5e] = (o7 = 1.
Thus by Schur Lemma,

1
- dim(c V

and {(dim¢ V)%Q/iji} is an orthonormal basis of Homg(V, Ker D,) ® V C Ker D,,.

(4.9) Vi Idy
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Let U be a G-neighborhood of P = p~'(0) as in Theorem [, P/ is viewed as a
smooth section of pri(E, ® V*)p @ pri(E£, ® V*); on B x B, or as a G x G-invariant
smooth section of pri(E, ® V*) @ prj(E, @ V*)* on U x U.

Moreover, v;, v} are smooth (not G-invariant) sections of U x V, U x V* on U. Thus
from (E7), P) is not a G x G-invariant section of pri(E,) ® pry(E;) on U x U.

Now Theorem applies well to the bundle F ® V*, thus we get the asymptotic
expansion of Pg (z,2") as p — 400, and the leading term in the expansion of
p~ % (hez) (2) (he? ) (2) PY (2, 2) is P(\/BZ, /PZ')ca(pev)s.

By ([[7), the leading term of the asymptotic expansion of p"+ 2 (hx2)(z)(hx?) (') PY (z, 2')
is
(4.10) (dime V)? P(VpZ, /pZ ) Icer,, P(0,0) = 2m/2,

Let © be the curvature of P — Xg as in Section [[L]. Let pY  denote the differential

of p¥". By ([I9),
(4.11) RESVIe = REe 1 pV"(@).

In the same way, we can define .#) a section of End(A(T**YX) ® E)p on X¢ by
(0:17) for PY. From (D.29) (which will be proved in Section [), ({1), (E10) and (EIT)),

we get

Theorem 4.2. Under the condition of Theorem [.8, the first coefficients of the asymp-
totic expansion of .7 € End(Eg) in (020) is

(4.12) g = (dime V)?,
1 . w
o, = 8_7r<d1m<c V)? (Tﬁf +6Ax, logh +4Rye (w?, w?))
1 . * —
+ %(dlm@ V) Try- [pf (©)(wh, @j)] -

4.3. Averaging the Bergman kernel: a direct proof of (0.173) and (D.16). We use
the same assumption and notation in Theorem D.J.

Let P,(z, ') be the smooth kernel of the orthogonal projection P, from Q%*(X, [P ®
E) onto Ker D, with respect to dvx(z’). Then P,(x,z’) is the usual Bergman kernel
associated to D,,.

Let dg be a Haar measure on G. By Schur Lemma,

(413)  PS(xa) = /G ((9.1) - Bz, 2')dg = /G (9.:1) - Py(g ™"z, 2')dg.

One possible way to get Theorem is to apply the full off-diagonal expansion [[17,
Theorem 4.18'] to (.13).

Unfortunately, we do not know how to get the full off-diagonal expansion, especially
the fast decay along Ng in (D.14)) in this way.

However, it is easy to get (0-I7) and (D-I6) as direct consequences of [[7, Theorem

4.18'] and (E.13).
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As in Section B.J, we denote by TY the sub-bundle of TX on a neighborhood of
P = ;171(0) generated by the G-action and by T P the orthogonal complement of 7Y
in (TP, g'").

Take yo € P. Let {e;})" (n=no) , {fi}}2, be orthonormal basis of T'P, T,Y. Then
{62}2(" ™) {fi, Iy fi}12, is an orthonormal basis of T, X. We use this orthonormal
basis to get a local coordinate of X by using the exponential map expf/f).

We ideqtify BTwX(0,¢) to BX(yo, ) by the exponential map Z — .expflf) (uZ).

Let VOI®E he the connection on A(T**VX) ® E induced by Vi and V7.

For Z € BTwX(0,¢), we identify Ly, (MT*OYVX)® E)z, (E,)z to Ly, (A(T**VX)®
E)ys (Ep)y, by parallel transport with respect to the connections V, VUL E

along the curve vz : [0,1] 5 u — uZ.
Under this identification, for Z, Z' € BTwX(0, ), one has

P,(Z,7") € End(AM(T*VX) @ E),,.
Let k1(Z) be the function on BT~ (0, ¢) defined by
(414) dvx(Z) = Hl(Z)dUTI X

By [[4, Theorem 4.18'] (i.e. Theorem .9 for G = {1}), there exist J,.(Z') € End(A(T* 0.1 X)
®FE)y,, polynomials in Z’ with the same parity as r, such that for any k,m' € N, there
exist C, M > 0 such that for Z’ € T, X, |Z'| <,

k
1 / r
(4.15) | = )= > J(VpZ )N (Z)e 3 p
p r=0 %™ (P)
< Cp~ VR4 /p| Z')M exp(—VC"v /Dl Z')) + O (p™),
and
(4.16) Jo(2) = Icop.

For K € g, | K| small, e maps (A(T**VX)® E),-x,,, Le-xy, to (MT*OVX)® E),,,

Yoo

L,,, and under our identification, we denote these maps by

(4.17) fE(K) € End(A(T*"VX) ® E),,, f¥(K) € End(L,,) ~ C.
By [[, Prop. 5.1], if we denote by

1— efadK

ad K )
for K € g, then in exponential coordinates of G,
(4.19) d(e") = jo(K)dK.
By [[q, Prop. 4.1] (i.e. Theorem P for G = {1}), (EI3), as G acts freely on P, we

know

(4.20) P} (vo, v0) = /K IK|< FEE)(FH(E)) Pole™  yo, yo)jg(K)dE + O(p™).

(4.18) Jg(K) = detg(
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Let ST be the section of L on BTw¥(0,¢) obtained by parallel transport of a unit
vector of L,, with respect to the connection V% along the curve vz. Let I'" be the
connection form of L with respect to this trivialization.

Recall that for K € g, the corresponding vector field K* on X is defined in Section
.1 Recall that {K;} is a basis of g.

By (B.109), for K € g,
(e - 5)(0) = e - S¥(e T yo) = fH(K)SH(0), with f5(0) =1,
M2 (KY) = 5350(2 KX+ 0(|12)?).

By (B14), (B.17), (E21]) and pr = 0 on P, we get

(4.22) (L, (L, 8%))(0) = (Viex (Vigx S* = 2mv/=10(K:)S%))(0)

(4.21)

5Rjo(KX K¥)S"(0) = mv/=1{du(K;), K)S*(0) = 0.

By (B-14), (E27), (E29) and i = 0 on P, we get
8fL L L _ L L _

oK, 7 (0)57(0) = (Lk,57)(0) = (Vgx57)(0) = 0,

(4.23) o fr s

OK;0K; (0)5(0) = Ot, 0ty

= (L, (Lx,S") + L, (L, S%))(0) = 0.

(525 S2) (0)]y o

Thus from ([23),

(4.24) (fHE))? = 1+ O(|KP))P.
Moreover,
(4.25) FAK) =W onxer,, + O(K]), m(Z2)=1+0(2).

Let dvy be the Riemannian volume form on (T'Y, g”¥). Observe also that if we denote
by iy, : G — Gyp the map defined by i,,(g) = gyo, then

1
h*(y)
this gives us a factor m when we take the integral on g instead on the normal coor-
dinate on X.

By (EI13), E19), (E20), (E24)-(E28) and the Taylor expansion for i, f%, fL, as
in [, Theorems 5.8, 5.9], we know that there exist J/.(Z) polynomials in Z with same
parity on r, and J| = Icgg, such that

1 / _ ) o]

n ) |K‘ / B —r/2

p e 2P E JT( p )p dK
h?(yo) Keg|K|<e r=0 v

(4.26) ——dvy (y) = i, dg,

(4.27) By (Yo, y0) ~
Moreover,

(4.28) / e BIREGR = 9%
Keg
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After taking the integral on g, from ([.27) and (£.2§), we get (0.13) and (D.10).
By (E7), (E27) and ([£2§), we get also the asymptotic expansion for P) (4o, o), 4o € P.

4.4. Toeplitz operators on X. In this Subsection, we suppose that (X, w) is a Kéhler
manifold, J = J, and L, E are holomorphic vector bundles with holomorphic Hermitian
connections V¥, V¥, Let G be a compact connected Lie group acting holomorphically
on X, L, E which preserves h” and h*.

We suppose that G acts freely on P = p~1(0). Then (Xg,wg) is Kahler and Lg, Fg
are holomorphic on Xg.

In this case, there exists a natural isomorphism from (Ker D,)¢ onto Ker D¢ .

At the end of this Subsection, we will explain the corresponding result in the symplectic
case, especially, for p > 1, we construct a natural isomorphism from (Ker D,)¢ onto
Ker D¢ .

In the current situation, the spin® Dirac operator D, was given by (D.21]) and D;
preserves the Z-grading of Q%*(X, LP ® F). Similar properties hold for D ,.

As in Section B3, let Py, be the orthogonal projection from Q%*(Xg, LY., @ E¢) onto
Ker D¢, and let Pg,(z, 2") be the corresponding smooth kernel.

By the Kodaira vanishing theorem, for p large enough,

(4.29) (Ker D)% = HY(X, [’ ® E)“, Ker Dg, = H(Xg, L}, ® Eg).

As D;, Dévp preserve the Z-gradings of Q°*(X, [PQE), Q" (X, LY. ® E) respectively,
we only need to take care of their restrictions on (X, LF ® E) and €*°(X¢, L}, ® E¢).
In this way,

PS(x,2') € €=(X x X, pri(L’ ® E) @ pry(LF @ E)"),
Pe p(x0, 7)) € €°(Xag x Xa,pri (LY, @ Eg) @ pry(LE, @ Eg)).

Recall that the morphism o, : H(X, L? @ E)¢ — H°(Xg, LY, @ Eg) was defined in
(027). Set

(4.31) 0% :apoPpG L E€°(X, [P ® F) — H(X¢, LY, ® Eg).

p

(4.30)

Let af* be the adjoint of af with respect to the natural inner products (cf. ([.LI9))
on (X, [P @ E), €°(Xa, L}, @ Eg). Set

(4.32) P;(G = pf%af o af*.

Let {sm}fil be an orthonormal basis of H*(X, [P ® E)¢. For yy € Xg, =, ' € X,
one verifies
dp
PpG({L', ,I‘/) = Z Sp,i(l‘) ® Sp,i(x/)*a

=1

(4.33)

Ug(ym@ - PpG(ymx)) Of*(l‘ayO) = Pf(xayO)a

where by P%(yo, ) (resp. P (x,y0)) we mean P (y,z) (resp. PE(x,y)) for any y €
75" (10), which is well-defined by the G-invariance of PS¢
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From (D.27), we know that P.X¢ commutes with the operator Py, and
(4.34) P.'¢ = PgpPy¢ Pay.
Let PS|p be the restriction of the smooth kernel P& (x,2') on P x P. Then
PP\ p(x,2") € €%°(P x P,pri(L’ ® E) @ prj(LF ® E)*)
is G x G-invariant. By composing with 74,
(7c o PY|p) (w0, z)) € €™(Xe x X, pri(LE ® Eg) ® pry(Lf, ® Eg)*).
We denote by ¢ o PY|p the operator defined by the smooth kernel (¢ o P& p) (o, zf)
and the volume form dvx,(x}). Then from (£.33), we verify that
(4.35) PX¢ (o, ) = p’nTOPpG(a:o, z)) =p Frgo PE|p(xo, 7).

Definition 4.3. A family of operators T, : H*(X¢, L, ® Eg) — H*(Xg, LY, ® Eg) is a
Toeplitz operator if there exists a sequence of smooth sections g, € €°°(X¢q, End(E¢))
with an asymptotic expansion g(-, p) of the form Y ;°  p~'g,(z) such that for any k& € N*,
there exists C' > 0 such that for any pEN,

(4.36) 1T, — PGpr (@) Py < Cp= Y,
=0

Here || ||%° is the operator norm with respect to the norm || ||z2. We call go(z) the
principal symbol of T},. If T, is self-adjoint, then we call T}, is a self-adjoint Toeplitz
operator.

Recall that h is the fiberwise volume function defined by (D.10).
Let dg be a Haar measure on G.
The main result of this Subsection is the following result.

Theorem 4.4. Let f be a smooth section of End(E) on X. Let f¢ € €*(Xg, End(Eg))
be the G-invariant part of f on P defined by f¢(z) fG gf(g~x)dg. Then T;, =

p 2 E crgfaf* 1s a Toeplitz operator with principal symbol 2% h_C;( ). In particular P;(G 18

a Toeplitz operator with principal symbol 2n70/h2(x).
Proof. Let f* be the adjoint of f. By writing

_f+f* =1
r= v L

we may and we will assume from now on that f is self-adjoint.
We need to find a family of sections g; € € (X¢, End(E¢)) such that for any m > 1,

(4.37) Tip= Z Popqip ! Pop+ O(p~ ™).
1=0

Moreover, we can make these g;’s to be self-adjoint.

Let U be a G-neighborhood of P = ;71(0) as in Theorem D.3.

Let ¢ be a G-invariant function on X such that ¢» = 1 on a neighborhood of P and
supp(v) C {y € X,d(y, P) < eo/2} NU.
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Write
G G* __ G G G G
(4.38) o) fo,  =a,Ufo," + 0, (1—v)fo,".
For zg, x € Xg, let x, 2’ € P such that 7(z) = xo, 7(2’) = x}. By ({£.33),
(439)  (0;((L =) f)oy ") (o, 2p) = /X Py, y) (1= 9)))(y) By (y, ') dvx (1)

From Theorem [-1], (:39) and supp((1—1)f)NP = 0, we know that for any [, m € N,
there exists Cj,, > 0 such that for any p € N, z¢, 2, € X,

(4'40) |(J§<<1 - w)f>0-§*)(x07 xi))‘%m(XGXXG) < Cl,mpil-
We define fp € €°°(B,End(Eg)) by
(.41) falan) = [ g )o )y
e

for zg € B,z € U such that 7(x) = xy. Clearly, if o € P, as ¢|p = 1, one gets

(4.42) fe(x0) = £ (o).

From (f.47]), for zo, z, € B, x, 2’ € U such that m(z) = zo, m(z’') = xy, one gets
(14) oo () = [ BEe.s) (0 )PE (0 )dox(y)

= /BPpG<'r07yO)fB<y0)PpG<y07x6>h2<y0>d1}3<y0>-

For o € Xg, we will work on the normal coordinate of Xs with center zy as in
Theorem [0.2.
Recall that Py (Z°, Z°) was defined by (B.19) with a; = a;- = 27 therein.

By (E39), (E20) and (E33), for |29, |2°] < </2.
(4.44)

Tpp(2°,2°) —p /WWFOB PA(Z° W)(fsh®) (W) P (W, Z")dvs(W) = 0/(p~).
€ 0

By Theorem .2, (£.44) and the Taylor expansion of fg, there exist Qo € End(E¢ 4,)
polynomials on Z°, Z”° with same parity on r such that the following formula, obtained
through compositions, holds,

k
p—n-l-n()f]}m(ZO’ Z,O) - Z(QO,TPX)(\/Z_?Zoa \/ﬁzlo)p_%

r=0 ™' (Xg)
< Cp~ "1+ /pl Z° + /Pl Z°)M exp(—V C"u/p| Z° = Z7°)) + O (p~™).

(4.45)

On the normal coordinate in X, under the trivialization induced by the parallel
transport of VE"®E)e along the geodesic, by [[7, Theorem 4.18'] (i.e. Theorem .3 for
G = 1), we get : there exist J.(Z° Z"°) € End(Eg).,, polynomials in Z° Z° with the
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same parity as r, such that for any k,m’ € N, there exist M € N, C > 0 such that for
Tg € Xg, ZO, Z" S TmoXGu ‘ZO|, |ZIO‘ <eg,

k

PP (20, 27) = 3 Pe) (VP20 P ) H ()R (2

r=0

(4.46)

™' (Xg)
< Cp WP+ /Bl 2% + /ol Z°)M exp(—V Con/p| 2° = Z7)) + O (™).

By using the Taylor expansion of x~Y/2 from ([£46), there exist Jy, € End(Eq.4,),
polynomials on Z°, Z" with same parity as r, such that

k

PP, (20, 2°) = S (o, ) (VB2 /B2 )

r=0

(4.47)

™ (Xa)

< Cp "R 4 | Z°| + /Bl Z° )M exp(=VCu/pl Z° — Z7)) + O (p™).
Moreover, by (0.13) and (f.49), for Qo , Joo in ({.45) and ([L.47), we have

G
(448) QOO =272 2 {L—2<l’0> J070 = IdEG .

In what follows, all operators will be defined by their kernels with respect to dvr, xg-

We will add a subscript z° or z’° when we need to specify the operator acting on the

variables Z° or Z'.
By Theorem B.1], we know that

(449) b} 4Py =0, (b;Py)(2° 2") = b,.0Py(2°, 2°) = 2m(2) — 20)Py(2°, 2"),

Thus for F(Z0 Z") a polynomial on Z° Z° by (B.9), Theorem B.I, ([£49), we can
replace Z) in F of (FPy)(Z°,Z") by the combination of b;.o and Z}, thus there exist
polynomlals Fyo (a® € N*™0) on 2% Z" (resp. Fno on 2°, 2°) such that

(FPg)(ZO,ZIO) = Zb?g(FaOPi”)(ZO?Z/O)a

0
(4.50) “
((FPg) o Py)(2°,2"°) = Zb Fao0(2°, 20 Py(2°, 2).

