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ABSTRACT

Aims. To understand the fundamental physical processes important for the evolution of solar rotation and

distribution of chemical species, we provide theoretical predictions for particle mixing and momentum

transport in the stably stratified tachocline.

Methods. By envisioning that turbulence is driven in the tachocline,we compute the amplitude of turbulent

flow, turbulent particle diffusivities, and eddy viscosity, by incorporating the effect of a strong radial

differential rotation and stable stratification. We identify the different roles that the shear flow and stable

stratification play in turbulence regulation and transport.

Results. Particle transport is found to be severely quenched due to stable stratification as well as radial

differential rotation, especially in the radial direction withan effectively more efficient horizontal transport.

The eddy viscosity is shown to become negative for parametervalues typical of the tachocline, suggesting

that turbulence in the stably stratified tachocline leads toa non-uniform radial differential rotation. Similar

results also hold in the radiative interiors of stars, in general.
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1. Introduction

Since the formation of the radiative core, which marked the beginning of its journey on the

main sequence, the sun has slowed down significantly due to the loss of angular momentum

from its surface (e.g. see Stix 1989; Schatzman 1993). The angular momentum transport must

have been very efficient during its spin-down in order for the sun to have rotational profile as

Send offprint requests to: E. Kim



2 Eun-jin Kim and Nicolas Leprovost: Gravity waves

observed today (see, e.g. Charbonneau et al 1998). Vigorousturbulence in the convection zone

and possibly thermal wind (Miesch, Brun & Toomre 2006) can readily provide a mechanism for

efficient radial momentum transport, thereby eradicating radial differential rotation therein. Such

turbulent transport is however considered to be absent in the stably stratified radiative interior,

which has also spun-down during the solar evolution, presently rotating uniformly at the rate

roughly the same as the mean average rotation rate on the solar surface. Whichever mechanism

is responsible for momentum transport in the interior (which itself is an important problem),

it should be closely related to the transport in the tachocline through which the surface spin-

down is communicated to the interior. Transport in the tachocline also plays a crucial role in

the overall mixing of light elements (lithium, beryllium, etc) (see e.g. Schatzman 1993; Brun,

Turck-Chiéze, & Zahn 1999), thereby determining the levelof their surface abundances on the

sun. Therefore, it is essential to understand physical mechanisms for transport in the tachocline

and then to formulate a consistent theory starting from firstprinciples based on those processes.

This is particularly true since virtually all the previous theoretical modelling heavily relies on a

simple parameterization of transport process, which is then adjusted to obtain the agreement with

observations.

We have initiated the development of a consistent theory of turbulent transport in the

tachocline in the previous papers, by taking into account the crucial effect of the large-scale shear

flows, provided by a strong radial differential rotation (Kim 2005) as well as latitudinal differen-

tial rotation (Leprovost & Kim 2006). By envisioning that the tachocline is perturbed externally

[e.g. by plumes penetrating from the convection zone above (e.g. see Gilman 2000; Brummell,

Clune & Toomre 2002; Rogers & Glazmaier 2005)], or by instabilities (e.g. see Watson 1981;

Charbonneau, Dikpati & Gilman 1999), we demonstrated how turbulence level and transport

are reduced via shearing in a non-trivial manner (see also Burrell 1997; Kim & Diamond 2003;

Kim 2004;2006) in a simplified three dimensional (3D) hydrodynamic turbulence. In particular,

turbulent transport of chemical species and angular momentum are shown to become strongly

anisotropic with effectively much more efficient transport in the horizontal (latitudinal) direction

than the vertical (radial) direction due to shear stabilization by strong radial shear. The resulting

anisotropic momentum transport was shown to reinforce a strong radial shear (Leprovost & Kim

2006), with a positive feedback on the confinement of the tachocline (Spiegel & Zahn 1992)

while chemical species are predicted to have latitudinal dependent mixing due to the variation

of radial shear (Kim 2005). Furthermore, the results indicate that the turbulence regulation by a

shear flow (i.e. differential rotation) leads to weak turbulence and mixing in turbulent tachocline.

The purpose of this paper is to investigate how a stable stratification in the tachocline modi-

fies the predictions obtained in these studies. We again envision that the tachocline is turbulent,

driven by a forcing as in Kim (2005). In the presence of a stable stratification, the turbulence

in the tachocline is no longer completely random as the stable stratification provides a restoring

force against radial displacement of fluid elements, supporting the propagation of internal gravity

waves (Lighthill 1978). These waves tend to increase the memory of otherwise random turbulent
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fluid motion and can reduce the overall transport due to turbulence. We shall show that the tur-

bulent transport due to shear stabilization found in the previous studies is further enhanced in the

presence of stable stratification (gravity waves). Thus, gravity waves acting together with shear

stabilization can lead to a weak mixing in the tachocline, asrequired for the surface depletion of

lithiums (e.g. Pinsonneault et al. 1989).

It is important to contrast our approach to those adopted in most previous works, which

focus on the momentum transport by gravity waves themselvesthrough dissipative processes

(e.g. Plumb 1978; Kim and MacGregor 2001;2003; Talon, Kumar& Zahn 2002). For instance,

gravity waves are considered to be generated in the convection zone (Press 1981) and deposit

their momentum into background shear flow via radiative damping as they propagate through

the tachocline and the interior (Kim and MacGregor 2001;2003). Relying crucially on radiative

damping, the momentum transport by gravity waves would occur on a long time scale. [Recall

that the transport by waves requires molecular dissipation, and is thus a slow process.] Similarly,

weak mixing due to damped gravity waves was also suggested asa mechanism for a modestly

enhanced mixing of light elements (lithium) (Press & Rybicki 1981; Garćia López & Spruit

1991). In these works, a certain level of background turbulence could not be ruled out and was

invoked to provide an enhanced viscosity for the evolution of a mean flow (Kim and MacGregor

2001;2003) and the gravity waves (Charbonnel & Talon 2005; Talon, Kumar & Zahn 2002). The

value of the effective viscosity is often arbitrarily taken to be a positiveconstant, being much

larger than molecular viscosity, not affected by shear flow nor by gravity waves, or it is simply

parameterized.

