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Abstract

Let Ω be a bounded C2,α domain in R
n (n ≥ 1, 0 < α < 1), Ω∗ be the open

Euclidean ball centered at 0 having the same Lebesgue measure as Ω, τ ≥ 0 and
v ∈ L∞(Ω, Rn) with ‖v‖∞ ≤ τ . If λ1(Ω, τ) denotes the principal eigenvalue of
the operator −∆ + v · ∇ in Ω with Dirichlet boundary condition, we establish that
λ1(Ω, v) ≥ λ1(Ω

∗, τer) where er(x) = x/ |x|. Moreover, equality holds only when, up
to translation, Ω = Ω∗ and v = τer. This result can be viewed as an isoperimetric
inequality for the first eigenvalue of the Dirichlet Laplacian with drift. It generalizes
the celebrated Rayleigh-Faber-Krahn inequality for the first eigenvalue of the Dirichlet
Laplacian.

1 Introduction and main results

Throughout all the paper, n ≥ 1 denotes an integer in N
∗ = N\{0}. By “domain”, we

mean an open connected subset of R
n, and we denote by C the set of all bounded domains

of R
n which are of class C2,α for some 0 < α < 1. For any measurable subset A ⊂ R

n,
|A| stands for the standard n-dimensional Lebesgue measure of A. Throughout the paper,
Bn
r denotes the open Euclidean ball of R

n with center 0 and radius r > 0, and we set
αn = |Bn

1 | = πn/2/Γ(n/2 + 1). For Ω ∈ C, we define Ω∗ as the ball Bn
(|Ω|/αn)1/n having the

same measure as Ω. Finally, if Ω ∈ C and v : Ω → R
n is measurable, |v| will denote the

Euclidean norm of v, and we say that v ∈ L∞(Ω,Rn) if |v| ∈ L∞, and write (somewhat
abusively) ‖v‖∞ instead of ‖ |v| ‖L∞(Ω).

If λ1(Ω) denotes the first eigenvalue of the Laplace operator −∆ with Dirichlet boundary
condition (Dirichlet Laplacian), in an open bounded smooth set Ω ⊂ R

n, it is well-known
that λ1(Ω) ≥ λ1(Ω

∗) and that the inequality is strict unless Ω is a ball. Since λ1(Ω
∗) can

be explicitly computed, this result provides the classical Rayleigh-Faber-Krahn inequality,
which states that

λ1(Ω) ≥ |Ω|−2/nα2/n
n j2

n/2−1,1, (1.1)
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where jm,1 the first positive zero of the Bessel function Jm. Moreover, equality in (1.1) is
attained if and only if Ω is a ball. This result was first conjectured by Rayleigh (1894/1896)
for n = 2 ([34] vol. I, pp. 339-345), and proved independently by Faber ([16], 1923) and
Krahn ([23], 1925) for n = 2, and by Krahn for all n in [24] (1926; see [25] for the English
translation).

Many other optimization results for the eigenvalues of the Dirichlet Laplacian have been
proved. For instance, the minimum of λ2(Ω) among open bounded sets Ω ⊂ R

n with given
Lebesgue measure is achieved by the union of two identical balls (this result is attributed
to Szegö, see [31]). Very few things seem to be known about optimization problems for the
other eigenvalues, see [14, 19, 31, 32, 39].

Various optimization results are known about functions of the eigenvalues. For instance,
the Payne-Pólya-Weinberger conjecture (see [30]) on the ratio of the first two eigenvalues
was proved by Ashbaugh and Benguria ([2]), in any dimension n: namely, for any bounded
domain Ω ⊂ R

n, λ2(Ω)/λ1(Ω) ≤ λ2(Ω
∗)/λ1(Ω

∗), and the equality is attained only when Ω is
a ball. The same result was also extended in [2] for elliptic operators in divergence form with
definite weight. We also refer to [3, 4, 6, 9, 15, 21, 22, 26, 27, 30, 32] for further bounds or
other optimization results for some eigenvalues or some functions of the eigenvalues in fixed
or varying domains.

Other boundary conditions may also be considered. For instance, if µ2(Ω) is the first
non-trivial eigenvalue of the Laplacian under Neumann boundary condition, µ2(Ω) ≤ µ2(Ω

∗)
and the equality is attained only when Ω is a ball (see [36] in dimension n = 2, and [38] in
any dimension). Bounds or optimization results for other eigenvalues of the Laplacian under
Neumann boundary condition ([30, 32, 36, 38], see also [7] for inhomogeneous problems), for
Robin boundary condition ([12]) or for the Stekloff eigenvalue problem ([13]) have also been
established.