In fact, by Theorem B], the coefficient of Py (Z°, Z) in the right hand side of the second
equation of ([£50) is anti-holomorphic on 2. Moreover, by Theorem B, |a°| + deg F,o,
|a®| + deg F,0 o have the same parity with the degree of F' on Z° Z°. In particular,

0

Fo0(2°,2") is a polynomial on 2%, z" and its degree has the same parity with deg F.

We will denote by
(451) Fiﬂ = F(), F$70 = F070.

Let (F'Pg), be the operator defined by the kernel p" " (FPg)(\/pZ°, /DZ").
By Theorem B, (E47), (FE49), there exist polynomials H,(F) on Z° Z° € T,,X¢,
with the same parity with deg F' 4+ r, such that we have the following asymptotic at
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center xg,

(4.52) Pep(FPg)yFop ~ Z(HT(F)PX)ppﬂ/?; Hy(F) = Foo = Fgy,
r=0
with the reminder term estimated in the sense of (f.47) and (f.47).
By Theorem B.1, (£47), (E50) and (E53), the coefficient of p~*/2 in the expansion
[EZD) of 32— Pop(QorPe)pp 3Py is

k
(4.53) (Qox)zoP2)p+ Y _(He(Qos—r)Pe)p:
r=1
Now, by (E.31)),
(4.54) Tip=p 20CfoS" = Po,T;,Poy.
Thus by (£47), (E53) and (fL.59), we get
k—1
(4.55) Qo = (Qor)zo+ Z Hy—r(Qoyr)-
r=0

By ([47) and (43), for f € (X, End(Eg)), there exist polynomials G,.(f)(Z°, Z'0)

with the same parity as r such that in the normal coordinates as above,

(4.56) PapfPap~ > (G(f)Py)pp 25 with Go(f)(2°, 2°) = £(x0).

r=0

By (E47), (£56), (Psp)* = Pg,p and by proceeding as in ([L55), we get

(4.57) Grlf) = 3 Hi(Gral£)) = (Go () 20 + D Hi(GrilF)).
From (f:4§), we define
(1.58) o) = 22 L (2).

Assume that we have found ¢, € €°°(Xg, End(Eg)), (I < ko), self-adjoint sections
such that (£.37) holds for m = k.

We claim that Qg ax,+1 is determined by g;, (I < k), and there exists ggy+1 € € (Xq, End(Eg))
self-adjoint such that Qg ox,+2 is determined by g, (I < ko + 1).

By (£.37), (E.47) and (E.50), for 0 < k < 2k,

(4.59) Qe = Y Gilg).

2+j=k




BERGMAN KERNELS AND SYMPLECTIC REDUCTION 73

Then by (E53), (E57) and ([E59), for m = 2k + 1,

[r/2]
(4.60) Qom = (Qom) 2,0+ ZHm r<ZGr 2(g1 )

= (Qom) 20 + Z Z —(Gr—21(g1))

r=21
(1]

= (Qom) 20+ Z ( m—21(q1) (Gm—Ql(gl))$,0>-

Set

3

,1]

[
(4.61) Fmn = (Qom)z0 — (Gm-2(q1)) 20

¥ ‘

_
o I

Then by (45), (£52), F,,, is a polynomial on 2%, 2"

as T, and g; are self-adjoint, we know that

(4.62) Fiao(2°,2%) = (Fi, (2, 2°))".

with the same parity as m. Moreover,

Let £ be the degree i part of the polynomial F,, on 2°,7z".

We need to prove that for m = 2kq + 1,
(4.63) FD =0 fori>0.

Set
FS (o, yo) = F,., (0, z") € End(Ec,q,),

m,xo

(4.64) . .
F&Z (20, y0) = (F&)(yo,xo)) € End(Eq,y,),

with yo = exp)¢(Z ’0) they define smooth sections on a neighborhood of the diagonal of
Xg x Xg. Clearly, £l (ZL‘O, 10)’s need not be polynomials of 2% and z"
Let ¢ : R — [0,1] be an even function such that ¥ (u) = 1 for |u] § £0/4 and 0 for
lu| > e0/2.
Let d*(x¢,yo) be the Riemannian distance on Xg.
We denote by (@/}F )P »)s (Pa pr( )) the operators defined by the kernel (w(dXO)F,Sff)PG7p)(xO, Yo),
(PG@Ip(dXO)F?% )(xo0, Yo) with respect to dvx,(yo). Set

ko
(4.65) Poro =T;p — Pa, Z gp ' Pay — Z(d} 2k0+1PG,p) p(-2oti=1)/2,
1=0

By (£45), (£.56), (E59) and ([L60),

ko

(4.66) [p~tmo (7},19 — Py gzpflPG,p> (0, 2°) — p~ RtV Fy 1 P) (0, /D Z")
=0

< Cp™ 7 1+ plZ° )M exp(=vV C"vy/p| Z°)) + O (p™).
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Then by ([E53) and ([6§), there exist polynomials Qg .k, on Z°, Z’° with the same parity
as r such that for k > 2k, 4 2, the kernel of the operator P, j, has the expansion at the
normal coordinate of zq, as

k

(4.67) [P OBk (0,2°) = Y (Qorke P2) (0, /pZ")p 2

r=2ko+2
< Cp~ W1 4 /p| Z°)M exp(=VC"v/p| Z°)) + O (p™).

We denote by (.., the operator defined as in (E65) by the kernel Q0.1 (T0, Y0) =
P (dX0 (20, Yo) ) (Qo,rke Pz ) (0, /DZ").

Set
(4.68) Ky (w0, y) = (d™° (20, y)) Py ko (0, y Z Qb kP2 (70, Y).
r=2ko+2
Then by (E57),

(4.69)  [Kpk(zo, y)|
< Cp o BV 4 /pd™ (o, y)) M exp(—VC"v/pd ™ (20, ) + O(p™).
Thus for any s € €°(X¢, Lf, ® Eg),

1Kossl < [ (1Kt sn)ldoxe o)
zo€X¢ yoeXa

(4.70) < ( / [ (0, yo)l 12 () A (o) ) v ()
yo€Xa
< Cp "V |53

In the same way as in (fE70),

(4.71) 198 1 1o51I72 < Clls|| 7.
Moreover, by Theorem D.1], (f.65), we get
(4.72) (1 = 2(d™)) Boo) (20, 90)| = O (p™).

From (f:69), (E70), (E77) and (E73), we know that there exists C' > 0 such that for
any s € cgoo(XG’ LZC); ® Eg),

(4.73) 1Py kosllz2 < Cp~ ot V]ls 2.
Let Py, be the adjoint of P,,. By (E.73),

(4.74) 1B kysllze < Cp~®otD || 2.
But

ko
(475) Py =Trp—Papy g Py — Y _(PopFy. )p 20D,

=0 %
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By (E:47) and the Taylor expansion of F2(k) 41 under our trivialization of FEg by using
parallel transport along the path [0,1] 3 u — uZ", we have that in the sense of ([.66),

(4.76) p~tm0 N " (PgyFyy) 1)(0, Z7°)p-2hotib/2

i

F(l) pZIO a '
NZ JorPg) (0, \/_Z’O) (;/’30)“ (1‘0’O)Mp(—%o-i—l—la\—r—l)/?

OéZ?"

By (E60), (E74), (E79) and ([£78), we know that all coefficients of p(=2ko=1+3)/2 for
j > 0 of the right hand side of (f.76) should be zero. Thus we get for any j > 0,

deg Fr,  i—j ~(l) 10\«
(4.77) SY (0,52 (Z%’gﬂ)“( ,0)%20.

=7 |a|+r=0
From ([L.77), we will prove by recurrence that for any j > 0

OFL
(4.78) ﬁg’)’;(m,O) =0 fori—|a|>j>0.

In fact, for j = deg Fy, 41 in (E71), by (F43), we get Fz(:eif%o“)(azo,()) = 0, thus
(F78) holds for j = deg Fogy1-
Assume that for j > jo > 0, (E7§) holds. Then for j = jo, the coefficient with r > 0

in (I.77) is zero, thus by (), (.77) reads as

+la «a
PEun” 0 (27)
o(Z"0)e o, a!

From (f.79), we get (L.79) for J = Jjo- The proof of (L.7§) is complete.
By (E74), (E74) and (75), by comparing the coefficient of p~(2%0+1/2 in (E64) and
([E73), we get

(4:80) Fis1(00, 2°%) = Figh 112, (0,2°) + 0 2°1).

Thus from (f.64)) and (£.80)

(4.81) Fir (27, 00) = (Ffjy 1 1, (0.7 + 01 2°).
Let jx. : X¢ — X¢ X X¢ be the diagonal injection. By (f.64),

9 )

82/»0 2ko+1
J

(4.79) =0.

(4.82) =0 mnear jx,(Xg).

By ({.64) again and recurrence, for o € N*7"0_if a; > 0, by taking o = (g, -+ , a; —
1,-++, ap_p,), one has

0" (@) 9 % 0~ (4)
WFQko—i-l("xO”xo = a—zgﬂxg (WF%Oﬂ) .

But by (f31), for |af <4,

o i o0« i _ *
(4.84) i Pty (5 30) o = (5500 P10 ) 0:77))

oY 0 ()

B0 (. ] —0.
520:¢ 82’;0 2ko+1( ’ ) 0.0

(4.83)
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From ([83) and ([L&4), the a-derivative for |a| < i of F\y, (o, ) is zero at zo. Thus

(4.85) F00,70) = FD, (2°,0) = 0.
Now, we consider the operator
1 all
(4.86) %Pc,p <vi§§;{€(movy0))(£o+ago)zo (Tf,p -3 PG,pglp_lPap)) Fe p,
i % 1=0

then the leading term of its asymptotic expansion as in ([.45) is
(4.87) (a%?}“%ﬁmo)(\/]—)zo’ JPZ0) Py (/520 /pE°)p~ (2ot 1)/2,

Here by ([8H)), (32 Foke+1,00)(2°,7°) is an even degree polynomial on z
J

constant term is zero. Now, by proceeding as (f.69)—(f-89) for the operator (f:8q), by

([E62), we get

070 and its

9 G 0 =10 9 _a) 0 =0
(4.88) a—z;)kao—l—l,mo(z ,Z70) = 8Z;0f2k0+17$0(z ,Z7) =0.

By continous this processus, we get (L.63).
This means that (g ox,+1 verifies also ([L.59).
By the same argument, (f.60) still holds for m = 2ky + 2. Thus we can define

(4.89) Tror1(T0) = Fap 1o 00 = Fapva.2, (0, 0).

By proceeding exactly the same proof as before, we get (f.63) for m = 2ky + 2. Thus for
k = 2k + 2, (E59) still holds.

As ma . Trp, g1 (1 < 1 < ko) are self-adjoint, g,11 is also self-adjoint.

By recurrence, we know that there exist g;’s such that ([.37) holds for any m.

The proof of Theorem [[.4 is complete. 0
Corollary 4.5. For fi, fo € €°(X), we have
2no s >
(4.90) Th 0 Thol = \/_—71])10(;4; o gz (Fen T OB,

Here {, } is the Poisson bracket on (Xq,2nwe): for gi1,92 € € (Xq), if &, is the
Hamiltonian vector field generated by go which is defined by 2mi¢, wae = dga, then

(4.91) {9192} = &g (dgn).
Proof. By applying 7] or Y, §5.5], (cf. [} for another approach where they worked
for E = C), from Theorem f.4, we get immediately (£.90). O

Lemma 4.6. Let

T, =Y Poygw ' Pap+ O(p™>) : H'(Xq, LY, ® Eg) — H(Xq, LY, ® Eg)
=0

be a Toeplitz operator with principal symbol gy € € (X¢g, End(Eg)) . Then
i) If go is invertible, then Tp*1 is a Toeplitz operator with principal symbol g~' Idg,. .
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i) If go = gldg, with g € €>(Xg), g > 0, and T, is self-adjoint, then Tpl/2 is a
self-adjoint Toeplitz operator with principal symbol g*/? 1dg,..

Proof. We only prove ii), the proof of i) is similar and simpler.
As g > 0, there exist Cp, C; > 0 such that Cy < g < Cy. Thus for any s € H°(Xg, LL.®

Eo).
492 (T =l + 0 (3 1ol = (ot o (1) ) sl

Thus for p large enough, Tpl/2 : H(Xg, LY, @ Eg) — H°(Xg, LY, @ Eg) is well defined.
Let d; be the smooth bounded closed contour on {A € C,Re(\) > 0} such that
[£C,2C1] is in the interior domain got by d;.
As in the proof of Theorem f.4, by recurrence, we will find f; € €°°(Xg, End(Eg))
such that

(4.93) T, = (Tnp)*+O(p ") with T, = Poyfin ' Pay.
=0

Then for p large enough,

1
(L94) T2 =Ty = — [ N2[A=T) " = (A= (T,)?) ]
™ AEN
1 _ _
= 5 )‘1/20‘ - Tp) I(Tp - (Tm,p)2)<)‘ - (Tm,p)2> ROy

B 2mi AENL
If (£.93) holds, then by (f.94]) we know that in the sense of the operator norm,
(4.95) T2 = Tpp= O ™).

To complete the proof of Lemma [.§, it remains to establish ({£.93).
By (E47), there exist )y, € End(Eq)s, such that in the sense of (f-47), (F:47) and

E33),
(4.96) T, ~ > (QosPz)pp"".

We will prove by recurrence that there exist f; € €°(X¢, End(E¢)) self-adjoint such
that for any k£ € N,

(497) [p (T, — (Tep))(VB2°, /52"
< p (L4 |2 4+ |20 exp(—V T BIZ° — 27) + O(p),

Set fo = ¢g/?1dg,,. Then ([E93) is verified for m = 0.
Assume that for k& < m, we have found f; such that ({.93) holds. If we denote the
expansion of (T},,)? in the sense of (A7),

[e.e]

(4.98) (Top)” ~ Y _(Qp,Pe)pp™ .

r=0
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Then by the proof of (.59) for 2ko + 1,
(499) @672m+1 = Z Gr(gl) = QO,2m+1-
2l4+r=2m+1

Thus by (F99), (E97) stills holds when we replace the factor p~m+1/2 by p="=1 at the
right hand side of ([£.97). Thus

(4.100) T, = (Tip)* ~ Y (Qoy — QF)Pr)yp ™.
r=2m+2
By (E52), (EI00), we know that
(4.101) Qo2m+2 — @gfngrz = (Q0,2m+2 — @672m+2)$,0-
This means that Qo 2m+2 — éffzm .o is a polynomial on 2%,z with even degree.
Set
1 _ S
(4.102) fms1(zo) = 59 Y2(Qoomya — Q0'2m+2)(0,0).

Then by the proof of (.59), for 2k + 2, we know that the polynomial Qo 2m12 — @ngmH
equals to the constant —2¢'/2f,,,1. Thus we prove ([{97) for k =m + 1.
By the above argument, we have established ([.93)), thus Lemma [L.6. O

Since the isomorphism o, : H*(X, [? ® E)¢ — H°(Xq, LY, ® Eg) is not an isometry,
we define the associated unitary operator,

(4.103) S, =05 (05 00S)7 2 H( X, LY, ® Eg) — HY(X, L ® E)°.
Theorem 4.7. Let f be a € section of End(E) on X. Then

(4.104) Ty, =i f%, : H'(X¢, LY, ® Eq) — H°(Xq, LY, ® Eg)

is a Toeplitz operator on Xg. Its principal symbol is f¢ € €*(Xg, End(Eg)).

Proof. By (E34) and (E.103),
(4.105) Tf, = (PXe) 2T, (PYe) 2.

p

By Theorem [£.4, (£:32), P,'¢ = p’%oaf oo™, Ty, are Toeplitz operators on X with
principal symbols 270/2 /h?(z), 2"/ 21;—2@) respectively.

By Lemma g, we know that (P;(G)’% is a Toeplitz operator on Xg.

By (fI09), Tf, has the expansion as (fE45). By the proof of Theorem 4, we then

know that Tfp is a Toeplitz operator. O]

Remark 4.8. i) Certainly, by combining the argument here and Section [.1, we can get
the corresponding version when X is an orbifold.

ii) When £ = C, and f = 1, from Theorem [.4, P;(G is an elliptic (i.e. its principal
symbol is invertible) Toeplitz operator. This is the analytic core result claimed in [B4,

8.
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iii) When £ = C and G is the torus T™, Theorem (.7 is one of the main results of
Charles [[5, Theorem 1.2], and in [, §5.6], he knew also that P,X¢ is an elliptic Toeplitz
operator. Moreover, he established the corresponding version when X is an orbifold.

