N
N

N

HAL

open science

Self-consistent theory of turbulent transport in the solar
tachocline. III. Gravity waves

Eun-Jin Kim, Nicolas Leprovost

» To cite this version:

Eun-Jin Kim, Nicolas Leprovost. Self-consistent theory of turbulent transport in the solar tachocline.
III. Gravity waves. Astronomy and Astrophysics - A&A, 2007, 468, pp.1025-1031.  10.1051/004-

6361:20065971 . hal-00087476v3

HAL Id: hal-00087476
https://hal.science/hal-00087476v3
Submitted on 6 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00087476v3
https://hal.archives-ouvertes.fr

Astronomy & Astrophysicenanuscript no. ms hd rrr.hyper29626
September 6, 2007

© ESO 2007

Self-consistent theory of turbulent transport in

the solar tachocline

lll. Gravity waves

Eun-jin Kim and Nicolas Leprovost

Department of Applied Mathematics, University of Sield, Shdéfield, S3 7RH, UK
@) e-mail:e.kim@sheffield.ac.uk

(@)
(Q\| Received 5 July, accepted, 2006

Q.

(D) ABSTRACT

N

(O Aims. To understand the fundamental physical processes impddiathe evolution of solar rotation and

' distribution of chemical species, we provide theoreticadictions for particle mixing and momentum
transport in the stably stratified tachocline.

g Methods. By envisioning that turbulence is driven in the tachocliwe,compute the amplitude of turbulent

'CT)row, turbulent particle dtusivities, and eddy viscosity, by incorporating théeet of a strong radial

CT) differential rotation and stable stratification. We identifg tfifferent roles that the shear flow and stable

= stratification play in turbulence regulation and transport

dResults. Particle transport is found to be severely quenched dueatdesstratification as well as radial

™~ differential rotation, especially in the radial direction wéith efectively more éicient horizontal transport.

N The eddy viscosity is shown to become negative for paranvataes typical of the tachocline, suggesting

QO that turbulence in the stably stratified tachocline leads non-uniform radial dferential rotation. Similar

results also hold in the radiative interiors of stars, inagah

hal-000
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1. Introduction

Since the formation of the radiative core, which marked thgitning of its journey on the
main sequence, the sun has slowed down significantly dueetéols of angular momentum
from its surface (e.g. see Stix 1989; Schatzman 1993). Thalanmomentum transport must

have been veryf@cient during its spin-down in order for the sun to have rotai profile as
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observed today (see, e.g. Charbonneau et al 1998). Vigtududence in the convection zone
and possibly thermal wind (Miesch, Brun & Toomre 2006) caadily provide a mechanism for
efficient radial momentum transport, thereby eradicatingatatiiferential rotation therein. Such
turbulent transport is however considered to be absentarstidibly stratified radiative interior,
which has also spun-down during the solar evolution, prseotating uniformly at the rate
roughly the same as the mean average rotation rate on ttressolace. Whichever mechanism
is responsible for momentum transport in the interior (Whitself is an important problem),
it should be closely related to the transport in the tachecthrough which the surface spin-
down is communicated to the interior. Transport in the tatihe also plays a crucial role in
the overall mixing of light elements (lithium, berylliumtio} (see e.g. Schatzman 1993; Brun,
Turck-Chiéze, & Zahn 1999), thereby determining the Iefeheir surface abundances on the
sun. Therefore, it is essential to understand physical am@sms for transport in the tachocline
and then to formulate a consistent theory starting from fiirstciples based on those processes.
This is particularly true since virtually all the previousbretical modelling heavily relies on a
simple parameterization of transport process, which is #tusted to obtain the agreement with
observations.

We have initiated the development of a consistent theoryudfulent transport in the
tachocline in the previous papers, by taking into accountthcial éfect of the large-scale shear
flows, provided by a strong radialf€rential rotation (Kim 2005) as well as latitudinatigren-
tial rotation (Leprovost & Kim 2006). By envisioning thatelachocline is perturbed externally
[e.g. by plumes penetrating from the convection zone abexe éee Gilman 2000; Brummell,
Clune & Toomre 2002; Rogers & Glazmaier 2005)], or by inditibs (e.g. see Watson 1981,
Charbonneau, Dikpati & Gilman 1999), we demonstrated habulence level and transport
are reduced via shearing in a non-trivial manner (see alsteBd997; Kim & Diamond 2003;
Kim 2004;2006) in a simplified three dimensional (3D) hydrodmic turbulence. In particular,
turbulent transport of chemical species and angular mameire shown to become strongly
anisotropic with &ectively much moreféicient transport in the horizontal (latitudinal) direction
than the vertical (radial) direction due to shear statiliraby strong radial shear. The resulting
anisotropic momentum transport was shown to reinforcecmgtradial shear (Leprovost & Kim
2006), with a positive feedback on the confinement of thedelite (Spiegel & Zahn 1992)
while chemical species are predicted to have latitudinpeddent mixing due to the variation
of radial shear (Kim 2005). Furthermore, the results ingi¢hat the turbulence regulation by a
shear flow (i.e. dferential rotation) leads to weak turbulence and mixing rbualent tachocline.

The purpose of this paper is to investigate how a stablefstadion in the tachocline modi-
fies the predictions obtained in these studies. We agairsienvihat the tachocline is turbulent,
driven by a forcing as in Kim (2005). In the presence of a gtatatification, the turbulence
in the tachocline is no longer completely random as the stsipatification provides a restoring
force against radial displacement of fluid elements, supmpthe propagation of internal gravity

waves (Lighthill 1978). These waves tend to increase the ongof otherwise random turbulent
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fluid motion and can reduce the overall transport due to terte. We shall show that the tur-
bulent transport due to shear stabilization found in th&iptes studies is further enhanced in the
presence of stable stratification (gravity waves). Thuayity waves acting together with shear
stabilization can lead to a weak mixing in the tachoclinegagiired for the surface depletion of
lithiums (e.g. Pinsonneault et al. 1989).

