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ABSTRACT

2006

“— Aims. To understand the fundamental physical processes impdaatihe evolution of solar rotation and distribution of chieal species, we
provide theoretical predictions for particle mixing andrmrentum transport in the stably stratified tachocline.

Methods. By envisioning that turbulence is driven externally in tlaetocline (e.g. by plume penetration), we compute the andgliof
<" turbulent flow, turbulent particle fiusivities, and eddy viscosity, by incorporating thEeet of a strong radial éierential rotation and stable
(Ol stratification. We identify the dierent roles that the shear flow and stable stratificationiplayrbulence regulation and transport.

1 Results. Particle transport is found to be severely quenched dueatiesstratification as well as radialfidirential rotation, especially in the
radial direction with an @ectively more éicient horizontal transport. The eddy viscosity is showndodme negative for parameter values
typical of the tachocline, suggesting that turbulence éstably stratified tachocline leads to a non-uniform radii@rential rotation. Similar
C results also hold in the radiative interiors of stars, ineyah
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~1. Introduction

6

N Since the formation of the radiative core, which marked tégitining of its journey on the main sequence, the sun haseslow
< down significantly due to the loss of angular momentum frasrsitrface (e.g. see Stix 1989; Schatzman 1993). The angular
[N~ momentum transport must have been veficent during its spin-down in order for the sun to have rotadil profile as observed
OO today (see, e.g. Charbonneau et al 1998). Vigorous turbelénthe convection zone can readily provide a mechanism for
O efficient radial momentum transport, thereby eradicatingatatifferential rotation therein. Such turbulent transport is ésv
O considered to be absent in the stably stratified radiatitezior, which has also spun-down during the solar evolytwasently
CID rotating uniformly at the rate roughly the same as the meanage rotation rate on the solar surface. Whichever mesimani
®) is responsible for momentum transport in the interior (Whtself is an important problem), it should be closely rethto the
(N transport in the tachocline through which the surface sfown is communicated to the interior. Transport in the tatihe
O also plays a crucial role in the overall mixing of light elemt (lithium, beryllium, etc) (see e.g. Schatzman 1993reby
determining the level of their surface abundances on the Buerefore, it is essential to understand physical mechasior
transport in the tachocline and then to formulate a consisteeory starting from first principles based on those psses. This
is particularly true since virtually all the previous thetical modelling heavily relies on a crude parameteriratibtransport
process, which is then adjusted to obtain the agreemenbplihrvations.
We have initiated the development of a consistent theorurifuient transport in the tachocline in the previous papers
taking into account the cruciaffect of the large-scale shear flows, provided by a strong Irddtarential rotation (Kim 2005)
as well as latitudinal dierential rotation (Leprovost & Kim 2006). By envisioningttthe tachocline is perturbed externally, e.qg.
by plumes penetrating from the convection zone (e.g. seadail2000; Brummell, Clune & Toomre 2002; Rogers & Glazmaier
2005), we demonstrated how turbulence level and transperdfected via shearing in a non-trivial manner (see also Burrell
1997; Kim & Diamond 2003; Kim 2004;2006) in a simplified thréenensional (3D) hydrodynamic turbulence. In particular,
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turbulent transport of chemical species and angular mameate shown to become strongly anisotropic witieeively much
more dficient transport in the horizontal (latitudinal) directitiran the vertical (radial) direction due to shear staliiaraby
strong radial shear. The resulting anisotropic momentamstrort was shown to reinforce a strong radial shear (Legta

Kim 2006), with a positive feedback on the confinement of #iehocline (Spiegel & Zahn 1992) while chemical species are
predicted to have latitudinal dependent mixing due to thi@tian of radial shear (Kim 2005).

The purpose of this paper is to investigate how a stableifgtedion in the tachocline modifies the predictions obtdine
in these studies. We again envision that the tachoclinetermally perturbed (e.g. by plumes penetrating from theveotion
zone above), driving a background turbulence, which giisesto turbulent transport ff@cted by shear flow). In the presence
of a stable stratification, the turbulence in the tachocineo longer completely random as the stable stratificatimviges
a restoring force against radial displacement of fluid el@siesupporting the propagation of internal gravity wausglithill
1978). These waves tend to increase the memory of otheransim turbulent fluid motion and can reduce the overall parts
due to turbulence. We shall show that the turbulent trarishee to shear stabilization found in the previous studidariher
enhanced in the presence of stable stratification (gra\aiyes).