If X is only symplectic and J = J, then as the argument in [0, §3e)], J induces
an almost complex structure Jg on (T'X)p, and Jg preserves Ng j = Ng @ JoNg and
T Xg. Thus one can construct canonically the Hermitian vector bundles N((;’})) etc, which
further gives the canonical identification of Hermitian vector bundles

(4.106) AT OV X) | x = ANEGHBATOV Xe).
Let ¢ be the canonical orthogonal projection
(4.107) q: ANGGBAT OV X ) ® LY, ® Eg — AT**VXg) ® LY, ® Eg

which acts as identity on A(T*Y X;)® LF,® E¢ and maps each A%Ngf%”)@A(T*(O’l)XG)
®LY, ® Eg, i > 1, to zero.
We define

(4.108) op = PG7pq7Tg’L'*PpG : (Ker D)% — Ker D¢,

Certainly in the Kéhler case, o, coincides with (D.27).
By using Theorems .1, 0.2 as in the proof of Theorem [L.4 (c¢f. [27], B, §5.5] for more

details on the Toeplitz operators in the symplectic setting), we get

Theorem 4.9. Let f be a smooth section of End(E) on X, then Ty, = o,fo;, :
Ker D¢, — Ker D¢, is a Toeplitz operator with principal symbol 2”0/2{1—2@)]@@19(; €
End(A(T*OV X)) ® Eg).

Corollary 4.10. For p large enough, o, in ({.10§) is an isomorphism. Thus o, defines
a natural identification for ‘quantization commutes with reduction’ in the (asymptotic)
symplectic case.

Proof. From Theorem [.9 for f = 1, we get
1
(4.109) 0p0, = ZHO/ZPG,ph_zltc&bEGPGm +0(=).
p

But from the argument as ([.71]) and Theorem D.2 for G = 1, we get for any s €
Q% (Xg, LY, ® Eg), we have

C
(4.110) ”(LC@E‘GPG,p — PG,p)SHL2 < %HSHLQ-

Thus for p large enough, 0,0, is an isomorphism. Thus o, is surjective.
In view of (0:8), 0, in (EI0§) is an isomorphism. O

Remark 4.11. If we replace the condition J = J by (B.Z), then the canonical map o,

in (F.10§) is still well defined. From the argument here, we still know that o, is an
isomorphism for p large enough,.
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4.5. Generalization to non-compact manifolds. In this Subsection, let (X,w) be
a symplectic manifold, and (L, VL) (resp. (E,V¥)) be Hermitian line (vector) bundle
on X, and the compact connected Lie group G acts on X as in Introduction, especially,
W= %RL . But we only suppose that (X, g7¥) is a complete manifold.

If G = 1, these kind results were studied in [2g, §3].

By the argument in Section P.3, if the square of the spin® Dirac operator Df) has a
spectral gap as in (R.13), then we can localize our problem and get a version of Theorems
D1, 0.2 from Section P.6. In particular, if the geometric data on X verify the bounded
geometry, then Dg verify the spectral gap (B.13).

We explain in more detail now.

We suppose

i) The tensors RZ X, Tr[RT"”X] are uniformly bounded with respect on (X, g7%).

ii) There exists ¢ > 0 such that

(4.111) V=IRE(-, ) > g™ (-, ).

Remark 4.12. For the operator D, = ﬂ@LF@E 4 greb

the above condition i) can be replaced by
i’) The tensors R¥, RTUOX 9T is uniformly bounded with respect to (X, ¢g?*), here
T is the torsion of (X,w) as in |26, §3.5].

) in the holomorphic case,

Then by the argument in [R5, p. 656] (cf. B, §3]), we know that Theorem R.J still
holds. Thus Theorem P.3 still holds.

Let PS be the orthogonal projection from L*(X, E,) onto (Ker D,)“, and P{(x,’)
(z,z € X) be its kernel as in Def. P.3.

Note that Ker D, and (Ker D,) need not be finite dimensional.

By the proof of Prop. .6, we know that for any compact set K C X, [,m € N, there
exist C,,(K) > 0 such that for p > Cp /v,

(4.112) |F(L,) (2, 2) — PE(,2)|gmr) < Com(K)p~.
By the proof of Theorem [.]], we get

Theorem 4.13. For any compact set K C X, 0 < g9 < &y, [,m € N, there exists
Cim > 0 (depend on K, €) such that forp > 1, x,2’ € K,d*(Gr,2') > &g or z,2’ €
(X \ Xoey) N K,

(4.113) | Py (2, ) |gm < Cramp ™.

From Section P-4, we get Theorem [0.3, but now the norm €™ (X¢) in (D.14) should
be replaced by €™ (K) for any compact set K C Xg.

One interesting case of the above discussion is when P = p~1(0) is compact, by the
same argument as in Theorems [[.4], [.9, we can prove a version of Section [f.4.

In fact, when X = C", G = T™, L is the trivial line bundle with the metric |1],2(Z) =
e_|z|2, the Toeplitz operator type properties was studied by Charles [[[J].

Another interesting case is a version of Theorem [).9 for covering manifolds.
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Let X be a para-compact smooth manifold, such that there is a discrete group I" acting
freely on X with a compact quotient X = X /T

Let mr : X — X be the projection. Assume that all above geometric data on X can
be lift on X. We denote by J , gTX w, J L E the pull-back of the corresponding objects
in Section [J by the projection 7 : X — X, moreover, we assume that the G-action and
the I'-action on them commute.

By the above arguments (cf. [R5, Theorems 4.4 and 4.6]), there exists a spectral gap
for the square of the spin® Dirac operator li, on X.

By the finite propagation speed of solutions of hyperbolic equations (B.73), we get an
extension of [, Theorem 3.13] where G = 1.

Theorem 4.14. We fix 0 < gy < inf,cx{injectivity radius of x}. For any compact set
K C X and k,l € N, there exists Cy,; k > 0 such that for z,2" € K, p €N,

PC(x,a") — PS(mr(x), (")) < Crxp ™, if d¥(x, o) < e,
<4 114) CLUKxK)

<Crrxp "t if d¥(x,2") > 2.
CHKXK)

~p (x,2)

Especially, ﬁpG(ZE, x) has the same asymptotic expansion as P{ (mp(x), 7r(x)) in Corollary
0.4 on any compact set K C X.

4.6. Relation on the Bergman kernel on X. From (R:60), if the operator £,
has the form Dg , + Ay + 4w|u|* — 270 under the splitting (E.106), then we will find
the full asymptotic expansion of the Bergman kernel on Xg from PpG (z,2").

In this Subsection, we suppose that X is compact and G is a torus T™ = R™ /Z"0.

Let 6 : TP — g be a connection form for the G-principal bundle 7 : P = p~1(0) — Xg
with curvature ©. Let T#P = Ker C TP.

Set M = P x g", q: M — g* be the natural projection and

(4.115) W = 1*wg + d{q,0) = T*we + (q,0) + (dq, 6).

By the normal crossing formula [R1], Prop. 40.1], we know there exists a symplectic
diffeomorphism such that on a neighborhood U of P,

(4.116) Wy 1 (X,w) = (M, M),

and under this identification, the moment map pu (cf. (.14)) is defined by —q.

From now on, we use this neighborhood of P and we will choose metrics and connec-
tions.

Let g9 be the metric on g induced by the canonical flat metric on R™, and {K;} be
the canonical unitary basis of R™.

Now we choose J an almost -complex structure on T'X compatible with w such that on
THP on U, J is induced by an almost-complex structure on 7' X which is compatible
with wg, and on g @ g*, for K € g, JK € g* is defined by (JK, K') = (K, K')4 for
K eg.

We also suppose © is J-invariant.
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Let g7 be a J-invariant metric on T'X such that
(4.117) g X =g g9 g* onU.

As g® is a constant metric on TY = g, VIV is the trivial connection on TY. By ([7),
on U,

(4.118) Vig = Vyu® + Vin + S(UY).
Let VA&7 ") be the trivial connection on the trivial bundle A(N, *(70 V) (cf. (F100))

on U, and V%fxe be the Clifford connection on A(T*%Y X¢).
By (E.I11§), under the identification (.I0G), on U, we have

i N 1
(4119)  VE = VL @+ 1@ Vi O+ S(S(eell, Kie(el)e(K)
i 01) 1
—VCIH ‘@Id+1d®V, y Ao )+Z<@(6i76]) Kp)ele;)e(K).

However, the last term does not preserve A(T*(O’I)X(;) and A(N(*;f,’1 ).

From (2:60) and (119), in general, ®L£,®~! will not preserve A(T*YXs) and
A(Ng(f]’l)) if © is not null.

Now, we suppose that © =0 on Xg.

In this situation, on B = U/G C X x g*, by (B.60), we have

-1 2 ANGT) 2 2| 12
(4.120) LD =Dg, — > (Vi @7 ) +47°|qf* — 2ner.
!

By Theorem D.2, Section and (B.19), we know that the asymptotic expansion of

the Bergman kernel has the following relation for (z, Z*) € Ng., (¢/,2'*) € Ng.u,

(4.121) PS((x, Z%), (2!, Z2)) = Pop(x,2")Pe(Z5, Z') + O(p™).
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5. COMPUTING THE COEFFICIENT ®; AND P®)(0,0)

In this Section, (X,w,J) is a compact Kihler manifold, ¢~ is a G-invariant Rie-
mannian metric on TX which is compatible with J. (E,h%), (L, h*) are holomorphic
Hermitian vector bundles on X, and V¥, V¥ are the holomorphic Hermitian connections
on (E,h¥), (L, h*). Moreover,

E R =
2m

The action of G is holomorphic and G acts freely on P = p~1(0). Thus (Xg,wg, Ja)
is a compact Kahler manifold.

In Sections p.1Hp.5, we suppose that in (D.9), J = J on a G-neighborhood U of P =

-1
1= (0).
The main purpose here is to compute the coefficient ®; in (020) and P®(0,0) in
By (D.19) (cf. also Theorem P.23),

(5.1) ®y (1) = / PENZ, Z)dvn, (Z).
ZeNG,zo

We will first compute explicitly the terms O; and O, involved in P in (B33), (B-62),
and then compute the integration of P® along the normal spaces to X¢.

Sometimes the computations seem to be long and tedious, involving many subtle
relations between metrics, connections and curvatures near X, but fortunately the final
result on @, is still of a simple form, as expected.

Throughout the computations below, a key idea is to rewrite all operators by using
the creation and annihilation operators b;, b, bjL, bj*, then under the help of (B.9) and
Theorem B.1], we can do the operations and to obtain the crucial Lemmas p.9, b.11.

To get the final simple formula (0:27), we still need to prove a highly non-trivial
identity (B.130).

The formula for P®)(0,0) in Theorem [.7is quite complicate, it involves h, the volume
function of the orbit and the curvature for the principal bundle P — Xg.

This Section is organized as follows. In Section [.1], we explain various relations of the
curvature of the fibration P — X and the second fundamental form of P. In Section
5.3, we obtain the explicit formulas for the operators Oy, O,. In Section .3, we apply
the formulas in Section f.3 and (B.)) to (B:31), and we get a formula for the coefficient
®;. In Section p.4, we compute finally ®,, thus prove Theorem P.G. In Section p.5, we
compute P (0,0) in Theorem [0.7. In Section [.0, we explain how to reduce the general
case to the case J = J which has been worked out in Sections p.1-5.4.

In the whole Section, if there is no other specific notification, when we meet the
operation | |?, we will first do this operation, then take the sum of the indices.

5.1. The second fundamental form of P. We use the notations in Sections P.2, P-3.
Then the normal bundle Ng of X in U/G is (JTY ).

Let ¢ : X¢ — U/G be the natural embedding.

We will apply the notation in Section [[.1] to B = U/G.
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Let VI¥c¢ VN6 be connections on T X, N on X induced by projections of V78| x,,.
Then VI¥¢ is the Levi-Civita connection on (T Xg, g7 %¢).
Let

(5.2) oyt = yT¥a g yhe

be the connection on T'B on X induced by VIX¢, V¢ with curvature "RT5.
Set
(5.3) A=VTB|y, —v'"

Then A is a 1-form on X taking values in the skew-adjoint endomorphisms of (T'B)|x,
which exchange T'Xs and Ng.

We recall the following properties of RTB: for U, V,W, W, € TB,
- (RTE(U, VYW, W) = (RTE(W, Wa)U, V),
' RYB(U, V)W + R™B(V, W)U + RTB(W,U)V = 0.

On Xg, let {€} be an orthonormal frame of T X, let {eL} be an orthonormal frame
of Ng, then {e;} = {e?,ej} is an orthonormal frame of T'B.

The following result gives detail informations on the torsion T of the fibration, as well
as the second fundamental form A.

Theorem 5.1. On P, the restriction of the tensor (JT (-, J-),-) on (Ng)®? is symmetric,

and

(5.52) (A" = LT I,

(5.5b) T(el", e}y = T((Jaed)!, (Jae))™),

(5.5¢) T(X, ety = 2T ((Jged)!, T,

o3 (Tt e e = (T ). 06 "),

(550 5 (T, ), Jeb ) =0

Proof. Observe first that we have
(5.6a) viXJ =o0;
(5.6b) (Jae)H = g on P,

Let Z be a smooth section of TY, then JZ € JTY C T#X on P, by (I.7), (B-1) and
(b.6d), on P, we have

(J(A(L)e)H, 7) = <vT X0t JZ> <VTX 0.H JZ>

= (VI ™), Z) = (S(M) e, 7)) = —% (T, 06", 7).

Thus we get (B.54), as A(e})e) € Ne.
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Note that [Z, /'] € TY, by (LH), (L1) and (B:64),

(5.8)  (T(eflell), 2) =2(VEZ, ey = 2(VE¥ — 2 (VX (Jel!), Jely .

’l ? ]

From (b.6H) and (5.§), we get (B.5H).
From ([.7), (b-§) and Jejl’H, Jep™ € TY on P, we get

(5.9) <T(eQ’H e+’H),Z> —9 <S(Z)(JeQ’H), Je.L’H> —9 <T(Je?’H, Jej’H>,z>.

R 7 J

Thus we get (B.59). By ([.6), (B.9), we get

(5.10) (T(e, e "), Jey =2 (T ey ™), Jep ™) = (T(eH, ™), T ™)

7y J

Thus we get (B.5d). By (L.7), (5.6d) and JejL’H €TY on P,

J J

= — <VT{,H(J64L’H) e»l’H> <VT LHelH Jel H> = <T(e+’H, JeiL’H), Je,ﬁ’H> )

Je;, i ) J

(5.11) <T(e;vH,Je+vH),Jeij> <VTLH jH,Je+’H>

By (L6) and (B.10), (JT(-, J-),) is symmetric on the horizontal lift of N&?.
Note that {Jey ™} is a G-invariant orthonormal frame of TY on P, by (5-3),

(5-12) (T(e ™), ey =2 (VI (et ), Jep ™)
By (L.9) and (B.19), we get (5.5d). The proof of Theorem B.1 is complete. O

Remark 5.2. From ([[.4) and (5.5H), ©|x, is a (1, 1)-form on Xg. Especially, for any
complex representation V of G, P XV is a holomorphic vector bundle on X. Moreover,

by (B.54), for U € T X,V € Ng, we have at x,
(5.13) AUV = (AU)V,el) el = —(V,A(U)e)) €] = < (U, JeY), JV) el

For zy € Xg, if {ejl} is a fixed orthonormal basis of N¢ ,, as above, then for U € T,, X¢,
we will denote by

(5.14) Ty = (JT(ef ey, Tyn = (JT(e} e),ex), Ti(U) = (JT(U,ef),ei).

By Theorem B, 7, is symmetric on 4, j, k and Ty, € T X¢ is symmetric on j, &, ij
is anti-symmetric on i, j.

Remark 5.3. From Remark [[-3 and (B:13), we know that (JT'(-,-),-) is anti-symmetric
on (Ng)®3 if gV is induced by a family of Ad-invariant metric on g. If G is abelian,

then by (L12), (F13), T(-,-) = 0 on (Ng)®2, thus T, = 0.
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5.2. Operators O, O in (R.103). We use the notation in Sections .6, B.1, and all
tensors will be evaluated at zy € Xg.
Recall that (X,w) is Kdhler and J = J on a G-neighborhood U of P = p~1(0), then

in (B.9)
(5.15) a; = aj = 2.

Clearly, on U, the Levi-Civita connection VX preserves 709X and TV X, and

1,0 1,0 1,0 . . vy .
VIeOX - prifXgTx prioX g the holomorphic Hermitian connection on 700X,

while the Clifford connection Vi on A(T*OD X) is VAT ®UX) the natural connection

induced by vTeox,
=LPRE, ) .. =LPQFE
Let 0 be the canonical formal adjoint of the Dolbeault operator 0 on
Q0*(U,L? ® E). Then the operator D, in (P13) is
(5.16) D, =v2 (8" 49",
Note that D? preserves the Z-grading of Q%*(U, L? ® E).
Set
(517) D12772 - D§|Qo,i(U7Lp®E).

Since VI preserves the Z-grading of A(T*®YX), the operator £} in (R.101)) also
preserves the Z-grading on A(T*Y X;). Moreover, £} is invertible on D QY Xo, Li®
Ey) for t small enough.

From Section B2, for P in (D.12),

(5.18) P" = Ieop, P Icon,.

Thus we only need to do the computation for Df;,o-
In what follows, we compute everything on (U, L’ ® E).
Take z¢ € Xg.
If ZeT,B, Z=2+2+2°€c T, Xg, Z+ € N,,, |Z°|,|Z*| < ¢, in Section 2.4,

we identify Z with exp? 7,70(Z%). This identification is a diffeomorphism from

P’ (2°)
BI*c(0,e) x B (0,¢) into an open neighborhood % () of xy in B, we denote it by V.
Then % (z0) N X = BLX¢(0,e) x {0}.

In what follows, we use indifferently the notation BLX¢(0,¢) x BY (0,¢) or % (), xo
or(Q, ---.