It is important to contrast our approach to those adopted astrprevious works, which
focus on the momentum transport by gravity waves themsehresigh dissipative processes
(e.g. Plumb 1978; Kim and MacGregor 2001;2003; Talon, Ku&a@ahn 2002). For instance,
gravity waves are considered to be generated in the cooveztine (Press 1981) and deposit
their momentum into background shear flow via radiative damps they propagate through
the tachocline and the interior (Kim and MacGregor 20013)0Relying crucially on radiative
damping, the momentum transport by gravity waves would noowa long time scale. [Recall
that the transport by waves requires molecular dissipadiod is thus a slow process.] Similarly,
weak mixing due to damped gravity waves was also suggestadvaechanism for a modestly
enhanced mixing of light elements (lithium) (Press & RybitR81; Garta Lopez & Spruit
1991). In these works, a certain level of background tunzgecould not be ruled out and was
invoked to provide an enhanced viscosity for the evolutiba mean flow (Kim and MacGregor
2001;2003) and the gravity waves (Charbonnel & Talon 2085, Kumar & Zahn 2002). The
value of the &ective viscosity is often arbitrarily taken to be a positeanstant, being much
larger than molecular viscosity, noffacted by shear flow nor by gravity waves, or it is simply
parameterized.

In this paper, we shall treat turbulence and gravity wavesmmequal footing and consis-
tently compute the values of turbulent eddy viscosity andiga diffusivity, by incorporating
the dfect of a shear flow (provided by a radiafférential rotation), and identify fierent roles
that gravity waves and shear flow play in turbulent transpggpecifically, we shall show that
unlike shear flows, which reduce both turbulence level aadsport, a stable stratification can
suppresses turbulent transport without muffea on turbulence level. We shall further demon-
strate that the stratification favors a negative eddy visgasd thus tends to sharpen the radial
gradient of large-scale shear flows rather than smoothimgtitThis tendency was also found in
Kim & MacGregor (2001;2003). We note that the elucidatiorthaf efects of gravity waves is
essential for understanding the momentum transport inadtitive interior as they have often
been advocated as a mechanism to explain a uniform rotati¢imat region. Stratified turbu-
lence with a shear flow is also important for the transportiiative interiors angr envelops
of stars, in general, as well as in geophysical systems. iicpéar, it has actively been studied
in geophysical systems (e.g. see Jacobitz, Sarkar & vanlQ8d; Stacey, Monismith, & Burau
1999), where stable stratification was shown to inhibit tileht transport in the direction of a
background density gradient, leading to the two dimengi(2ia) turbulence.

The remainder of the paper is structured as follows. We firgtstigate theféect of gravity

waves on turbulence in Sect. 2. In Sect. 3, we incorporateftieet of strong radial dieren-
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tial rotation and study how the gravity waves modify the alleturbulent transport. Section 4

contains the conclusion and discussions.

2. Internal Gravity Waves

X(r)
- Uo(x) \ z (6)

; q0

Fig.1. The configuration of our model.

To simplify the problem, we shall consider incompressiblidfiwith local cartesian coor-
dinatesx, y, andz for radial, azimuthal, and latitudinal directions, regpesty (see Fig. 1), and
use Boussinesq approximation to capture tfiect of stratification. We assume that the fluid is
stirred by a forcing on small scales, giving rise to fluctoasi. In the absence of stratification,
this fluid forcing will drive turbulence on small scales andintain it at the level at which the in-
jected energy is balanced by dissipation in the system. éstifatification increases, the forcing
will generate not only random turbulent motion but also aehe(gravity) waves. Alternatively,
some of turbulent motion will be turned into packets of grawaves. Therefore, we consider
both turbulence and gravity waves as fluctuations on scaleshramaller than those associ-
ated with mean density or mean background shear flows. Sgalyifiwe express the total mass
densityp = po(X) + p’ wherepo(x) andp’ are the background and fluctuating mass densities,
respectively; the total velocity = Uy + v whereUg andv are a large-scale shear flow due to
differential rotation and small-scale fluctuations; the togatiple density of chemical elements
n = ng(X) + n” whereng(x) andn’ are mean and fluctuating components. Then, the main govern-
ing equations for fluctuations, p’, andn’, involving both turbulence and gravity waves, are as
follows (see, e.g., Kim & MacGregor 2003; Nfatt 1978):

(0 +Up-V)V = ~Vp—go'R+ W2V +T, 1)

V.-v =0, (2)
(0 +Up-V)p' = ﬁTl?leX+ uvep’, (3)
(8 + Up - V)N = —dxnovy + DV’ (4)

Here,v, u andD are molecular viscosity, thermalftlisivity, and particle dfusivity, respectively;
finEq. ﬂ) is the small-scale forcing driving turbulenge: po(x = 0) is the constant background

density [measured at the bottom of the convection zone $eg Kim and MacGregor 2003)],

andN = +/—g(dxp0 + pg/c?)/p is the Brunt-Vaisala frequency, wheseis the sound speed. Note
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that the typical values of, D, u, andN in the tachocline are 2&n?s?,10? cnés ™, 107 cnPs?,
and 3x 102 s, respectively.