In this paper, we shall treat turbulence and gravity waves onan equal footing and consis-

tently compute the values of turbulent eddy viscosity and particle diffusivity, by incorporating

the effect of a shear flow (provided by a radial differential rotation), and identify different roles

that gravity waves and shear flow play in turbulent transport. Specifically, we shall show that

unlike shear flows, which reduce both turbulence level and transport, a stable stratification can

suppresses turbulent transport without much effect on turbulence level. We shall further demon-

strate that the stratification favors a negative eddy viscosity and thus tends to sharpen the radial

gradient of large-scale shear flows rather than smoothing itout. This tendency was also found in

Kim & MacGregor (2001;2003). We note that the elucidation ofthe effects of gravity waves is

essential for understanding the momentum transport in the radiative interior as they have often

been advocated as a mechanism to explain a uniform rotation in that region. Stratified turbu-

lence with a shear flow is also important for the transport in radiative interiors and/or envelops

of stars, in general, as well as in geophysical systems. In particular, it has actively been studied

in geophysical systems (e.g. see Jacobitz, Sarkar & van Atta1997; Stacey, Monismith, & Burau

1999), where stable stratification was shown to inhibit turbulent transport in the direction of a

background density gradient, leading to the two dimensional (2D) turbulence.

The remainder of the paper is structured as follows. We first investigate the effect of gravity

waves on turbulence in Sect. 2. In Sect. 3, we incorporate theeffect of strong radial differen-
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tial rotation and study how the gravity waves modify the overall turbulent transport. Section 4

contains the conclusion and discussions.

2. Internal Gravity Waves

(ϕ) 

x(r)

y

 0U  (x)

g

z (θ)

Fig. 1. The configuration of our model.

To simplify the problem, we shall consider incompressible fluid with local cartesian coor-

dinatesx, y, andz for radial, azimuthal, and latitudinal directions, respectively (see Fig. 1), and

use Boussinesq approximation to capture the effect of stratification. We assume that the fluid is

stirred by a forcing on small scales, giving rise to fluctuations. In the absence of stratification,

this fluid forcing will drive turbulence on small scales and maintain it at the level at which the in-

jected energy is balanced by dissipation in the system. As the stratification increases, the forcing

will generate not only random turbulent motion but also coherent (gravity) waves. Alternatively,

some of turbulent motion will be turned into packets of gravity waves. Therefore, we consider

both turbulence and gravity waves as fluctuations on scales much smaller than those associ-

ated with mean density or mean background shear flows. Specifically, we express the total mass

densityρ = ρ0(x) + ρ′ whereρ0(x) andρ′ are the background and fluctuating mass densities,

respectively; the total velocityu = U0 + v whereU0 andv are a large-scale shear flow due to

differential rotation and small-scale fluctuations; the total particle density of chemical elements

n = n0(x) + n′ wheren0(x) andn′ are mean and fluctuating components. Then, the main govern-

ing equations for fluctuationsv, ρ′, andn′, involving both turbulence and gravity waves, are as

follows (see, e.g., Kim & MacGregor 2003; Moffatt 1978):

(∂t + U0 · ∇)v = −∇p − gρ′ x̂ + ν∇2v + f , (1)

∇ · v = 0 , (2)

(∂t + U0 · ∇)ρ′ =
ρN2

g
vx + µ∇2ρ′ , (3)

(∂t + U0 · ∇)n′ = −∂xn0vx + D∇2n′ . (4)

Here,ν, µ andD are molecular viscosity, thermal diffusivity, and particle diffusivity, respectively;

f in Eq. (1) is the small-scale forcing driving turbulence;ρ = ρ0(x = 0) is the constant background

density [measured at the bottom of the convection zone (e.g.see Kim and MacGregor 2003)],

andN =
√

−g(∂xρ0 + ρg/c2
s)/ρ is the Brunt-Väisälä frequency, wherecs is the sound speed. Note
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that the typical values ofν, D, µ, andN in the tachocline are 102 cm2s−1,102 cm2s−1, 107 cm2s−1,

and 3× 10−3 s−1, respectively.

In this section, we first ignore a background shear flow and study how the turbulence and

transport are modified due to stable stratification in the tachocline. To obtain the overall turbu-

lent transport, we solve coupled equations (1)-(4) in termsof Fourier transform for fluctuating

quantitiesφ′:

φ′(x, t) =
1

(2π)3

∫

d3k φ̃(k, t) exp{i(kxx + kyy + kzz)} . (5)

Equations (1)-(3) then give us an equation for˜̃ρ = eνk
2tρ̃ in the form

∂tt ˜̃ρ + (µ − ν)k2 ˜̃ρ + N
2 ˜̃ρ =

N2

g
eνk

2th̃1 . (6)

Here,N
2
= γN2/(γ+a2). SinceN ≫ µk2 is valid on a broad range of reasonable scalesl ≫ 104 ∼

105 cm in the tachocline, we can find the solutions to leading order in (νk2/N ≪) µk2/N ≪ 1 as:

ṽx ∼
1

γ + a2

∫

dt′Gµ(t, t
′) cosN(t − t′)h̃1(t′) , (7)

ṽy ∼ −
a
γ

ṽx −
β

γ

∫

dt′G(t, t′)h̃2(t′) , (8)

ṽz ∼ −
aβ
γ

ṽx +
1
γ

∫

dt′G(t, t′)h̃2(t′) , (9)

ρ̃ ∼ N

g
√

γ(γ + a2)

∫

dt′Gµ(t, t′) sinN(t − t′)h̃1(t′) . (10)

Here,G(t, t′) = e−νk
2(t−t′) andGµ(t, t′) = e−(µ+ν)k2(t−t′)/2 are the Green’s functions;a = kx/ky,

β = kz/ky, andγ = 1 + β2; h̃1 and h̃2 in Eqs. (6) and (7)-(10) are the forcing terms which are

related tof̃i as

h̃1 = (1+ β2) f̃x − a f̃y − aβ f̃z , (11)

h̃2 = −β f̃y + f̃z . (12)

Equations (7)-(9) show that the vertical motion ˜vx, involvingGµ only, is always subject to radia-

tive dampingµ while the horizontal motions ˜vy andṽx, containing bothGµ andG, are much less

affected byµ.

For simplicity, we assume the forcing to be homogeneous in space with a short correlation

timeτ f :

〈 f̃i(k1, t1) f̃ j(k2, t2)〉 = τ f (2π)3δ(t1 − t2)δ(k1 + k2)ψi j(k2) . (13)

Note that in the case where the forcingf due to plumes induces a stronger turbulence towards

the bottom of the convection zone,f becomes inhomogeneous with the power spectrumψi j =

ψi j(x, k) depending on the radial coordinatex.

