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ABSTRACT

Aims. To understand the fundamental physical processes important for the evolution of solar rotation and distribution of chemical species, we
provide theoretical predictions for particle mixing and momentum transport in the stably stratified tachocline.
Methods. By envisioning that turbulence is driven externally in the tachocline (e.g. by plume penetration), we compute the amplitude of
turbulent flow, turbulent particle diffusivities, and eddy viscosity, by incorporating the effect of a strong radial differential rotation and stable
stratification. We identify the different roles that the shear flow and stable stratification playin turbulence regulation and transport.
Results. Particle transport is found to be severely quenched due to stable stratification as well as radial differential rotation, especially in the
radial direction with an effectively more efficient horizontal transport. The eddy viscosity is shown to become negative for parameter values
typical of the tachocline, suggesting that turbulence in the stably stratified tachocline leads to a non-uniform radialdifferential rotation. Similar
results also hold in the radiative interiors of stars, in general.
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1. Introduction

Since the formation of the radiative core, which marked the beginning of its journey on the main sequence, the sun has slowed
down significantly due to the loss of angular momentum from its surface (e.g. see Stix 1989; Schatzman 1993). The angular
momentum transport must have been very efficient during its spin-down in order for the sun to have rotational profile as observed
today (see, e.g. Charbonneau et al 1998). Vigorous turbulence in the convection zone can readily provide a mechanism for
efficient radial momentum transport, thereby eradicating radial differential rotation therein. Such turbulent transport is however
considered to be absent in the stably stratified radiative interior, which has also spun-down during the solar evolution, presently
rotating uniformly at the rate roughly the same as the mean average rotation rate on the solar surface. Whichever mechanism
is responsible for momentum transport in the interior (which itself is an important problem), it should be closely related to the
transport in the tachocline through which the surface spin-down is communicated to the interior. Transport in the tachocline
also plays a crucial role in the overall mixing of light elements (lithium, beryllium, etc) (see e.g. Schatzman 1993), thereby
determining the level of their surface abundances on the sun. Therefore, it is essential to understand physical mechanisms for
transport in the tachocline and then to formulate a consistent theory starting from first principles based on those processes. This
is particularly true since virtually all the previous theoretical modelling heavily relies on a crude parameterization of transport
process, which is then adjusted to obtain the agreement withobservations.

We have initiated the development of a consistent theory of turbulent transport in the tachocline in the previous papers, by
taking into account the crucial effect of the large-scale shear flows, provided by a strong radial differential rotation (Kim 2005)
as well as latitudinal differential rotation (Leprovost & Kim 2006). By envisioning that the tachocline is perturbed externally, e.g.
by plumes penetrating from the convection zone (e.g. see Gilman 2000; Brummell, Clune & Toomre 2002; Rogers & Glazmaier
2005), we demonstrated how turbulence level and transport are affected via shearing in a non-trivial manner (see also Burrell
1997; Kim & Diamond 2003; Kim 2004;2006) in a simplified threedimensional (3D) hydrodynamic turbulence. In particular,
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turbulent transport of chemical species and angular momentum are shown to become strongly anisotropic with effectively much
more efficient transport in the horizontal (latitudinal) directionthan the vertical (radial) direction due to shear stabilization by
strong radial shear. The resulting anisotropic momentum transport was shown to reinforce a strong radial shear (Leprovost &
Kim 2006), with a positive feedback on the confinement of the tachocline (Spiegel & Zahn 1992) while chemical species are
predicted to have latitudinal dependent mixing due to the variation of radial shear (Kim 2005).

The purpose of this paper is to investigate how a stable stratification in the tachocline modifies the predictions obtained
in these studies. We again envision that the tachocline is externally perturbed (e.g. by plumes penetrating from the convection
zone above), driving a background turbulence, which gives rise to turbulent transport (affected by shear flow). In the presence
of a stable stratification, the turbulence in the tachoclineis no longer completely random as the stable stratification provides
a restoring force against radial displacement of fluid elements, supporting the propagation of internal gravity waves (Lighthill
1978). These waves tend to increase the memory of otherwise random turbulent fluid motion and can reduce the overall transport
due to turbulence. We shall show that the turbulent transport due to shear stabilization found in the previous studies isfurther
enhanced in the presence of stable stratification (gravity waves).

It is important to contrast our approach to those adopted in most previous works, which focus on the momentum transport
by gravity waves themselves through dissipative processes(e.g. Plumb 1978; Kim and MacGregor 2001;2003; Talon, Kumar&
Zahn 2002). For instance, gravity waves are considered to begenerated in the convection zone (Press 1981) and deposit their
momentum into background shear flow via radiative damping asthey propagate through the tachocline and the interior (Kim
and MacGregor 2001;2003). Relying crucially on radiative damping, the momentum transport by gravity waves would occur
on a long time scale. [Recall that the transport by waves requires molecular dissipation, and is thus a slow process.] Similarly,
weak mixing due to damped gravity waves was also suggested asa mechanism for a modestly enhanced mixing of light elements
(lithium) [Press & Rybicki 1981; García López & Spruit 1991]. In these works, a certain level of background turbulence could not
be ruled out and was invoked to provide an enhanced viscosityfor the evolution of a mean flow (Kim and MacGregor 2001;2003)
and the gravity waves (Charbonnel & Talon 2005; Talon, Kumar& Zahn 2002). The value of the effective viscosity is often
arbitrarily taken to be a positive constant, being much larger than molecular viscosity, not affected by shear flow nor by gravity
waves, or it is simply parameterized.