In this section, we first ignore a background shear flow andyshow the turbulence and
transport are modified due to stable stratification in thdatine. To obtain the overall turbu-
lent transport, we solve coupled equatioﬂs ﬂ)—(4) in teomSourier transform for fluctuating

quantitiesy’:

@' (x,1) = fdsk(Z(k, t) expli(keX + Ky + k;2)} . (5)

1
(2n)3
Equationsl)ﬂ3) then give us an equationgos eV"Z‘[) in the form

~ ~ —2x N2V2~
6np+(/4—V)k2p+Np=E thy . (6)

Here N’ = yN?/(y+a?). SinceN > uk? is valid on a broad range of reasonable schies10* ~

10° cm in the tachocline, we can find the solutions to leadingoidék?/N <) uk?/N < 1 as:

\7x ~ (7)
¥ ~ —'i‘vx—— f At Gt V)ha(t) ®)
¥, ~ ——vx+ = f dG(t, t)a(t), )
5 ~ ——— | dt'G,(t,t') sinN(t — t")hy(t).. 10
5 gmft ,(4.1) sinN(t - 1)y (t) (10)

Here,G(t,t') = e”¥t") andG,(t,t) = e @K(-1)2 gre the Green's functions; = ky/ky,
B = ky/ky, andy = 1+ % h; andh, in Egs. [b) and[7)[(10) are the forcing terms which are

related tof, as

>
=
I

(1+p?) fx - af, - gf;, (11)
Bty + f. (12)

>
¥
1l

Equationslﬂ7){]9) show that the vertical motigp involving G, only, is always subject to radia-
tive dampingu while the horizontal motions,"andvy, containing botlG, andG, are much less
affected byu.

For simplicity, we assume the forcing to be homogeneousatepvith a short correlation

timers:

(fi(ke, to) fi(ka, t2)) = 7(21)%6(ts — t2)5(K1 + Ko)wij(Ko) - (13)

Note that in the case where the forcihgue to plumes induces a stronger turbulence towards
the bottom of the convection zorepecomes inhomogeneous with the power spectiym=
¥ij(x k) depending on the radial coordinate

A long but straightforward algebra by using Ed$. (P)}(1@)tlives us the following results

on turbulence level and particleffiisivities defined byn'v;) = —DiTjajno:
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(V2 ~ T ((2173;3 z(f,li(zg)Z (u +1v)k2 ’ .
) ~ T (gjr|)(3 ZyaZiffli(:ZP (u +1v)k2 ’ ﬂ2¢;§(k) 2"1k2] ’ Y
@ ~ 1 (gj)(s szzﬂ(j:ﬁilg;))z - +1v)k2 " ¢2;gk) 2,/1k2] ’ (16)
oF < 3 [ i v
3 2 2
3 252
OF ~ (22);(72 4aN2ﬂ(y¢ ilgz " ZV(fzf(lE()))zk“ ' Y

Here, we assumed spatial symmetrgegk,) = ¢ij(—ky) andgij(ky) = ¢ij(—ky); k inside the
integrals in Egs.[(14)£(19) is the wavenumber of the forcingk) (i = 1,2) is the power

spectrum of the forcing defined by:
(P (ke to)hj(kz, ) = 71(20)%6(ts — t2)5(ka + k2)dij (ko) (20)

In this paper, we shall consider an incompressible forcihg & 0) for simplicity, in which case
¢ij in Eq. ) is related t@; in Eq. ) as:

k# 1
P11 = El//n,fﬁlz = E(kzkxkzlﬁll + Kk y3)
1
P22 = kikiwll + kﬂ'l,bgg + 2kxkzkalﬂ13) . (21)

E(
Note thatg11 andg,, can signify strong radial forcing (e.g. by plumes) and hamial forcing
[e.g. due to the instability of the latitudinal shear in thehocline (see also Kim 2005)]. For
instance, in the case of strong radial forcing by plumas ¢& 33) with ky > ks (see Fig. 2 in
Leprovost & Kim 2006) ¢4, will dominate ovek,,. Note further that in the 2D limit with, = 0
andysss = 0, ¢22 vanishes.

We discuss some of the important implications of EE. (:@)—.G:irst, all three components
of fluctuating velocity amplitude in EqﬂlAIHlG) are ipgadent oN, clearly showing that the
amplitude of the turbulent flow is not influenced by stablatsfication in the case of the forcing
with a short correlation time. The exact level of fluctuatiom determined by the characteristics
of the external forcingd;;). We examine this in the simple 2D limit whekg = 0 (y = 1) and
Ys3 = 0. In this limit, the substitution af,, = 0in Egs. [1}#)-{(16) gives2)/(v2) ~ 1/a% = k2/K2
and(v2) = 0. This is an expected result for the 2D incompressible finid + y domain. If the

forcing f contains only gravity modes, the wave number of the forcilogilel satisfy the local

dispersion relatioky = £k, /N?/(w — Uok)?2 — 1 (herew is the frequency of the gravity waves).
Furthermore, if these gravity modes are generated by thewmég of fluids in the convection
zone (e.g. Press 1981) withy ~ 0, they would have a strong power at low frequencies