We also mention another Rayleigh conjecture for the lowest eigenvalue of the clamped
plate. If Ω is a smooth bounded open subset of R

2, denote by Λ1(Ω) the lowest eigenvalue
of the operator ∆2, so that ∆2u1 = Λ1(Ω)u1 in Ω with u1 = |∇u1| = 0 on ∂Ω and u1 > 0
in Ω. The second author proved in [28] that Λ1(Ω) ≥ Λ1(Ω

∗) and that equality holds only
when Ω is a ball (disk, in dimension 2). The analogous result was also established in R

3 in
[5], whereas the problem is still open in higher dimensions.

Very nice and much more complete surveys of all these topics and additional results can
be found in [8, 19, 29] and the references therein.

All above problems concern self-adjoint operators. In the present paper, we focus on
optimization problems for the first eigenvalue of the non-self-adjoint Laplace operator with
a drift under Dirichlet boundary condition.

For any domain Ω ∈ C, for any v ∈ L∞(Ω,Rn), we call λ1(Ω, v) the first eigenvalue
of L = −∆ + v · ∇ with Dirichlet boundary condition on ∂Ω, and ϕΩ,v the corresponding
(unique) positive eigenfunction with L∞-norm equal to 1. In the sequel, ϕΩ,v will be denoted
by ϕ when the context makes clear what Ω and v are. Recall that the maximum principle
holds for L, and, as a consequence, λ1(Ω, v) > 0 (see [11]). One has







−∆ϕ + v · ∇ϕ = λ1(Ω, v)ϕ in Ω,

ϕ > 0 in Ω, ϕ = 0 on ∂Ω, ‖ϕ‖L∞(Ω) = 1.
(1.2)
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Moreover, by standard elliptic estimates (see [1, 18]), ϕ ∈ W 2,p(Ω) for all 1 ≤ p < +∞,
whence, up to the choice of the continuous representant in the class of ϕ, ϕ ∈ C1,β(Ω) for all
0 ≤ β < 1. Recall also that if λ is any eigenvalue for the operator L, then either λ = λ1(Ω, v)
or Re(λ) > λ1(Ω, v), and that, if ψ is any positive eigenfunction in Ω for L corresponding to
the eigenvalue λ, then actually λ = λ1(Ω, v) and ψ and ϕ are proportional (see [11] again).

For all x 6= 0, set

er(x) =
x

|x| .

Our main result is the following one:

Theorem 1.1 For any dimension n ≥ 1, any Ω ∈ C, any τ ≥ 0 and any v ∈ L∞(Ω,Rn)
satisfying ‖v‖∞ ≤ τ ,

λ1(Ω, v) ≥ λ1(Ω
∗, τer). (1.3)

Moreover, equality holds only when, up to translation, Ω = Ω∗ and v = τer, namely when
there exists x0 ∈ R

n such that (Ω, v) = (x0 + Ω∗, τer(· − x0)).

Theorem 1.1 can then be viewed as a natural extension of the first Rayleigh conjecture
to the Dirichlet Laplacian with drift in any dimension n.

A rough parabolic interpretation of Theorem 1.1 can be the following one: consider the
evolution equation ut = ∆u − v · ∇u in Ω, for t > 0, with Dirichlet boundary condition
on ∂Ω, and with an initial datum at t = 0. Roughly speaking, minimizing λ1(Ω, v) (with
given |Ω| and with ‖v‖∞ ≤ τ can be interpreted as looking for the slowest exponential
time-decay of the solution u. The best way to do that is to try to minimize the boundary
effects, namely to have the domain as round as possible, and it is not unreasonable to say
that the vector field −v should as much as possible point inwards the domain to avoid the
drift towards the boundary. Of course diffusion, boundary losses and transport phenomena
take place simultaneously, but these heuristic arguments tend to lead to the optimal couple
(Ω,−v) = (Ω∗,−τer) (up to translation).

As a corollary of Theorem 1.1, we obtain the following Faber-Krahn type inequality for the
Dirichlet Laplacian with drift, which extends the classical Rayleigh-Faber-Krahn inequality
for the Dirichlet Laplacian. Namely we get a lower bound for λ1(Ω, v), which depends only
on |Ω| and ‖v‖∞:

Corollary 1.2 For each n ≥ 1, there exists a function Fn : (0,+∞) × [0,+∞) → (0,+∞),
defined by Fn(m, τ) = λ1(B

n
(m/αn)1/n , τer) such that, for any domain Ω ∈ C and any v ∈

L∞(Ω,Rn),
λ1(Ω, v) ≥ Fn(|Ω|, ‖v‖∞) (1.4)

and equality holds if and only if, up to translation, Ω = Ω∗ and v = ‖v‖∞er.