From now on, we replace U/G by R?*"™™ ~ T, B as in Section ., and we use the

notation therein. Especially,
(5.19) V, = tS; k12 eE)s 12 g,

and O, in (R.103) takes value in End(Ep).
Let {€}}, {e;} be orthonormal basis of Ty, X¢, Nz, respectively. We will also denote
U, (e?), U, (ef) by €, ef.
Let {e;} denote the basis {€?, et }. Thus in our coordinates,

A}
o _ 0 o _ 1
(520) a_ZlO = ei, 52L = Gj .

J
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We denote by (g/(Z)) the inverse of the matrix (g;;(Z)) = (95,°(Z)).

Recall I'}; is the connection form of V?'#, with respect to the frame {e;}, defined in
(B107). Also recall that R, R® and Rt are defined in (2:77).

As in ([[.14), the moment map p induces a G-invariant € section iz of TY on U.

Note also that by (2:48), RE € End(FE) defines a section of End(Ep) on B = U/G.

Set

(5:21)  LZ) = ~g"(2) (Vi Ve, — T5(12) Vi, )
+ ¢? (1

(Ve Vesh = D5V, ) ) (t2) = £ RE(t2) = 2mn.

By (B-60), (B-I07) and (5-27)), we can reformulate (:102), (B-I1(), in using the nota-
tions in (B.I0), as follows,

1 —
v0,' =V.+ éRﬁoB(R’ ) =V.—nv-1 <JJ30ZO’ .>x0 ’

n—no no
(5.22) L) = bibf+ Y bibit == (Vo,)? +4n?|ZH* — 2mn,
j=1 j=1 j

LUZ) = LUZ) + 4n®

1.2
;,u’gT <47T\/ 1+ t2n” E> v (t2).

If there is no another specification, we will evaluate our tensors at xg, and most of

time, we will omit the subscript xg.
Set hg = hy,, and for U € T,,B, set

1 A
B(Z,U) = 92 Z (aaRLB)JCOJ(Rv U),

|af=2

%Vei(B(Za ei))a

= ((GRINCRO R + VEN(ACDRY). ) + (e, VR (AR

I = —B(Z,e)Vo,, —

(5.23)
-3 <A(6?)Rl7 A(eg)RL> + <RTB(RL7 Gg)RL, 62 )VO,e?VO,e?
+ ((RNG(RO, R e ) + - S (RTP(RE DR e )vo et Vo0

+§<RTB7zl YR, €1) Vi Vi

Recall that the operator .Z has been defined in (B.10).
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Set also
Ii(R) gRTXG(R0 e)ed + VEB(A(eD)ed) + RTB(R*E, e)e?
+ A AR + VZ;XG(A(eg)Ri) — A(R®)A(e%)e?,
(5.24) K5(R) :% (R™¢(R°, )R, €)) + (R (R, e)R*, €]

+%<RTBRl eH)RY e >+2(Z<A, LR )

— AR +2 (Vo ¢ (A(e])RY), €]

Lemma 5.4. There ezist second order differential operators O, as in Theorem [2.1] such
that for |t| <1,

(5.25) L =L+ O+ o™,
r=1

with

(5.26)

no
Ly =2 =) (Vi) = 2mng = & — 4n®| 247,

2 1
O =- §(8JRLB)mo(R €i)ZiVo.e, — —(@'RLB)mo(R ei) = 2(A(e})e], R™) Voo Voo,
1

O, —[1—1—[2—0—[4 __<Z<A€l el,R¢>> ]

2 (AN RY) (SOR)0y (R, )20 + (R, (R, D))

+ <F”(R), €j> V(),ej - 5

2
+ 5 (R (RY e )er e) Vo, — RiF (R, e) Voo, — RE2

T,T0

9 Z |:Z RLB )ao(R, €:)Z :|2 + hio(v%vejh - VA(eg)e?h>$0

1
5 (Ale))el, RY) Vaegyey + 2 (A€, RT) Vagenyes

Proof. By (E.104) and (B.19),
(527) Voo, = w212) (Ve + (GRE + - (OR)., 7

t2 (0% LB Za EB 3 —1/2
+ < (R, OJ+§RM )(R,ei)Jrﬁ’(t ))K (7).

|a|=2

To get (B-24), we could use (E93)-(B-97), while here we will get it directly from the
local computation.
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By [0, Prop. 1.28] (cf. [BG, (1.31)]) and (R.104),

(5.28) <ez’ J>Z0 0ij + 3 <RTXG R(]’e@ > +0 |ZO| )
(Ve Ve )ag —RNG(ek, ed)es .

€ J

Moreover, for W,V € N,,, vs(t) = (Z° t(W + sV)) is a family of geodesics from (Z°,0).
Set Y = Z~,(t), X(75(t)) = Z7,(t) = tV.

Since VIPY =0, VIEX — VEPY = [V, X] = 1.[2, 2] = 0, we get
(5.29) 0=ViVIPY = ViPVIPX — R™P(Y, X)Y.
Take V = e;, we get at s =t = 0,
1 1
(5.30) (VEEVEBe) 5o = gv?/BV,T/BV?X = gRTB(W, e )W.
Under our coordinate, we have

J 77

(VIPeb)ay = (V) = (VATeh)ay = 0, (VEPED),, = Ay (e0)e)
(V72600 = (VTP ey = Any(e)ed
(
(

(5.31)

Moreover, by (5.4), (6.23), (£.30) and (5.3T]) (comparing with [R6, (1.31)]), we have at
o that

VIPVIPet = SRT(e ef)et + SR (et el et

TBwTB _ 1 __
Veg vej 62 — 0’

VTfVTf ? = VTFVIZ)Bejl = RTB(ei, e?)ejl,

Ve Velel = Vi’ Viley = VSV iTer + A(e)A(e])ej + Vi ¢ (Ale])ej)

J J
(5.32)
SRV (e, et + At + T (AWED)e)),

/7]
TBxw—TB TB TBxw—TB
VIPVLPe) = R (e e)el + Vi Vi e?,
ej ek Z
TBwTB _0 __ TXewTXa 0 TB 0y 0
VIVl = VoVl + Vg (A(a)e)

] 3

1 1
= SRV, el + L BTN, ) + V(AL

In the following, for a tensor 1) and the covariant derivative V? acting on 1 induced
by VI8, we denote by

(vaBw)(Cjejyc;cek) - Cjck(vB VB 1/})
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From (p.39), we get at zo the following formula which will be used in (.37), (5.39),

(£:59), (B:58) and (B.1I57),
1
(VIO omn) = 5 RI(RY, €))R + VR (A(e))e)) 2,
1
VIEVTEED) o mey = 5RNG (R, )R + AR A())RH + VE ¢ (A(e))RY),
vTBvTB O)(,RL ’Rl RTB<RJ_ O)RJ_

VTPV L)mo =) =A<R°>A<R°>e + VIXS(A(e)e)) 20,

VTBVTB )('Rl RO) = (VTBVTBQJ)(RO RE) RTB(RL, Ro)ej.

Note that by (5.31), VLB (A, (e))ed) = A(R°) A, (e))e?.
From (5.37)), (5-39), we get

(VIPe)s = SROP(RY et + 0(12P),
(5.31) (V'ez = Au(e)e) = VR" (Au(e)e)) + SRR, )6l + VR (A())

+ A AR + V5 9 (A()RY) + RTP(RY, e)el + 0(12))
= Ay (€))ef +Tu(R) + O(12]),
Thus by ()a () and ()7 at xo,
(5.35) VroVge (ef,el) = <v£%?el Viiel) + (e, Vi ViRie)
=3 <RNG (R, eNR*, et €;
On the other hand, we have the following expansion for (e;, e;) ,,
(5.36)  (ei €)= (eirej) 70 + (Vre (ei €5))z0 + 5 (VV (eirej))me riywe + O Z]%)

= (€, €j>zo (Vre (€, €))z0 + (VROVRl (eir€j))ay +(VRies Vile;)

+ = <VTBVTB )RLRL),e]H <e,, (VIEVTPe) pe mrey) + O(|Z).

Thus by (6:28), (£:31), (£:33) and (B-39)-(5:30),

(5.37) (&,e), = 2<AIO (&) eQ,Rl> b3 (AR, R,
+ <VTXG >+ <62’ TXG )RL)>
+<A e) ,A (%) RL>+<RTB R%e?)Rl,e% +0(2)%),
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and
1 2
(e),e7), == <RNG R, )R, e ) + = <RTB(RL,6?)RL,6J+> +0(|Z)%),

(5.38)
<w]>z—5w+ <RTBRl e RY er) + O(|Z]).

From (52), (531) and (538), we get

(5.39)
det g;j(Z) =1 — 2 (A ())e), RT) + Ka(R) + O(| Z]%),
k2 (tZ) = (det gi;) "/ (t2)

=15 (e R = S (ST (AChe R )+ (aR) + 06

WHEZ) =14 (WD, RY) + %(Z (AL RY) )~ TEo(R) + 6().

Moreover, as a 2(n — ng) X 2(n — ng)-matrix, we have
-1
(5.40) ((@-j — 2 (A ()¢, Ri>)) = (0 + 2 (Ayy (D)%, REY)
4 (A (DR, Ay (RY) ) + 6112,
Note that from (B.9), (£.29),
(5.41) [(Aled)ed, RY) , &' = 2(A(e)er, ek ) Vo o -

Thus from (5.24), (|5_27|) m) (B:37)-(B:39), the coefficients of ¢, t* in the expansion
of gI(tZNLE(tZ)V e, = tg¥ (tZ)V,, (VIBe;)(t7) ATE

(5.42)  (A(e))e, ) Voers
2
2 <A(6?)62, Rl> vA(e?)e? + <1—‘“(R), 6j> V(),ej + g <RTB Rl, Zl il, 6j> Voﬁj
1 1
— |3 (Al RY) Vs + 3 (OB )ag Zu(RA(ED)eD).

By (B-21), (6.21) and (5.37)-(5.49), the coefficient of ¢ in the expansion of Z¥ is O} in

E-29).
We denote by [A, By = AB + BA.
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By (B:21), (5:27), (5:34) and (£:37)-(540), the coefficient of ¢? in the expansion of
Ly — (gL ) (L Z)V e, 18

(5:43) 1~ 2 (A R) [LV0,0 (0 R), (R, ) 2
+ %(@kRLB>xO<R ) ZkVo.e0 — %KA(e?)e?,Rﬂ : Vo,e(;Vo,e?ﬂ
+ 1+ [% (A(e))ed, RYY, [5(8kRLB)m(R, ¢i)Zr, Voveih]
#[jam (S tachd ") ) 2]
- <A ef)el, RY) , L (A(e))e), RT) — REZ(R, €;) Vo,

- —Z [ S @R (R, V2| = BE+ 5 (V Vb = Vb

Here I, is from the coefficient of t? in the expansion of ¢, the second term is the product
of the coefficients of ! in the expansion of ¢” and VieVie;: 11 is from the coefficient of
t? in the expansion of R2, the fourth term is from the product of the coefficients of ¢!
in kK12 k712 and in kY2V, ., V., k% (cf. (B:27)), the fifth and sixth terms is from the
coefficients of t? in the expansion of £'/2, k%2 and the product of the coefficients of ¢!
in the expansion of k'/2 and x~'/2; the seventh term is from R”Z, and the eighth term
is from the product of the coefficients of ¢! in the expansion of RF2.

Certainly,
1 1
(5.44) 6[<A )el, RY) (0 RY) 40 (R, ei)Zk,Voﬁh] = =3 (OR").o (R, Ale)el) 2.

By (B-41), (p-42), (F-44) and by the fact that A(e?)e? is symmetric on i, j, we see that
the coefficient of #* in the expansion of %} is O} in (5.26). O

To simplify the notation, we will often denote by e; the lift e of e,.
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Lemma 5.5. The following identities hold,

(5.45a) (;R"P),(R,e1)Z; = =3V —1m (JT(R,e;) — JT(R?, P ¢¢)), R*Y),
(5.45b) EB(z e)) = 5 <RTXG(R°, JRORY, e — g (IR VR (T (e, €))) Z:)
+ = <2VTXG (A(e)e; ) Z + R™P (R, e))RT + R™P(R*, R%)ef, JR?)
— = <3VTXG (A(e))er) 2 Z3 + 2R™P (R, RORT + R"P(RY, RO)R, Je)
+5 <JRL, T(R° — ZR, e§)> (JRY,T(e), Jep))
+ (TR RY), T(e), JRY) + L (T(RY, JRY), T(R* )
(TR IR, TR, ) + 5 (T(R™ TRY), T(R, )
— = <T (e, JR?), e ) (JRT, T(R*,ej)) .
Proof. By (L.8), (L.14), (L.18) and (2.19),

/o

2

(546) RLB (ek, el <J€kH, 6{{> + ,u(@)(ek, el)

= (el ef') 4 (i Ten ).

Thus by (B33), (p-5d) and (p-64), we get at xy the following formulas which will be
used in (p.61)),

(5.47) o =0, (VR [)s = —JR, (VI'VIYD)rr) =T(R, JRY).

By (B-36) and = 0 on P, we have at z,

(548) (Ve (e ey = (VY Tlew ) ) + (i, VI (T(ex, 1))
= (JT (ex,€1),€;) .

By (B0, (5:6d) and (531), we have

(5.49) (Ven (Jef el"))ay = < Tﬁ(ekH,elH> + <J6kH,VT§(elH>
o o

1 1
—3 (JT(e;,ex),e) — ) (Jer, T(e;,e))
+ (JA(P™X¢e;)PNoey + JA(P ™ ¢e;) PNoe;, PTX0¢))
+ (JPTXGey, A(PT¥Ce;)PNe + A(PTX0¢)) PNoe;) .
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By (B.54), (B.49), (b-48) and (B.49), for U € T, B,
g(aURLB)xO(U, e)) = g (JT(U,e,),U) —2(A(P™eU)PYU, JP™¥5¢))
+ (JPTXU, A(P™XeU)PNoe, + A(PT¢e) PNeU )

(5.50)

= g (JT(U,e)) — JT(P™¥cU, PT™¢¢),U).

Note that (JTY)s = Ng on X¢, by (b-50), we get (p.454).
By (F.23) and (5.46), one gets at x,
V=1

1 _
(5.51) Y=B(Z.e) = 5 (vv (Je, e) + VV (i, Tex, ))) ) S

From (p.64)) we have

(5.52) (vv (Jell ! >> = (TR (Ve )
H (VT mry ) Ze + 200V e VR e!) Zi.
From ([[.9), (5.31), one finds at z, that
JRYeTY, JR€TXg,
(5.53) VEBE) = A(eDR, VEPe; = A(R")e;-
(VI Xel 2,2, = (ViPe)Z:Z; = 214(7?,0)7?,l + A(R°)RO.
Now by (B.40),

(5:54) (Ve Ve € )ay = Ven ™ Veu N = ST(eff, Vou ") = 5V (T(e)' ).

By (p-33), we get
(5.55)  (V'PV"Per)mr)Zi = Vo (A(e))ed) Z) Z) + BA(R?) A(R")R*
+3VEXG (AR ZD + 2RTB (R, RORT + RTP(RE, RY)R".

From (5.33), (£.53), (£.54), (6.59), the anti-symmetric property of the torsion tensor
T and the fact that A exchanges T' X and Ng, we get

1
(5.56) (JR, (VIXVIXDT) o ry) = <§RTXG(RO, )R + V56 (A(e))el) Z3, JR0>
+ <2vTXG(A( Der)Zi + R™P(RY, e )RY + R™P(RY, R%)e}, JR?)
<J7zL (R, A(e}) >——<J72 VX (T(es,€))Z:)

<J(VTXVTX Nwrry eV Zx = (2JRTB(RE 730)73l + JRTB(RY,ROR, e )
+ (JVR6 (A(e))e )ZOZ°+3JVTXG(A( DVZZE e
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Note that from ([.§), (£.3), (6.54), (6.53) and A exchanges T' X and N,
(557 (IR VEN (T (e, ) Z2) = (JRY VR (T(er, ) )
+ 5 (TR IR, T(R, ),
(JVRS (A(e]) ZfZ?, /)=~ (ARDHARRY, Jei)
=—- <T (R%, JR®), T(R%€))),
(PRHAD, T7) — — (AL, AR 0.
By (B.40), (b.64]), (b.13), (b.53) and the fact that A exchanges T'X¢ and Ng, at zo,

(558)  (JVE el VE ) 2 = (IVE e, AR — %T(R, ) Z
= (JAR)R, —%T(R, D)) +2 (JAR)RY, Ael)R")
= i (T(R°, JR%),T(R,¢€))) + % (JRYT(R, %)) (JR,T(e}, Jel)) .
By (B:52), (B.50)-(B-58), at o,

1
(5.59) (vv <JekH , e?’H>>(R o= 5 (RPC(RO R, TRY)
+ 2V ¢ (A(e)en) Z + R™P(RF, e )R + R™P(RY, R°)e), JRO)
— (2R"B(R+ ROR* + R"B(RH, RY)R" +3VTXG(A( Nel)Z0Z, Jel)
_ - <J7zi (R, A(X)R) + VEY (T(es, ) Z;) + 1 <T(R0’ JR), T(R*,€))
-3 <T(Ri, JR), T(R,€))) + (JR,T(R’€9)) (JR,T(e}, Je))) .
Observe that A(e?)R° € Ng, A(e))R+ € TX¢. By (554d), (5.50), (£.5d) and (F.13),

(5.60) <J7zl (R,A())R)) = (JR, T (R,A(e?)RO»+<JRL,T(R,A(6?)RL)>

<JT (e, JR?),e; ) (JRT(R,e)) + (JR" T(R, A(e])RT))
) <T(el,JR°),T(RO,RL)> + = <J7zl T(R,e)) (JRY,T(e}, Je9))
+ <JT (), JR),er) (JRH T(R*, e})).
From (b.47), at o,

(5.61) (VV (i1, T(er e)))rR)
= (VI'VI ) (rr), Tlen, e)) + 2 (VR 11, VR (T (ex, 1))
= (T(R*, JRF), T(ex, &) — 2(VR (T(ex, 1)), JR").