N, thereby givingk./ky ~ N/w > 1, and thus(vg)/(vj) < 1. Note that this is the situation
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normally considered in the previous works (e.g. Kim & Mac@ne2001;2003; Talon, Kumar
& Zahn 2002), where the main focus was on the momentum déposiy such gravity waves
due to radiative damping after entering the tachocline fiteerbottom of the convection zone. In
contrast, in this paper, the forcirids not restricted to gravity modes, but is taken to be general
including any form of perturbation with arbitrary valueslqfk,. For instance, in the case of a
strong radial forcing due to plumes wiih; > ¢, anda = ky/ky < 1 (see Fig 2 in Leprovost
& Kim 2006), (vﬁ)/(vf,) > 1 with a stronger radial fluctuation than horizontal one tkemmore,
Egs. )-Eb) show that the level of anisotropy measuretibyatio of the turbulence amplitude
depends o andu. For instance, for an isotropic forcing withs ~ ¢22, (V2)/(V3) o v/u < 1
becomes small as the radiative dampinigcreases. This is because a laggends to decrease
(vertical) turbulence level by introducing large (therjwissipation. Thus, without a shear flow, a
stronger horizontal turbulence (level) than vertical oae be caused by large thermaffdsivity
u (but not by stratification) in the case of a temporally shantrelation forcing. Note that the
anisotropy in turbulence level could be related to the RexlmberPe = vi/u as(vﬁ)/(vf,) o Pe.
Here,v andl are the characteristic velocity and length scale of therigréwhich is fixed).
Second, turbulent transport in qu(lm(lg) are stroafjcted by stratification abl?
increases, in contrast to fluctuation levels in EE. (J@)—.(SinceN > uk? on reasonable scales
| > 10* ~ 10° cm, the vertical (radial) mixing is severely quenched assthatification increases
(i.e. asN~2), in qualitative agreement with Brun, Turck-chiéze & Za999). In comparison,
the part of the horizontal (latitudinal) mixing due to thelied forcing¢,1 is reduced proportional
to N=2 while the one due to the horizontal forcigg, is independent oN. The comparison of
these two contributions (or alternativelds, andDyy) in the case of11 ~ ¢2» gives us a cut-
off scalel. ~ +/v/N above which vertical (radial) mixing is strongly reducednmared to the
horizontal (latitudinal) mixing. That is, in the presendeboth radial and horizontal forcings
of comparable strength, stable stratification mainly redube vertical transport without much
effect on horizontal transport on scales- |I.. For parameter values typical of the tachocline
v ~ 1% cm?st andN ~ 3x 103s%, I, ~ 10°cm. Thus, the stratification is very likely to play
an important role over a broad range of physically reas@sddles. In the limit of strong radial
forcing with ¢1; > ¢2, anda ~ 0, the stratification influences both the radial and horiabnt
transports to the same degree while the incompressibéitgersD}*/D¥ ~ D¥/D¥Z ~ 1/a? ~
(vﬁ)/(vﬁ) > 1, with an dfectively more éicient radial transport. It is interesting to compare
our resultDy, o« N~2 with the mixing due to radiatively damped waves (e.g. G%atcbpez
and Spruit 1991; Talon et al 2002). For instance, Gaté)pez and Spruit (1991) estimated the
vertical mixing due to gravity waves to be proportional#tN?. While the reduction in vertical
mixing for largeN is in qualitative agreement with our results N~2), the increase in vertical
mixing in Garda Lopez and Spruit (1991) is due to the fact that damped svave necessary
for wave transport. Finally, we note that without a shear fll@mentum transport vanishes (i.e.
(VxVy) = (VxV) = 0) for an isotropic forcing. Scaling of turbulence ampligytlrbulent viscosity

(v1), and turbulent dfusivity Dt are summarised in Table 1 for an isotropic forcing.
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A large thermal dfusivity (u = 10°v) in the tachocline is often considered to reduce the
stabilizing dfect of stable stratification via the weakening of the buoyamstoring force. To
highlight this dfect, it is illuminating to consider the extreme limit of stigothermal difusion
where density fluctuation becomes stationary wight = N2vy/g — uk?p’ = 0 in Eq. ﬁ:’.). In this
limit, by following a similar analysis as previously (with = v), we can easily obtain the vertical

and horizontal particle éusivities as follows:

T d*k  p1a(k)

Do~ 207 ) iy P (22)
o’k [ @uk) 1 ok
P T o [y e 2a? T e | (23)

wherea = yN2/uk?(y + @2). Equation [2R) shows that the vertical mixiBgy oc 2/N* o« Pe2
decreases for largd while increasing for larg@. This is because the reduction in the vertical
mixing due to buoyancy force is weaken by a strong radiataregingu. The comparison of Egs.
©3)-23) further shows that the reduction in vertical mixielative to horizontal mixing is given
by a factor of ¢k?)2/a? for an isotropic forcing and is thus weaker than that in theecaf weak
radiative dampingik? < N [see Eqs.@?)m%]. Furthermore, this reduction appearscales
larger than the critical scalg, = (uv)Y4/N¥2 ~ 10i.. Here,| = v/v/N is the critical scale in the
case ofuk? < N. These results thus show that a strong thernfélision weakens the buoyancy
effect and makes thefect of stratification become important on larger scales,pared to the
case of a weak thermalfflision. This result is thus consistent with the expectatmapleyed in
previous works.

To summarize, a stable stratification can dramatically gheuarbulent transport with a more
effective mixing in the horizontal directions orthogonal te thackground density gradient. It
does not howevertgect the amplitude of the turbulent flow, the ratio of whichdsifid to depend

only onv/u (for a temporally short-correlated forcing).

3. Consistent theory

The results in Sec. 2 showed that for a temporally short taige forcing, a stable stratifica-
tion reduces turbulent transport only, leading to anig@tréurbulent transport, without much
effect on turbulence level. In this section, we study how theselts are modified by a stable
background shear flow (@dierential rotation in the tachocline). In particular, welwthow that a
shear flow not only inhibits the vertical mixing further, emting the anisotropic transport, but
also reduces turbulence levels anisotropically, therebyihg to &ectively stronger horizonal
turbulence. For simplicity, we ignore the latitudinaffdrential rotation compared with the radial
differential rotation since it is weaker in the tachocline duthiio tachoclinelf < 0.03 ~ 0.05 of
the solar radiuR). The inclusion of the latitudinal dierential rotation would introduce a small
correction term in our results. For instance, for turbueeamplitude, this correction term is of
order (i/R)?> <« 1, as shown in Leprovost and Kim (2006). Note that the latitaldshear is

crucial for non-vanishing horizontal momentum transport.eprovost & Kim (2006). Again,
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A=0,N£0 | A#+0,N=0 A+0,N£0
<v§> #-1 AL AL
(V2) ~ (v2) vt ALE AL

vr 0 A2 -A?