In this paper, we shall treat turbulence and gravity waves onan equal footing and consistently compute the values of the
turbulent eddy viscosity and particle diffusivity, by incorporating the effect of a shear flow (provided by a radial differential
rotation) and identify different roles that gravity waves and shear flow play in turbulent transport. Specifically, we shall show that
unlike shear flows, which reduce both turbulence level and transport, a stable stratification mainly suppresses turbulent transport
without much effect on turbulence level. We shall further demonstrate that the stratification favors a negative eddy viscosity and
thus tends to sharpen the gradient of large-scale shear flowsrather than smoothing it out. This tendency was also found inKim &
MacGregor (2001;2003). We note that the elucidation of the effects of gravity waves is essential for understanding the momentum
transport in the radiative interior as they have often been advocated as a mechanism to explain a uniform rotation in thatregion
(e.g. Charbonnel & Talon 2005). Stratified turbulence with ashear flow is also important for the transport in radiative interiors
and/or envelops of stars, in general, as well as in geophysical systems. In particular, it has actively been studied in geophysical
systems (e.g. see Jacobitz, Sarkar & van Atta 1997; Stacey, Monismith, & Burau 1999), where stable stratification was shown to
inhibit turbulent transport in the direction of a background density gradient, leading to the two dimensional (2D) turbulence.

The remainder of the paper is structured as follows. We first investigate the effect of gravity waves on turbulence in Sect.
2. In Sect. 3, we incorporate the effect of strong radial differential rotation and study how the gravity waves modify theoverall
turbulent transport. Section 4 contains the conclusion anddiscussions.

2. Internal Gravity Waves

To simplify the problem, we shall consider incompressible fluid with local cartesian coordinatesx, y, andz for radial, azimuthal,
and latitudinal directions, respectively, and use Boussinesq approximation to capture the effect of stratification. We assume that
the fluid is stirred by an external forcing on small scales, giving rise to fluctuations. In the absence of stratification, this fluid
forcing will drive turbulence on small scales and maintain it at a level at which the injected energy is balanced by dissipation
in the system. As the stratification increases, the forcing will generate not only random turbulent motion but also coherent
(gravity) waves. Alternatively, some of turbulent motion will be turned into packets of gravity waves. Therefore, we consider
both turbulence and gravity waves as fluctuations on scales much smaller than those associated with mean density or mean
background shear flows. Specifically, we express the total mass densityρ = ρ0(x) + ρ′ whereρ0(x) andρ′ are the background
and fluctuating mass densities, respectively; the total velocity u = U0 + v whereU0 andv are a large-scale shear flow due to
radial differential rotation and small-scale fluctuations; the total particle density of chemical elementsn = n0(x)+ n′ wheren0(x)
andn′ are mean and fluctuating components. Then, the main governing equations for fluctuationsv, ρ′, andn′, involving both
turbulence and gravity waves, are as follows (see, e.g., Kim& MacGregor 2003; Moffatt 1978):

(∂t + U0 · ∇)v = −∇p − gρ′ x̂ + ν∇2v + f , (1)

∇ · v = 0 , (2)
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(∂t + U0 · ∇)ρ′ =
ρN2

g
vx + µ∇2ρ′ , (3)

(∂t + U0 · ∇)n′ = −∂xn0vx + D∇2n′ . (4)

Here,ν, µ andD are molecular viscosity, thermal diffusivity, and particle diffusivity, respectively;f in Eq. (1) is the small-scale
forcing driving turbulence;ρ is the constant background density, andN = −g(∂xρ0 + ρg/c2

s)/ρ is the Brunt-Väisälä frequency,
wherecs is the sound speed. Note that the typical values ofν, µ, andD in the tachocline are 102 cm2s−1, 107 cm2s−1, and 104

cm2s−1, respectively.
In this section, we first ignore a background shear flow and study how the turbulence and transport are modified due to stable

stratification in the tachocline. To obtain the overall turbulent transport, we solve coupled equations (1)-(4) in terms of Fourier
transform for fluctuating quantitiesφ′:

φ′(x, t) =
1

(2π)3

∫

d3k φ̃(k, t) exp{i(kxx + kyy + kzz)} . (5)

In the simplest case of unit Prandtl numbers (ν = D = µ), solutions can easily be found as:

ṽx =
1

γ + a2

∫

dt′G(t, t′) cosN(t − t′)h̃1(t′) , (6)

ṽy = −
a
γ

ṽx −
β

γ

∫

dt′G(t, t′)h̃2(t′) , (7)