Finally, by (b.4), (6.51)), (6.59), (b.60) and (pb.61]), we get (5.45H). O
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We now examine the coefficients in the expansion of terms involving the moment map

IL.
Set

(5.62) OfF = —%((VTYg_TY)(R,R)JRi,JRﬂ+%<V£Y(T(e],Jmoel ), JR") Z;Z)
- % (Vs (A(NeN 20 Z) + R™P(RY, R° )R, R*)
— %Z(T(R, el),JRi>2+i<JRi, T(R*,¢})) (JRT,T(R",€}))
l
+ 1—72|T(RL, JRY)? + % (T(R°,JR*),T(R*, JR")).
Lemma 5.6. For |t| < 1, we have
(5.63) |1m2Ty(tZ) | ZH? =t (T(R-, JRT), JRT) + *O5 + O(t*),
<ﬁ 15 v (t2) = =t (JRY Fig, )
+t2(§ (T(RY, JRY),E) — (JRY, VR ), ) + O(t),

Proof. By (B-36), (B-33), (B-39), (5.64), (£.53), J = J and t = 0 on P, we get, at o,

(5.64) <vggv§g VI Wz PTYJVTXVTX a_ %T(ekH : PTHXJVZ,§ el
- lng (e, PT X gel) — SOV GV R)
- %(V%T&” NI -
From (B0). (ET0). (5. (65). (50) and (EGD). we have
(5.65) (VI'VIVI D) rrr) (VTYVTYVTgﬁ)xOZijZi

= —JVR§(A(9)e) Z9Z) — 3T AR AR R* — 2P™ JRTB (R RO)R*
— PTYJRTB(R+ ROR® — T(R, JA(R®)R*)

1) _
59et (Ve Vo ).
i J

1 i ) 1.
— SR (Tl P Ie) 2,7 4+ (VY T ey TR — SR (T(RE, TRY)),

Now by (B.50), (5.47), (b.63), and 1z = 0 on P, we have

11 o

Nk
£ |10t

— VR, + (VY ), VR T,

(5.66) |5l (17) = (1820 (12)) oo 2 + 6(%)

12 ~ _ ~
+ 5 (8 W)y, VR, + 61V VT i l2, ) + O ).
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By (B.5d),
(5.67) T(RC, JRY) = T(R*, JR').

From (C9), (ET3), (5T), (653), (500) and (507), we get the coefficients of 2,1 in
the expansion of |%ﬁ|§TY(tZ ) in (B.63), and the coefficients of ¢ is

1
(5.68) 3 (JV5S (A(eNeNZ0Z) + 3JTA(R)A(RY)RY + JRTP (R, RY)R®, JRT)
1
+ = <2JRTB(R{ ROR™ + T(R, JAR")RY), JR™)
B % <(V_TYg_TY) R JRE TRY) + 2 <VTY< ( . PTHXJeH))Z-ZZ-,JRL>

T(R* JRL)]

+= <T(R, JRY), T(R*, JRY) >+
= —% <(V.TY9.TY) Ry IR JRE) + = <VTY( (e, PT"X Je')) 2,7, JRL>
+3 LU (A0 2020 + RTB(RY, RO)RY, RY)
- i Z (T(R,€9), JRY) + é (T(R, ), JR*) (T(R, ), JR*)

7 2 1
+ E’T(Ri, JRL)) + 5 (TR, JRY), T(R* JRY))
To get (£.63) from (B.69), we need to compute V2 (T'(ef, PTX Jell)),
k
For W a section of TX, U a section of T'B, we have

H H H
(5.69) (VIAPTXWLU) = eff (WUt - (P W v XU
= (PTVIXWLUT) 4 (PTYW VXU
k k
From ([.7), (5.69), we get at x,
(5.70) VI XTIy = pTIXYTXW - - <T (el ey, PTYW) efl.
k k

Remark that Je;»" € TY, Je? € TH X only hold on P.
From (B:40), (B:5H), (B:64), (B-13), (B31) and (@)

1
(VETI;XPTHXJej’H) = JA(PTXGek) - — —JT(ek, €)= 3 (T(ex, ), Je;) e

1
- _§JT(ek, &) — > <T(ek, e)) — T(P"*¢ey, PT¢e)), Jei ) ey,
1
(5.71) (VI'XPT"X Jel),, = PTHXJVTX O — JA(Q) PNy, — 5T (e e)
1
= ——JT(ek, 6?) —+ 5 <JPNG6k;, T(eo 60)> 6?

1
(VTBJmer) —A(Jme?)ek:—ijT(PTXGe ed) + = <JPNG6 T(e), el >el
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From (B.71]), we get at zq that

(5:72) (VR (T(ell, PT"Jel) 2,7, JRE) — (VR (T(ej, June?)) 2,20, JRY)
_ <T(ej, V%HXPTHXJef{ — VX (1, PT" X ey 72, 7, JRL>
1
- <T (R —5JT(R, RY) — = <T R,e;) — T(R, PTX6¢;), JR*) el) ,JRL>
+ <T <e], —=JT (e, ed) + = JT(PTXGek, @)) AYAVAS JRL>

=5 LS (TR, @), SR + 5 LR, &), IRV (T(RY, &), TR .
l

From (p.63) and (B-79), OF is the coefficient of t* in the expansion of |%ﬁ|§TY(tZ ).
By (£.47), we get also the second equation of (5.63).
The proof of Lemma .6 is completed. O

The following is the main result of this Subsection.

Theorem 5.7. The following identities hold,

Oy =2mv/—1{JT(R",€}), RL> Voeo + 21V =1(JT(R, &), R") V1
+1V=1{JT(R e ) ef) — (JT(ef, J€), RY) Vi 0V co

(5.73) + 47 (JT(RT, JRT),R") + dnv—1(JR* , fil ),

O, =0} + 47 20”—47M_( (TR TR, i) — (TR VR i) )
— (g Figy ) yrv

Proof. By (B:5d),

(5.74) (JT(R,e;),e;) = <JT(RO, el),ef).

By (£.454), (B-50) and (5.74),
_ g(aRRLB)m (R, ) Vo..

(5.75) —ory/—1 ( (JT(R*, %), RY) Vo + (JT(R,ef), RY) vo,eil),
- %(@RLB)M(R, e) = m/—1 (JT(R®,ct), eb).

From (5.23), (6.24), (6.63) and (B.73), we get (£.73). O

5.3. Computation of the coefficient ®;. Recall that the operator .2y is defined in
(F29), Py. is the orthogonal projection from L?(R™) onto Ker.#t and Pg is the
orthogonal projection from L?(R*~2m) onto Ker .Z as in (B.19).
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For Z+ € R™, set
a(24) = ((29) PV 0 ) PY 0 PY) ((0,24), (0, 24)).
Wa(24) = = () PV 0 PY) ((0,24), (0, 24)).
W5(24) = () PO PN O () P ) ((0,24), (0, 24)).
(5:76)  Wia(Zh) = (PYOLL) TPV OPY) ((0.24),(0,2Y)).
a(24) = ((29) 7 PV Pproy(£9) 7 P O PY ) ((0,24),(0,24))

Uyo(24) = - ((gf)*lPNLPgLOQPN) (0, 2%, (0, 24)
by, = Uy, (Z1)don, (ZF), for i=1,2,3 4.
R"™0

Proposition 5.8. The following two identities hold for 1 = 1,2,
(577) / \il’i(ZL)d’UNG(ZL) = (I)l,i~
R0
Proof. In fact, in our case, by (B21)), PV = Py ® Py. ® ldg.
By (B13), BI9),
(5.78) ((ZQO)_lPNLOQPN> (Z,(0,2%)) = ((320)—1PNL(9213$(.,0)G¢) (2)GH(2).

From Theorem B.1], ()7

In the same way, we get (5.71) for i = 1. O

Note that the restriction of || - ||, in (E-I1]) on €>°(R**~ "™, Eg,,) does not depend
on t and we denote it by || - ||o.

Since %} in (£.29) is a self-adjoint elliptic operator with respect to || - [|o as we conju-
gated the operator with x'/2, Y and O, are also formally self-adjoint with respect to
| - [lo- Thus in the right hand side of (B.69), the third and fourth terms are the adjoints
of the first two terms.

From (B5), () and (E78), we get
(5.80) Q) =D+ Do+ (P11 + Dio)" + Py — Dy

From (b.76), (5.71), (£-80), we learn that in order to compute ®;, we only need to
evaluate Wy ; and Uy ; (i € {1,2,3,4}).
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Lemma 5.9. The following identity holds,

(5.81) U,,(24) = ——)T (e )Fpgl(zi,zﬂ.

Proof. Recall that the operators b;, b, by and b]“ have been defined in (B.§). In
particular, by (5.17), one has

(5.82) ArZi =by + bt Voer = 0. =1 —b7).

0Z+ J J
By (B.3), (B.9) and (5.82), set
Bip = (4m)Z; Zir = b7 o + bbb bt 4 by + Amé,
Bijp, = bbby + 3b7 by byt 4 30 b Tt 4+ b b T

If a;;1, is symmetric on 4, j, k, then by (B.§), (B.9), (£.89) and (5.83), one verifies
(5.84) aiju(4n)> 2125 Z;F = aiji By, + 12mag; (b + b ).

By (B9), (B5d), (B:14), (B:83), (£:83) and the fact that T'(, ) is anti-symmetric, we
get

(5.83)

1 ~
(5.85) 2r (JT(R*, 1), RY) Voo = 7o Tu b = b))

J
1 ~
- m—ﬂ,];ik (b5 03+ by b )b — (b b ™ 4 bbby by )by
1 ~
= —S—W'];jk(bjlbf’ + bbb

By Theorem p.1], Remark .2, (B9), (B-13), (6-14), (6.73), (5-83)-(p-89), we can re-

formulate O, as follows by using the creation and annihilation operators introduced in

B3),
(5.86) O = —g (IT( . ef),et ) Bhb! + b é—: (IT (s eh) et ) B
+ @ (JT(R%,ef), er) (bEHbi+ — blbh) — \/8—;—1ijk(bj_bli_+ + 05 by )b
. % <JT(£?, ai) eL> (b + b (2byb + 4m6y) + V=1 (Jeb 72 (b + bh)
<JT ex ) Bk + 12m0,(b; " + b7))
- SQT () BEbE + Fﬂ( B+ YT (RO — bt

) —
PV (e ) 0 bk - Y (.
V=17 bibit +

~ g Tl

o), e ) (b + b0)(2bb + 4ry)

1
+ b0+ o Tkl By + 12m0i(b " + b))
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From Theorem B1), (B-54), (5.83), (£:86) and a; = a; = 27, we get

b bt
(5:8T) ((£9)71OPY) (2, 2) = V=T - Tually) + (Jei Tt =
bt bibL
- <‘]T(8%?’ 6%?)’6%> e 32k Tu(2 +2°)
V=1 bbbt ,
— Tkzm[ i +3b§51m]}PN(Z,Z).
By Theorem B.1}, (B.59), (5-83) and (b-80),
1 €L 1
(5.88) PN PgLol vV — PN le{ - ]( ) 57; ( J >:uxo>bL+

(1
A7

+ (TR = Ty (2

> (2,5 + 47dy;)

720
v—1

— m—ﬁzjj,[bﬁbfbf + 127m8;50b; ).

b 0 bi 1471
)%+T ( 0)%)@%;

In the following equation, by (B-9), (B:-54), (B-53), we only need to pair the terms in
(B-87) and (B.8§) which have the same length on bfr and by, and the total degree on
bi, b, 2%, 2° should not be zero. Thus by (B.9), (B:54), (5.87) and (£.89),

(5.89) (PNLP_%OI(.,%) 0, PN) (Z,(0, 2%)) = {PNL[ éﬂ(zmjj(agg)f

b:
ST () )b BT PY ) (2,0, 27).

2T

1 0
+ g5 (Br R+

From (B9), B-54), (B-5d), (.14), (:89) and a; = a; = 27, one gets

(5.90) (PNLPXLOl(.,%O)’lOlPN) (Z,(0, 2%)) = {PNL[— m—ﬁ(Zb (o )

+é<2wJT(R o) + b T (s, e ), JT(,¢; )>]PN}(Z,(0,Z&))-

Set Pé - IdL2(R2n—2n0) - P_zﬂ
Let h;(Z°) (vesp. F(Z°)) be polynomials in Z° with degree 1 (resp. 2) and a;; € C.

By Theorem B.1], (B.9) and (B.54),

1 0°F ., OF b, 1 O°F bb;

582’?82’?2' “

(5:91) (F(2°)Pz)(2°,0) = ( L) Po(2°,0).

J 82?82?22 -t 28_08_0 a;a,;
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By Theorem B, (B.3), (B.9), (B-19), (B.54)), (B.9T) and a; = 27, we have
1 0°F
(PzFPg)(0,0) = 90070

(L' PgaibibjPy) (0,0) = (£~ PzhiPy) (0,0) = 0,

1 Oh;
(fﬁlpjﬂhibipf) (0,0) = (gilpébihipf) (0,0) = Com gzo’
1 OF
L IPLFP = 370920
(5.92) ( R OD e
1 9°F

(L7 PzbiFb;Py) (0,0) = — (£ Pybib FPy) (0,0) = T 27 920020

3 0*F
or 02?02? ’

() (O, hy:
(g Pg(;bl}%) Pf) (0,0) = 27 <8z;-) 02! (Z 8,220) )
Finally by (5.77), (5:90), (£:92) and £ = & + £+ |, we get (B-81)).

Lemma 5.10. The following identity holds,
(5.93) P13 = P4

(ZL7'PZFbb;Py) (0,0) = —

Proof. Let F5 € T, X with values in real polynomials on Z+ with even degree, F, €
NG oo F3(Z+) a polynomial on Z+ with odd degree, be defined by

Filed) = V1 (Jed ) = VT (IT G, ).l ) + ST

bi-bik
(5.94) Fo(-, ZHPN(Z,2') = (m() 32'f PN> (2,7,
bbb
1 N AN k N /
Fy2YPYZ,7) = o (Tan 2 PN (2,2,

Then from (B.54), (b.87) and (5.99),
T
4

(5.95) (L) 'OPN) (2,2") :( Tin(2 — %) — VoIF(20 + 7°, 24
+ (ﬂ + fg) (Zi)) PNz, 7).

Observe that F;(Z4)* = Fi(Z*+) for i = 1,3, thus from (5.87) and (£.95),

(5.96) (PNO(L) ™) (Z2,2) = (L))o PY) (2,2")"

(- Tifkk(zo = )+ VIIRE + 20, 25 + (R ) (24) P2, 7).

For hy(2°), ho(ZY) two linear functions on 2%, z°, by Theorem B.1], (B-54),

_ oh 1 Ohy Oh
(5:97)  (Pehn(")ha(2")P2)(0,0) = (Pzha (=) b P_g)(o,()) T ErEL
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From (B.76), (£.99)-(6.97),
2 11
(5.98) Wi5(Z7) = [((-7:1 + fs)(ZL)) +-12 Zﬂk(agg) +.7:2(880,ZL)) ]GL(ZL)Q.
P

By Theorem B, (B13), (£93), F;G*, (j = 1,3), Fa(3% 7, )G+ are eigenfunctions of
£+ with eigenvalues 47j, 87, thus they are orthogonal to each other.
From (B.76), (5.99)-(-97), we have

599 ni(z) =612 [ {((AEHEH) + (FEEHEh)

1 o)
+ m—ﬁ‘;%k(az?)

From (B1§), (5.76), (5.93), (5.99) and the above discussion, we get (5.93). O

Now we need to compute the contribution from —(Z0)~1PN" O, PN,

)Z(Z’L) + % )B(a%a -)Gl‘2 (Z’L)}dUNG(Z'L).

Lemma 5.11. The following identity holds,
1

2V ,V, logh + REB(i i)}Pgl(Zi,ZL).
3 z Bz '

Proof. By (B9), (B12), (B59), (B23) and (E32),
(5.101)

LPY = {%bjB(Z, 520) + b;B(Z. ) + a%(B(Z, %)) - a%(B(Z, ai)) }PN.
By (B.59) and (5.101)),
(5.102) PPN = Py {0;B(2, %) + 3 (B(Z 3%) ) — 3% (B(Z. ) } PV

By (£.45H), and observe that from Theorem B.1, only the monomials which have even
degree on Z+ and V_., and which have also strictly positive degree on Z° and V, 05
J K

have contributions in PN" Py I, PN,

By Remark p.9, (B.59) and (5.45H),

(5.103) PV Py. (%(B(Z, %)) - 8%(3(2, %)))PN — V1PV P,
1
6

= — S PV (2RTYO(0, )y + RV (2, RO 4+ RN (3 RO, ) P
J

{3 (R (RO IRNRY, 2 ) — o (B (RO, JRORY, g ) | PN
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By (6-22), (£:93) and (F.103),

= —— (R (2, )3 0+RTXG< ) i ) P (25, 2°),

QJ
&vo
QJ

Observe that if () is an odd degree monomial on b;, bj, z?, zj, then

(5.105) (QPM) ((0,24),(0,2™)) = 0.

