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Abstract—This paper focuses on a Fuzzy Reasoning 
Classification Method to improve the potential of pattern 
recognition in the automated inspection and classification of 
wooden boards. After the definition of the characteristic 
features, we implement a fuzzy inference mechanism allowing 
to take into account the subjectivity of the human visual 
system. In this article, we have decided to work on the 
distribution and the representation of the Information. In this 
sense, our study speaks about the impact of fuzzification on the 
recognition rates and the structure of our decision module. The 
part concerning the classification mechanism allows ourselves 
to integrate knowledge in the generation of the numeric model. 
This knowledge is enquired at the different field experts thanks 
to the NIAM formalism. The results, which are presented on a 
generic benchmark and real data, show the efficiency of such 
an approach. 

I. INTRODUCTION 
HE aim of the paper herein is to present a novel 
approach of pattern recognition in the field of industrial 

vision system and more precisely, the system used in the 
wood product industry. In fact, the furniture suppliers want 
to improve the wooden products quality which is essentially 
defined by the lack of defects and the color uniformity. In 
general, the defect definition and the color grading 
procedure are highly subjective and require human 
intervention. Thus the decision on the wooden boards 
sorting is linked to the different human operators 
understanding. That’s why, to develop a reliable vision 
system, we need more and more Information on the acquired 
images to obtain a better control of the vision system and of 
the processes in relation with it (sorting, cutting). To study 
the images which are provided by the vision system, we can 
consider another source of Information from human expert 
Knowledge. These data concern rather qualitative 
Information. To summarize, the global framework of this 
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project is to define a modelling and an integrating method, 
which allows, on the one hand, to transform Knowledge into 
Information, on the other hand, to extract Information from 
Numerical Data measured by the system and finally to 
integrate these Information in a same cognitive Information 
referential system. 
 There are lots of methods to identify and classify the 
patterns observed on the acquired images: statistical 
algorithms, neural network, fuzzy logic classifiers … But in 
order to ensure a real-time recognition adapted to our 
subjective problem, we have decided to base our 
developments on the fuzzy logic. In this sense, we present 
here a method using Fuzzy Inference System based on 
linguistic rules. After a short presentation of the framework, 
we explain our methodology of classification by stressing 
the impact of the features fuzzification. Then, we expose 
how the knowledge integration into our classifier structure 
can improve its quality, in term of recognition rate. 

II. FRAMEWORK 
The works here presented take place in a franco-

luxembourger collaboration between the Automatic 
Research Center of Nancy (CRAN) and the LuxScan 
Technologies Company. They concern the development of a 
recognition vision system for defects identification and color 
classification on wooden boards. Defects and colors 
characterization defines Information, which are used to 
estimate the quality of the final products. This quality is 
determined on production lines in real time. Its speed can 
reach 3 to 5 meters per second with a maximum of 200 
defects per meter. Fig. 1 illustrates the functioning principle 
of the vision system. 

In order to improve the reliability, we use a vision system, 
which is made up of two kinds of linear sensors. We use 
them in a combined way or in an independent way to acquire 
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The “high level” part concerns information processing from defect/color 
identification to board optimization. 



 
 

 

the images of wood. On the one hand, we use laser sources 
in order to define the density, the orientation of fibres, the 
red and infrared intensities. On the other hand, we need 
color cameras to identify the defect of coloration and the 
aspect of the boards. These sensors return three components: 
red, green and blue signals. Signals of all sensors are 
sampled at 2 kHz and represented with a 256-level grey-
scale. During the image segmentation, a set of features 
(surface, color, orientation, …) is calculated on the different 
regions to provide a characteristic vector used by the 
recognition step. The works that we present concern only the 
identification module situated in the high level of the 
industrial vision system illustrated by Fig. 1. 

III. IDENTIFICATION METHODOLOGY 

A. State of the art 
In the field of wooden board classification, several kinds 

of sensors are used: cameras, ultrasonic, X-ray [1]. Most of 
classifiers are based on supervised or unsupervised neural 
networks [2]-[4]. In spite of the results exposed in these 
papers, we want to bring a novel approach using tools from 
fuzzy sets [5] and more precisely from fuzzy logic [6]. This 
choice is easily justifiable with three ideas.  