ṽz = −
aβ
γ

ṽx +
1
γ

∫

dt′G(t, t′)h̃2(t
′) , (8)

ρ̃ =
N

g
√

γ(γ + a2)

∫

dt′G(t, t′) sinN(t − t′)h̃1(t′) . (9)

Here,N
2
= γN2/(γ + a2); G(t, t′) = e−νk

2(t−t′) is the Green’s function;a = kx/ky, β = kz/ky, andγ = 1 + β2; h̃1 andh̃2 are the
forcing terms which are related tõfi as

h̃1 = (1+ β2) f̃x − a f̃y − aβ f̃z , (10)

h̃2 = −β f̃y + f̃z . (11)

For simplicity, we assume the forcing to be homogeneous in space with a short correlation timeτ f :

〈 f̃i(k1, t1) f̃ j(k2, t2)〉 = τ f (2π)3δ(t1 − t2)δ(k1 + k2)ψi j(k2) . (12)

A straightforward algebra by using Eqs. (6)–(12) then givesus the following results on turbulence level and particle diffusiv-
ities defined by〈n′vi〉 = −Di j

T∂ jn0:

〈v2
x〉 = τ f

∫

d3k
(2π)3

φ11(k)
2(γ + a2)2

√

W3 , (13)

〈v2
y〉 = τ f

∫

d3k
(2π)3

[

a2φ11(k)
2γ2(γ + a2)2

+
β2φ22(k)

γ2

]

√

W3 , (14)

〈v2
z 〉 = τ f

∫

d3k
(2π)3

[

a2β2φ11(k)
2γ2(γ + a2)2

+
φ22(k)
γ2

]

√

W3 , (15)

Dxx
T =

τ f

N2

∫

d3k
(2π)3

φ11(k)
4γ(γ + a2)

[

1+W1(2νk2)2
]

, (16)

Dyy
T = τ f

∫

d3k
(2π)3γ2

[

W1a2φ11(k)
(γ + a2)2

+
W2aβφ12(k)

(γ + a2)
+W3β

2φ22(k)

]

, (17)

Dzz
T = τ f

∫

d3k
(2π)3γ2

[

W1a2β2φ11(k)
(γ + a2)2

−
W2aβφ12(k)

(γ + a2)
+W3φ22(k)

]

. (18)

Here,W1 = 1/((2νk2)2+ (2N)2), W2 = 2(2νk2)2/[(2νk2)2+N
2
], andW3 = 1/(2νk2)2; N ≫ νk2 was used to obtain Eqs. (13)–(15);

k inside the integrals in Eqs. (13)–(18) is the wavenumber of the forcing;φi j(k) (i = 1, 2) is the power spectrum of the forcing
defined by:

〈h̃i(k1, t1)h̃ j(k2, t2)〉 = τ f (2π)3δ(t1 − t2)δ(k1 + k2)φi j(k2) . (19)
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In this paper, we shall consider an incompressible forcing (∇ · f = 0) for simplicity, in which caseφi j in Eq. (19) is related toψi j

in Eq. (12) as:

φ11 =
k4

k4
y
ψ11 , φ12 =

1
k4

y
(k2kxkzψ11 + k2k2

Hψ13) ,

φ22 =
1
k4

y
(k2

xk2
zψ11 + k4

Hψ33 + 2kxkzk
2
Hψ13) . (20)

Note thatφ11 andφ22 can signify strong radial forcing (e.g. by plumes) and horizontal forcing, respectively. For instance, in the
case of strong radial forcing by plumes (ψ11 ≫ ψ33) with kH ≫ kx [see Fig. 2 in Leprovost & Kim (2006)],φ11 will dominate
overφ22. Note further that in the 2D limit withkz = 0 andψ33 = 0,φ22 vanishes.

We discuss some of the important implications of Eqs. (13)–(18). First, all three components of fluctuating velocity amplitude
in Eqs. (13)-(15) are independent ofN, clearly showing that the amplitude of the turbulent flow is not influenced by stable
stratification. The exact level of fluctuations is determined by the characteristics of the external forcing (φi j). We examine this
in the simple 2D limit wherekz = 0 (γ = 1) andψ33 = 0. In this limit, φ22 = 0 in Eqs. (13)–(15) (due to incompressibility),
leading to〈v2

x〉/〈v2
y〉 ∼ 1/a2 = k2

y/k
2
x and〈v2

z 〉 = 0, as should be the case for the incompressible fluid. If the forcing f contains

only gravity modes, the wave number of the forcing would satisfy the local dispersion relationkx = ±ky

√

N2/(ω − U0ky)2 − 1
(here,ω is the frequency of the gravity waves). Furthermore, if these gravity modes are generated by the overturning of fluids in
the convection zone (e.g. Press 1981) withU0 ∼ 0, they would have a strong power at low frequenciesω ≪ N, thereby giving
kx/ky ∼ N/ω ≫ 1, and thus〈v2

x〉/〈v2
y〉 ≪ 1. Note that this is the situation normally considered in theprevious works (e.g. Kim

& MacGregor 2001;2003; Talon, Kumar & Zahn 2002), where the main focus was on the momentum deposition by such gravity
waves due to radiative damping after entering the tachocline from the bottom of the convection zone. In contrast, in thispaper,
the forcingf is not restricted to gravity modes, but is taken to be general, including any form of perturbation with arbitrary values
of kx/ky. For instance, in the case of a strong radial forcing due to plumes withφ11≫ φ22, it is plausible thata = kx/ky ≪ 1 [see
Fig 2 in Leprovost & Kim (2006)], thereby leading to a stronger radial fluctuation than horizontal one, i.e.〈v2

x〉/〈v2
y〉 ≫ 1.