By using this observation and (f.45H), we get

(5.106) — ((320)—1PNlbjB(Z, %)PN) ((0,2%),(0,2%))
:m/—_1{( 0)-1pN*y, [6 (R (R, JROR", 64>

)
— 2 (VRN (T(ef, 320)) 2 + VEL(T(eh. 55)) 20, TR )

(5.107a) <T(%,€?)7T(6?7 %)> = —2’T(£g> a%g) )
0
(5.107b) PyrZy Zj"Pyy = 4_klP_$fi
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By (B.54), (B-5d), (£:92), (6.104) and (b.1074),
(5.108) — ((ff)*lengLbjB(z af_’o)PN) ((0, 24, (0, Z24))

<RTXg(ZO’§O)RO’ %>

= {03
SV R (e ) + (O )2

1
+ 5 (VEIRTS (e TR et — 2B (e RO)et, o )
3 0 0 0 1 0 1 0
32< (R", ), <€i’£?)>_3—2<T<ek7JR )7T<ekaﬁ)>
V=1

+ Y (T(et Jed), TR, 22)) ] PN} ((0,2%),(0, 24))

Il
—
|

—_
DO [ =
=)
/\
S~
b
Q
—
Q
QNO‘Q’)
SIS
(e
S~—
S
=0
S~
b
Q
—~
o
(e
S
J
N—
T
(e
S
<o
\/

3
+ F <RTB(62_7 ai)eli_a 20 > + 55 T(az 820)

327 i 0%
v —1

2
[Tt | = Y Tk, Ted), T, ) JPer (24, 25

o]
For G1(Z) (resp. Gz( )) polynomials on Z Wlth degree 1 (resp. 2) and F € T X ®
13, X¢, by Theorem B, B9), (B:-12), (B-19), (B-54) and (B.57),

Voer PN = =27+ PY,

=

or any k,l, k', U,

PN Py (GUZ)bE + Go(Z2)bhb + Zi5by ) PN =0,

5.109
( ) 3(1?,”3(72l ¢ )RT,€j) Voot Voo PN =

F(e]

€is j
By (B-23), (B.109), we get
1
(5:110) LPY = {((GR™(R", Z)R" + RTP(R*, )R + Vil (AR, 2 )

829.
— 3 (AR AGEIRY ) + (. Via“ (AlzE)RY)) ) biby

Vo Vo PV = [F(r, Zr)biby — 4P (. £0)] PV,

1
— 4 { ZRTXe(RO, 2 o0 RY + RTB(RE, 2 57 R+ VI (AGH)RY), -5
3 0z 0z

0z ? Bz?
2m
+ 12m| AR — (. Vi (AGERY) ) — 5 (RTP(RY )R ef) | P,
Observe that as A(€?)e? € Ng, we have at w,

(5.111) (VRo (Ae)e)), €]y = (A(R®)A(e))e?, €7) .

R
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Thus by (B13). (653, (B51). (623). (CI07H). (EI09-(EITD). o, = o = 2. and the
arguments above (B.103),

2

(5.1122) PN Py (Tu(R), ) Vo, P = =P <RTXG (R, 0)e? i> b, PV,
o)

1
(5.112b) PNLP_%[QPN:PNL{<<§RTXG(RO,BZ )R" + 47TRTB(€# g)et,%>

3 (A oo,

<RTXG (R, )R, }PN.

By B4), F4), (92), (F-1124), (F-T12H) and the fact that RT¥¢(, ) is (1, 1)-form, we
get

(5.113) = (L) PV Pyr (D + (Ta(R), &) Voo )PV ) (0, 24), (0, 24))
1

I TXa(_ 0 9\ 0 TXG & 9\ o 0
_6w{3<R (8z°’az)az0+R (azo’az?)az0’829>

=2 (R™6 (i, e0)el + BT (o, %) o, o ) } P (25, 2)

2207 i

Now by (£.45d), (B.83), (6.107H) and (£.109),

1

n 2 s L
— PN Ppusy [Z(@RLB)M(R, ei)Zj] PN = ZPVHT(R )| P,
{ J
1 . 1
(5.114) L LTPN Py K (R), Z)PY = ZPN Py Ka(R)PY
1
— EPN (R™¢ (R, )R, e)) PN
By (B.13), (£.40), (B.48) and (p.49), we get
(5.115) —Vz;l(a;?RLB)m(R e} —<J7zL e, ed)) + (JA(E)R*, e)) = 0.

Thus by (.9), (£24), (b-454), (5.119) and (B.II5), we get

(5.116) — PN" P, OLPN = PNngL{ — I — (I + (Ta(R), &) Vo)

1 m 2
— Ka(R), 8] — RE8(R, £o)b; — Z|T(R, )|} PY.
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Note that RTX¢(-,-) is a (1, 1)-form, by (B.54), (£4), (5:92), (5.102), (£.104), (5.109),
EIT) end (ETT0)

(5.117) = (L) PV PoiOPY) ((0,25),0,2%)

== ((320)_1PNLPXL(I1 + L+ (Tu(R),e) Vo el)PN> ((0,24),(0,2%))
2
+—{REB(%’@)+—<RTXG(8iZ?,6?)6?,8i> 4)’]" i)‘ }Pgi(zl,ZL)
1 TXG( 9 9\ 9 0 3 TB o\ L o
= %<R G<W’8E?)8z?’_>+16 <R (k780)ek78z >
o]

By (B:54), (p.63), (5-83), (6-107H), (5.109) and the arguments above (5.103),

(5.118) 4x2PN P, 0/PN = 4W2PNLP$L{ 1 <(V.TY9_TY)(RO,RO)JR{ JRY)
1
+3 (Vo (T(e5, Jog€))) Z5Z) + V(T (€2, Juye)) 29 Z, JRT)

1 2
+ 5 (RTP(RERORRY) - zl: (T(R®, 1), JR)" } PN

= TP (VRN (T (e L) 204 VI (T(ED, Ty 2072, T

- <(V_TYQ_TY)(R0,R0)J6$, Je,f> + <RTB(ei, RORY, e,f> — Z|T(RO, el)\Q}PN.

Let {f;} be an orthonormal frame of TY on X.
As VTV preserves the metric ¢7¥, by ([4), (T.24),

(5.119) (V5 GB) fo 1) = Vg (95 o ) = AV Vo log .

Now {Jey} is an orthonormal basis of TY along the fiber Y,, and {¢;} = {e?}U{e}}.
By (B:54), (£:99), (B-107d), (B-118) and (B-119),

(5.120) —4x® (L) PV PorOfPY) ((0,24), (0, 2%))
L <

S (VT Tk ) + VT (T(ek, ) — 29T (T %>>,Jei>

az? 8,2 J J

8 1
%V L,V logh——’T( 0. 8
3 2:0 o0 3 i
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By (b.73), (6.76), (5.117) and (p.120), we get (b.10(). The proof of Lemma p.11] is
complete. 0

5.4. Final computations: the proof of Theorem D.6. By (B.40), (£.3), (£.54), (5.64)
and (B-31), as Jeir € TY on P, we get at z,

Vi ey = PTYVt Je = PPV Ve =0,
3 K3 T

(5.121) . ]
VET?BJe? = Veg “Jed + Ale))Je) = —§JT(e el) = VTB(JerJ)

By (L9), (L24), (B:5d) and (B121), as in (E.1T9), at o,

(5.122) <vg< (e, €9)), Jek> :—2<vgY(T<Jeg,Je;)),Je,§>

xo

_ <(V%Yg§j)Jek , Jek> ~4V,0V,, o logh.

—4V 9 V 5 logh = Ax,logh,

VT (T(et, 25)), Je,§> — Ay, logh.

ﬁ
—_
<
=
g
)]
=
SillSS
=
<
)]
=
~~——
I

Note that T'(e;, ;) = [eiH,ef] as [e;,e;] = 0. By ([[.4) and ([L.9),

(5.124) VZ,;H (T(erH ¢; H)) [ei Ha [6(‘)7H, GQ’H]] + T(ei’H, T(eQ’H eO,’H))

i i 7

- Leg’H (T( ]J<;_H7 GQJ{)) — L O,H (T( ;‘H, )) + T( T(GQ’H 6Q,H))

J € 07y

= V(T €)= VAL (T (e ) = T T, ™))

+ ()™, T(ep™, e ™) + T(ep ™, Tl ™).
Thus by Theorem B, (-123) and (5.1249),

(5.125) ﬁ<véY(T<ai?, 20)); Je,§> — \/—_1{2<ng (T(et, 52)). Je¢>

(P Je). Teit. ) ) + (Tl Jei). Teit. ) ) + (e Jo). Ty ) |
— 2Ax, logh+ [T(ef, 25> + V=1 <T(e;, Jei), T(, ai)> .

By T'(ei,e;) = —[e}', el], (BA0) and (F-54), we have
(5126) RTX<€k ,6] ) e! vTXvTX H VTXvTX H vT H] ZH

[eH e

1 1
— RTB(ek, ej)e; — §T(ek, VTB i)+ §T(€j’ VZ;Bei)

1
§V6T§(T(ej,ei)) + —VeTI_i((T(ek,ei)) VTXH H)eH

7 )

(B (e ™) (o)™, Jagei™ ) = (B (e, )P ™).

’ 7] ’ 7] J
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By (B5d), (£:64d), (B:13), (BI2T) and T'(e;,ef) € TY, at xo, we get
VTB(JerJ) 0, VTB(J e? —<T el e)), Jey)el,

{L’OJ

<V;é eo)(‘]xoez) aJx06k> <VT€(1CL O)GOH 6i>

We apply now the first equation of (5.124) into the second equation of (b.120)), by using
(L.8) and (5.133) and T'(, ) is (1, 1)-form, we get at xo,

(5.127)

1 1 1
(5.128) ZIT(e}, ) = 5 (VI (T(), oyel)), Jeit ) + 5 <VTY et Tra)), Jet )
= <RTB eﬁ,ej e >+ <VTX( ( )) ei>
= (R™ (e, e))el e ) — —|T e, el )%
Finally from (B:6), (5-123), (-129) and (5-128) and 7°(, ) is (1, 1)-form, we get
(5.120) 2(R"™(eit. )y et ) = V=1 (VI (Dl o). Tei)

= VIV (et ) Jei ) + 3

J

= Axglogh+ SIT(ek, 22 + |T(2 )

From (B.123)-(5.129),

(5.130) % <11 VS (T(ey,52)) + 4V (T(ex %))HV{E(T(i i_)),Je;>

2 BE o ' 920 £ 520 520
1 TB(,L 8\, L @ v—1 L7l 2. 9
+ e (B2 et ) = T (Tlet Jed). TGl o)
5 11 2 ] 2
_ 5 Ay logh+ 1|1 = L, o[
ar e oe o+ g | T )| = g | TG )

By (B.19), (6.70). (6-81), (6-100) and (p.130),

1 3
(5.131) ®yq + D1y = e <RTXG<620’ 82 )820, 520 >+ o —Ax, logh+ REB( 50 i)

3 _
167r xo +8 Ax, logh + WRfG(wO wo)

From Lemma [.10, (B.80) and (5.131)), we get (D.23).

Recall that we compute everything on € (X, LF @ E).

From (p.1§), (£.21), (b.29), comparing to (B.110), we know that in (0.20), ®,(x¢) €
End(Eg)s,, and the term 7%, R will not appear here, and 7 = 27n, thus we get the
remainder part of Theorem P.q from Corollary 0.4.

The proof of Theorem [.§ is complete.
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5.5. Coefficient P (0,0). As in (£.80), we have

(5.132) P@(0,0) = (Uy 1 4+ U 5)(0) 4 (Ty1 4+ Uy 5)*(0) + (U5 — Ty 4)(0).
For k € N, let Hj(x) be the Hermite polynomial,

ez k! (2z)k—2%
(5.133) Hy(x) = ;ewﬁ.
By B3, §8.6], (B) and ai- = 2, we have
(5.134) () Fe ™2 = (2m)M 2 Hy (Ver i) e AT
Especially, for [ fixed, i € N,
(b e %) (0) = 0,
(5.135) (b e ™7 0)(0) = —4m,  ((b)'e ™7)(0) = 3+ (4m)”,
((b")°e™770)(0) = 15 - (—4m)®.
Recall that when we meet the operation | |?, we will first do this operation, then take

the sum of the indices. Thus |7;x|* means ). |Til?, etc
By (E23). (5:0) and (5139).

(5.136) Fa(-,0) = —%Tkk; PN(0,0) = 2m/2,
By (B39, (T3 and (EI30), we know
(5.137) Uy 5(0) = Qn;/Q iZm(F}) + Fa(32,0) = 2671): ;m(ag?) g
and from (B0, (E19). (59, (3. (EIH) and o = 2r
(3189 11400) = GO - S + (15 Tl
o7 | S Twla)| + 2L [}

)

1 1 2 1
— 1\2 2 9 P
 A4Ar {;f1<ek) _'_ﬁu;lm‘ "—Z‘;ﬂk(a_z,g))) "—g)%l(a,o)
Lemma 5.12. The following identity holds,

19 11 1
(5139) \I]Ll<0) - { - m‘%j’(ago)ﬁ - ﬂ’];flm + —%km’]hm

5)
- ﬂTm@i )T (520) — Zfl e.) — —ﬂfl(ei)ﬂu}PN(an)-
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Proof. Set
V(T g + T T
(5.140) IFE(TJ»J-/(aig)bii: im )by byt — bﬁbﬁ))}f Tu(")0ic b7
7= L7 st b (A + 7, )

Observe that by (5.93), when we evaluate ¥y ; in (5.76), in each monomial, if the total

degree of by, z° is not as same as the total degree of b;", 2%, then the contribution of this

term is 0. Thus by (B.9), (B.54), (£.76), (B.83), (£.80), (B.87), (£.94) and (b.140),

(5.141) Uy, (Z24) = {(320)*113“ [L Tyt T
Bi bL bibibL
14 1 gyt Yk 1 Ym N 1L 7l
F(RED0E )+ T 280 (e 2 + T ) 2, 2,
By (B-3), (B.19) and (E.I33),
(5.142)  (b;2)PN)(0,0) = —20,; PN (0,0), (bbb 2) PN)(0,0) = 8704561, PN (0,0).

From Theorem B.1], (@), (BT}I), (m), (M) and (),

(5.143) ((:L))"'PN 1, PN)(0,0)

1 1
= o { () P T (4T ()b + bbb T (")) P (0,0)
bibh bbb
- (0 NI ] 33 (0 N
STl (T ()2 + 22T PY } 0,0
1
=~ sl )ﬁk(%)PN(O 0)

By (B9), B-59), (£-83) and (E.I40),

(5149) (PV'LPY)(Z,(0.2) = sy { PV T ()

2812 oz?
[bif,cl(ZO)B;j, + (b bt — bjb;ml(z())bi] bﬁbfPN}(Z, (0, 2"))

1
T (5%

2872 79

2T () (b b — bbbkt PY (2, (0, 2))

){PNL [bm,(zo)(zbfbjﬁ + 260 + 47d )

1
= T () {b (647r27ﬁf<z°> 167 Ty ()05 b1 + Ay T ()b b1 )

2871'2 27

— 2Ty )b bbb PN}(Z, (0, 2%)).
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Thus by Theorem B.1], (@) (b-133), (b.143), (b.I44) and use a similar equation as
(BI53) for T, (5% )ﬂl( )bLbLblbl , we get

(5.145) (L)' PN*T,PV)(0,0) = —— T, (8_0)[(167rb7' /(%)

28273

4 1
+3 0Ty ()5 by + 30550 Ta(2 )b b — 3 Tkl( 7)b; by by by )PN] (0,0)

8
T 98,2 _T|Tjj’(azg)|2 + 373‘]’(3%)7%(

1 [ 647 8 o)
0z;

2 (21T () + Ty (320) () ) | P(0,0)
= 5o [_mm () + 255 () Tis ()| PY(0,0).
By (B3, (B54), (EIT0), we get
(5.146) TsPN = —gzﬂ [blbLfl( ) + Tiumb; b3 bf Gbi - %Tilj/bjbf] PN,

By (B.54d), (6.14), (b.139), (5.144) and a similar equation as (5.152) for ’i}ij/’];libjlbfbﬁbf,

we get

e

(5.147) ((520)*1PNL13PN) (0,0)= %=

T3 T P (0,0) = 0,

as 7;;;» is anti-symmetric on 4, j and 7;;; is symmetric on 1, j.

By Theorem B.1} (B.9), (B54) and (E.135),

(5.148) (L) PV File) b1t + bf)fme,i)%PN) (0,0)
= 3217T2 (Fi(eF205)2PY ) 0,0) = —8% >~ File) P (0.0).