It is important to contrast our approach to those adoptedastmrevious works, which focus on the momentum transport
by gravity waves themselves through dissipative procggsgsPlumb 1978; Kim and MacGregor 2001;2003; Talon, Ku&ar
Zahn 2002). For instance, gravity waves are considered geherated in the convection zone (Press 1981) and depesit th
momentum into background shear flow via radiative dampintheg propagate through the tachocline and the interior (Kim
and MacGregor 2001;2003). Relying crucially on radiatiaenging, the momentum transport by gravity waves would occur
on a long time scale. [Recall that the transport by wavesiregjtmmolecular dissipation, and is thus a slow process.]|&ily
weak mixing due to damped gravity waves was also suggestedashanism for a modestly enhanced mixing of light elements
(lithium) [Press & Rybicki 1981; Gara Lopez & Spruit 1991]. In these works, a certain level afkground turbulence could not
be ruled out and was invoked to provide an enhanced visdasitiie evolution of a mean flow (Kim and MacGregor 2001;2003)
and the gravity waves (Charbonnel & Talon 2005; Talon, Ku&atahn 2002). The value of theffective viscosity is often
arbitrarily taken to be a positive constant, being muchdatan molecular viscosity, noffacted by shear flow nor by gravity
waves, or it is simply parameterized.

In this paper, we shall treat turbulence and gravity wavesmmequal footing and consistently compute the values of the
turbulent eddy viscosity and particlefidisivity, by incorporating the féect of a shear flow (provided by a radialférential
rotation) and identify dterent roles that gravity waves and shear flow play in turliutansport. Specifically, we shall show that
unlike shear flows, which reduce both turbulence level amasiport, a stable stratification mainly suppresses tunbtrignsport
without much €ect on turbulence level. We shall further demonstrate thestratification favors a negative eddy viscosity and
thus tends to sharpen the gradient of large-scale shearrfther than smoothing it out. This tendency was also foukdrim&
MacGregor (2001;2003). We note that the elucidation of ffeces of gravity waves is essential for understanding the emtom
transport in the radiative interior as they have often bekeated as a mechanism to explain a uniform rotation inrégion
(e.g. Charbonnel & Talon 2005). Stratified turbulence witthaar flow is also important for the transport in radiativeriiors
andor envelops of stars, in general, as well as in geophysicitsys. In particular, it has actively been studied in gesjay
systems (e.g. see Jacobitz, Sarkar & van Atta 1997; Stacayigvhith, & Burau 1999), where stable stratification wasrahto
inhibit turbulent transport in the direction of a backgrdutensity gradient, leading to the two dimensional (2D) tilehce.

The remainder of the paper is structured as follows. We fingstigate the féect of gravity waves on turbulence in Sect.
2. In Sect. 3, we incorporate th&ect of strong radial dierential rotation and study how the gravity waves modifydkierall
turbulent transport. Section 4 contains the conclusiondisxlissions.

2. Internal Gravity Waves

To simplify the problem, we shall consider incompressihiéflvith local cartesian coordinatesy, andz for radial, azimuthal,
and latitudinal directions, respectively, and use Bolessirapproximation to capture thifext of stratification. We assume that
the fluid is stirred by an external forcing on small scalesingj rise to fluctuations. In the absence of stratificatits fluid
forcing will drive turbulence on small scales and maintaiatia level at which the injected energy is balanced by digiip

in the system. As the stratification increases, the forciilfygenerate not only random turbulent motion but also ceher
(gravity) waves. Alternatively, some of turbulent motioillee turned into packets of gravity waves. Therefore, wasider
both turbulence and gravity waves as fluctuations on scaleshramaller than those associated with mean density or mean
background shear flows. Specifically, we express the totakrdansity = po(X) + o wherepp(X) andp’ are the background
and fluctuating mass densities, respectively; the totalcigl u = Up + v whereUp andv are a large-scale shear flow due to
radial diferential rotation and small-scale fluctuations; the totatiple density of chemical elemenis= ny(x) + n” whereng(x)
andn’ are mean and fluctuating components. Then, the main goygegjnations for fluctuations, p’, andn’, involving both
turbulence and gravity waves, are as follows (see, e.g.,&NMacGregor 2003; Mffatt 1978):

(0 +Up-V)V = -Vp—go'X+vWov +f, (1)
V-v =0, 2)
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_N2

(@ + Up - V)p/ pg Vo + uV% €)

(8 + Up - V)N = —dynovy + DV (4)

Here,v, u andD are molecular viscosity, thermalftlisivity, and particle dtusivity, respectivelyf in Eq. ﬂ.) is the small-scale
forcing driving turbulencep is the constant background density, ad= —g(dx00 + pg/c2)/p is the Brunt-Vaisala frequency,
wherec; is the sound speed. Note that the typical values, of, andD in the tachocline are £@cn?s™, 10’ cns™?, and 10
cnPs™t, respectively.