A long but straightforward algebra by using Eqs. (7)–(13) then gives us the following results

on turbulence level and particle diffusivities defined by〈n′vi〉 = −Di j
T∂ jn0:
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〈v2
x〉 ∼ τ f

∫

d3k
(2π)3

φ11(k)
2(γ + a2)2

1
(µ + ν)k2

, (14)

〈v2
y〉 ∼ τ f

∫

d3k
(2π)3

[

a2φ11(k)
2γ2(γ + a2)2

1
(µ + ν)k2

+
β2φ22(k)

γ2

1
2νk2

]

, (15)

〈v2
z 〉 ∼ τ f

∫

d3k
(2π)3

[

a2β2φ11(k)
2γ2(γ + a2)2

1
(µ + ν)k2

+
φ22(k)
γ2

1
2νk2

]

, (16)

Dxx
T ∼

τ f

N2

∫

d3k
(2π)3

φ11(k)
4γ(γ + a2)

, (17)

Dyy
T ∼ τ f

∫

d3k
(2π)3γ2

















a2φ11(k)

4N
2
(γ + a2)2

+
β2φ22(k)

2ν(ν + D)2k4

















, (18)

Dzz
T ∼ τ f

∫

d3k
(2π)3γ2

















a2β2φ11(k)

4N
2
(γ + a2)2

+
φ22(k)

2ν(ν + D)2k4

















. (19)

Here, we assumed spatial symmetriesφi j(ky) = φi j(−ky) andφi j(ky) = φi j(−ky); k inside the

integrals in Eqs. (14)–(19) is the wavenumber of the forcing; φi j(k) (i = 1, 2) is the power

spectrum of the forcing defined by:

〈h̃i(k1, t1)h̃ j(k2, t2)〉 = τ f (2π)3δ(t1 − t2)δ(k1 + k2)φi j(k2) . (20)

In this paper, we shall consider an incompressible forcing (∇· f = 0) for simplicity, in which case

φi j in Eq. (20) is related toψi j in Eq. (13) as:

φ11 =
k4

k4
y
ψ11 , φ12 =

1
k4

y
(k2kxkzψ11 + k2k2

Hψ13) ,

φ22 =
1
k4

y
(k2

xk2
zψ11 + k4

Hψ33 + 2kxkzk
2
Hψ13) . (21)

Note thatφ11 andφ22 can signify strong radial forcing (e.g. by plumes) and horizontal forcing

[e.g. due to the instability of the latitudinal shear in the tachocline (see also Kim 2005)]. For

instance, in the case of strong radial forcing by plumes (ψ11≫ ψ33) with kH ≫ kx (see Fig. 2 in

Leprovost & Kim 2006),φ11 will dominate overφ22. Note further that in the 2D limit withkz = 0

andψ33 = 0,φ22 vanishes.

We discuss some of the important implications of Eqs. (14)–(19). First, all three components

of fluctuating velocity amplitude in Eqs. (14)-(16) are independent ofN, clearly showing that the

amplitude of the turbulent flow is not influenced by stable stratification in the case of the forcing

with a short correlation time. The exact level of fluctuations is determined by the characteristics

of the external forcing (φi j). We examine this in the simple 2D limit wherekz = 0 (γ = 1) and

ψ33 = 0. In this limit, the substitution ofφ22 = 0 in Eqs. (14)–(16) gives〈v2
x〉/〈v2

y〉 ∼ 1/a2 = k2
y/k

2
x

and〈v2
z 〉 = 0. This is an expected result for the 2D incompressible fluid in x − y domain. If the

forcing f contains only gravity modes, the wave number of the forcing would satisfy the local

dispersion relationkx = ±ky

√

N2/(ω − U0ky)2 − 1 (here,ω is the frequency of the gravity waves).

Furthermore, if these gravity modes are generated by the overturning of fluids in the convection

zone (e.g. Press 1981) withU0 ∼ 0, they would have a strong power at low frequenciesω ≪

N, thereby givingkx/ky ∼ N/ω ≫ 1, and thus〈v2
x〉/〈v2

y〉 ≪ 1. Note that this is the situation
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normally considered in the previous works (e.g. Kim & MacGregor 2001;2003; Talon, Kumar

& Zahn 2002), where the main focus was on the momentum deposition by such gravity waves

due to radiative damping after entering the tachocline fromthe bottom of the convection zone. In

contrast, in this paper, the forcingf is not restricted to gravity modes, but is taken to be general,

including any form of perturbation with arbitrary values ofkx/ky. For instance, in the case of a

strong radial forcing due to plumes withφ11 ≫ φ22 anda = kx/ky ≪ 1 (see Fig 2 in Leprovost

& Kim 2006), 〈v2
x〉/〈v2

y〉 ≫ 1 with a stronger radial fluctuation than horizontal one. Furthermore,

Eqs. (14)-(16) show that the level of anisotropy measured bythe ratio of the turbulence amplitude

depends onν andµ. For instance, for an isotropic forcing withφ11 ∼ φ22, 〈v2
x〉/〈v2

y〉 ∝ ν/µ ≪ 1

becomes small as the radiative dampingµ increases. This is because a largeµ tends to decrease

(vertical) turbulence level by introducing large (thermal) dissipation. Thus, without a shear flow, a

stronger horizontal turbulence (level) than vertical one can be caused by large thermal diffusivity

µ (but not by stratification) in the case of a temporally short correlation forcing. Note that the

anisotropy in turbulence level could be related to the Peclet numberPe = vl/µ as〈v2
x〉/〈v2

y〉 ∝ Pe.

Here,v andl are the characteristic velocity and length scale of the forcing (which is fixed).

Second, turbulent transport in Eqs. (17)–(19) are stronglyaffected by stratification asN2

increases, in contrast to fluctuation levels in Eqs. (14)–(16). SinceN ≫ µk2 on reasonable scales

l ≫ 104 ∼ 105 cm, the vertical (radial) mixing is severely quenched as thestratification increases

(i.e. asN−2), in qualitative agreement with Brun, Turck-chiéze & Zahn(1999). In comparison,

the part of the horizontal (latitudinal) mixing due to the radial forcingφ11 is reduced proportional

to N−2 while the one due to the horizontal forcingφ22 is independent ofN. The comparison of

these two contributions (or alternativelyDxx andDyy) in the case ofφ11 ∼ φ22 gives us a cut-

off scalelc ∼
√
ν/N above which vertical (radial) mixing is strongly reduced compared to the

horizontal (latitudinal) mixing. That is, in the presence of both radial and horizontal forcings

of comparable strength, stable stratification mainly reduces the vertical transport without much

effect on horizontal transport on scalesl > lc. For parameter values typical of the tachocline

ν ∼ 102 cm2s−1 andN ∼ 3× 10−3s−1, lc ∼ 102cm. Thus, the stratification is very likely to play

an important role over a broad range of physically reasonable scales. In the limit of strong radial

forcing with φ11 ≫ φ22 anda ∼ 0, the stratification influences both the radial and horizontal

transports to the same degree while the incompressibility rendersDxx
T /Dyy

T ∼ Dxx
T /Dzz

T ∼ 1/a2 ∼

〈v2
x〉/〈v2

y〉 ≫ 1, with an effectively more efficient radial transport. It is interesting to compare

our resultDxx ∝ N−2 with the mixing due to radiatively damped waves (e.g. García López

and Spruit 1991; Talon et al 2002). For instance, García López and Spruit (1991) estimated the

vertical mixing due to gravity waves to be proportional toµ/N2. While the reduction in vertical

mixing for largeN is in qualitative agreement with our results (∝ N−2), the increase in vertical

mixing in Garćia López and Spruit (1991) is due to the fact that damped waves are necessary

for wave transport. Finally, we note that without a shear flow, momentum transport vanishes (i.e.