Initially, the defects and the colors that we classify are 
intrinsically fuzzy. By example, it doesn’t exist a strict 
boundary between sound wood and defects. It is the same 
for the wood color. Actually, the features calculated on the 
images are precise but uncertain. Using fuzzy logic allows to 
minimize this effect. Secondly, the output classes of defects 
or colors are not disjointed, they are intrinsically fuzzy. In 
fact, it exists several shades for one wood color. By 
example, for a Red hue, we can detect three different shades: 
light red, medium red and dark red. Finally, the knowledge 
expressed by the experts is often uncertain (a color rather 
brown). That’s why we represent this knowledge in the form 
of fuzzy terms. Moreover, this kind of language could 
improve the human comprehension of the system. We also 
remark that classical logic is not appropriated to represent 
the human visual system. It is too restrictive concerning the 
modelling of linguistic concepts. 
 We have decided to use a method based on the fuzzy set 
theory [5], [7] to reply to these criteria. This theory allows to 
keep the subjectivity notion in the taken decisions. Our 
vision system provides numerical data in the form of a 
characteristic vector. There are lots of methods using 
Approximate Reasoning on numerical data. In our case, 
fuzzy logic concept and especially fuzzy linguistic rules [8] 
are appropriated.  

B. Fuzzy reasoning 
It exits different kinds of rules allowing to define a fuzzy 

inferences engine: conjunctive rules and implicatives rules, 
which put together possibility and anti-gradual rules, and 
certitude and gradual rules. These rules are obtained from 
two ways: either by knowledge given by the expert or by 

learning from a data sample. Our inference mechanism 
activates in parallel a rules base κ. Each rules provides a 
partial conclusion, which has to be unified to give a final 
conclusion. Equation (1) defines the rules base. 

             
1,..., i ii n

R A Bκ
=

= ×U                           (1) 

The union operator must be a conjunction operator (T-
norm: T) if we use implicative rules and a disjunction 
operator (T-Conorm: ⊥) in the case of conjunctive rules [9].  

Two reasoning using fuzzy rules are distinguished: 
deductive reasoning and abductive reasoning. In the first 
case, we want to find Y thanks to X values. In the second 
case, we want to obtain information about the input X 
thanks to knowledge about the output Y. In our case, we 
choose the deductive reasoning because it corresponds to the 
Modus Ponens. Moreover, we have chosen a conjunctive 
reasoning engine because our rules are firstly obtained from 
numerical data [8]; each rule is activated in parallel, and a 
disjunction operator combines intermediate results. So, we 
avoid redundancy in the rules base [9]. The two main 
models using these rules are Mamdani model and Larsen 
model [6].  

C. Fuzzy Reasoning Classifier (F.R.C.) 
Our method allows to obtain automatically fuzzy rules 

according to a data set. Our fuzzy inferences mechanism 
[11], [12] follows the Larsen model because the Product is 
more adapted than the Minimum for the use of several 
premises [10]. We use the iterative method [13], which 
supports the rule with the maximum response. To keep the 
results gradual, we don’t need the boundary refining. 

1) Principle: We implement a supervised classifier. Our 
mechanism generates ‘IF… THEN…” fuzzy rules, which 
characterize the defects and the colors classes. The 
algorithm is decomposed into three parts: the features 
fuzzification, the fuzzy rules generation and the model 
adjustment. Then the obtained set of rules is used to process 
the identification of the “unknown” defects. 

2) Fuzzification of the features: The fuzzification 
consists in parameters decomposition on several terms. 
Generally, the number of terms is empirically chosen, but 
this number has directly an impact on the recognition rates. 
Each part of this decomposition is expressed by a word of 
the natural language to make the link with the linguistic 
variables. By example, the color shade can be “light”, 
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Fig. 2. Intensity level (shade) fuzzification in three terms. 



 
 

 

“medium”, and “dark”. From this decomposition, 
membership functions are described thanks to the analysis of 
samples set used for the numeric model generation. Fig. 2 
gives an example of decomposition.  