DX N-2 A2 N-2& 5;2/3
DY ~DZ | vi(y+D)t | A2 A2
VY (vR) plv g1 g3
DY /DY N? S (N/AY(u/v)22;

Table 1. Scaling of turbulence amplitude, turbulent viscosity)( and turbulent dfusivity Dt

for an isotropic forcing withp11 ~ ¢22 in the caseN > uk? andD ~ v < p. &, = ykf,/ﬂ < 1,

& = vk}z,/ﬂ < 1,andép = Dk}z,/&’l < 1 are small parameters representing strong shear limit.
The secondf = 0 andN # 0), the third (A # 0 andN = 0), and the fourthl # 0 andN = 0)
columns contain the results for stratified unsheared caSedn 2, for unstratified sheared case
(Kim 2005), and for stratified sheared case in Sec. 3, relspéct

we envision that turbulence is maintained in the tachodiynan external forcing while gravity
waves are excited due to this external forcing in the statshtiied tachocline. We shall then
compute the overall turbulent transport consistently kinginto account the interaction among
turbulence, shear flow and gravity waves, instead of simgdyiming a (large) constant value of
turbulent viscosity for mean shear flow (and gravity wavBijte that this treatment is essential
when there is no clear scale separation between gravitysaane turbulence, in which case
turbulence cannot be considered to give an enhanced valisaafsity for gravity waves (c.f.
Charbonnel & Talon 2005).

For the evolution of fluctuations, we approximate the radifierential rotation by a linear
shear flow withUy = —xAY to keep the analysis tractable. Her,is the shearing rate which
we assume to be positive without loss of generality. As donprevious papers (Kim 2005;
Leprovost & Kim 2006), to capture thdfect of shearing due to radialff#rential rotation @ ~
3 x 1078 s7! for the tachocline) non-perturbatively, we use the speairier transform for
fluctuating quantities’:

1

¢'(x,t) = 2n)

f Ak (K, t) expli(kx(t)X + kyy + k;2)} . (24)

Here,ky = ky(t) is the time dependent [unlike constdqtin Eq. (3)], satisfying an eikonal

equation

ikl(t) = KA. (25)
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Equation ) implies thaky linearly increases in time dg(t) = ky(0) + kyAt, manifesting the
main dtect of shearing by a shear flodp(X)y, i.e., generation of fine scales in tikelirection
due to tilting and distortion of fluid eddies (e.g. see Burt®97; Kim 2004; Kim 2005). The
efficient generation of fine scales by shearing leads to the bpeafkeddies and enhancement of
the overall dissipation, thereby reducing turbulence &uone and transport (e.g. see Kim 2005).
A similar effect by a shear flow is expected to persist for a more real&ti@al shear [e.g. for an
error function used in helioseismic inversions (Kosovich@96; Corbard et al 1999)] since the
basic mechanism of shearing (e.g. see Fig. 2 in Kim 2005)s#me regardless of the details
of the profile of radial shear. Thefiency of the shearing could depend on the details of the

profile, possibly leading to a slightly filierent scaling.

Itis interesting to note that a gravity wave with an inityghlositive value ok(0) can change
its sign after the time intervelty(0)/kyA (for k, > 0) due to shearing. Since the local (ra-
dial) group velocity of gravity waves is given b, = —kZkyN?/k*(w — Uoky) (e.g., see Kim
& MacGregor 2003), the gravity wave thus alters its prop@agadirection asky flips its sign.
Therefore, a gravity wave which initially propagates dovanavto the interior from the convec-
tion zone with a negative vertical group velocity (ivgx < 0) can propagate upwards when the

vertical group velocity becomes positivg{ > 0) due to shearing.

For parameter values typical of the tachocle~ 3 x 102 st andA ~ 3 x 10 s,
Ri = N?/A% > Ri. ~ 1/4, satisfying the stability criterion (Lighthill 1978). Wthus assume
that the radial shear flow is stable with large valu®bt N?/A? > 1 in the remainder of the
paper (see also Schatzman, Zahn, & Morel 2000). Note thémidup of chemical composition
gradient (the so—called gradient in the solar interior [e.g. see Michaud and Zah®g)@nd
references therein] would further increase the valudd ahdRi, making the radial shear flow
more stable, although thigfect could be counteracted by a radiative damping, as sho®eran
2. The shearing ratél ~ 3 x 10°° s due to this radial dferential rotation is larger than the
dissipation rate due to radiative dampi«z@ on a broad range of scalés 1/k,) > 10° ~ 10’
cm~ 1073Hy, whereH is the pressure scale heigh x 10° cm. Thus, we focus on the strong

shear limit in the following by using, = ,ukf,/ﬂ < 1 as a small parameter.

ForRi > 1 andv ~ D <« y, a long but straightforward algebra can give us the solstion
to Egs. [[1){}), as shown in Appendix A. By using these sohsgiand the correlation functions
of forcing defined in Eq.@O), we obtain the following resuibr turbulence level and transport
codficient defined byn'v) = —D?&,—no fori = 1,2 and 3, and momentum fls,vy) = —v1dxUo

in the strong shear limg, = ykﬁ/ﬂ < 1 (see Appendix A for details):

R ()
<V2x> A W 232 ° (26)
d3k k 2 (K
T [ Bk [BPou(k) ¢22(K)
) = = (Zn)s[ 2;51,2 [N, + "‘;—ZGO], (28)
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Tt d*k  ¢1a(k)

DT = N2 Wmfo&, (29)
3 KR D3\ B[ 3\3
I R
T 2 J (2n)%y?| 2N2y \fy + a2 1 \&, " A2 28, (30)
N i d3k ¢11(k) 1 1
TETS ) oy |7 T TNy D) | (31)

Here,&, = WiZ/A < 1,& = DKJA < 1,& = uk/A < 1,Gp = 3T(1/3)(3/2&,)3
andG; = %F(Z/S) (3/5,1)2/3. Note again that, < 1 is valid on a broad range of scalgs:
1/ky) > 10° ~ 10’ cm in the tachocline and also thit < 1 guarantees thah ~ &, < 1 since

D ~ v < u. The spectrum;; in Eqgs. [2p)-{(31) are given by Eqg. |20), which are related to
power spectrum of forcing;; in Eq. ) in the incompressible case.