〈vxvy〉 = 〈vxvz〉 = 0) for an isotropic forcing. Scaling of turbulence amplitude, turbulent viscosity

(νT ), and turbulent diffusivity DT are summarised in Table 1 for an isotropic forcing.
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A large thermal diffusivity (µ = 105ν) in the tachocline is often considered to reduce the

stabilizing effect of stable stratification via the weakening of the buoyancy restoring force. To

highlight this effect, it is illuminating to consider the extreme limit of strong thermal diffusion

where density fluctuation becomes stationary with∂tρ
′ = N2vx/g − µk2ρ′ = 0 in Eq. (3). In this

limit, by following a similar analysis as previously (withD = ν), we can easily obtain the vertical

and horizontal particle diffusivities as follows:

Dxx ∼
τ f

2α2

∫

d3k
(2π)3

φ11(k)
(γ + a2)2

, (22)

Dyy ∼ τ f

∫

d3k
(2π)3γ2

[

a2φ11(k)
γ2(γ + a2)2

1
2α2
+
β2φ22(k)
(2νk2)2

]

, (23)

whereα = γN2/µk2(γ + a2). Equation (22) shows that the vertical mixingDxx ∝ µ2/N4 ∝ Pe−2

decreases for largeN while increasing for largeµ. This is because the reduction in the vertical

mixing due to buoyancy force is weaken by a strong radiative dampingµ. The comparison of Eqs.

(22)-(23) further shows that the reduction in vertical mixing relative to horizontal mixing is given

by a factor of (νk2)2/α2 for an isotropic forcing and is thus weaker than that in the case of weak

radiative dampingµk2 ≪ N [see Eqs. (17)-(19)]. Furthermore, this reduction appearson scales

larger than the critical scalelcµ = (µν)1/4/N1/2 ∼ 10lc. Here,lc =
√
ν/N is the critical scale in the

case ofµk2 ≪ N. These results thus show that a strong thermal diffusion weakens the buoyancy

effect and makes the effect of stratification become important on larger scales, compared to the

case of a weak thermal diffusion. This result is thus consistent with the expectation employed in

previous works.

To summarize, a stable stratification can dramatically quench turbulent transport with a more

effective mixing in the horizontal directions orthogonal to the background density gradient. It

does not however affect the amplitude of the turbulent flow, the ratio of which is found to depend

only onν/µ (for a temporally short-correlated forcing).

3. Consistent theory

The results in Sec. 2 showed that for a temporally short correlated forcing, a stable stratifica-

tion reduces turbulent transport only, leading to anisotropic turbulent transport, without much

effect on turbulence level. In this section, we study how these results are modified by a stable

background shear flow (differential rotation in the tachocline). In particular, we will show that a

shear flow not only inhibits the vertical mixing further, enhancing the anisotropic transport, but

also reduces turbulence levels anisotropically, thereby leading to effectively stronger horizonal

turbulence. For simplicity, we ignore the latitudinal differential rotation compared with the radial

differential rotation since it is weaker in the tachocline due tothin tachocline (h < 0.03∼ 0.05 of

the solar radiusR). The inclusion of the latitudinal differential rotation would introduce a small

correction term in our results. For instance, for turbulence amplitude, this correction term is of

order (h/R)2 ≪ 1, as shown in Leprovost and Kim (2006). Note that the latitudinal shear is

crucial for non-vanishing horizontal momentum transport in Leprovost & Kim (2006). Again,



Eun-jin Kim and Nicolas Leprovost: Gravity waves 9

A = 0, N , 0 A , 0, N = 0 A , 0, N , 0

〈v2
x〉 µ−1 A−1 A−1

〈v2
y〉 ∼ 〈v2

z 〉 ν−1 A−1ξ
−1/3
ν A−1ξ

−1/3
ν

νT 0 A−2 -A−2

Dxx
T N−2 A−2 N−2ξDξ

−2/3
µ

Dyy
T ∼ Dzz

T ν−1(ν + D)−1 A−2ξ
−2/3
ν A−2ξ

−2/3
ν

〈v2
y〉/〈v2

x〉 µ/ν ξ
−1/3
ν ξ

−1/3
ν

Dyy
T /Dxx

T N2 ξ
−2/3
ν (N/A)2(µ/ν)2/3ξ−1

ν

Table 1. Scaling of turbulence amplitude, turbulent viscosity (νT ), and turbulent diffusivity DT

for an isotropic forcing withφ11 ∼ φ22 in the caseN ≫ µk2 andD ∼ ν ≪ µ. ξµ = µk2
y/A ≪ 1,

ξν = νk2
y/A ≪ 1, andξD = Dk2

y/A ≪ 1 are small parameters representing strong shear limit.

The second (A = 0 andN , 0), the third (A , 0 andN = 0), and the fourth (A , 0 andN , 0)

columns contain the results for stratified unsheared case inSec. 2, for unstratified sheared case

(Kim 2005), and for stratified sheared case in Sec. 3, respectively.

we envision that turbulence is maintained in the tachoclineby an external forcing while gravity

waves are excited due to this external forcing in the stably stratified tachocline. We shall then

compute the overall turbulent transport consistently by taking into account the interaction among

turbulence, shear flow and gravity waves, instead of simply assuming a (large) constant value of

turbulent viscosity for mean shear flow (and gravity waves).Note that this treatment is essential

when there is no clear scale separation between gravity waves and turbulence, in which case

turbulence cannot be considered to give an enhanced value ofviscosity for gravity waves (c.f.

Charbonnel & Talon 2005).