The graph illustrates one feature (intensity) represented 
by their three distributed terms on its definition field called 
universe of discourse. It is to be noted that the number of 
decomposition terms defines the rules like the term number, 
the form of the fuzzification curves has an impact on the 
global recognition rates. On Fig. 2, we have represented the 
decomposition following trapezial fuzzification. We have 
made some comparative tests about the fuzzification curves 
and the results are exposed later in this paper. 

3) Linguistic rules generation: This step creates our 
numeric model. The algorithm automatically generates fuzzy 
rules like “IF… THEN…”. This model describes how the 
system perceives the patterns. We use a training sample set 
to create the model. Generally speaking, if we consider two 
parameters in input (Vi and Vi+1) and one output (Zk), the 
fuzzy rule follows the form: 
 

IF Vi is Aj AND IF Vi+1 is Aj+1  
THEN Zk is in the defect class Cn 

 
where Vi and Vi+1 are the input data, Zk is the output data, Aj 
and Aj+1 are the fuzzy subsets and Cn is the class of nth 
pattern. 

In this example, the “AND” operator corresponds to the 
Cartesian product between the two variables Vi and Vi+1. 
This operation is done with the Product T-Norm (2). 

T(x, y) = x * y         (2) 
Then, the fuzzy inference engine is based on the use of 

Maximum/Product composition law. This inference follows 
Larsen’s model [6], which uses a pseudo-implication 
operator represented by the Product. Finally, each rule 
returns a partial conclusion, which is aggregated with the 
others according to a disjunctive fuzzy operator. We use the 
maximum value according to Zadeh to realize this part (3).  

(x, y) = max(x, y)⊥        (3) 
4) Model adjustment: F.R.C. has a model adjustment step 

[13]. This step is realized by the iterative part of the 
algorithm. In fact, it consists to set up the splitting of the 
representation space of the input attributes. This adjustment 
is made according to the results given by the training 
samples set. The process is the following: 

- The algorithm generates a first model. 
- If the classification rate is below a threshold σ 

defined by the user, the iterative part readjusts this 
model. 

The supervised training step must be realized with lots of 
attention by selecting representative samples of each defect 
and color classes. The general principle of the recognition 
module is illustrated with Fig. 3. the basic algorithm 
proposes an add-on refining step. This part allows to 
improve the membership degree of maximum membership 
class by modifying the slope of membership function. In our 

case, we want to keep the gradualities of the answers to 
avoid errors during the defects or colors identification.  

D. Impact of fuzzification on the recognition rate 
As said before, two fuzzification parameters may have an 

impact on the recognition rate. For that, we have realized 
some tests from several data sets: Iris benchmark, Color 
samples and Defect database. The Iris database is an 
international reference to characterize the potential of a 
classifier composed of 150 samples splitting in 3 output 
classes. The results exposed in Table 1 are obtained during 
the training step, i.e. 150 samples used for the model 
generation and the same ones for the recognition step. The 
Color database is compound of a 209-sample set for the 
models generation and a 1105-sample set for the 
generalization of our method. The Defect database is 
composed of 128 defects for the training part and 195 
defects for the generalization part of the model. Notice that 
the Color and Defect databases are industrial samples taken 
from the industrial process. Few samples are used in training 
step because our method needs a small training sample 
(approximately fifteen samples for each class). 

These tests have been made from a single fuzzy 
inferences engine with an equal distribution of the 
fuzzification terms. In this sense, we only use one decision-
making node. We can notice that our methodology gives 
correct recognition rates in comparison to a bayesian 
classifier on Iris database (Table. I).  

1) Influence of the fuzzification term number: The 
number of fuzzification terms has an influence on the rates. 
The best result is obtained for seven and nine fuzzification 
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Fig. 3. Recognition module. 