Second, turbulent transport in Eqs. (16)–(18) are stronglyaffected by stratification asN2 increases, in contrast to fluctuation
levels in Eqs. (13)–(15). SinceN ≫ νk2 on reasonable scalesl ≫ 102 cm, the vertical (radial) mixing is severely quenched as
the stratification increases (i.e. asN−2). In comparison, the part of the horizontal (latitudinal) mixing due to the radial forcing
φ11 is reduced proportional toN−2 while the one due to the horizontal forcingφ22 is independent ofN. The comparison of
these two contributions (or alternativelyDxx andDyy) in the case ofφ11 ∼ φ22 gives us a cut-off scalelc ∼

√
ν/N above which

vertical (radial) mixing is strongly reduced compared to the horizontal (latitudinal) mixing. That is, in the presenceof both radial
and horizontal forcings of comparable strength, stable stratification mainly reduces the vertical transport without much effect
on horizontal transport on scalesl > lc. For parameter values typical of the tachoclineν ∼ 102 cm3s−1 andN ∼ 3 × 10−3s−1,
lc ∼ 102cm. Thus, the stratification is very likely to play an important role over a broad range of physically reasonable scales.
Finally, in the limit of strong radial forcing withφ11≫ φ22 anda ∼ 0, the stratification influences both the radial and horizontal
transports to the same degree while the incompressibility rendersDxx

T /Dyy
T ∼ Dxx

T /Dzz
T ∼ 1/a2 ∼ 〈v2

x〉/〈v2
y〉 ≫ 1, with an effectively

more efficient radial transport.
The results discussed above are obtained in the case ofν ∼ D ∼ µ. However, in the solar tachocline, the thermal diffusivity is

much larger than viscosity (µ ∼ 105ν). In fact, this large thermal diffusivity is often considered to reduce the stabilizing effect of
stable stratification via the weakening of the buoyancy restoring force. To elucidate this effect, it is illuminating to consider the
limit of strong thermal diffusion in which case density fluctuation becomes stationary with ∂tρ

′ = N2vx/g− µk2ρ′ = 0 in Eq. (3).
In this limit, by following a similar analysis as previously, we can easily obtain the vertical and horizontal particle diffusivities as
follows:

Dxx ∼
τ f

2α2

∫

d3k
(2π)3

φ11(k)
(γ + a2)2

, (21)

Dyy ∼ τ f

∫

d3k
(2π)3γ2

[

a2φ11(k)
γ2(γ + a2)2

1
2α2
+
β2φ22(k)
(2νk2)2

]

, (22)

whereα = γN2/µk2(γ + a2). Equations (21)-(22) show that the vertical mixing is reduced more than horizontal mixing by a
factor of (νk2)2/α2, being severely inhibited on scales larger than the critical scalelcµ = (µν)1/4/N1/2 ∼ 10lc. Here,lc =

√
ν/N is

the critical scale in the case ofν = µ. Therefore, a strong thermal diffusion weakens the buoyancy effect and makes the effect of
stratification become important on larger scales, comparedto the case of a weak thermal diffusion. This result is thus consistent
with the expectation employed in previous works.

To summarize, a stable stratification can dramatically quench turbulent transport with a more effective mixing in the horizontal
directions orthogonal to the background density gradient.It does not however affect the amplitude of the turbulent flow, which is
found to be of comparable strength in both vertical and horizontal directions (for a temporally short-correlated forcing).
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3. Stratification and shearing

In this section, we study how turbulence and transport are affected by stable stratification in the background of a shear flow by
incorporating a radial differential rotation in the tachocline. The shear flow introduces a non-trivial effect not only on turbulence,
as shown in the previous works (Kim 2005; Leprovost & Kim 2006), but also on gravity waves. Again, we envision that turbulence
is maintained in the tachocline by an external forcing whilegravity waves are excited due to this external forcing in thestably
stratified tachocline. We shall then compute the overall turbulent transport consistently by taking into account the interaction
among turbulence, shear flow and gravity waves, instead of simply assuming a (large) constant value of turbulent viscosity for
mean shear flow (and gravity waves). Note that this treatmentis essential when there is no clear scale separation betweengravity
waves and turbulence, in which case turbulence cannot be considered to give an enhanced value of viscosity for gravity waves
(c.f. Charbonnel & Talon 2005).