Equations@)l) reveal the following interesting teas. Turbulence levels given in Egs.
@)-@) are again independent of stratification, similés the case without a shear flow [Eqs.
)—)] while they are reduced for strong shéarThis indicates that waves and shear flows
play different roles in turbulence regulation — waves do not nedsgaench fluctuation levels
while shear flows can reduce them through enhanced dismipaith shearing. The turbulence
regulation by shearing gives us horizontal velocity flutituas in Eqs.@?) andeZS) which are
effectively higher than vertical one in EGE[ZG). While a simitandency was also found in
the absence of gravity waves (Kim 2005), the exact value efrétio of vertical to horizontal
turbulence levels is not the same. For examm@,/(vf,) o (|In&,[)~t for a strong radial forcing
¢11 With ¢ = 0 while (V)/(V) o &3 for an isotropic forcing withg1, ~ ¢2.. Note that
& < & < 1 are small parameters in our problem, representing thaegshear limit. These
results are to be compared wig2)/(v2) « &% in the unstratified medium (Kim 2005). The

results for the isotropic forcing in various cases are surised and compared in Table 1.

Transport properties in Equ29H31) however exhibit ey \different behaviour, with
both vertical and horizontal mixing being inhibited in a rwivial manner by strong stratifi-
2/3nj-2

N

cation as well as by shearing. First, the vertical transfgoreduced a}* o &pé, o

Du~?3A-Y3N~2, becoming small as either stratification or shearing irgeeaNote that the de-
crease iD¥* for largeN agrees with Miesch (2003). InterestingB* oc 123 o Pe?/3 decreases
as the radiative dampingincreases. This is because large radiative damping inese¢hermal
dissipation, thereby mainly inhibiting the vertical miginas noted in Sec. 2. Thus, compared to
the case witilN = 0 whereD¥* o« A2 (Kim 2005), the vertical mixing is much more quenched
by a factor ofpé, 7} (AIN)? < épg,”> = (D/u)éY® < £, < 1 sinceA/N < 1 andD/u ~ 1075

in the tachocline (see also Table 1). This clearly shows shatr flow (orthogonal to radial

density gradient), stable stratification, and radiativegding can all inhibit the radial transport.

Second D?'ry is less #ected by stratification since it involves the two parts — the fsomes,
is proportional tatpg;, **N~2 while the other fromp,, is proportional taA-2¢,%'2, independent
of N. In the simplest case of a strong radial forcing with = 0, D¥/D¥ ~ ¢%/° < 1, indepen-

dent ofN. This is similar to the case without stratification Whél%‘/D’{y ~ 53/3 (Kim 2005). In



12 Eun-jin Kim and Nicolas Leprovost: Gravity waves

the general case whege; # 0 andgy, # 0, D¥ exhibits a non-trivial, complex interplay among
stratification and shear flow in determining the overall $@ort. To appreciate this, we compare
Eq. ) with the result obtained without shear fI (18) talfthat shear flow enhances the
contribution fromgy; by a factoréng,*’® = (D/u)¢,™® while it reduces the part fromy, by a
factor of (/. A)%, %> « £° < 1. SinceD/u ~ 10°° <« 1 andé, < 1, the horizontal transport
driven by a strong radial forcing;, can be either inhibited or enhanced by a shear flow (due to
¢11) depending on the parameter values. On the other hand, timhtal transport due tg»,
is reduced by the shear flow by a factor proportiona#¥6 < 1. The end result can easily be
shown to be the enhancement of tlikeet of stratification. To see this, we compare the two con-
tributions fromg,1 andgy, to D¥ and obtain a characteristic scale= (D/u)?(v/N)Y2(A/N)>?
above which the stratification is important, being mainlgpensible for quenching transport.
Sincel, is smaller tharl; = (v/N)¥2 obtained without a shear flow, théfect of stratification
becomes important compared to the case without shear floisglso worth comparing the con-
tributions toD‘{y from ¢11 and¢,, separately to those in the caseMof 0 in Kim (2005), where
D¥y o A2, from bothg11 andg.,. That is, the contribution fromty, is further reduced by a
factor of (A/N)2£X3(v/u)*3 by stratification, while the one frog, is not afected.

We now examine how the stratificatioffects the anisotropy in transport. Equati (29) and

(B0) for a strong radial forcing with11 > ¢2, anda ~ 0 givesDX*/D¥ ~ ¢5/® < 1, independent

of N. This is analogous to the reSLII)'E§>‘/D¥y ~ 3/3 < 1 obtained in the unstratified case (Kim
2005). In this case, the anisotropy in the transport is gaalsed by shear stabilization. For an
isotropic forcing withg11 ~ ¢2, anda ~ 1, D¥/D¥ ~ (A/N)(v/u)?3, < 1. In other words,
the anisotropy in turbulent transport depends on stratificashear, ana/u, as clearly shown
in Table 1. Since i/N)*> < 1 andv/u < 1in the tachoclineD?‘/D?’ is much smaller than
23 obtained in the unstratified case (Kim 2005). That is, the@mnopy in transport is further
enhanced due to stratification. We emphasize that the amjigoin turbulent transport is much
stronger than that in turbulence amplitude, discussediquely (see also Table 1). This result
also shows the reduction D¥* for largeu and again highlights the importance of the radiative
damping in reducing the vertical transport, thereby insirggthe anisotropy in the transport.
Finally, Eq. ) demonstrates one of the most importdigces of a stable stratification,
which is to drive a system away from a uniform rotation withegative eddy viscosity. Recall
that in the absence of stratification the eddy viscosity St in 3D while negative in 2D limit
(e.g. see Kim 2005). In contrast, the eddy viscosity in @) (8 negative in both 203 = 0 and
v = 1) and 3D cases. This behavior was also found in recent noaleiimulation by Miesch
(2003) of a stably stratified turbulence with an imposed sldegen by penetrative convection,
who found anti-ditusive radial and diusive latitudinal momentum transport, therelffeang
a mechanism for a proper transition from latitudindfefiential rotation in the convection zone
to solid body rotation in the radiative interior. Antifflisive momentum transport is a generic
feature of a strongly stratified medium (i.e. a geophysigsiesm). It is interesting to note that a