TABLE  I 
RECOGNITION RATES ON IRIS BENCHMARK 

Fuzzy Method Statistic 
Method 

N° of  
terms 

Trapezial 
curves 

Triangular 
curves 

Gaussian 
curves 

Trapezial + 
Triangular 

curves 

Bayesian 
Classifier 

2 92.0% 92% 88.0% 92.0% 
3 96.7% 96.7% 92.0% 96.7% 
5 96.7% 96.7% 96.7% 96.7% 
7 98.0% 98.0% 98.0% 98.7% 
9 100.0% 100.0% 98.0% 100.0% 

11 96.0% 96.0% 96.0% 96.0% 

96.8% 



 
 

 

terms, but for eleven terms, the over-fuzzification 
phenomenon appears implicating a degradation of the 
recognition rate. Thus, we must adapt the fuzzification to 
our problem. On real data, the general behavior is the same: 
the recognition rate increases with the number of 
fuzzification terms, with an optimum number as shown in 
Table. II and Table. III (5 for the Color database, and 3 or 5 
for the Defect database). Notice that the over-fuzzification 
phenomenon also exists. 

2) Influence of the fuzzification curves: In the Iris 
database case, the simplicity of the database doesn’t allow to 
evaluate the influence of the fuzzification curves on the 
recognition rates. We observe the same conclusions for the 
Color database, because of the characteristic vector 
simplicity (3 attributes). That’s why, we only present the 
results for the triangular case, which gives the “better” 
results (Table. II).  

Contrary to the two previous cases, the complexity of the 
Defect database (9 parameters for the characteristic vector) 
allows to evaluate the influence of the fuzzification curves. 
The results presented in Table. III are the recognition rates 
obtained from four kinds of curves: trapezial curves, 
triangular curves, gaussian curves and trapezial-triangular 
curves. For all these kinds, we have evaluated the 
recognition rate for 6 decompositions: from 2 terms to 11 
terms. In conclusion, we use for our industrial cases, the 
trapezial-triangular distribution with the 3 or 5-terms split. 

IV. TOWARDS AN INTERPRETABLE AND A MOST EFFICIENT 
NUMERIC MODEL: MODELLING AND INTEGRATING EXPERT 

KNOWLEDGE 
To take into account expert knowledge to build our 

numeric model comes from the following observations: to 
improve and to control a system we need the maximum of 
Information about this system. To access to this part of 
Information, we can use two sources: from human expert 
knowledge (expert in process, in products, in standards…) 

who provides a rather qualitative piece of Information on 
the studied system; and from data acquisition directly trough 
the system, which gives a rather quantitative piece of 
Information provided in the form of measures. Linking these 
two sources as well different as complementary must 
contribute to lead to a more complete and coherent 
information modelling, allowing a stronger integration of the 
processes making up the system, and finally to contribute to 
a most efficient numeric model. 

A. General approach 
By referring to the literature, in the concerning field, 

systems which use human expertise and vision expertise, the 
main tendency resides in the building systems based on 
heuristic rules [14]-[16] which describe how the decisional 
system works. However, even if the set of rules seems to 
work, none precision is given on their validation compared 
to the initial knowledge given by the expert. They are thus 
only a-priori informal processes of validation. To avoid 
encountering this problem, we propose to use an approach 
based on a formal validation based on the N.I.A.M. method 
[17]. 

As the knowledge expressed by the expert is under the 
natural language form, the significant interest of this method 
resides in the fact that it relies directly on an expression of 
facts stated in natural language. The resulting information 
model could also be submitted to validation by the expert 
under a comprehensive form, i.e. in Binary Natural 
Language (BNL), which is a transcription of the information 
model also called “paraphrase action”. The method allows 
completing progressively the model by asking to the expert 
precise questions induced by the method, also in natural 
language (for example: does a defect have one or several 
colors?). We thus obtain a model completed by totality and 
uniqueness constraints. The resulting models coming from 
the wood field end the vision field are called “symbolic” 
models. 

The interest of this modelling and integration is to 
determine in a non-empiric way the more efficient 
parameters in input of each node of the FRC identification 
module in relation with the outputs. In other words, choose 
the optimal characteristic vector for each fuzzy inference 
engine. Fig. 4 shows our reflexion process. 