For the evolution of fluctuations, we approximate the radialdifferential rotation by a linear shear flow withU0 = −xAŷ.
Here,A is shearing rate which we assume to be positive without loss of generality. As done in the previous papers (Kim 2005;
Leprovost & Kim 2006), to capture the effect of shearing due to radial differential rotation (A ∼ 3× 10−6 s−1 for the tachocline),
which can easily dominate over that of dissipation (A > Dk2 for k < 10−4 cm−1 ∼ 106/H0, whereH0 is the pressure scale height
∼ 6× 109 cm), we use the special Fourier transform for fluctuating quantitiesφ′:

φ′(x, t) =
1

(2π)3

∫

d3kφ̃(k, t) exp{i(kx(t)x + kyy + kzz)} . (23)

Here,kx satisfies an eikonal equation

∂tkx(t) = kyA . (24)

Equation (24) implies thatkx linearly increases in time askx(t) = kx(0) + kyAt, manifesting the main effect of shearing by a
shear flowU0(x)ŷ, i.e., generation of fine scales in thex direction due to tilting and distortion of fluid eddies (e.g.see Burrell
1997; Kim 2004). It is interesting to note that a gravity wavewith an initially positive value ofkx(0) can change its sign after
the time intervalkx(0)/kyA (for ky > 0) due to shearing. Since the local (radial) group velocity of gravity waves is given by
vgx = −k2

ykxN2/k4(ω − U0ky) (e.g., see Kim & MacGregor 2003), the gravity wave thus alters its propagation direction askx

flips its sign. Therefore, a gravity wave which initially propagates downward to the interior from the convection with a negative
vertical group velocity (i.e.vgx < 0) can propagate upwards when the vertical group velocity becomes positive (vgx > 0) due to
shearing.

For parameter values typical of the tachoclineN ∼ 103 s−1 andA ∼ 3 × 10−6 s−1, Ri = N2/A2 ≫ Ric ≃ 1/4, satisfying
stability criterion (Lighthill 1978). We thus assumeRi = N2/A2 ≫ 1 in the remainder of the paper. In this case, the solutions to
Eqs. (1)-(4) can easily be obtained (see Appendix A for details) in the case of unity Prandtl numbersν = µ = D. We then use
these solutions to obtain turbulence level and transport coefficient defined by〈n′vi〉 = −Di j

T∂ jn0 for i = 1, 2 and 3, and momentum
flux 〈vxvy〉 = −νT∂xU0 by using the correlation functions of forcing defined in Eq. (19) (see Appendix A for details):

〈v2
x〉 =

τ f

A

∫

d3k
(2π)3

φ11(k)
2γ3/2

, (25)

〈v2
y〉 =

τ f

A

∫

d3k
(2π)3

[

φ11(k)
2γ5/2

ln ξ +
β2φ22(k)

γ2
G0

]

, (26)

〈v2
z 〉 =

τ f

A

∫

d3k
(2π)3

[

β2φ11(k)
2γ5/2

ln ξ +
φ22(k)
γ2

G0

]

, (27)

Dxx
T =

τ f

2N2

∫

d3k
(2π)3

φ11(k)

γ
√

γ + a2
ξG1 , (28)

Dyy
T =

τ f

2

∫

d3k
(2π)3γ2

[

φ11(k)Γ( 4
3)

2N2γ
√

γ + a2

(

3
2ξ

)
1
3

+
β2φ22(k)Γ( 5

3)

A2

(

3
2ξ

)
2
3
]

, (29)

νT = −
τ f

2

∫

d3k
(2π)3

φ11(k)
γ(γ + a2)

[

1
A2
+

1
12N2(γ + a2)

]

, (30)

whereξ = νk2
y/A; G0 =

1
3Γ (1/3) (3/2ξ)1/3 andG1 =

1
3Γ (2/3) (3/2ξ)2/3. The spectrumφi j in Eqs. (25)–(30) are given by Eqs.

(19), which are related to power spectrum of forcingψi j in Eq. (12) in the incompressible case.
Equations (25)-(30) reveal the following interesting features. Turbulence levels given in Eqs. (25)-(27) are again independent

of stratification, similarly to the case without a shear flow [Eqs. (13)–(15)] while they are reduced for strong shearA. This
indicates that waves and shear flows play different roles in turbulence regulation – waves do not quench fluctuation levels while
shear flows can reduce them through enhanced dissipation viashearing. The turbulence regulation by shearing gives us horizontal
velocity fluctuations in Eqs. (26) and (27) which are effectively higher than vertical one in (25). While a similar tendency was
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also found in the absence of gravity waves (Kim 2005), the exact value of the radio of vertical to horizontal turbulence levels is
not the same. For example,〈v2

x〉/〈v2
y〉 > (ln ξ)−1 due toφ11, which is larger than thatξ1/3 in the unstratified medium (Kim 2005).

This is probably because gravity waves reduce the degree of anisotropy in turbulence level, reminiscent of the reduced anisotropy
due to stratification found in the numerical simulation by Jacobitz, Sarkar & Atta (1997).