For the evolution of fluctuations, we approximate the radialdifferential rotation by a linear

shear flow withU0 = −xAŷ to keep the analysis tractable. Here,A is the shearing rate which

we assume to be positive without loss of generality. As done in previous papers (Kim 2005;

Leprovost & Kim 2006), to capture the effect of shearing due to radial differential rotation (A ∼

3 × 10−6 s−1 for the tachocline) non-perturbatively, we use the specialFourier transform for

fluctuating quantitiesφ′:

φ′(x, t) =
1

(2π)3

∫

d3kφ̃(k, t) exp{i(kx(t)x + kyy + kzz)} . (24)

Here,kx = kx(t) is the time dependent [unlike constantkx in Eq. (5)], satisfying an eikonal

equation

∂tkx(t) = kyA . (25)
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Equation (25) implies thatkx linearly increases in time askx(t) = kx(0)+ kyAt, manifesting the

main effect of shearing by a shear flowU0(x)ŷ, i.e., generation of fine scales in thex direction

due to tilting and distortion of fluid eddies (e.g. see Burrell 1997; Kim 2004; Kim 2005). The

efficient generation of fine scales by shearing leads to the breakup of eddies and enhancement of

the overall dissipation, thereby reducing turbulence amplitude and transport (e.g. see Kim 2005).

A similar effect by a shear flow is expected to persist for a more realistic radial shear [e.g. for an

error function used in helioseismic inversions (Kosovichev 1996; Corbard et al 1999)] since the

basic mechanism of shearing (e.g. see Fig. 2 in Kim 2005) is the same regardless of the details

of the profile of radial shear. The efficiency of the shearing could depend on the details of the

profile, possibly leading to a slightly different scaling.

It is interesting to note that a gravity wave with an initially positive value ofkx(0) can change

its sign after the time intervalkx(0)/kyA (for ky > 0) due to shearing. Since the local (ra-

dial) group velocity of gravity waves is given byvgx = −k2
ykxN2/k4(ω − U0ky) (e.g., see Kim

& MacGregor 2003), the gravity wave thus alters its propagation direction askx flips its sign.

Therefore, a gravity wave which initially propagates downward to the interior from the convec-

tion zone with a negative vertical group velocity (i.e.vgx < 0) can propagate upwards when the

vertical group velocity becomes positive (vgx > 0) due to shearing.

For parameter values typical of the tachoclineN ∼ 3 × 10−3 s−1 andA ∼ 3 × 10−6 s−1,

Ri = N2/A2 ≫ Ric ≃ 1/4, satisfying the stability criterion (Lighthill 1978). Wethus assume

that the radial shear flow is stable with large value ofRi = N2/A2 ≫ 1 in the remainder of the

paper (see also Schatzman, Zahn, & Morel 2000). Note that thebuildup of chemical composition

gradient (the so–calledµ gradient in the solar interior [e.g. see Michaud and Zahn (1998) and

references therein] would further increase the values ofN andRi, making the radial shear flow

more stable, although this effect could be counteracted by a radiative damping, as shown inSec

2. The shearing rateA ∼ 3 × 10−6 s−1 due to this radial differential rotation is larger than the

dissipation rate due to radiative dampingµk2
y on a broad range of scalesl(= 1/ky) > 106 ∼ 107

cm∼ 10−3H0, whereH0 is the pressure scale height∼ 6× 109 cm. Thus, we focus on the strong

shear limit in the following by usingξµ = µk2
y/A ≪ 1 as a small parameter.

For Ri ≫ 1 andν ∼ D ≪ µ, a long but straightforward algebra can give us the solutions

to Eqs. (1)-(4), as shown in Appendix A. By using these solutions and the correlation functions

of forcing defined in Eq. (20), we obtain the following results for turbulence level and transport

coefficient defined by〈n′vi〉 = −Di j
T∂ jn0 for i = 1, 2 and 3, and momentum flux〈vxvy〉 = −νT∂xU0

in the strong shear limitξµ = µk2
y/A ≪ 1 (see Appendix A for details):

〈v2
x〉 ≃

τ f

A

∫

d3k
(2π)3

φ11(k)
2γ3/2

, (26)

〈v2
y〉 ≃

τ f

A

∫

d3k
(2π)3

[

φ11(k)
2γ5/2

| ln ξµ| +
β2φ22(k)

γ2
G0

]

, (27)

〈v2
z 〉 ≃

τ f

A

∫

d3k
(2π)3

[

β2φ11(k)
2γ5/2

| ln ξµ| +
φ22(k)
γ2

G0

]

, (28)
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Dxx
T ≃

τ f

2N2

∫

d3k
(2π)3

φ11(k)

γ
√

γ + a2
ξDG1 , (29)

Dyy
T ≃

τ f

2

∫

d3k
(2π)3γ2

[

φ11(k)Γ( 4
3)

2N2γ
√

γ + a2

D
µ

(

3
ξµ

)
1
3

+
β2φ22(k)Γ( 5

3)

A2

(

3
2ξν

)
2
3
]

, (30)

νT ≃ −
τ f

2

∫

d3k
(2π)3

φ11(k)
γ(γ + a2)

[

1
A2
+

1
12N2(γ + a2)

]

. (31)

Here,ξν = νk2
y/A ≪ 1, ξD = Dk2

y/A ≪ 1, ξµ = µk2
y/A ≪ 1, G0 =

1
3Γ (1/3) (3/2ξν)1/3

andG1 =
1
3Γ (2/3)

(

3/ξµ
)2/3

. Note again thatξµ ≪ 1 is valid on a broad range of scalesl(=

1/ky) > 106 ∼ 107 cm in the tachocline and also thatξµ ≪ 1 guarantees thatξD ∼ ξν ≪ 1 since

D ∼ ν ≪ µ. The spectrumφi j in Eqs. (26)–(31) are given by Eqs. (20), which are related to

power spectrum of forcingψi j in Eq. (13) in the incompressible case.

Equations (26)-(31) reveal the following interesting features. Turbulence levels given in Eqs.

(26)-(28) are again independent of stratification, similarly to the case without a shear flow [Eqs.

(14)–(16)] while they are reduced for strong shearA. This indicates that waves and shear flows

play different roles in turbulence regulation – waves do not necessarily quench fluctuation levels

while shear flows can reduce them through enhanced dissipation via shearing. The turbulence

regulation by shearing gives us horizontal velocity fluctuations in Eqs. (27) and (28) which are

effectively higher than vertical one in Eq. (26). While a similar tendency was also found in

the absence of gravity waves (Kim 2005), the exact value of the ratio of vertical to horizontal

turbulence levels is not the same. For example,〈v2
x〉/〈v2

y〉 ∝ (| ln ξµ|)−1 for a strong radial forcing

φ11 with φ22 = 0 while 〈v2
x〉/〈v2

y〉 ∝ ξ
1/3
ν for an isotropic forcing withφ11 ∼ φ22. Note that

ξν ≪ ξµ ≪ 1 are small parameters in our problem, representing the strong shear limit. These

results are to be compared with〈v2
x〉/〈v2

y〉 ∝ ξ
1/3
ν in the unstratified medium (Kim 2005). The

results for the isotropic forcing in various cases are summarised and compared in Table 1.