The other interest of the modelling is to determine the 
number of fuzzification terms for each parameter. Instead of 
choosing empirically the number of term (for example, five 
equal terms), we can adapt this number of terms by 
considering expert knowledge. Reducing the number of 
fuzzification terms leads to simplify the numeric model (in 
term of number of rules generated). 

Using the expert knowledge to determine the decisional 
structure of the numeric model and the number of 
fuzzification terms leads to a more interpretable numeric 
model. It allows to check it and validate it by comparing it 
with the initial knowledge used to build it. This part consists 

TABLE III 
RECOGNITION RATES ON DEFECTS SAMPLES IN GENERALIZATION 

Numbers of 
fuzzification 

terms 

Trapezial 
curves 

Triangular 
curves 

Gaussian 
curves 

Trapezial + 
Triangular 

curves 
2 43.6% 19.0% 41.0% 46.7% 
3 73.3% 78.5% 43.1% 57.4% 
5 70.3% 76.9% 74.9% 80.0% 
7 69.7% 75.4% 71.3% 70.8% 
9 63.6% 72.3% 70.8% 74.9% 

11 59.5% 66.2% 70.3% 68.2% 

TABLE II 
RECOGNITION RATES ON COLOR SAMPLES IN GENERALIZATION 

Numbers of 
fuzzification 

terms 

Trapezial 
curves 

Triangular 
curves 

Gaussian 
curves 

Trapezial + 
Triangular 

curves 
2 47.1% 45.3% 41.9% 46.8% 
3 80.9% 79.7% 56.2% 80.1% 
5 84.2% 84.7% 78.9% 82.1% 
7 83.8% 83.2% 78.1% 79.5% 
9 74.2% 78.3% 73.2% 71.5% 

11 73.9% 71.2% 72.9% 70.6% 



 
 

 

in analyzing the set of rules compounding the numeric 
model. To illustrate in a simple way our modelling and 
integrating thought process, we will only consider « sound 
knots family» defects type, that is to say sound knots, small 
sound knots and edge sound knots. 

B.  Symbolic models 
We present in this section an overview of the N.I.A.M. 

method (Nijssen or Natural language Information Analysis 
Method) [17] and the O.R.M. (Object Role Modelling) 
formalism [18], [19] used to model the expert knowledge. 
1) N.I.A.M. method and O.R.M. formalism 

The NIAM method relies on a linguistic text analysis. 
From the expression of observable facts implicating objects, 
this method allows to distinguish non-lexical objects 
(NOLOTs) and lexical objects (LOTs) and the facts, which 
link them together. Fig. 5 illustrates some syntactical 
elements of the NIAM/ORM formalism allowing 
representing these objects and their relations. 

For more information concerning the NIAM method and 
the proposed NIAM/ORM formalism, the reader can refer 
itself to [19]. 
2) Wood field and vision field symbolic models 

To create this model, we ask the wood field expert to 
write a list in a natural language form, as complete as 

possible, of the different defects that can be found in the 
species handled. This expression is sufficient to recognize in 
naked eye any kind of defect in a wood sample.  

Fig. 6 represents the generic model for “knots” defect 
type including totality and uniqueness constraints 
characterizing a generic modelling. 

In order to get this model validated by the expert who 
expressed the knowledge used for its development, we 
transcribe it in Binary Natural Language. The result of this 
transcription is thus a text that is closed to natural language, 
which does not impose to the expert any particular 
knowledge about the modelling method. Here is the text 
submitted to the expert for validation: 
Each Defect is characterized by one and only one Shape. 
Each Shape characterizes one or several Defects. Each 
Defect is characterized by one and only one Color. Each 

Color characterizes one or several Defects. A Defect is 

Wood Field Expert
Knowledge

Vision Field Expert
Knowledge

Knowledge extraction with
the N.I.A.M. method

Knowledge extraction with
the N.I.A.M. method

Defect
(type)

{  'sound knot',
  'small sound knot',
  'edge sound knot'  }

is characterized by characterizes

is characterized by characterizes

is characterized by characterizes

Shape
(id shape)

{  'round',
  'oval'  }

Color
(id color)

{  'brown'  }

Size
(id size)

{  'small'  }

Position
(id position)