In this section, we first ignore a background shear flow andystww the turbulence and transport are modified due to stable
stratification in the tachocline. To obtain the overall tlgmt transport, we solve coupled equatidijs [IL)-(4) in seafFourier
transform for fluctuating quantities:

(X, 1) = fd3k<$(k, t) expli(keX + Ky + k2)} . (5)

1
(27)°

In the simplest case of unit Prandtl numbers-(D = u), solutions can easily be found as:

\7x = (6)
¥ = —'i‘vx—— f dtG(t, V)ha(t) @)
v = ——vX+ = f dvG(t, t)a(t), ®)
p = ——— | dt/G(t, t") sinN(t — t')hy(t). 9
5 g\/mft (t, ) sinN(t — )P (t) ©)

Here,N” = yN?/(y + 82); G(t, t') = e”¥(-") is the Green’s functiora = ky/ky, 8 = k/k,, andy = 1+ g2 hy andh; are the
forcing terms which are related fpas

hy = (1+p) - af, - asf;, (10)
ho = —8f, + f,. (11)
For simplicity, we assume the forcing to be homogeneousaeemvith a short correlation timg:

(fi(ke, ta) fi(ka t2)) = 7¢(27)%6(ty — t2)5(ka + Ko)ysij(K2) . (12)

A straightforward algebra by using Eqﬂ (dﬂ(lZ) then givethe following results on turbulence level and partictéudiv-
ities defined byn'v;) = ~D8;no:

(V3 = 75 %%M (13)
R
D¥ = 5 %%[uwl(zvkzﬂ, (16)
7 -] s A B0 |
07 = 11 [ o | AT WO ) a8

Here,W; = 1/((2vk?)2+ (2N)2), W, = 2(2vk?)2/[(2vk2)2 + N'], andWs = 1/(2vk3)%; N > vk? was used to obtain Eq§. {13]15);
k inside the integrals in Eqsm13Ek18) is the wavenumbehefforcing;¢ij(k) (i = 1, 2) is the power spectrum of the forcing
defined by:

(hi(ke, t)hj(Kkz, t2)) = 71(21)%6(ts — t2)5(K1 + k2)ij(Ko) - (19)
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In this paper, we shall consider an incompressible forc¥hgf (= 0) for simplicity, in which case;; in Eq. ) is related tey;;

in Eq. (I2) as:

K* 1
$11 = El/’n,fﬁlz - E(kzkxkzlﬁll + KK ¥13)
1
b2 = E(kikil,bll + KfjWras + 2kekokfvas) (20)

Note thatp11 and¢g»» can signify strong radial forcing (e.g. by plumes) and hamizl forcing, respectively. For instance, in the
case of strong radial forcing by plumeg { > y33) with ky > ks [see Fig. 2 in Leprovost & Kim (2006)}, will dominate
overgy,. Note further that in the 2D limit wittk, = 0 andyz3 = 0, ¢22 vanishes.