Recall that 7y, is symmetric on k, [, m.

By Theorem B.1, (B.9), (B.54), (b-83) and (E.133),

iR

(5.149) {<D§/p0)71PNL (}—1(64)(5H+b*)%lmb’tbllbé + Ty > Fi(eir )by )PN}(O 0)
2 3N J 19272 I 6472 k ’

bbbt bi-b-
_ 0\—1 pNt IRYANE k"l 1 %m \ pN
_ {(32) P fl(ej)(bj Tun 2 + Ty, 2L )P }(0,0)
1 bbibi-bt
- 327r2{f1<€*><%7] s Tmbith ) PYH0,0)

B 327?2{ (ZT” bl) + T (21)4 + Tu(bi) )PN}(O,O)
I#5

= —16—7r.7-"1( ) TuP™(0,0).
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As Ty is symmetric on k, [, m, we know that

(5.150) Tin =6 Y Tin T3 T + T
k<l<m k#m

From (B.135), (B.I50),

t 7))

(5.151) (zjj/%zmb+b+b%b¢bfb;PN)(0,0>= {(36 D T (01) (6) (b)?

k<l<m

+9 Z %kalm(bi)Q(bll)Q(bé)Q +6 Z %kammm(bé)Q(bé)Ll

190 Tk T b (02)" + T (55)°) PN} (0.0)
k#m

:(—47r)3<36 SN 72,49 Y T

k<l<m k#l£mtk

k#m

— (—47)* -3 (gzjm n mkmfum) PN (0,0).
By (B.139),
(5.152) (zjmﬁlmbilbjb,ibfpfv) (0,0)
- { [Z (2T Tose T ) (0 + T3, (0

kAl

= (@2 ( Yo (@T4, + TunTim) + 372, ) PV (0,0)
k£l

PN} (0,0)

= (47)* (2T + Tt D) P (0, 0).
By (B-9), (B:54) and (p.83), we have also

1
(5.153) PN"T,; B

ijj’

Trambibiibt PN = (Tijj,ﬂlmb+b+b%b§bfb;

oI

36T, Tt bbb+ 367 - ST Tumbi b ) P
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Thus from Theorem B.1], (5.151)-(5.153),

N 1 1zl L
(5154) {((320)—1 N U]/Bl %lmbk bl bm>PN} (0’0)

167 3P0 Ekm T go 2
1 1 1l 1 J_ 9 1y ly 1zl
= 53 (2 =T Db b 0000+ 5 T Taamb b b

+367r7;lm7;lmbilb,§) PN} 0,0)
1

= i {~8CT + 3TonTim) + 36273, + Tt Tirm) — 14475, } P¥(0,0)

1
:28-37T(

From (B.141)), (F.143), (B145), (b.147), (F.148), (B.149) and (B.I54), we get

)|2+2Tn(

1
(5.155) 011(0) = { 5= | 761 (2 ) Ti(5) = 2273, + 3Tk Ti

1
— T () T Zfle P FieH T} PY(0.0).

From (B.153) we get (.139). O
Recall that B(Z, ei) was defined in (5.23).

Lemma 5.13. The following identity holds,

V-1 1 5
(5.156) TB(Z,eli):§<RTB(R{R0)65,JRO>—Z(V?( (ex,ei)), JRY) Zy,

# 5 (FRPRE R+ VR A 2 IR
+ L rm ), ety (TR - RO, I, RY)
i1 1 (TR, e Jef><T RO, Je)), JR)
4z <T R°, JRY), el)) — = <T(R, ¢), T(R*, JR?))
+3 <T(Ri, JT(R®, JR®)), Jej) + % (T(RY,JRY), T(R,¢}")).

Proof. By (5:33), (£54) and A(R%)A(R®)ei- € Ng, as A exchanges T X and Ng, we get

(5.157) (JR, (VIXVTXe M) rpr) = —= <JR T(R,V&Pel) + VRX(T (e, e)) Zi)

1
+ <JR°, gRTB(Ri, e )RE + RTB(RT, R)el + VTXG(A(eg)ef)Z,2> .
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By ( )7 (-)7 (@)7 we have at Zo,

%< VTBL>_ <=]l>T ><JRL R,JG?)>>
%<JR° VE (T, ") 21 =~ (T(Ryef ), T(R, JR))

By (B54d), (B5d), (E13), (B53), (B:5) and VE* (T(e', €ff)) ZiZy = 0, we have
(5.159) (J(VIXVTXeH )(RR),el VT = = <T (R, ViPer), Jei) Zy
== <T (R,2A(R* )R-+ A(ROR), Jei-)
=3 <T(R, e)), Jej ) (T(R°, JeY), JR™)
— ~(T(R°e), T(R", JR")) + i (T(R*+, JT(R°, JR")), Je;") .

From (B.40), (5.54), (5.13), (£.53) and the fact that A exchanges T X¢ and Ng, we get

1
(5.160) <JVTXek  VEX e >Zk = <JVR er, A(RY)ef — ST(R. eli)> Z
1
— <JA(R0)R0’ _éT(R, ef)> + 2 (JARORY, A(R%)e})

= i (T(R°,JR"), T(R.€)) — % (Je", T(R°,e)) (JRT, T(R®, JeY)) .

From (p.51]), (.54), (b.61)), (5.1571)-(5.160), we get

(5.161) QB(Z er) <Jel ,T(R", € ><J7zL T(R,JeY))

- RS VR (Tle ) Z)) = S (T(Roe). T(R.TR))
% <J720 RTB(RJ_’ elJ_)RJ_ + RTB(Rino) + VTXG(A(ek)el )ZO>
+7 <T(R, e), Jef ) (T(R°, Je)), JR*) — é (T(R° ), T(R° JR))
+ % (T(R*,JT(R®, JR)), Jei ) + i (T(R°, JR%),T(R.€))
— % (Je", T(R% €9)) (JR", T(R", Je2))
+ % (TR, JR), T(R,e)) — (VR (T(ex, e)), JR") Z.

From (B.I61]) we get (5.154). O

Now we need to compute the contribution from —(.£0)~'PN*©,PN,
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Lemma 5.14. The following identity holds,

L x L pea( o o 29 L 9y2
(5.162) Wy(0) {Fr%cjt%]% (3 500) + 5-Axglogh + o5 [T(eir, %)
=1 1 ) 1 ,
* 167 <T(eé’J6é)’T(8%”%)>+E’T(£9>a%?) +32—W’ZTM(£O)
j
1 : 1 '
- 26 <(VTY9TY)(€f7ef)J6é’ J6é> - 2r <(V'TYgTY)(ejL,ekl)‘]6jL> J6é>
l = = | = 7
+ﬂ7;jk(77ﬁji+7;jk) 55 (2’];?% ijﬂM)
o ({15967 296 9777) ) L P 0.0)

Proof. From Theorem B}, (B:9), (B:-54), (b-19) and (5.133),

(5.163) 47 ((320)*1PNLZ,§Z,LPN) (0,0) = ((,2”20)*1PNLZILZ),§PN) 0,0)

bisbi-
3272

5kl

= ()52 PY) (0,0) = (5P (0,0) = =ZLPY(0,0).

Set
(5.164) Ty =—{(Z) PV (ai (B2 &) - (B2, %)))PN} (0,0).

At first, if Q is a monomial on b, b, b, b7, Z; and the total degree of by, b, Z? or

177
bt,b;*, Z is odd, then by Theorem B,
(5.165) <($20)*1PNLQPN) (0,0) = 0.

By (B.16), only the monomials of B(Z,€?) with odd degree on Z° have contributions
for Zy.

If we denote by B 7(e?) the odd degree component on Z° of the difference of B(Z, €?)
and of the sum the the first two and the last terms of B (Z e?) in (5.45H), then by (B.45H)
we know that Bz(el) is a linear function on Z° and 3% (BZ( )) and —F(BZ( ))

are equal.
Moreover, by (5-54), (F-163), we know the contribution of the last term of B(Z,€?) in

(B.45H) is zero in Zj.
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Thus by Remark p.3, (5.450) and (5.164),

|1
(5.166) Tp = mv/—1 {($2°)—1PN {éafj? <RTXG(R°, JRY)RY, 84>
1

— oo (RPN (ROIRORY, )

5

— (TR 2VRUT (i, 55)) + VY (T(eh, 520)) 2 = V7Y (et 520)) 27 )
s 929 ! 029 !
3v/ 1
43y T <RTB(RL, DNRE, a§?> ——— <J72L,T(6%?,e?)> <JR¢,T(6§, %>>
v—1
= L= (T(RE, 3%). T(RY ) ) + (TR TR, T(. 7)) | P} (0.0)

1
(5.167) Iy = {_6_ <RTXG<£07 520) 500 + R0 (50, 5) 5o %>
7T K 7 b j i i j
5/
+ <Je$,2VTf<T(%, a20)) + VI3 (T(eir, %)) = VT3 (T(eq, a%))>
s J J 8,29 j 82‘;

3 TB( L 9\, L 0 3 o 0 \2

+ 32—7'(' <R (ek’a_z?)ek’a??> + 64—7T|T(8,Z?’8??)|

1 Vv—1

_ﬂ|T(eﬁ,%)|2_ o <T(e§,Je$),T(a%),ai?)>}PN(O’0).

By (B9), (B.54) and (b.83),

B b; 1
(223 P™)(Z,0) = (5 5= PY)(2,0) = o= ((b;2] +205;) PY)(2,0),
1

1672
(Am)"(Zi)* PN = ((b)* + 24w (b )? + 3 - (4m)?) PV,

(5.168) ZiZPN = —— (bib + 4m) PN,
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From Theorem B, (B.9), (B.54), (m), (p.139), (p.142) and (B.169),

5kl
4

(PN ZEZ-PNY(0,0) = (bibiPN)(o 0) =

1672

(5.169) ((220)’1PNlbjz?ZjlePN> 0,0)

_ Lo o 0) N}

_ IGWQ{(I%bkbl b= + dubsz{ ) PN 1(0,0) = —
b ,

(L9)"br 2 20PY) (0,0) = — {bl bi< o 8—5@])PN}(0,0)

5Z]5MP (0,0),

=3 2<5w<5,€lPN(o 0),

()P 2 220PY ) (0,0)
1 0\—1pN+t Ll 050 pN
= {@)PV O ZE +00AFPY ] (0,0) = o

By (£.5d), (£.106), (B.1I07d), (6.169) and comparing with (b.108), we get

52] 5PN (0,0).

(5.170) — ((320)—113“5].3(2, %)PN) 0,0)

1 TX TX
G(_9 9 \_0 G(_0 9 \_0 9
{ <R (azQ ? 079 ) 929 R (6z0 ’ 979 ) 0297 929 >

967
From (B.15G) and (B.I63),

(5.171)  ((&)) ' B(Z,e;)PY) (0,0) = —m/—_{ L) o
[ (RTB(R*, R")ei, JR®) — 2 <v T(ef, eb)), JRY) Z-
(IR (et JRl>Zk——<T (RO, e Jef}(T RO, Je), JRY)
+ = <T (R, JRY), &) — —<T T(R*, JR"))
+3 <T(Ri, JT(R°, JR®)), Jei) +§ (T(R*,JRY), T(R*, eli)>]PN} (0,0).
As T is anti-symmetric, from (B.9), (B:54)), we get

(5.172) b (VRL(T (et ef)), JRY) ZEPY = = (50 (VRL(T (et ef)), JRY) ) 4P,
b (T(RY,JR), T(R",e)) PN = —(T(R*-, Je;) + T(e;, JRY), T(R*-, ¢")) PV.
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From (b.54), (b.123), (6.163), (6.169), (b.171), (b.173) and the anti-symmetric property
of T', we get

(5.173) — % ((£) "' B(Z,¢")PY) (0,0)
=S (T @k e det ) + (VI (et e ) et ))

5)
+ o (VI (T et) + V' (T et)). Jet)
96 029 J 9z9

1
+55 (T(ey, Jei) +T (e, Jey), T(ex, eli)>} PN(0,0) = 0.

By (B.101), (F-123), (5164), (£.167), (E.170), (B-I73) and since RTX¢(-,-) is a (1,1)-
form, comparing with (5.104) and (5.10§), we get

Recall that from (B.G), (b.54d), (5.5H) and (5.13),

e = [T(2y. TP = 2T (. )P

|A(ef)er | = 4] A(

I

(5.175) (Ale))e], A(e))e)) = (3 5)

1
AP = IT(EL, TN = (g, JEE = 21T (s, o)

L)

From (5.92), (B-110), (F-163), (F-179) and since RT¥¢(-,-) is a (1, 1)-form (comparing
with (EII20), (F-I13)), we got

_ n 4
(5.176) — ((£0) P IQPN) (0,0) = {37 (R0 (2, ) )
3
(RTP(ct,eh)eb ) + 1o T )P} PY(0.0)

TB 9 \,L o
87T<R (ei ’ 02} )k’8z> 487T
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,-) is

By (B:8), (B:54), (6:24), (6:82), (6:92), (B-111), (E-163), (BI7H) and since RT*4 (-,
a (1,1)-form (comparing with (5.1124)), we get

_ ((ff)*lel (Tu(R), &) Vo,elPN> 0,0)
= {2 P (5 (RT5eR, e, 2 ),

i <RTB (RE, e0)e? + A(?) A(e?) L,e,ﬂb,ﬁ)PN}(o,O)

(5.177)

1
:{_37<RTXG<8%,63> ) o (TP )+ A} P 0.0
2
(R R >e¢,a%> ST )} PH0.0),
1,1)-form

By PN =0, (29), (£92), EI69), (BI79) and since RT¥¢(-,-) is a (
(comparing with (B.114))), we get

(5.178) — {(320)—113“[31 (Z(A (%) el,Ri>) zo} PN} 0,0)

—{p" [lz@(m — (S RN )PV o,0)

4

1 1
=3 {PNL [<§RTXG(RO, )R+ R™P(RY, &))R™, eg>

1 1 2
+ 5 (RTP(R* )R ) +5(; <A<e9>e9,7zl>) — AR

_ (i <RTXG(A e?)e! @> <RTB (e, €))err,ed)

67 0297 71 /i) 5z
1 7B 1 112\ pN
_48—7T<R 6k7 i ek’ i > 3271_)2‘4 € +—|A(ez)6k| )P (an)a

PN} (0,0)

(s (Rl ) )~ <RTB<ei 4 >e¢,%>

- 3_7T 82?7829 i J A7
1 2 1
| ST |+ TG )P — o (BT ek ) ) PN (0,0),
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By (B.12), (B:59). (6-82), (£:93). (b-163) and (E.I79),
(5.179)
_ L 1
— {(320) 1PN ( - 5 <A(6?)610, RL> VA(eg)eg + 2 <A(6?)62, Rl> VA(e?)e?

-+ g <RTB RL, Zl z‘luej> VO,GJ’>PN}<O70)

67T J 1
8

() P (- RP (R, e) Vo PV }0,0) = - R (2, )PV (0,0)

1 1 2 2
— (=5 Do Al +2\A<e?>e?\2+§<RTB<e+ el er) ) PY(0,0),
!

2
o) o]
0 ’820,)

J

1
— —|T
47‘(“(

0297 079 24 <RTB( l ek’ J >)PN 0 O)

<.

For Fj;. € C, from Theorem B2, (b-17), (p-137), (p-16) and comparing with (5:153),

we get

(5.180) {(L)' P FywZi 2} 2521 PV }(0,0)

= {(92”20)—1le [Z(Fjj;kk + Fjing + ij;jk)(Zf)Q(Z,f)Q + Fkk;kk(Z,f)A‘] PN}(O, 0)
j#k
L B0k | 1
P {PN | D2 B B + Fgn) (e + 5 (67 + (50)7)
J7#k

+Fkk;kk<(fg—r + 3(@)2)} PN} (0,0)

—3
= 53 (Figsee + Flejiej + Fijji) PY(0,0).
By (b.45d), (B.74),
1 Lp 2 2 1 0 1\?2
(5.181) o Z (OrR)y(Roer)| = = Z (JT(R*,?), RY)
— 723 (JT(R,ef), RY)”.
J
By (B:8), (B-14), (E:I30) and Ti(ey) is symmetric on k, 1, we get
(5.182) -7y (((,%20)*1PNL <JT(RL,6?),RL>2PN) (0,0)
— = (&) P T () Tl ) 27 25 22 P) (0,0)

3

= = (2Tu(e)? + Tig(e) Tiale) ) PV (0,0)

3
26 (2|T k750 ‘2+)Z

)PN(O 0).
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In the same way, by (b.5d), (b.14), (5.180), we get

(5.183) —> ((320)*113“ <JT(RL,ej),Ri>2PN) 0,0)

3 ~ o~ -
= E,Tz‘jk(zj'k + ﬂji)PN(Oa 0).