Transport properties in Eqs. (28)–(30) however exhibit a very different behaviour, with both vertical and horizontal mixing
being inhibited in a non-trivial manner by strong stratification as well as by shearing. First, the vertical transport isreduced as
Dxx

T ∝ ξ
1/3N−2, becoming small as either stratification or shearing increases. Compared to the case withN = 0 whereDxx

T ∝ A
−2,

the vertical mixing is much more quenched by a factor ofξ1/3(A/N)2 ≪ 1 (recallA/N < 1 by assumption). This is because
shear flow, orthogonal to radial (density gradient) direction, further inhibits the radial transport. Second,Dyy

T is less affected by
stratification since it involves the two parts – the one fromφ11 is proportional toξ−1/3N−2 while the other fromφ22 is independent
of N asA−2ξ−2/3. In the simplest case of a strong radial forcing withφ22 = 0, Dxx

T /Dyy
T ∼ ξ

2/3 ≪ 1, similarly to the case without
stratification. However, in the general case whereφ11 , 0 andφ22 , 0, Dyy

T exhibits a non-trivial, rather complex interplay among
stratification and shear flow in determining the overall transport. To appreciate this, we compare Eq. (29) with the result obtained
without shear flow (17) to find that shear flow enhances the contribution fromφ11 by a factorξ−1/3 ≫ 1 while it reduces the
one fromφ22 by a factor ofξ4/3 ≪ 1. The enhancement of horizontal transport by shear flow (dueto φ11) is probably because
of the enhanced dissipation via distortion and breakup of eddies, which effectively increase the irreversibility, thereby helping
the transport due to gravity waves. In other words, shear flowcan interfere with stratification in transport reduction, effectively
helping horizontal transport (by a factor ofξ−1/3 in this case). On the other hand, shear flow alone reduces the horizontal transport
that is not affected by stratification (i.e. the part fromφ22) by a factor proportional toA−2ξ−2/3. The end result is the enhancement
of the effect of stratification. To see this, we compare the two contributions fromφ11 andφ22 to Dyy

T and obtain a characteristic
scalel∗ = (ν/N)1/2(A/N)5/2 < lc above which the stratification is important, being mainly responsible for quenching transport.
Sincel∗ is smaller than thatlc = (ν/N)1/2 obtained without a shear flow, it indicates that the effect of stratification becomes more
important compared to the case without shear flows. It is alsoworth comparing these two parts contributingDyy

T separately to
those in the case ofN = 0, whereDyy

T ∝ A
−2ξ−2/3 from bothφ11 andφ22. That is, the contribution fromφ11 is further reduced by

a factor of (A/N)2ξ1/3 by stratification, while the one fromφ22 is not affected.
We now examine how the stratification affects the anisotropy in transport. Equations (28) and (29) for a strong radial forcing

with φ11 ≫ φ22 anda ∼ 0 givesDxx
T /Dyy

T ∼ ξ2/3 ≪ 1, which is similar to the result obtained in the unstratifiedcase (Kim
2005). In this case, the anisotropy in the transport is solely caused by shear stabilization. In general, with both forcings with
φ11 ∼ φ22 anda ∼ 1 (i.e. an isotropic forcing),Dxx

T /Dyy
T ∼ (A/N)2ξ ≪ 1, depending on stratification as well as shear. Since

Dxx
T /Dyy

T ∼ (A/N)2ξ ≪ 1 is much smaller thanξ2/3 obtained in the unstratified case (Kim 2005), the anisotropyin transport can
further be enhanced due to stratification. This should be contrasted to the anisotropy in turbulence level.

Finally, Eq. (30) demonstrates one of the most important effects of a stable stratification, which is to drive a system away
from a uniform rotation with a negative eddy viscosity. Recall that in the absence of stratification the eddy viscosity ispositive in
3D while negative in 2D limit (e.g. see Kim 2005). In contrast, the eddy viscosity in Eq. (30) is negative even in 2D limit (β = 0
andγ = 1). This behavior was also found in recent numerical simulation by Miesch (2003) of a stably stratified turbulence with
an imposed shear driven by penetrative convection, and is a generic feature of a strongly stratified medium (i.e. a geophysical
system). This result is also consistent with the previous work on momentum transport due to radiatively damped gravity waves
(e.g. Kim and MacGregor 2001;2003).

4. Discussion and conclusions

We have studied turbulent transport in the stably stratifiedtachocline with a strong radial differential rotation, when turbulence
is driven and maintained by an external forcing (e.g. due to plumes penetrating from the convection zone). Unlike a shearflow
which regulates both turbulence level and transport, a stable stratification is shown to mainly inhibit turbulent transport, leading
to a further reduction in transport compared to the unstratified case (Kim 2005). Specifically, for parameter values typical of
the tachocline (N/A ≫ 1), particle transport due to a strong radial forcing is reduced asξ1/3N−2, becoming much smaller than
horizontal transport (∝ ξ−1/3N−2) by a factor ofξ2/3 ≪ 1. Here,ξ = νk2

y/A ≪ 1 is the small parameter characterizing a strong
shear limit;N andA are the Brunt-Väisälä frequency and shearing rate, respectively. Note that in this caseDxx