Transport properties in Eqs. (29)–(31) however exhibit a very different behaviour, with

both vertical and horizontal mixing being inhibited in a non-trivial manner by strong stratifi-

cation as well as by shearing. First, the vertical transportis reduced asDxx
T ∝ ξDξ

−2/3
µ N−2 ∝

Dµ−2/3A−1/3N−2, becoming small as either stratification or shearing increases. Note that the de-

crease inDxx
T for largeN agrees with Miesch (2003). Interestingly,Dxx

T ∝ µ
−2/3 ∝ Pe2/3 decreases

as the radiative dampingµ increases. This is because large radiative damping increases thermal

dissipation, thereby mainly inhibiting the vertical mixing, as noted in Sec. 2. Thus, compared to

the case withN = 0 whereDxx
T ∝ A

−2 (Kim 2005), the vertical mixing is much more quenched

by a factor ofξDξ
−2/3
µ (A/N)2 ≪ ξDξ

−2/3
µ = (D/µ)ξ1/3

µ ≪ ξµ ≪ 1 sinceA/N < 1 andD/µ ∼ 10−5

in the tachocline (see also Table 1). This clearly shows thatshear flow (orthogonal to radial

density gradient), stable stratification, and radiative damping can all inhibit the radial transport.

Second,Dyy
T is less affected by stratification since it involves the two parts – the one fromφ11

is proportional toξDξ
−4/3
µ N−2 while the other fromφ22 is proportional toA−2ξ

−2/3
ν , independent

of N. In the simplest case of a strong radial forcing withφ22 = 0, Dxx
T /Dyy

T ∼ ξ
2/3
µ ≪ 1, indepen-

dent ofN. This is similar to the case without stratification whereDxx
T /Dyy

T ∼ ξ
2/3
ν (Kim 2005). In
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the general case whereφ11 , 0 andφ22 , 0, Dyy
T exhibits a non-trivial, complex interplay among

stratification and shear flow in determining the overall transport. To appreciate this, we compare

Eq. (30) with the result obtained without shear flow (18) to find that shear flow enhances the

contribution fromφ11 by a factorξDξ
−4/3
µ = (D/µ)ξ−1/3

µ while it reduces the part fromφ22 by a

factor of (ν/A)2ξ
−2/3
ν ∝ ξ4/3

ν ≪ 1. SinceD/µ ∼ 10−5 ≪ 1 andξµ ≪ 1, the horizontal transport

driven by a strong radial forcingφ11 can be either inhibited or enhanced by a shear flow (due to

φ11) depending on the parameter values. On the other hand, the horizontal transport due toφ22

is reduced by the shear flow by a factor proportional toξ
4/3
ν ≪ 1. The end result can easily be

shown to be the enhancement of the effect of stratification. To see this, we compare the two con-

tributions fromφ11 andφ22 to Dyy
T and obtain a characteristic scalel∗ = (D/µ)2(ν/N)1/2(A/N)5/2

above which the stratification is important, being mainly responsible for quenching transport.

Sincel∗ is smaller thanlc = (ν/N)1/2 obtained without a shear flow, the effect of stratification

becomes important compared to the case without shear flows. It is also worth comparing the con-

tributions toDyy
T from φ11 andφ22 separately to those in the case ofN = 0 in Kim (2005), where

Dyy
T ∝ A

−2ξ
−2/3
ν from bothφ11 andφ22. That is, the contribution fromφ11 is further reduced by a

factor of (A/N)2ξ
1/3
ν (ν/µ)4/3 by stratification, while the one fromφ22 is not affected.

We now examine how the stratification affects the anisotropy in transport. Equations (29) and

(30) for a strong radial forcing withφ11≫ φ22 anda ∼ 0 givesDxx
T /Dyy

T ∼ ξ
2/3
µ ≪ 1, independent

of N. This is analogous to the resultDxx
T /Dyy

T ∼ ξ
2/3
ν ≪ 1 obtained in the unstratified case (Kim

2005). In this case, the anisotropy in the transport is solely caused by shear stabilization. For an

isotropic forcing withφ11 ∼ φ22 anda ∼ 1, Dxx
T /Dyy

T ∼ (A/N)2(ν/µ)2/3ξν ≪ 1. In other words,

the anisotropy in turbulent transport depends on stratification, shear, andν/µ, as clearly shown

in Table 1. Since (A/N)2 ≪ 1 andν/µ ≪ 1 in the tachocline,Dxx
T /Dyy

T is much smaller than

ξ
2/3
ν obtained in the unstratified case (Kim 2005). That is, the anisotropy in transport is further

enhanced due to stratification. We emphasize that the anisotropy in turbulent transport is much

stronger than that in turbulence amplitude, discussed previously (see also Table 1). This result

also shows the reduction inDxx
T for largeµ and again highlights the importance of the radiative

damping in reducing the vertical transport, thereby increasing the anisotropy in the transport.

Finally, Eq. (31) demonstrates one of the most important effects of a stable stratification,

which is to drive a system away from a uniform rotation with a negative eddy viscosity. Recall

that in the absence of stratification the eddy viscosity is positive in 3D while negative in 2D limit

(e.g. see Kim 2005). In contrast, the eddy viscosity in Eq. (31) is negative in both 2D (β = 0 and

γ = 1) and 3D cases. This behavior was also found in recent numerical simulation by Miesch

(2003) of a stably stratified turbulence with an imposed shear driven by penetrative convection,

who found anti-diffusive radial and diffusive latitudinal momentum transport, thereby offering

a mechanism for a proper transition from latitudinal differential rotation in the convection zone

to solid body rotation in the radiative interior. Anti-diffusive momentum transport is a generic

feature of a strongly stratified medium (i.e. a geophysical system). It is interesting to note that a

negative viscosity was also found in the previous work on momentum transport due to radiatively
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damped gravity waves (e.g. Kim and MacGregor 2001;2003). Inaddition, the result (31) shows

that the (anti-diffusive) momentum transport becomes less efficient for strong stratification (large

N), in agreement with Miesch (2003).

To summarise, our results show that the shearing effect by radial differential rotation together

with gravity waves is an important mechanism for turbulenceregulation, leading to a weak tur-

bulent transport and anisotropic turbulence and transportin the tachocline. Furthermore, we have

consistently derived the values of turbulence level, particle mixing and momentum transport

starting from the first principle, clearly identifying the different roles of gravity waves and shear-

ing in transport. For instance, in comparison with Chaboyerand Zahn (1992) [or Spiegel and

Zahn (1992)] which start with the assumption of a strong horizontal mixing, we identified the

source of such an anisotropic turbulence. In particular, wehave made a clear distinction between

the anisotropy in the turbulence level and turbulent transport.