{  'edge of board'  }

is characterized by characterizes

Wood expert model in
O.R.M. formalism
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{  'black knot',
  'ring knot',
  'sound knot'  }

Defec t
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is charac -
-terized by

charac terizes

is charac -
-terized by

characte rizes

is charac -
-terized by

characterizes

R ing
(id ring)

{  'r ing'  }

Color
( id color)

{   'black',
  'brow n'  }

Shape
(id shape )

{  'round',
  'oval'  }

is charac -
-terized by

characterizes

param 1
(number)

is charac -
-terized by

characterizes

is charac -
-terized by

characte rizes

is charac -
-terized by

characterizes

is charac -
-terized b y

characterizes
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(number)

param 3
(number)

param 4
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param 5
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• • • 

… … … … 

Wood 

Vision 

Extended symbolic model

Linking the two domains

Defect
(type)

{  'sound knot',
  'small sound knot',
  'edge sound knot'  }

is characterized by characterizes

is characterized by characterizes

is characterized by characterizes

Shape
(id shape)

{  'round',
  'oval'  }

Color
(id color)

{  'brown'  }

Size
(id size)

{  'small'  }

Position
(id position)

{  'edge of board'  }

is characterized by characterizes

Wood expert model in
O.R.M. formalism

Fuzzy Inference
System 1

defect class to
recognize

FIS 2 FIS 3

...
...

... ... ...

Attribute 1

Attribute 2

Identification Module

definesdefines

defines

Characteristic
vector  1

Characteristic
vector 2

Characteristic
vector  1

Fig. 4.  Principle of the adopted method. 

Person has is of Name

{  'Paul' ,
  'John',
  '...'  }

Uniqueness constraint NOLOT LOT 

Totality constraint 

Each Person has one and only one Name.  
 
Totality constraint      Uniqueness constraint 

A Name is of one or several Person.  
 
No Totality constraint  No Uniqueness constraint

LOT/NOLOT 
notation    

And its 
equivalent 

Person has is of Height

Person
(Height)

Fig. 5.  The ORM formalism explained by an example. 
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Shape
(id shape)

{  'round',
  'oval'  }
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{  'brow n'  }

Size
(id size)

{  'small'  }

Position
(id position)

{  'edge of b

is charac terized by characterizes

Fig. 6.  Generic model of the sound knot “family”. 



 
 

 

characterized by one and only one Size. Each Size 
characterizes one and only one Defect. A Defect is 
characterized by one and only one Position. Each Position 
characterizes one and only one Defect. 

The second model build concerns the field of expert 
vision. As done for “wood expert” symbolic model, we 
register the vision expert knowledge. This knowledge is 
about the defects identification system and more precisely 
on the parameters useful to quantify the characteristics of 
the defect to recognize. We apply the same principle than 
the one used for the wood expert symbolic model. We thus 
obtain a characterization of all the defects encountered in a 
vision parameter point of view.  

Fig. 7 represents a partial formalization of the brown 
color concept with a vision point of view. 

For instance, using this model, we are able to represent 
the following fact, by considering that a brown color is 
defined by other parameters than brown pixel number: a 
precise color is characterized by a unique brown pixel 
number. But the opposite is not true. To a given brown pixel 
number can correspond several brown colors. 

We do the same for Shape, the Size and the Position 
characteristics. Notice that for confidential reasons we could 
not expose entirely the expert knowledge models. That is 
why just only some of the used parameters for each 
characteristic will be presented.  

C. Knowledge integration method  
The expert knowledge integration is done by linking 

expert knowledge from the two fields, i.e. wood field and 
vision field. 

The process used to link these two domains consists in 
integrating the symbolic models. The resulting model is 
what we call an “extended” symbolic model. Fig. 8 
illustrates a part of this model. For confidential reasons, we 
don’t expose the vision parameters report to the different 
wood field concepts.  