We discuss some of the important implications of EE. (@%(First, all three components of fluctuating velocity ditnde
in Egs. )-@5) are independent Nf clearly showing that the amplitude of the turbulent flow & mfluenced by stable
stratification. The exact level of fluctuations is deterndity the characteristics of the external forcigg). We examine this
in the simple 2D limit wheré, = O (y = 1) andysz = 0. In this limit, ¢,, = 0 in Egs. [1B)(15) (due to incompressibility),
leading to(vZ)/(vy) ~ 1/a® = k5/kZ and(vZ) = 0, as should be the case for the incompressible fluid. If theirfg f contains
only gravity modes, the wave number of the forcing woulds§gtihe local dispersion relatioky, = +k, y/N2/(w — Uoky)? — 1
(herew is the frequency of the gravity waves). Furthermore, if thgisavity modes are generated by the overturning of fluids in
the convection zone (e.g. Press 1981) vih~ 0, they would have a strong power at low frequencies N, thereby giving
ke/ky ~ N/w > 1, and thu&vﬁ)/(vf,) < 1. Note that this is the situation normally considered inghevious works (e.g. Kim
& MacGregor 2001;2003; Talon, Kumar & Zahn 2002), where ttamfiocus was on the momentum deposition by such gravity
waves due to radiative damping after entering the tachedtiom the bottom of the convection zone. In contrast, in paiger,
the forcingf is not restricted to gravity modes, but is taken to be genire@luding any form of perturbation with arbitrary values
of ky/ky. For instance, in the case of a strong radial forcing dueumpb withg11 > ¢2», it is plausible that = ky/k, < 1 [see
Fig 2 in Leprovost & Kim (2006)], thereby leading to a strongadial fluctuation than horizontal one, i®%)/(v5) > 1.

Second, turbulent transport in EqE|(1(18) are stroaffiycted by stratification aN? increases, in contrast to fluctuation
levels in Eqs.3)5). Sindd > vk? on reasonable scaléss> 10? cm, the vertical (radial) mixing is severely quenched as
the stratification increases (i.e. Bs?). In comparison, the part of the horizontal (latitudinalixing due to the radial forcing
¢11 is reduced proportional tdl=? while the one due to the horizontal forcimg, is independent oN. The comparison of
these two contributions (or alternativelyx andDyy) in the case ob11 ~ ¢2» gives us a cutb scalel; ~ 1/v/N above which
vertical (radial) mixing is strongly reduced compared t ttorizontal (latitudinal) mixing. That is, in the presendédoth radial
and horizontal forcings of comparable strength, stabliftzation mainly reduces the vertical transport withoutaim efect
on horizontal transport on scales- .. For parameter values typical of the tachocline 10? cmPs™® andN ~ 3 x 1073s?,
lc ~ 10%cm. Thus, the stratification is very likely to play an impartaole over a broad range of physically reasonable scales.
Finally, in the limit of strong radial forcing witkh11 > ¢2, anda ~ 0, the stratification influences both the radial and horiabnt
transports to the same degree while the incompressikﬂlﬁg‘erd)?/D?’ ~ D¥/D¥ ~ 1/a% ~ (vﬁ)/(vf,) > 1, with an dfectively
more dlicient radial transport.

The results discussed above are obtained in the case & ~ u. However, in the solar tachocline, the thermdfusivity is
much larger than viscosity:(~ 10°v). In fact, this large thermal €usivity is often considered to reduce the stabilizifiget of
stable stratification via the weakening of the buoyancyorésg force. To elucidate thisfiect, it is illuminating to consider the
limit of strong thermal ditusion in which case density fluctuation becomes stationéttydp’ = N2vy/g — uk?o’ = 0 in Eq. @).

In this limit, by following a similar analysis as previouslye can easily obtain the vertical and horizontal particfudivities as
follows:

D . Tt ﬂ #11(K)
¥ 202 ) (20)3 (y + @22’
Bk [ a2pra(k) 1 BPoa(k)

i 22
") e [0 s @ T ey | (22)

(21)

Dyy ~

wherea = yN?/uk?(y + a2). Equations@l)@Z) show that the vertical mixing is regldl more than horizontal mixing by a
factor of (/k?)?/a?, being severely inhibited on scales larger than the ctisicalelg, = (uv)Y/4/NY2 ~ 10i.. Herelc = Vv/N is
the critical scale in the case of= u. Therefore, a strong thermalftiision weakens the buoyancffect and makes thefect of
stratification become important on larger scales, comp@aréite case of a weak thermafilision. This result is thus consistent
with the expectation employed in previous works.

To summarize, a stable stratification can dramatically goéurbulent transport with a moré&ective mixing in the horizontal
directions orthogonal to the background density gradiedbes not howeverfiect the amplitude of the turbulent flow, which is
found to be of comparable strength in both vertical and tomtizl directions (for a temporally short-correlated fogj.
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3. Stratification and shearing

In this section, we study how turbulence and transport fiexi®d by stable stratification in the background of a sheuar ilp
incorporating a radial diierential rotation in the tachocline. The shear flow intraskia non-trivial #ect not only on turbulence,
as shown in the previous works (Kim 2005; Leprovost & Kim 2)@&it also on gravity waves. Again, we envision that turbake
is maintained in the tachocline by an external forcing whilavity waves are excited due to this external forcing ingtably
stratified tachocline. We shall then compute the overabiulent transport consistently by taking into account theraction
among turbulence, shear flow and gravity waves, insteadwfigiassuming a (large) constant value of turbulent visgder
mean shear flow (and gravity waves). Note that this treatisergsential when there is no clear scale separation betyvaeity
waves and turbulence, in which case turbulence cannot b&dared to give an enhanced value of viscosity for gravityesa
(c.f. Charbonnel & Talon 2005).