4. Discussion and conclusions

We have studied turbulent transport in the stably stratifiedtachocline with a strong radial dif-

ferential rotation, when turbulence is driven and maintained by a forcing (e.g. due to plumes

penetrating from the convection zone or due to instability). We have assumed that both turbu-

lence and gravity waves are on small scales (with no clear scale separation between the two)

and treated the interaction among gravity waves, turbulence and shear flow consistently. Unlike

a shear flow which regulates both turbulence level and transport, a stable stratification is shown

to mainly inhibit turbulent transport, leading to a furtherreduction in transport compared to

the unstratified case (Kim 2005). Specifically, for parameter values typical of the tachocline

(N/A ≫ 1), particle transport due to a strong radial forcingφ11 (with φ22 = 0) is reduced as

ξDξ
−2/3
µ N−2, becoming much smaller than horizontal transport (∝ ξDξ

−4/3
µ N−2) by a factor of

ξ
2/3
µ ≪ 1. Here,ξν = νk2

y/A ≪ 1, ξD = Dk2
y/A ≪ 1, andξµ = µk2

y/A ≪ ξν are the small

parameters characterizing a strong shear limit (see the main text for more details). Note that in

this caseDxx
T /Dyy

T ∝ ξ
2/3
µ ≪ 1 depends only on shearing but not on stratification, indicating that

the anisotropy in particle transport is mainly governed by radial differential rotation. A similar

scaling (∝ ξ2/3
ν ≪ 1) was also found in the unstratified case (Kim 2005). However, in the case of

an isotropic forcing withφ11 ∼ φ22 andkx/ky ∼ 1, the horizontal mixing is much less reduced

with Dyy
T ∼ A

−2ξ
−2/3
ν (with no effect of stratification), leading to a stronger anisotropy in trans-

port with Dxx
T /Dyy

T ∼ (A/N)2(ν/µ)2/3ξν ≪ ξ
2/3
ν ≪ 1. Note that the anisotropy becomes stronger

for largerµ.

Furthermore, the vertical momentum transport was shown to be anti-diffusive with a nega-

tive eddy viscosity. That is, small-scale turbulence influenced by gravity waves accentuates the

gradient in a radial differential rotation rather than makes it uniform. This is similar to the ten-

dency obtained in the case of momentum deposition by gravitywaves due to radiative damping

(Kim & MacGregor 2001;2003). The sharpening of the gradientof the radial shear due to the



14 Eun-jin Kim and Nicolas Leprovost: Gravity waves

negative viscosity could eventually lead to time variationin the tachocline (similarly to Kim &

MacGregor 2001) or instability (e.g., see Petrovay 2003), causing a rapid radial mixing and thus

reducing the anisotropy.

Even in the stably stratified radiative interiors of stars aswell as in the tachocline, background

turbulence has often been assumed to be present to enhance the value of effective viscosity. While

the clarification of the source of turbulence responsible for such an enhanced eddy viscosity

is an interesting problem, our results demonstrate how thisresidual turbulence interacts with

gravity waves and shear flow, providing the prediction for the values of eddy viscosity as well

as the particle diffusivity which depend on physical quantities likeA andN. In particular, the

radial particle transportDxx
T ∼ ξDξ

−2/3
µ N−2 indicates that turbulent transport of particles can be

inhibited due to stable stratification, shear flow and large radiative damping. This finding can

have interesting implications for the surface depletion oflithium in the Sun and other stars (i.e.,

Pinsonneault 1997), and will be studied in a future publication. Furthermore, if a similar physical

process operates in the bulk of the radiative interior of thesun, a negative viscosity that we obtain

implies that a radial differential rotation which is created during its spin-down would not be

eliminated. Note however that Charbonnel & Talon (2005) have shown an efficient momentum

transport in the solar radiative interior due to the cumulative effect of large scale meridional flow,

shear instability and gravity waves.

The tachocline is believed to possess a strong toroidal magnetic fields of strength 104 ∼ 105

G, which could have an important influence on turbulent transport in that region. This is an impor-

tant problem since the presence of a weak poloidal magnetic field in the radiative interior together

with a strong toroidal magnetic field in the tachocline (acting as a boundary layer between the

radiative interior and convection zone) could offer a mechanism for a uniform rotation in the in-

terior as well as for the tachocline confinement (e.g. Rüdiger & Kichatinov 1996; MacGregor &

Charbonneauu 1997; Gough & McIntyre 1998) [see however Brun& Zahn (2006) for a negative

result on this scenario]. In this case, the values of effective diffusivity of magnetic fields as well

as eddy viscosity play a crucial role in determining the thickness of the tachocline. Therefore,

a consistent computation of magnetic diffusivity and eddy viscosity with their dependences on

physical quantities such as the strength of magnetic fields,the Brunt-Väisälä frequency, and

shearing rate, would be of primary interest (Kim and Leprovost 2007). It is an interesting ques-

tion, in general, whether a negative eddy viscosity, favored in a stably stratified medium, remains

as a robust feature in the presence of magnetic field in view ofthe forward energy cascade (i.e.

positive eddy viscosity) in MHD turbulence. Furthermore, composition gradients (discussed in

Sec. 3) and meridional flows would contribute to the transport in the tachocline. In particular,

meridional flows are expected to enhance the radial transport of chemical species by advection

as discussed in Kim (2005) although this enhancement would be reduced for stronger horizon-

tal turbulent [e.g., see Kim (2005) and Chaboyer and Zahh (1992)]. These issues are however

outside the scope of this paper and will be addressed in future publication.
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Appendix A:

In this Appendix, we show how to derive Eqs. (26)–(31). To this end, we useU0(x)ŷ = −xAŷ in

Eqs. (1)–(4), and introduce the transforms ˆw and ˆ̂w for w = vi, n, p, hi and f as follows:

ŵ ≡ w̃ exp [ν(k3
x/3kyA + k2

H t)] ,

ˆ̂w ≡ w̃ exp [µ(k3
x/3kyA + k2

H t)/2] , (A.1)

wherek2
H = k2

y + k2
z . We then use a new time variableτ = kx/ky +At to rewrite Eqs. (1)–(4) as:

A∂τv̂x = −iτky p̂ − gρ̂ + f̂x , (A.2)

A∂τv̂y −Av̂x = −iky p̂ + f̂y , (A.3)