By (1), (£169),
(5.184) — 7Y ((320)*113“ <JT(R0,ej),Ri>2PN) 0,0)
7

= 5= Tr(em

By (B.45d) and (BI19), the total degree of Z°, V .0 in the fourth term of O in (F.28) is
1, thus the contribution of the fourth term of @) in (520 for —((£2)~*PN" 0, PN)(0,0)
is zero. By (5.29), (5-179), (5-179)-(p-179) and (p.I81)-(5.184), comparing with (5.117),

7
PP (0,0) = - [T(et, Z)PPY(0,0),

we get
(5.185) — ((£8) PV 04PY) (0,0) = {iﬁ (R Gl o)y o)
e <J VI TG ) + VI (el %>>> + 5o T )P
g (At it )+ ek )P Yo (et ) T )
g (R eh i ) + 3o TG AP+ g Tk AP
- 64%’ Z%(agg) + 55 T Tijr + Tazs) +%REG(8%§” 5%9)} P00
J

By (B.63) and (B.I69),

(5.186) —4r* (L) P O4PY) (0,0) = —an? {(£9) PV
1 . .
[ — S (V7 ) oy SRE + (VI 5 ) o ey TR TR
1
4 5 (VR (T (e o) 220 4+ VRL(T(E, Jaye) 2020, TRE)
1 1
3 (RPPRERORYRY) — 5 D (T(R, ), JRY)”
l
! € e ! 1 2| pv
——2;<T(R ), JRT) 4| TR, TRY)| ]p (0,0).

Now {er} = {e} U{ef }.
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By (.107d), (B.119). (B.123), (5.169), (E.I80), (B.183), (b-183), (b.186) and comparing
with (5.120),

1 7 8
. — 2 0\—1 N " N = - N 1 h
(5.187) 4m <(«$2) PTOyP ) (0,0) {247r [ 3V8%?Va%? o

1 o) 2
~ 57 (31T ek a2+ 4 3l

z (Z]k + %]z))

7
o (mm + TynTan) | PY0.0)

By (6.73), (b.76), (.163), (5.187) and (5.187), comparing with (5.100), we have

(5.188) W,(0) = — ((ff)*lel(o; + 47r2(9;/)PN) (0,0)

) 13 2
7v—1
VI (T(eirs 520)) + Vel (T3 520))s Jer
967 920 k J J
1 RTB 1 9 1 9 3 T o) o) 2 1 T 1 9 2
T 3 (ekaa—zg) k550 +16 | (azgha?g” +F| (ekaa_z(;”
1

2 1 ~ . . 7
* 327r’ > Tl + o Zigk(Tige + Tji) + 55 (27]%% + Tg;mTkkm)
J

V-l (Tt Tef), i)y =2 (Jef VIVE ) } PN (0,0).

By (EIZ3), (T30, the term Z[---] in (BT88) is £ (&Axlogh + £IT(eh, 72)1).
By (F129) and (FISS), we get (FI02).

The proof of Lemma p.14 is complete. O



124 XTAONAN MA AND WEIPING ZHANG

Lemma 5.15. The following identity holds,

(V7Y GV Jet Jet ) =49, 9, logh,

(5.189) <(VTY ) et Jet > —4V,.V,. logh + 2‘ ST
l

—2/T(ex, 520l + @m + Tj) Tijie

Proof. By using the same argument as in (5.I19), we get the first equation of (p.I89).
Recall that PT"X, PTY are the projections from TX = THX & TY onto THX,TY .

By (L3), (L3), (B.1), (B-40) and (B.41) (cf. also (E.31)),
(5.190a) (PT"XJe ) ) = 0, (Je™),, € T,

1
(5.190D) (Ve )ay = =5 T(ex €),

1
(Ve )y = (A ) = ST(lset ),

1
(5.190c) (Vierner Dy = 5 {Tex €5), Jeiy e + (Tew, Jei), Jey ) Jey.
From (p-190d), we get
(5.191) VP et = 1, PP Je ! = 0.

1 ek

By (B.40), (5-14), (5.71)) and (5.190H), we get at o,

(5.192) v G PTX et VTHXPTHXJeivH

:——JT(ek,el + - <JT € €5) el ) €
_5(7,“] Tkﬂ)e + = <JT exs€)). ) e,

By (B-64), (£.T90H) and (B.I90d), at o,

(5193) [ek JelLH] V JelLH—VTLHek —JVTLXHQLH—VTLHeiH
€

=—3 JT(ek,el +5 <JT6k76] 61>6j_<T(6k’J6j)’J€ll>J6j’H'

By (B-14), (EI91), (BI92) and (B.193), we get at o,

(5.194) <V£if 0ot ]PTHXJel H $H>
_ ! X THX 1 L.H L H
= —5 <V‘]T(eé ef)— <JT(ekl,ejL)7el )ej P J , €} >

= Z(ﬁu — Toit) (T — Tiw)-
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By (b.6d), (B.190H), (.191)) and (B.192), at o,

vT X, PTY Jeot = JVT);efH = JA(D)ef — —JT(e ),
(5.195) v G PTY Je ! = JvafH e — Vekl,HPT X Je
i <JT(ek : ej),ef> ej = —%’j}ﬂef — (JT( er,e ] >e .
Thus by (p.199), at o,
(5.196) v HPTYJefH =PV A PTY JeoM = 0.
By (L3), (L4), (L.7) and (B.I96), at o,

(5.197)
<(VTY Y)Jet ,Jek> — ¢ <g Y pTY Jel ,PTYJek> — ¢t <vPTYJ ek, PTY Jei >

= 2¢f <VTL61 ,Jek> — 2er <VPTHXJ 1€ ,Jek> — 2er <VPTYJ6L61 , P XJek>.

By (5_53)7 (m)v (m)7 (mﬂ) and (@)7 at Zo

(5.198) — 2¢f <VPTHXJ L& ,Jek> —2<VVTXPTHXJ Lei ,Jek>

1 ~
= <T< - 5(7761] 77?.][)6 _'_ <JT ek‘7 ] >e]7el ) Jek‘>
1 ~ -
= 5Ty = Te) T + 5 <T(€?7 e ), Jei) (JT (e, €5),ei)
1~ ~ ~ 1
= §(Tku — Tij) Tk + §IT(€i, N’

J

By (B-5d), (6-14), (E.1904), (E.I90H) and (B.193), at zo, we have

(5.199) — <vPTYJL ei, PT"X Je > <VPTYJ Lot VIXPT Je >

= —5 (IT(eh 65). k) (Tlet ), Jet) = STl Tia().
Now by (B.Gd),

(5.200) ez <VTLel ,Jek> —e; <VT Je; ,ek>

— e <VPTYJ6LPTYJel VNPT Jet + VPN et ,ek>
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By Theorem p.1], (L.7), (B1904) and (B-192), at o,
(5.201) — 2¢ <VPTHXJ PTY Jek 7€k> _2<vaXPTHXJ P el 7€k>
1 ~
:—<T<—§(Tkl] 77931)6 + 5 <JT e €y) >€],6k> Jej >

~ ~ o~ 1
—5(7%1]' — Tijt)) T — §|T(6i, e’

J

And by (B.5d), (6.1904)-(B.190d), (B.191)), (6.193), (b-194) and (B.201)), at o,

(5.202)
~ 2¢t <v X PT"X Je; ,ek> - 2<(v§e§vg§+v§;§ ,JfH])pTHXJ L H e¢>
1~ = 1 -~
= - <T< = 5(Tuj — Trj1)ej + 5 (JT(ejr e5), €1 ) €;, 61?)7 J€f>—§(7klj—7kﬂ)(7ﬂk—71kl)
1~ ~ ~ 1
—5(77@ — Tijt) T — §|T(e$, N’

J

Finally, by (L4), (L.7), (L.24) and (£.19G), as in (5.119),

(5.203) — 2et <VPTY s P et ,ek> = %} (T(ef, P Jetb), PTY Jet)
<(VTY TY)Jel ,Jet > =4V .V 1 logh.

Thus by (£.197)-(5.203),

(5.204) <(VTY Y).Jet ,Jek> = 4V,.V, . logh - 1|T(e;, €9)|?

+ Tl( NTiw(e)) — %(%klj — Tii) T
From (B.9) and (5.204), we get (E.I89). -
Proof of Theorem 7. By (F-14), (£.94),

m

Y Fier)? = = (i i) oy — <~E S AT (el Jet ) + 27, azg_))>

29 3v—
+ _Tlm%km T <T(el 7‘]ell)’ T(aizya 54)> )

(5:208) +)ZT(8%”8%9) 16" 2

<. O

3
Filed) T = —v/=1(T(e}, Jet ) i + (. %) ) + 5 Tum Tt
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By (B.137), (B-138), (b-139) and (£.205), we have

1
(5.206) (Wyq+ U7, + Uy5— Uy 4)(0) = {—— Z Filed)? — 8—ﬁf1(e;m”

13
~26. 37

1 11
2 7247 me——)T R
wim o Tk Tum — o= w(5z0)

— {21 i hE) TY+7T<”“E 7\/_T(el ,Jej )+T(i i)>
2 \/—_1<T( .

By (£.162) and (B.189), we get

1 1 1
(5.207) Wy5(0) + W1 5(0)" = {7X + R (5. o) + — A logh
J

3 35 1L 9 \|2 V_l 1 1 8 8

2 1
—IG—W]Z%(%?)
k

g ( (T(ef, Jei), i) - 2 <Je,§, VZ’kEﬁE> ) } PY(0,0).

Thus by (5.139), (5.206) and (5.207), as ijk is anti-symmetric on 4, j, we get

1 a o)
+ o5z TG o)

2 ~
T 56 [7; e (T + Tije) = (7;1“ + ij),];jk}

7

]

1 1 3
(5.208) P?(0,0) = {gr;ﬁc + ;REG(Q% %) + AXG logh = =V, Ve, logh

1 2 1
b oIk A+ 5| T )| — 5| ST )
j
\4 —1 1L 1 o) o) 3 o) 2 1 2
+— <T(€z ,Je )aT(a—Zgagg)> - 16—7r) > w(gm)| + 21 Tkim
5 1~ - = 1
— m—ﬂﬂkm,];lm + ﬁ%jk(g];cji — Tiji) + or (L, ILLxO>gTY
1 v—1 -
+;< \/ T(el,Jel)JrT(alo Z?)>+ o <J¢,VZ‘§NE>}PN(0,0).

By Theorem p.], (@), (L24), (B5d) and (5.14), as same as in (5.119), we get for
U e T, Xe,

Tim = <T(ei, Jei), JelL> =2V, logh, T(ei, Jeit) = Q(V log h)Jei,

5.209
( ) ﬂk(U)=—2<T(JU,Je§),Je;>_ <gJYJek,Je;>_—4vJUlogh
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By (b.136), (b.208) and (5.209), we get Theorem [.7. O

5.6. Coefficient ®;: general case. We use the general assumption at the beginning
of this Section, but we do not suppose that J = J in (0-7).

Let 3 7" be the formal adjoint of the Dolbeault operator """ on the Dolbeault
complex Q%*(X, [P @ E) with the scalar product ( ) induced by ¢g™*, A%, h¥ as in
Section B.2.

Set
(5210) Dp _ \/5 (ELP(X)E i BLP(X)E,*)

Then

preserves the Z-grading of Q%*(X, [P @ E).
For p large enough,

(5.212) Ker D, = Ker D2 = H'(X, I’ ® E).

Here D, need not be a spin® Dirac operator on Q%*(X, [? @ E).

Let PS(z,') (x,2’ € X) be the smooth kernel of the orthogonal projection P from
(¢>(X,L? @ E),( )) onto (Ker D2)% with respect to the Riemannian volume form
dvx(z) for p large enough.

We explain now how to reduce the study of the asymptotic expansion of PpG(:c, x') to
the J = J case.

Let g2 (-,+) := w(+, J-) be the metric on T'X induced by w, J. We will use a subscript
w to indicate the objects corresponding to gZ¥, especially X is the scalar curvature of
(TX,g2™), and Ax, . is the Bochner-Laplace operator on X as in ([.21]) associated to

TX
9,¢-

Let detc denote the determinant function on the complex bundle 79X and |J| =
(_J2)—1/2.

Let hZ := (detc|J|)"*h¥ define a metric on E. Let RE be the curvature associated to
the holomorphic Hermitian connection on (E, hZ).

Let (), be the Hermitian product on ¢*°(X, L? ® E) induced by ¢g2*, h* hE as in
(L19), then

(5213) (€®(X, I’ E),{ ).)=(€(X, I’ E),{ )), dvy, = (detc|J])dvy.

Observe that H°(X, L? ® E) does not depend on g?* h%* h%.

Let PG, (x,2') (z,2" € X) be the smooth kernel of the orthogonal projection PS, from
(€=(X,L* @ E),( ),) onto H(X,LF ® E)“ with respect to dvx ().

By (B213),
(5.214) PY(z,a') = (detc|I|)(«")PS (2, 2').

We will use the trivialization in Introduction corresponding to gZ¥.

Since gZX(-,+) = w(-, J-) is a Kéhler metric on TX, D,,, is a Dirac operator (cf. Def.
R.1). Thus Theorems 0.1, hold for PS (x, ).
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Let dvg be the volume form on B induced by ¢g7* as in Introduction.
As in (D.I0), let & € €°(TB|x,,R) be defined by for Z € T, B, =y € Xg,

(5.215) dvg(wo, Z) = K(z0, Z)dvxg w(zo)dong,, ,, -
As in (0.I7), we introduce .Z,(x¢) a section of End(Eq) on X,
(5.216) 7 (z0) = / W2 (20, Z)PC 0 W (3, Z), (0, 2))Fi(0, Z)dvw, ...
Z€ENg,|Z|<eo
Then (D.I§) still holds.
Summarizes, we have the following result,

Theorem 5.16. The smooth kernel PpG(:c,x’) has a full off-diagonal asymptotic expan-
sion analogous to (D.14) with Qy = (detc|J|)Idg, as p — oo. There exist D, (xo) €
End(Eg)., polynomials in A,, RIB, R¥s uF RE (resp. h,, RY®; resp. u) and their
derivatives at xq to order 2r —1 (resp. 2r, resp. 2r+1), and &y = Idg, such that (0.23)
holds for .#,. Moreover

(5.217)
1
&y (20) = o [rfG + 6Ax, w10g (ho|xs) — 2Axg,w<10g(detC|J|)) + 4R (wg,j’w?uvj)]'
Here {w,,;} is an orthogonal basis of (TM0 X¢, g1X¢).
Proof. By (B:213)-(5.214),

(5.218)  Fy(xo) = / hl(zo, Z)PS, 0 V((x0, Z), (20, Z))ku(@o, Z)dvng,w(Z).
Z€eNG,|Z|<eo

From the above discussion, only (5.217) reminds to be proved. But

(5.219) REe = RFe — 90log(detc|J|),

Thus

(5.220) 2REC (w0, Wy, ;) = 2RPC (Wl ,, Wy, ;) — Axgwlog(detc|J]),

and (B.217) is from (0.7) and (p.218). O
6. BERGMAN KERNEL AND GEOMETRIC QUANTIZATION

In this Section, we prove Theorems [0.10, 0.11].

Proof of Theorem [J.10. We use the notation in Section [.4]

By Theorem [.4 and Lemma [£.§, we know that p_% (o0 a;)% is a Toeplitz operator
with principal symbol (2% /h(z0)) Idg, in the sense of Def. .3, and its kernel has an
expansion analogous to (f245) and Qg therein is 2 /h(zo).

We claim that

(6.1) T, = p*%(ap o a;)%p(ap o a;)%
is a Toeplitz operator with principal symbol 22 1d Eg-

Indeed, when E = C, this is a consequence of [[J] on the composition of the Toeplitz
operators.
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To get the above claim for general E, we need just keep in mind that the kernel
T, (zo, z) of T, with respect dvx,(z() has the expansion analogous to ({.43) and Qoo
therein is 2% Idg,,.

Our claim then follows from the composition of the expansion of the kernel of p_nTO (op0
cr;)%, as well as the Taylor expansion of n? (cf. also the recent book [Rg] for a more
detailed proof).

Now we still denote by (, ) the L?*-scalar product on ¢ (Xg, Lf, ® Eg) induced by
hta, hPe | gTXe asin (TI9).

Let {s?} be an orthonormal basis of (H°(X, LP ® E)“, (,)), then ! = (apoa;)*%apsf
is an orthonormal basis of (H°(Xg, LY, @ Eg), (, ).

From Def. 3, (0.2§), (L.1I9) and (B.1), we get

62) @)% (o5t 00 = (20)F ({00 03) 30, (00 07) 1)

_ng 1
=277 (Tyl, &) Z%‘*ﬁ(z?) |

The proof of Theorem is complete. O

Proof of Theorem [0.11. Set
h¥e = p2pte,

Then ]SPXG is the orthogonal projection from €¢*°(Xq, LY, ® Eg) onto H*(X, LF, ® Eg),
associated to the Hermitian product on ¢ (X¢, Lf, ® E¢) induced by the metrics h'c,
hFe  gTXe as in (L.19).

Let PXS(zo,x() be the smooth kernel of P;*¢ with respect to dvx, (z}). Then

(6.3) PX6 (g, ) = W2 (ah) PXC (o, a).

Let VZ6 be the Hermitian holomorphic connection on (Eg,ZEG) with curvature RZ.
Then

(6.4) VP = vPe 4+ glog(h?), RP¢ = RF¢ + 200log h.
Thus from ((.4),
(6.5) REG( W) = 2REG(% ) = REG(w w)) + Ax, log h.

By (5.19), (6.3) and (B.3), Theorem D.17] is a direct consequence of [[7, Theorem 1.3]
(or Theorem [.q with G = {1}) for P (20, X0). O
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