This model allows firstly to determine the most efficient 
parameters in input of each node compounding the numeric 
model and secondly to choose the most adapted fuzzification 
for each one of these parameters. Concerning the adapted 
fuzzification, let us consider for instance the Size wood 
concept and the reported vision parameters. For the wood 
expert, the Size can be small, medium or large. This leads to 
a 3-terms fuzzification for the parameters associated to the 
Size concept. Concerning the most efficient parameters to 
use in input of the nodes, the “extended” symbolic model 
allows to choose the best characteristic vector for each node. 

For the three examples of defects used to build the symbolic 

models (sound knot, small sound and edge sound knot), we 
can remark that the common characteristics are the Shape 
and the Color. Indeed, as the defects are all knots, their 
shape is thus similar and as they take part of the “sound knot 

family”, their color is also similar. Thus only the Position 
and the Size characteristics are discriminating in their 
identification. The characteristic vector is thus compound 
only with the Size and Position vision parameters. Notice 
that the Color and the Shape concepts are used above in the 
tree structure of the model. They correspond to the two 
previous node of the structure, which allow to identify 
rounded defects from elongated defects and the different 
types of knot (ring, black and sound). Fig. 9 represents a 
part of the “arborescent” structure of the numeric model so 
built and more precisely the inference engine identifying the 
three defects taken as example. 

D. Numeric model interpretation 
The main interest of this integration by a Fuzzy Inference 

System based on a fuzzy linguistic rules system is the 
possibility of linguistically interpreting each inference of the 
model. It is thus possible to understand the numeric model 
behavior and check that expert knowledge was well 
integrated in the model and that there is coherence between 

the input model data and the knowledge used to build it. A 
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difference between data and knowledge can mean that used 
data are not really representative of the field or that expert 
knowledge initially expressed is neither sufficient nor 
complete. 

This stage consists in interpreting the rule base obtained 
after the learning stage. To do that, we propose to use the 
matrix generated from the data sample in order to interpret 
the identification mechanism. This matrix is the numeric 
translation of fuzzy linguistic rules. It is composed as 
following: 

- columns represent the parameters in input of the node,  
- lines represent the rules. 
To each premiss is associated a number which can be 0, 1 

or 2 in function of the number of fuzzification terms 
(“small”, “medium”, “large”) used for the considered 
linguistic variable. To each fuzzy rule are associated a defect 
class (CS) and a confidence degree (CF) conferred to the 
rule.  

For instance, in the matrix generated for the node Node_n 
illustrated by Fig. 9, we obtain 16 fuzzy rules shown in 
Table. IV. 

The matrix interpretation will be done with two aims. The 
first one is to improve the recognition rate of our method. 
For that, we propose to exclude the rules which are not 
discriminating for the defect or color identification. 
Different methods exist for that [9], [10]. We will use the 
CF confident coefficient calculated in the method and just 
exclude rules with CF coefficient strictly equal to zero. The 
second aim is to check if the components used to build the 
characteristic vector in relation with the knowledge are 
relevant. In the contrary case, the result of this part could be 
a questioning of knowledge models. An expert can have a 
subjective idea on the necessity of a parameter, which could 
be in reality not very relevant. 

In Table. IV, we can remark for the rules 3 and 4 that the 
variation of the first parameter (parameter belonging to the 
Size concept) from the “0” value (corresponding to “small”) 
to the “1” value (corresponding to “medium”) does not 
influence the recognized defect class (defect class 2). By 
analyzing the matrix, on 16 rules, 13 underline the same 
behaviour (variation from “0” to “1”, or from “1” to “2”). 
We thus can wonder if this parameter is relevant to identify 
these three defects. To check it, we decide to create a new 
numeric model without the first parameter in input of this 

node. By deleting this parameter, instead of 16 rules, the 
resulting model is compound of 5 rules. The result obtained 
is given in Table. V (model 6).  

The other interest of this interpretation is that we can 
refine the vision expert knowledge by deleting this 
parameter from the list of parameters characterizing the Size 
of a defect. This method is not yet automated but our 
purpose is to demonstrate the potentiality of the 
interpretation in obtaining a most efficient numeric model. 