T /Dyy
T ∝ ξ2/3

depends only on shearing but not on stratification, indicating that the anisotropy in particle transport is mainly governed by
radial differential rotation. The same scaling was also found in the unstratified case (Kim 2005). However, in the case of an
isotropic forcing withφ11 ∼ φ22 andkx/ky ∼ 1, the horizontal mixing is less reduced withDyy

T ∼ A
−2ξ−2/3 (with no effect of

stratification), leading to a stronger anisotropy in transport with Dxx
T /Dyy

T ∼ (A/N)2ξ ≪ ξ2/3 ≪ 1. Furthermore, the vertical
momentum transport was shown to be anti-diffusive with a negative eddy viscosity. That is, small-scale turbulence influenced by
gravity waves accentuates the gradient in a radial differential rotation rather than makes it uniform. This is similar to the tendency
obtained in the case of momentum deposition by gravity wavesdue to radiative damping (Kim & MacGregor 2001;2003).

Even in the stably stratified radiative interiors of stars aswell as in the tachocline, background turbulence has often been
assumed to be present to enhance the value of effective viscosity. While the clarification of the source of turbulence responsible
for such an enhanced eddy viscosity is an interesting problem, our results demonstrate how this residual turbulence interacts
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with gravity waves and shear flow, providing the prediction for the values of eddy viscosity as well as the particle diffusivity
which depend on physical quantities likeA and N. In particular, the radial particle transportDxx

T ∼ ξ1/3N−2 indicates that
turbulent transport of particles can be inhibited due to stable stratification as well as shear flow. This finding can have interesting
implications for the surface depletion of lithium in the Sunand other stars (i.e., Pinsonneault 1997), and will be studied in a future
publication. Furthermore, if a similar physical process operates in the bulk of the radiative interior of the sun, a negative viscosity
that we obtain implies that a radial differential rotation which is created during its spin-down would not be eliminated, in contrast
to previous suggestions (e.g. Charbonnel & Talon 2005). Note that in these works, turbulence was envisioned to give an enhanced
viscous dissipation of gravity waves as well as mean shear flow, which is valid only when turbulence operates on characteristic
time and spatial scales which are much smaller than those forgravity waves and shear flow. We emphasize again that in the
case where there is no clear scale separation between turbulence and gravity waves, a consistent treatment of interaction among
gravity waves, turbulence and shear flow becomes crucial.

The tachocline is believed to possess a strong toroidal magnetic fields of strength 104 ∼ 105 G, which could have an important
influence on turbulent transport in that region. This is an important problem since the presence of a weak poloidal magnetic field
in the radiative interior together with a strong toroidal magnetic field in the tachocline (acting as a boundary layer between
the radiative interior and convection zone) could offer a mechanism for a uniform rotation in the interior as well as for the
tachocline confinement (Rüdiger & Kichatinov 1996; MacGregor & Charbonneauu 1997; Gough & McIntyre 1998). In this case,
the values of effective diffusivity of magnetic fields as well as eddy viscosity play a crucial role in determining the thickness of
the tachocline. Therefore, a consistent computation of magnetic diffusivity and eddy viscosity with their dependences on physical
quantities such as the strength of magnetic fields, the Brunt-Väisälä frequency, and shearing rate, would be of primary interest.
Furthermore, it is an interesting question, in general, whether a negative eddy viscosity favored in a stably stratifiedmedium
remains as a robust feature in the presence of magnetic field in view of the forward energy cascade (i.e. positive eddy viscosity)
in MHD turbulence. The work addressing this problem is in progress and will be published in a future paper.

Acknowledgements. This work was supported by the UK PPARC grant PP/B501512/1.

Appendix A:

In this Appendix, we show how to derive Eqs. (25)–(30). To this end, we useU0(x)ŷ = −xAŷ andν = µ = D in Eqs. (1)–(4), and
introduceŵ for w = vi, n, p and f defined by

ŵ ≡ w̃ expD(k3
x/3kyA + k2

H t) , (A.1)

wherek2
H = k2

y + k2
z . We then use a new time variableτ = kx/ky +At to rewrite Eqs. (1)–(4) as:

A∂τv̂x = −iτky p̂ − gρ̂ + f̂x , (A.2)

A∂τv̂y −Av̂x = −iky p̂ + f̂y , (A.3)

A∂τv̂z = −ikz p̂ + f̂z , (A.4)

0 = τv̂x + v̂y +
kz

ky
v̂z , (A.5)

A∂τρ̂ =
N2

g
v̂x , (A.6)

A∂τn̂ = −(∂xn0)v̂x . (A.7)

Equations (A.2)–(A.6) can easily be combined to yield the equation forρ̂ as

∂τ[(γ + τ2)∂τρ̂] +
γN2

A2
ρ̂ =

N2

gA2
ĥ1(τ) , (A.8)

whereĥ1(τ) = γ f̂x − τ f̂y − τβ f̂z; γ = 1+ β2 andβ = kz/ky. In the limit of N2/A2 ≫ 1, Eq. (A.8) can be solved with the following

solutions valid up to O(N
−2

):