For the evolution of fluctuations, we approximate the radifferential rotation by a linear shear flow withy = —xAY.
Here, A is shearing rate which we assume to be positive without lbgeerality. As done in the previous papers (Kim 2005;
Leprovost & Kim 2006), to capture thefect of shearing due to radialftrential rotationd ~ 3x 1076 s for the tachocline),
which can easily dominate over that of dissipatigh# Dk? for k < 1074 cm™ ~ 10°/Ho, whereHy is the pressure scale height
~ 6 x 10° cm), we use the special Fourier transform for fluctuatinggtias ¢’:

1 ~ .
¢'(x,1) = W fdskqﬁ(k,t) expli(k«(t)x + kyy + k.2)} . (23)
Here ky satisfies an eikonal equation
Atkx(t) = kyA. (24)

Equation ) implies thalt, linearly increases in time ds(t) = k«(0) + kyAt, manifesting the mainfiect of shearing by a
shear flowUg(X)y, i.e., generation of fine scales in thalirection due to tilting and distortion of fluid eddies (esge Burrell
1997; Kim 2004). It is interesting to note that a gravity waviéh an initially positive value ok,(0) can change its sign after
the time intervaky(0)/kyA (for k, > 0) due to shearing. Since the local (radial) group velocitgravity waves is given by
Vgx = —KZkyN?/K*w — Uok,) (e.g., see Kim & MacGregor 2003), the gravity wave thusraltes propagation direction ds
flips its sign. Therefore, a gravity wave which initially pragates downward to the interior from the convection witlegative
vertical group velocity (i.evgx < 0) can propagate upwards when the vertical group velocitpines positivevgy > 0) due to
shearing.

For parameter values typical of the tachocIMe~ 10° st andA ~ 3x 10° s, Ri = N2/ A% > Ri. ~ 1/4, satisfying
stability criterion (Lighthill 1978). We thus assurfe = N2/ A2 > 1 in the remainder of the paper. In this case, the solutions to
Egs. ﬂ.)-ﬂ!l) can easily be obtained (see Appendix A for titai the case of unity Prandtl numbers= 4 = D. We then use
these solutions to obtain turbulence level and transpeffic@ent defined byn’v;) = —D¥6,—n0 fori = 1,2 and 3, and momentum
flux (vxwy) = —v19xUq by using the correlation functions of forcing defined in @)((see Appendix A for details):

Ty d*k ¢11(k)

Vo = = onF 27 (25)

=2 (gjr')‘g["’zl;g‘z) |ng+ﬁ2¢;§(k)eo], (26)

D¥ = o (gj)(s %5&’ (28)

3 B ) o
3

=3 | s |m s )

whereé = vkZ/A; Go = 3T (1/3) (3/28)"° andG; = 1I'(2/3) (3/2£)?/°. The spectrung;; in Eqgs. [2F)-{(30) are given by Egs.
), which are related to power spectrum of forgmgin Eq. ) in the incompressible case.

Equations [(25){(30) reveal the following interesting teas. Turbulence levels given in Eqs.](2b)}(27) are agaiependent
of stratification, similarly to the case without a shear fldgg$. [1B)-{(1]5)] while they are reduced for strong sh@arThis
indicates that waves and shear flows playetdent roles in turbulence regulation — waves do not quenctutition levels while
shear flows can reduce them through enhanced dissipatishe#@ing. The turbulence regulation by shearing gives tizdrdal
velocity fluctuations in EqsIZjZG) anE[Z?) which afEeetively higher than vertical one iﬂZS). While a similandency was
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also found in the absence of gravity waves (Kim 2005), theexalue of the radio of vertical to horizontal turbulencedks is
not the same. For exampl@)/(vZ) > (In¢)™* due tog11, which is larger than thaf'/? in the unstratified medium (Kim 2005).
This is probably because gravity waves reduce the degreesafteopy in turbulence level, reminiscent of the reduagdaropy
due to stratification found in the numerical simulation bgalzitz, Sarkar & Atta (1997).