E. Results 
We have tested three numeric models. The first one is 

directly derived from the LuxScan Technologies Company 
and is currently utilized by the company. The second one is 
the Single Inference (SI model) which does not take into 
account expert knowledge. The third one is the Arborescent 
Inference Structure (AIS model) with expert knowledge 
integration to take into account the industrial time 
processing constraint. And finally, the AIS model 
interpreted, i.e. the same model than the one used for the 
AIS model but without one of the Size parameter, which 
seems to be useless. 

Moreover, we have tested two different types of 
fuzzification to analyze its influence on the recognition rate: 
an equal distributed fuzzification with an equal splitting of 
the representation space of each variable in 3 terms; a non-
equal distributed fuzzification with a splitting in 2 or 3 
terms according to expert knowledge. 

Table. V summarizes the results obtained with two 
methods. These tests were led on the Defect database (see 
section 3.d.). 

The main conclusions from these tests are the following. 
Firstly, in term of identification rate, the fuzzy method gives 
better results than the Point method. In all cases tested, the 
worst result given by the fuzzy method is better than the 
Point method. 

Secondly, by only considering the results given for the 
different fuzzifications and the different models, we can see 
that the better result is given with an “interpreted” 
arborescent model with a representation space cutting, done 
in function of expert knowledge (what we call a non-equal 
distribution). This “interpreted” model is better in term of 
recognition rate, because deleting a non-discriminating 
parameter allows to delete ambiguous rules in the model; 

TABLE V 
COMPARED RECOGNITION RATES: KNOWLEDGE INTEGRATION VS NO 

KNOWLEDGE INTEGRATION 

Method Model Recognition 
rate 

Point method 1: Statistic 68.8% 
Fuzzy method 2: SI with equal distribution 69.7% 

 3: AIS with equal distribution 73.7% 
 4: SI with non-equal distribution 77.4% 
 5: AIS with non-equal distribution 83.6% 
 6: AIS interpreted with non-equal 

distribution 
85.7% 

TABLE IV 
EXTRACT OF THE MATRIX GENERATED BY THE NODE_N 

Param_0 Param_1 Param_2 Param_3 CS CF 

0 0 0 0 1 0.427722 
1 0 0 0 0 0.730454 
0 1 0 1 2 1.000000 
1 0 0 1 2 1.000000 
… … … … … … 

Param_0 to Param_3 represents the premises 
CS the number of the defect class recognized 
CF the confidence degree associated to the rule 



 
 

 

rules which lead to misclassifications. These results confirm 
our choice of using and integrating expert knowledge to 
build our numeric model and to specify the number of 
fuzzification terms for each parameter. 

V. CONCLUSION 
In this paper, we presented a Fuzzy Inference System 

based on fuzzy linguistic rules applied to industrial wood 
problems, i.e. wood color recognition and wood defects 
identification. Through this article, we shown the influence 
of the fuzzification curves and the number of fuzzification 
terms on the final recognition rate. Moreover, we show that 
integrating expert knowledge to enhance our decision-
making system and interpreting the fuzzy rule base 
generated improves in a significant way the obtained results. 

We notice that this Fuzzy Reasoning Classifier is 
currently implemented in the industrial software 
environment of the Company and is fully operational in a 
real wood production line. 

Future works concern the improvement of the decision-
making model from three points of view. Firstly, we want to 
improve the “arborescent” structure, currently built 
empirically, by integrating knowledge allowing to build the 
tree structure, i.e. allowing to define the link between the 
different inference engines compounding the model. This 
knowledge concerns hierarchy between defect attributes, 
that is to say the attributes order of importance to identify a 
defect. Secondly, we work to enhance the fuzzification step 
by defining an “automatic” fuzzification, i.e. a fuzzification 
which takes into account knowledge from the expert and 
data from the learning sample. Thirdly, we want to improve 
the expert knowledge modelling, and by the same, the expert 
knowledge integration by following the study on Fuzzy 
NIAM [20] initiated by M. Zgorzelski and Z. Zalewski. 
From the rough concepts expressed in this study, we want to 
refine them to propose a real applicable frame for this 
extension, and to apply it to our problem. Indeed, we have 
already introduced the notion of fuzzy values domain in our 
work but we want to go further by putting the imprecision 
and uncertainty notions in place in our extension. 
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