Remark 1.3 For fixed n ∈ N
∗, m > 0 and τ ≥ 0, inequality (1.3) of Theorem 1.1 may

be reformulated in the following way: inf
Ω∈C, |Ω|=m, ‖v‖∞≤τ

λ1(Ω, v) = λ1(B, τer), where B =

3



Bn
(m/αn)1/n . Since λ1 (Ω′, v|Ω′) > λ1(Ω, v) for all Ω, Ω′ ∈ C, Ω′ ⊂

6=
Ω and v ∈ L∞(Ω,Rn) (see

[11]), Theorem 1.1 yields at once

inf
Ω∈C, |Ω|≤m, ‖v‖∞≤τ

λ1(Ω, v) = λ1(B, τer),

and the infimum is reached for and only for Ω = B and v = τer (up to translation).
The above inequalities (1.3) and (1.4) can also be generalized to more general open sets

Ω. First, one has inf
Ω∈C′, |Ω|≤m, ‖v‖∞≤τ

λ1(Ω, v) = λ1(B, τer), where C′ denotes the set of all

open bounded subsets Ω of R
n of class C2,α for some 0 < α < 1, with finite number (maybe

not reduced to 1) of connected components (for Ω ∈ C′ and v ∈ L∞(Ω,Rn), λ1(Ω, v) is
the minimum, over k, of the eigenvalues λ1(Ωk, v|Ωk

), where the Ωk’s are the connected
components of Ω). Thus, inequalities (1.3) and (1.4) hold for Ω ∈ C′ and the case of equality
holds only if, up to translation, Ω = B and v = τer.

Furthermore, for non-smooth and possibly unbounded Ω with finite measure, following
[11], one can still define λ1(Ω, v), as λ1(Ω, v) = inf

Ω′⊂Ω, Ω′∈C′
λ1(Ω

′, v|Ω′). Since Fn(m, τ) is

decreasing in both m > 0 and τ ≥ 0 (see Remark 2.8), inequalities (1.3) and (1.4) still hold.

Remark 1.4 Let us now discuss the behavior of Fn(m, τ) for large τ (see Section 4.1 for
details). First, for all m > 0, τ−2eτm/2F1(m, τ) → 1 as τ + ∞, and one even has

∃ C(m) ≥ 0, ∃ τ0 ≥ 0, ∀ τ ≥ τ0, |τ−2eτm/2F1(m, τ) − 1| ≤ C(m)τe−τm/2. (1.5)

Moreover, for all n ≥ 2 and m > 0, Fn(m, τ) > F1(2(m/αn)
1/n, τ) for all τ ≥ 0, and

−τ−1 logFn(m, τ) → m1/nα−1/n
n as τ → +∞. (1.6)

In [17], with probabilistic arguments, Friedman proved some lower and upper logarithmic
estimates, as ε → 0+, for the first eigenvalue of general elliptic operators −aijε2∂ij+bi∂i with
C1 drifts −b = −(b1, . . . , bn) pointing inwards on the boundary. Apart from the fact that
the vector field er is not C1 at the origin, the general result of Friedman would imply the
asymptotics (1.6) for logFn(m, τ) = log λ1(B

n
(m/αn)1/n , τer). For the sake of completeness, we

give in Appendix (Section 4.1) a proof of (1.6) with elementary analytic arguments. There,
we also prove the precise equivalent of F1(m, τ) for large τ . However, giving an equivalent
for Fn(m, τ) when τ is large and n ≥ 2 is an open question.

The first step in the proof of Theorem 1.1, which has its own interest, is the optimization
of λ1(Ω, v) when Ω is a fixed domain and the L∞ norm of v is controlled. Namely, for any
τ ≥ 0, set

λ(Ω, τ) = inf
‖v‖∞≤τ

λ1(Ω, v) and λ(Ω, τ) = sup
‖v‖∞≤τ

λ1(Ω, v).