Transport properties in Eqsl]ZSE(BO) however exhibit iy different behaviour, with both vertical and horizontal mixing
being inhibited in a non-trivial manner by strong stratifioa as well as by shearing. First, the vertical transporeduced as
DIS £Y3N2, becoming small as either stratification or shearing irsgeaCompared to the case with= 0 whereDY* o« A2,
the vertical mixing is much more quenched by a facto£dt(A/N)? < 1 (recallA/N < 1 by assumption). This is because
shear flow, orthogonal to radial (density gradient) dil@etifurther inhibits the radial transport. Secoﬁxﬁ' is less #ected by
stratification since it involves the two parts — the one fegimis proportional taz=*3N~2 while the other fromp,, is independent
of N asA~2¢72/3, In the simplest case of a strong radial forcing with = 0, DX/D¥ ~ £2/3 < 1, similarly to the case without
stratification. However, in the general case whgre+ 0 andg,, # 0, DY exhibits a non-trivial, rather complex interplay among
stratification and shear flow in determining the overall sggort. To appreciate this, we compare Hg| (29) with the tedihined
without shear ﬂow@?) to find that shear flow enhances theritirtion from ¢1; by a factoré~*2 > 1 while it reduces the
one frome¢,, by a factor ofé¥? « 1. The enhancement of horizontal transport by shear flow {@lgg;) is probably because
of the enhanced dissipation via distortion and breakup dfesj which &ectively increase the irreversibility, thereby helping
the transport due to gravity waves. In other words, shear ¢lminterfere with stratification in transport reductiofigetively
helping horizontal transport (by a factor&f3 in this case). On the other hand, shear flow alone reducestimhtal transport
that is not &ected by stratification (i.e. the part frapa,) by a factor proportional tA-24-%/3. The end result is the enhancement
of the dfect of stratification. To see this, we compare the two coutidgns from¢;; andg,, to D?’ry and obtain a characteristic
scalel, = (v/N)Y2(A/N)>? < |, above which the stratification is important, being mainlgpensible for quenching transport.
Sincel, is smaller than thdt = (v/N)Y/? obtained without a shear flow, it indicates that tifieet of stratification becomes more
important compared to the case without shear flows. It is &lsth comparing these two parts contributiﬁﬁ’ separately to
those in the case & = 0, whereDY’ o« A-2¢-2/3 from both¢,, andgo,. That is, the contribution fromgy, is further reduced by
a factor of (A/N)2£Y/3 by stratification, while the one frowy, is not afected.

We now examine how the stratificatioffects the anisotropy in transport. Equati (28) @d (29 &rong radial forcing
with ¢11 > ¢, anda ~ 0 givesD?‘/D¥y ~ ¢® <« 1, which is similar to the result obtained in the unstratifeage (Kim
2005). In this case, the anisotropy in the transport is galalised by shear stabilization. In general, with both fasiwith
¢11 ~ ¢22 anda ~ 1 (i.e. an isotropic forcing)D$>‘/D¥y ~ (A/N)?¢ < 1, depending on stratification as well as shear. Since
DX¥/D¥ ~ (A/N)?¢ < 1 is much smaller thag?/3 obtained in the unstratified case (Kim 2005), the anisotinfisansport can
further be enhanced due to stratification. This should bé&rasted to the anisotropy in turbulence level.

Finally, Eq. ) demonstrates one of the most importdiigices of a stable stratification, which is to drive a systemyawa
from a uniform rotation with a negative eddy viscosity. Rettwat in the absence of stratification the eddy viscosityasitive in
3D while negative in 2D limit (e.g. see Kim 2005). In contrdke eddy viscosity in EqIZBO) is negative even in 2D lingit{ 0
andy = 1). This behavior was also found in recent numerical sinnutdby Miesch (2003) of a stably stratified turbulence with
an imposed shear driven by penetrative convection, and énarig feature of a strongly stratified medium (i.e. a gesjay
system). This result is also consistent with the previouskvem momentum transport due to radiatively damped graviyes
(e.g. Kim and MacGregor 2001;2003).