ρ̂(τ) =
N2
∗

NA
1

(γ + τ2)1/4

∫ τ dτ1

(γ + τ2
1)1/4

sin [ϕ(τ) − ϕ(τ1)]ĥ1(τ1) ,

v̂x(τ) =
1

NA
1

(γ + τ2)5/4

∫ τ dτ1

̟(τ1)(γ + τ2
1)1/4

[

−τ
2

sin [ϕ(τ) − ϕ(τ1)]

+N
√

γ + τ2̟(τ) cos [ϕ(τ) − ϕ(τ1)]

]

ĥ1(τ1) ,
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v̂y(τ) = −
τ

γ
v̂x(τ) +

β2

Aγ
ρ̂(τ) − β

γA

∫ τ

dτ1ĥ2(τ1) ,

v̂z(τ) = −
τβ

γ
v̂x(τ) −

β

Aγ
ρ̂(τ) +

1
γA

∫ τ

dτ1ĥ2(τ1) . (A.9)

Here, againβ = kz/ky, γ = 1+ β2; N2
∗ = N2/gA, N

2
= N2γ/A2;

ĥ1 = (1+ β2) f̂x − τ1 f̂y − τ1β f̂z ,

ĥ2 = −β f̂y + f̂z ,

ϕ(τ) =
Nα
2

ln

√

γ + τ2 + τ
√

γ + τ2 − τ
− 1

8N

τ
√

γ + τ2
,

̟(τ) = α −
1

8N
2

γ

γ + τ2
,

α = 1− 1

8N
2
. (A.10)

By following a similar algebra used in Kim (2005), with the help of correlation function of the forcing given in Eq. (19), we can

obtain the following correlation fictions〈viv j〉 to the leading orders in 1/N
2

andξ = νk2
y/A:

〈v2
x〉 ∼

τ f

2A

∫

d3kdτ

(2π)3

φ11(k)
√

γ + a2

e−2ξQ(τ,a)

(γ + τ2)3/2

[

1+ cos [2(ϕ(τ) − ϕ(a))]
]

,

〈v2
y〉 ∼

τ f

A

∫

d3kdτ
(2π)3

e−2ξQ(τ,a)

[

φ11(k)

2
√

γ + a2

τ2

γ2(γ + τ2)3/2
+
β2φ22(k)

γ2

]

,

〈v2
z 〉 ∼

τ f

A

∫

d3kdτ
(2π)3

e−2ξQ(τ,a)

[

φ11(k)

2
√

γ + a2

τ2β2

γ2(γ + τ2)3/2
+
φ22(k)
γ2

]

,

〈vxvy〉 ∼ −
τ f

AγN
2

∫

d3kdτ
(2π)3

φ11(k)
√

γ + a2̟(a)2

e−2ξQ(τ,a)τ

(γ + τ2)5/2

×
[

−τ
2

sin [ϕ(τ) − ϕ(a)] + N
√

γ + τ2̟(τ) cos [ϕ(τ) − ϕ(a)]

]2

.

(A.11)

Here,a = kx/ky, Q(τ, a) = (γτ + τ3/3)− (γa + a3/3); special symmetriesψi j(ky) = ψi j(−ky) andψi j(kz) = ψi j(−kz) were used.
We then computeτ integrals in Eq. (A.11) in the strong shear limitξ ≪ 1 and use〈vxvy〉 = −νxx

T ∂xU0 = νxx
T A to obtain Eqs.

(25)-(27) and (30).
Next, to compute particle transport, we integrate Eq. (A.7)in time to obtain

ñ(k(t), t) = −∂xn0

∫

dt1d3k1ĝ(k, t; k1, t1)e−DQ(t,t1)ṽx(k1, x, t1) . (A.12)

Here,Q(t, t1) =
∫ t

t1
dt′[k2

x(t
′)+ k2

H ] = [k3
x − k3

1x]/3kyA+ k2
H(t − t1); k2

H = k2
y + k2

z is the amplitude of wave number in the horizontal

plane;k2 = k2
H + k2

x; ĝ is the Green’s function given by

ĝ(k, t; k1, t1) = δ(ky − k1y)δ(kz − k1z)δ
[

kx − k1x − k1y(t − t1)A
]

. (A.13)

A similar analysis using Eqs. (A.9), (A.13), (10)–(12), and(19) and〈nvi〉 = −Di j∂ jn0 gives

Dxx
T =

τ f

2(2π)3A2N
2

∫

d3kdτ
ξφ11(k)e−2ξQ(τ,a)

√

γ + a2
(γ + τ2)1/2 ,

Dyy
T =

τ f

(2π)3A2

∫

d3kdτ
ξe−2ξQ(τ,a)

γ2

















φ11(k)τ2
√

γ + τ2

2N
2 √

γ + a2
+ β2φ22(τ − a)2(γ + τ2)

















.

(A.14)

Finally, the evaluation ofτ integrals in Eq. (A.14) gives us Eqs. (28)–(29) in the main text.
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