negative viscosity was also found in the previous work on metmm transport due to radiatively
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damped gravity waves (e.g. Kim and MacGregor 2001;2003dHtition, the result@l) shows
that the (anti-dfusive) momentum transport becomes lefigient for strong stratification (large
N), in agreement with Miesch (2003).

To summarise, our results show that the shearffegceby radial diferential rotation together
with gravity waves is an important mechanism for turbuleregulation, leading to a weak tur-
bulent transport and anisotropic turbulence and trangpthe tachocline. Furthermore, we have
consistently derived the values of turbulence level, pertmixing and momentum transport
starting from the first principle, clearly identifying théfrent roles of gravity waves and shear-
ing in transport. For instance, in comparison with Chab@met Zahn (1992) [or Spiegel and
Zahn (1992)] which start with the assumption of a strongzwarial mixing, we identified the
source of such an anisotropic turbulence. In particulahawe made a clear distinction between

the anisotropy in the turbulence level and turbulent transp

4. Discussion and conclusions

We have studied turbulent transport in the stably stratif@athocline with a strong radial dif-
ferential rotation, when turbulence is driven and mairgdity a forcing (e.g. due to plumes
penetrating from the convection zone or due to instabiliyg have assumed that both turbu-
lence and gravity waves are on small scales (with no clede separation between the two)
and treated the interaction among gravity waves, turb@leme shear flow consistently. Unlike
a shear flow which regulates both turbulence level and tiemsp stable stratification is shown
to mainly inhibit turbulent transport, leading to a furtheduction in transport compared to
the unstratified case (Kim 2005). Specifically, for parametdues typical of the tachocline
(N/A > 1), particle transport due to a strong radial forcifig (with ¢2> = 0) is reduced as
é&,”*N2, becoming much smaller than horizontal transpertéoé, “*N-2) by a factor of
&P < 1. Hereg, = /A < 1,&p = DRJA < 1, andg, = ukl/A < &, are the small
parameters characterizing a strong shear limit (see the tesi for more details). Note that in
this caseD?/D¥ o £5/° < 1 depends only on shearing but not on stratification, indigahat
the anisotropy in particle transport is mainly governed &gial diferential rotation. A similar
scaling € 55/3 < 1) was also found in the unstratified case (Kim 2005). Howexrehe case of
an isotropic forcing withp11 ~ ¢22 andky/ky ~ 1, the horizontal mixing is much less reduced
with DY ~ A-2&,%® (with no efect of stratification), leading to a stronger anisotropyrams-
port with DX/D¥ ~ (A/N)2(v/u)?3¢, < é/° < 1. Note that the anisotropy becomes stronger
for largeru.

Furthermore, the vertical momentum transport was showretartti-difusive with a nega-
tive eddy viscosity. That is, small-scale turbulence infleed by gravity waves accentuates the
gradient in a radial dierential rotation rather than makes it uniform. This is &amio the ten-
dency obtained in the case of momentum deposition by grawatyes due to radiative damping

(Kim & MacGregor 2001;2003). The sharpening of the grad@rthe radial shear due to the
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negative viscosity could eventually lead to time variatiothe tachocline (similarly to Kim &
MacGregor 2001) or instability (e.g., see Petrovay 2008)stg a rapid radial mixing and thus

reducing the anisotropy.

Even in the stably stratified radiative interiors of stara/ali as in the tachocline, background
turbulence has often been assumed to be present to enharvedtd of &ective viscosity. While
the clarification of the source of turbulence responsiblesiach an enhanced eddy viscosity
is an interesting problem, our results demonstrate howr#sglual turbulence interacts with
gravity waves and shear flow, providing the prediction fa #alues of eddy viscosity as well
as the particle diusivity which depend on physical quantities ligandN. In particular, the
radial particle transpoDy* ~ §D§;2/3N*2 indicates that turbulent transport of particles can be
inhibited due to stable stratification, shear flow and lamgiative damping. This finding can
have interesting implications for the surface depletiotitbfum in the Sun and other stars (i.e.,
Pinsonneault 1997), and will be studied in a future publicat~urthermore, if a similar physical
process operates in the bulk of the radiative interior ofilrg, a negative viscosity that we obtain
implies that a radial dierential rotation which is created during its spin-down igoniot be
eliminated. Note however that Charbonnel & Talon (2005)ehstvown an &icient momentum
transport in the solar radiative interior due to the cumwdagtfect of large scale meridional flow,

shear instability and gravity waves.