4. Discussion and conclusions

We have studied turbulent transport in the stably stratifiethocline with a strong radial fiiérential rotation, when turbulence
is driven and maintained by an external forcing (e.g. dudumps penetrating from the convection zone). Unlike a sfiear
which regulates both turbulence level and transport, desthatification is shown to mainly inhibit turbulent tramost, leading
to a further reduction in transport compared to the unéigdticase (Kim 2005). Specifically, for parameter valuesdapof
the tachocline/A > 1), particle transport due to a strong radial forcing is tbast3N-2, becoming much smaller than
horizontal transportof £~ 3N ~2) by a factor 0f¢?/® <« 1. Here¢ = vkI/A < 1 is the small parameter characterizing a strong
shear limit;N and A are the Brunt-Vaisala frequency and shearing rate ectsmly. Note that in this casB?‘/D¥y o &23
depends only on shearing but not on stratification, indicathat the anisotropy in particle transport is mainly goeer by
radial diferential rotation. The same scaling was also found in thératified case (Kim 2005). However, in the case of an
isotropic forcing withg11 ~ ¢22 andky/k, ~ 1, the horizontal mixing is less reduced witf’ ~ A-2£72/3 (with no fect of
stratification), leading to a stronger anisotropy in tramsmvith D¥*/DY ~ (A/N)% < ¢2/* < 1. Furthermore, the vertical
momentum transport was shown to be anfftdiive with a negative eddy viscosity. That is, small-scatbulence influenced by
gravity waves accentuates the gradient in a radi&déntial rotation rather than makes it uniform. This is famio the tendency
obtained in the case of momentum deposition by gravity wduesto radiative damping (Kim & MacGregor 2001;2003).

Even in the stably stratified radiative interiors of starsn&dl as in the tachocline, background turbulence has ofeamb
assumed to be present to enhance the valu€ettese viscosity. While the clarification of the source ofttulence responsible
for such an enhanced eddy viscosity is an interesting pnobbeir results demonstrate how this residual turbulenearasts
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with gravity waves and shear flow, providing the predictionthe values of eddy viscosity as well as the particiugdivity
which depend on physical quantities li& and N. In particular, the radial particle transpddt* ~ £/3N-2 indicates that
turbulent transport of particles can be inhibited due tblstatratification as well as shear flow. This finding can hateresting
implications for the surface depletion of lithium in the Sand other stars (i.e., Pinsonneault 1997), and will be stuigh a future
publication. Furthermore, if a similar physical processtaes in the bulk of the radiative interior of the sun, a tiggaiscosity
that we obtain implies that a radialtérential rotation which is created during its spin-down lgmot be eliminated, in contrast
to previous suggestions (e.g. Charbonnel & Talon 2005)e Mt in these works, turbulence was envisioned to give haresed
viscous dissipation of gravity waves as well as mean shear Wiich is valid only when turbulence operates on charétter
time and spatial scales which are much smaller than thosgrémity waves and shear flow. We emphasize again that in the
case where there is no clear scale separation betweendndauhnd gravity waves, a consistent treatment of interaetinong
gravity waves, turbulence and shear flow becomes crucial.

The tachocline is believed to possess a strong toroidal etagields of strength 10~ 10° G, which could have an important
influence on turbulent transport in that region. This is apontant problem since the presence of a weak poloidal magiedt
in the radiative interior together with a strong toroidalgnatic field in the tachocline (acting as a boundary layewbeh
the radiative interior and convection zone) coulteo a mechanism for a uniform rotation in the interior as weslifar the
tachocline confinement (Rudiger & Kichatinov 1996; Mac@re& Charbonneauu 1997; Gough & Mcintyre 1998). In this case
the values of fiective dtfusivity of magnetic fields as well as eddy viscosity play ac@lrole in determining the thickness of
the tachocline. Therefore, a consistent computation ofraagditfusivity and eddy viscosity with their dependences on ptajsic
quantities such as the strength of magnetic fields, the Bvaigala frequency, and shearing rate, would be of pryniaterest.
Furthermore, it is an interesting question, in general, thivea negative eddy viscosity favored in a stably stratifrestium
remains as a robust feature in the presence of magneticfiieiéw of the forward energy cascade (i.e. positive eddyosiy)
in MHD turbulence. The work addressing this problem is inguess and will be published in a future paper.

Acknowledgements. This work was supported by the UK PPARC granyB%015121.