A∂τv̂z = −ikz p̂ + f̂z , (A.4)

0 = τv̂x + v̂y +
kz

ky
v̂z , (A.5)

A[∂τ + ξµ(γ + τ
2)]ρ̃ =

N2

g
ṽx , (A.6)

A[∂τ + ξD(γ + τ2)]ñ = −(∂xn0)ṽx . (A.7)

For a strong shear limit whereµ = µk2
y/A ≪ 1, Eqs. (A.2)–(A.6) can be combined to yield the

equation for̂ρ̂ as

∂τ[(γ + τ
2)∂τ ˆ̂ρ] +

γN2

A2
ˆ̂ρ ≃ N2

gA2
ˆ̂h1(τ) , (A.8)

to leading order inξµ = µk2
y/A ≪ 1. Here,ˆ̂h1(τ) = γ ˆ̂hx − τ ˆ̂hy − τβ ˆ̂hz; γ = 1+ β2 andβ = kz/ky. In

the limit of N2/A2 ≫ 1, Eq. (A.8) can be solved with the following solutions validup to O(N
−2

):

ˆ̂ρ(τ) =
N2
∗

NA
1

(γ + τ2)1/4

∫ τ dτ1

(γ + τ2
1)1/4

sin [ϕ(τ) − ϕ(τ1)] ˆ̂h1(τ1) ,

ˆ̂vx(τ) =
1

NA
1

(γ + τ2)5/4

∫ τ dτ1

̟(τ1)(γ + τ2
1)1/4

[

−τ
2

sin [ϕ(τ) − ϕ(τ1)]

+N
√

γ + τ2̟(τ) cos [ϕ(τ) − ϕ(τ1)]

]

ˆ̂h1(τ1) ,

ˆ̂vy(τ) = −
τ

γ
ˆ̂vx(τ) +

β2

Aγ
ˆ̂ρ(τ) − β

γA

∫ τ

dτ1G(τ, τ1) ˆ̂h2(τ1) ,

ˆ̂vz(τ) = −
τβ

γ
ˆ̂vx(τ) −

β

Aγ
ˆ̂ρ(τ) +

1
γA

∫ τ

dτ1G(τ, τ1) ˆ̂h2(τ1) . (A.9)

Here, againβ = kz/ky, γ = 1 + β2; N2
∗ = N2/gA, N

2
= N2γ/A2; G(τ, τ1) =

exp{(ξµ/2− ξν)[(γτ + τ3/3)− (γτ1 + τ
3
1/3)]}; ξν = νk2

y/A;

ˆ̂h1 = (1+ β2) ˆ̂hx − τ1
ˆ̂hy − τ1β

ˆ̂hz ,

ˆ̂h2 = −β ˆ̂hy +
ˆ̂hz ,

ϕ(τ) =
Nα
2

ln

√

γ + τ2 + τ
√

γ + τ2 − τ
− 1

8N

τ
√

γ + τ2
,
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̟(τ) = α − 1

8N
2

γ

γ + τ2
,

α = 1− 1

8N
2
. (A.10)

By following a similar algebra used in Kim (2005) and by usingthe correlation function of the

forcing given in Eq. (20), we can obtain the following correlation fictions〈viv j〉 to leading orders

in 1/N
2 ≪ 1 andξµ = µk2

y/A ≪ 1:

〈v2
x〉 ∼

τ f

2A

∫

d3kdτ
(2π)3

φ11(k)
√

γ + a2

e−ξµQ(τ,a)

(γ + τ2)3/2

[

1+ cos [2(ϕ(τ) − ϕ(a))]
]

,

〈v2
y〉 ∼

τ f

A

∫

d3kdτ
(2π)3

[

e−ξµQ(τ,a) φ11(k)

2
√

γ + a2

τ2

γ2(γ + τ2)3/2
+ e−2ξνQ(τ,a) β

2φ22(k)
γ2

]

,

〈v2
z 〉 ∼

τ f

A

∫

d3kdτ
(2π)3

[

e−ξµQ(τ,a) φ11(k)

2
√

γ + a2

τ2β2

γ2(γ + τ2)3/2
+ e−2ξνQ(τ,a) φ22(k)

γ2

]

,

〈vxvy〉 ∼ −
τ f

AγN
2

∫

d3kdτ
(2π)3

φ11(k)
√

γ + a2̟(a)2

e−ξµQ(τ,a)τ

(γ + τ2)5/2

×
[

−τ
2

sin [ϕ(τ) − ϕ(a)] + N
√

γ + τ2̟(τ) cos [ϕ(τ) − ϕ(a)]

]2

.

(A.11)

Here,a = kx/ky, Q(τ, a) = (γτ + τ3/3)− (γa + a3/3); special symmetriesψi j(ky) = ψi j(−ky) and

ψi j(kz) = ψi j(−kz) were used. We then computeτ integrals in Eq. (A.11) in the strong shear limit

ξν ≪ ξµ ≪ 1 and use〈vxvy〉 = −νxx
T ∂xU0 = ν

xx
T A to obtain Eqs. (26)-(28) and (31).

Next, to compute particle transport, we integrate Eq. (A.7)in time to obtain

ñ(k(t), t) = −∂in0

∫

dt1d3k1ĝ(k, t; k1, t1)e−DQ(t,t1)ṽi(k1, x, t1) . (A.12)

Here,Q(t, t1) =
∫ t

t1
dt′[k2

x(t
′) + k2

H ] = [k3
x − k3

1x]/3kyA + k2
H(t − t1); k2

H = k2
y + k2

z is the amplitude

of wave number in the horizontal plane;k2 = k2
H + k2

x; ĝ is the Green’s function given by

ĝ(k, t; k1, t1) = δ(ky − k1y)δ(kz − k1z)δ
[

kx − k1x − k1y(t − t1)A
]

. (A.13)

A similar analysis using Eqs. (A.9), (A.13), (11)–(13), and(20) and〈nvi〉 = −Di j∂ jn0 gives

Dxx
T =

τ f

2(2π)3A2N
2

∫

d3kdτ
ξDφ11(k)e−ξµQ(τ,a)

√

γ + a2
(γ + τ2)1/2 ,

Dyy
T =

τ f

(2π)3A2

∫

d3kdτ
ξD

γ2

















e−ξµQ(τ,a)φ11(k)τ2
√

γ + τ2

2N
2 √

γ + a2
+ e−2ξνQ(τ,a)β2φ22(τ − a)2(γ + τ2)

















.

(A.14)

Here,ξD = Dk2
y/A ∼ ξν ≪ 1. Finally, the evaluation ofτ integrals in Eq. (A.14) gives us Eqs.

(29)–(30) in the main text.
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