The tachocline is believed to possess a strong toroidal etagiields of strength 10~ 10°

G, which could have an importantinfluence on turbulent fpansn that region. This is an impor-
tant problem since the presence of a weak poloidal magnelidfi the radiative interior together
with a strong toroidal magnetic field in the tachocline (agtas a boundary layer between the
radiative interior and convection zone) couldles a mechanism for a uniform rotation in the in-
terior as well as for the tachocline confinement (e.g. Réd&Kichatinov 1996; MacGregor &
Charbonneauu 1997; Gough & Mcintyre 1998) [see however Bridahn (2006) for a negative
result on this scenario]. In this case, the valuestidative difusivity of magnetic fields as well
as eddy viscosity play a crucial role in determining the khiss of the tachocline. Therefore,
a consistent computation of magnetiéfdsivity and eddy viscosity with their dependences on
physical quantities such as the strength of magnetic fi¢hds Brunt-Vaisala frequency, and
shearing rate, would be of primary interest (Kim and Lepst\@D07). It is an interesting ques-
tion, in general, whether a negative eddy viscosity, fagtanea stably stratified medium, remains
as a robust feature in the presence of magnetic field in vietheoforward energy cascade (i.e.
positive eddy viscosity) in MHD turbulence. Furthermoremmposition gradients (discussed in
Sec. 3) and meridional flows would contribute to the transpothe tachocline. In particular,
meridional flows are expected to enhance the radial trahspahemical species by advection
as discussed in Kim (2005) although this enhancement waaileétbuced for stronger horizon-
tal turbulent [e.g., see Kim (2005) and Chaboyer and ZahBZJ|9These issues are however

outside the scope of this paper and will be addressed indysublication.
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Appendix A:

In this Appendix, we show how to derive Eqb.J(26)3(31). Te tid, we us&)o(X)y = —xAY in

Egs. ﬂl)—K|4), and introduce the transformaridw for w = v;, n, p, hi andf as follows:

W = Wexp p(k3/3keA + KA1,
W = Wexp [u(k3/3k,A + K3t)/2], (A.1)

wherek? = k2 + k2. We then use a new time variafie= ky/k, + At to rewrite Egs. [(1)f{4) as:

Ady = —itk,p—gp + fx, (A.2)
ANy — AU = —ikp+ Ty, (A.3)
AN, = —ikp+ fy, (A.4)
0 =10 +0+ E\72, (A.5)

ky

N2

A + £y + )P = P (A.6)
Ao + ép(y + 72)]ﬁ = —(0xNo)Vx. (A.7)

For a strong shear limit wheye= uk2/A < 1, Egs. [A.R){(A.) can be combined to yield the
equation fopp as

yN N?

P g ~ (). (A.8)

O (y + 1)0:p] + =5

to leading order i, = ,uk\f/&’l < 1. Here,ﬁl(r) = yﬁx—rﬁy—rﬂﬁz; y =1+p%andg = k;/ky. In
the limit of N?/ A% > 1, Eq. ) can be solved with the following solutions valjalto ON_Z):

2 N2

po = = (y+‘1'2)1/4 [ G e S0 e,

2 _ 1 dTl

W) = i ] w5 o) e

Ny + 2o(r) cos () - go(n)]]hl(n) ,
2 T ~
() = -2 + ﬁ—wﬁ(r)— y% f dr.G(r, T)u(r)
Uu(7) = —%\‘/X(T)— %ﬁ(r)+ yiﬂ f ' dr1G(r, Tl)ﬁz(q). (A.9)

Here, againg = ks/k, v = 1+ g% N? = N?/g4, N
expl(£./2 = &)yt +7%/3) = (yr1 + 73/3)])s & = VG| A,

N2y/A?%; G(r,11) =

A = (L+ )y — rahy — 7180,
hy = —ghy + by,
Na Vy+1i+T 1 T
or) = XTI 2
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_ 1 v
U(T) = a’—ﬁm
a = 1—i. (A.10)
8N’

By following a similar algebra used in Kim (2005) and by usthg correlation function of the
forcing given in Eq.[(20), we can obtain the following coatéon fictions(viv;) to leading orders
in /N’ < 1 andé, = uk2/A < 1:

dkdr gya(k) eEQ

D ~ 55 [ s e 1 oS 260) (@]
02 ~ dd de[ o 4.Qra) #11(K) 7 e_ngQ(T,a)ﬂzfﬁzz(k)]
Y ?‘ (2n)3 2y + a2 vy + 7332 v
- dkdr| ¢ oea ¢nk) T -2£,Q(r.a) ¢22(k)}
<V§> ﬂ (271.)3 [ 2y + 2 720, + 7.2)3/2 + € 72 s
VW) T d3kdr ¢11(k) e QA
xVy/ ~

_ﬂyﬁz (2r)3 Vy + @w(a)? (y + 7952

X —% sin [p(7) — (@] + Ny + %@ (1) cos fp() ~ ¢(a)]

2

(A.11)

Here,a = ky/Ky, Q(r,d) = (yr + 73/3) — (ya + a®/3); special symmetriesi;(k,) = vij(—ky) and
vij(k2) = ¢ij(—k;) were used. We then computéntegrals in Eq.l) in the strong shear limit
& < & < 1and usgvyvy) = —v¥0xUg = v*A to obtain Egs.[(d6)[(28) anfl (31).

Next, to compute particle transport, we integrate @(mmne to obtain

k(). 1) = —3inofdt1d3k1@(k,t; Ky, t)e DAY k1, X, 1) . (A.12)

Here,Q(t, t1) = f dt' [kE(t) + kA1 = [k — k3, 1/3kA + K3 (t — ta); ki = k2 + K2 is the amplitude

of wave number in the horizontal planié; = k2 + kZ; § is the Green’s function given by
g(k’ t; kl, tl) = 5(ky - kly)(s(kz - klz)(s [kx - klx - kly(t - tl)ﬂ] . (A-13)

A similar analysis using Eqs]_(4.9], (A13], {11)(13), 4@6) and(nvi) = ~D;;d;no gives
— T [[dugrfotulet
2(2”)%2'\' Vy+a

DY = s f oPkdr fD esoea TNV H T ooty a2y + o)
(270 A Ny + &

D_>I<_x 2)1/2 ,

(y+t

(A.14)
Here,ép = DKZ/A ~ &, < 1. Finally, the evaluation of integrals in Eq.[(A.14) gives us Egs.

@)—) in the main text.
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