Appendix A:

In this Appendix, we show how to derive Edfs.](2$)}(30). Ts #nid, we us&lo(X)y = —xAY andv = u = D in Egs. [1){}), and
introducew for w = vi, n, pandf defined by

W = WexpD(K3/3kyA + Kit) (A.1)

wherek? = k2 + k2. We then use a new time variakle= ky/k, + At to rewrite Egs. [{1){{4) as:

Ady = —ithyp—gd + fx, (A.2)
Ay — AV = —ikyp+ Ty, (A.3)
AN, = —ikp+ £y, (A.4)

0 =70+ + ﬁ\A/Z, (A.5)

ky
N2
Adp = va, (A.6)
AN = —(OxNo)Vy . (A.7)

Equations[(A.R){(A]6) can easily be combined to yield theaipn forg as

oL YNZ L N
Oy + )01 + T = (o), (A8)

wherehy(7) = yf, - 7f, — 18f,; ¥ = 1+ 2 andB = ky/k,. In the limit of N2/ A2 > 1, Eq. [A.$) can be solved with the following
solutions valid up to Q7 °):

N2

NA @y +

N _ 1 1 T dry T sintolt) — ot
WO = et | s s e

- 1 T dr ) N
pr) = 72)1/4 f (y+7 %)1/4 sin[p(7) — ¢(r1)]ha(71) ,

Ny + () cos p(r) - go(n)]]ﬁl(n) ,
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. T B . B fT .
U(r) = —=0 Z_p(r) - L | drihy(ra),
y(7) 5 K(T) + yWP(“') VA T1h2(71)
- N . 1 T A
V(1) = —fvx(r) - £,o(‘r) + — f driho(ry) . (A.9)
Y Ay YA

Here, agaifB = ko/k,, y = 1+ 8% N2 = N2/gA, N° = N2y /A%

hy = (1+p%)fx—nuf, — 1181,
hy = —gfy+ f,,
&In Ny+T2+T 1 T

A N P N

1 v
w(t) = a- —,
8N Yy+T
a=1- i (A.10)
8N

By following a similar algebra used in Kim (2005), with thelphef correlatlon function of the forcing given in EcE[lg)evean
obtain the following correlation fiction&v;) to the leading orders |n/1\l and¢ = vkﬁ/ﬂ

Bk K) e %Qxa)
2A (:273; % (s +12)32 [1+ cos[26(7) - ¢())]] .

#11(K) 7? N ﬂ2¢22(k)]

W2 ~ O[T agea

oAl @np 2y + a2 vy + 7?32 ¥
(B ~ Phdr ooral _tuk) T dalk)
’ ﬂ @° 2\y+a v’ (y+)¥ 2 |
Tt (dkdr  gu(k)  e¥Amdr

_ﬂyNZ (27)® \fy + @2w(a)? (v + 72)%2

X —% sin [p(7) — (@] + Ny + 2@ (1) cos fp() ~ ¢(a)]

2

(A.11)

Here,a = ky/ky, Q(r,a) = (y7 + 7°/3) — (ya + a®/3); special symmetriesij(k,) = vij(-ky) andyij(k,) = z//.,( k,) were used.
We then compute integrals in Eq. [(A.Z1) in the strong shear linfiit< 1 and usevyy) = —%9,Ug = vI*A to obtain Egs.

©9)-@1) and[J0).

Next, to compute particle transport, we integrate @(mmne to obtain
A(k(t), t) = —xno f dt; ke g(k, t; k1, t1)e PWY (kq, X, 1) . (A.12)
Here,Q(t, t1) = f dt[KE(t) + k3] = [K§ — k3,1/3KkyA + KE (t — t1); k& = K + kZ is the amplitude of wave number in the horizontal
plane;k® = kZ + k2 g is the Green’s functlon given by
G(K. t k. 11) = 8(Ky — kay)o(k, = kaz) [k — kax — Kay(t = t1)A] . (A.13)

A similar analysis using Eqs_(4.9], (AI13], {10)4(12), afid) and(nv;) = —D;;;no gives
T§¢11(k)e_2fQ(T’a)

Tt
D= — f ok
! 2(27r)3y712N2 Vy+a?
DY _ fdg £e72%Qa) ¢11(k)T Vy + 72
T (Zﬂ)sﬂz fy

N \y + a2
Finally, the evaluation of integrals in Eq.4) gives us EquZdE(29) in the maiat.te

(,y + T2)1/2 ,

+BPoo(T — @)% (y + )| .

(A.14)
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