It turns out that this optimization problem also has a unique solution:

Theorem 1.5 Let Ω be a domain in C (of class C2,α for some 0 < α < 1) and let τ ≥ 0 be
fixed.
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(a) There exists a unique vector field v ∈ L∞(Ω) with ‖v‖∞ ≤ τ such that λ(Ω, τ) =
λ1(Ω, v) (> 0), and this field satisfies |v(x)| = τ almost everywhere in Ω. Moreover,
the corresponding principal eigenfunction ϕ = ϕΩ,v is of class C2,α(Ω) and v · ∇ϕ =

−τ
∣
∣∇ϕ

∣
∣ almost everywhere in Ω. The function ϕ is then a solution of the following

nonlinear problem
−∆ϕ− τ

∣
∣∇ϕ

∣
∣ = λ(Ω, τ)ϕ in Ω. (1.7)

Moreover, if ψ is a function of class C2,α(Ω) such that ψ > 0 in Ω, ψ = 0 on ∂Ω,
‖ψ‖∞ = 1 and if µ ∈ R is such that (1.7) holds with ψ and µ instead of ϕ and λ(Ω, τ),
then ψ = ϕ and µ = λ(Ω, τ).

(b) There exists a unique vector field v ∈ L∞(Ω) with ‖v‖∞ ≤ τ such that λ(Ω, τ) =
λ1(Ω, v) (> 0), and this field satisfies |v(x)| = τ almost everywhere in Ω. Moreover, the
corresponding principal eigenfunction ϕ = ϕΩ,v is of class C2,α(Ω) and v ·∇ϕ = τ |∇ϕ|
almost everywhere in Ω. The function ϕ is then a solution of the following nonlinear
problem

−∆ϕ+ τ |∇ϕ| = λ(Ω, τ)ϕ in Ω. (1.8)

Moreover, if ψ is a function of class C2,α(Ω) such that ψ > 0 in Ω, ψ = 0 on ∂Ω,
‖ψ‖∞ = 1 and if µ ∈ R is such that (1.8) holds with ψ and µ instead of ϕ and λ(Ω, τ),
then ψ = ϕ and µ = λ(Ω, τ).

When Ω is a ball (up to translation, one assumes that it is centered at the origin), one
can provide an explicit expression of v and v:

Theorem 1.6 Assume that Ω = B = Bn
R for some radius R > 0, and let τ ≥ 0 be fixed.

Then v = τer and v = −τer where v and v are defined in Theorem 1.5. One therefore has:






−∆ϕ + τer · ∇ϕ = λ(Ω, τ)ϕ in B,

−∆ϕ− τer · ∇ϕ = λ(Ω, τ)ϕ in B.
(1.9)

Moreover, the functions ϕ and ϕ are radially decreasing in B, which means that there are

two decreasing functions φ, φ : [0, R] → [0,+∞) such that ϕ(x) = φ(|x|) and ϕ(x) = φ(|x|)
for all x ∈ B.

Remark 1.7 Notice that a corollary of Theorems 1.1, 1.5 and 1.6 is that, for all τ ≥ 0 and
Ω ∈ C, λ(Ω, τ) ≥ λ(Ω∗, τ), and equality holds only when Ω is a ball.

Let us now give a few additional comments about Theorems 1.1, 1.5 and 1.6. First, what
happens for other optimization problems with analogous constraints? For a fixed domain
Ω ∈ C, if we drop the condition ‖v‖∞ ≤ τ , one can prove that

inf
v∈L∞(Ω,Rn)

λ1(Ω, v) = inf
τ≥0

λ(Ω, τ) = 0, sup
v∈L∞(Ω,Rn)

λ1(Ω, v) = sup
τ≥0

λ(Ω, τ) = +∞. (1.10)

Actually, we prove in Lemmata 2.5 and 2.6 that the function τ 7→ λ(Ω, τ) (resp. τ 7→ λ(Ω, τ))
is decreasing (resp. increasing) in [0,+∞). Therefore, (1.10) means that λ(Ω, τ) → 0 and
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λ(Ω, τ) → +∞ as τ → +∞. The proof of first assertion (about the infimum) follows at
once from formula (1.6): indeed, choose a ball B included in Ω, call x0 its center, and
let v ∈ L∞(Ω,Rn) be such that v(x) = τer(x − x0) for all x ∈ B; one then has 0 <
λ1(Ω, v) ≤ λ1(B, v|B) = Fn(|B|, τ) → 0 as τ → +∞. For the proof of the other assertion,
let τ > 0 and define v = τe1, where, for all x ∈ R

n, e1(x) = (1, 0, . . . , 0). Straightforward
computations show that the function ψ(x) = e−τx1/2ϕΩ,τe1(x), which is positive in Ω, satisfies
−∆ψ + (τ 2/4)ψ = λ1(Ω, τe1)ψ in Ω. From the characterization of the first eigenvalue, one
concludes that λ1(Ω, τe1) = τ 2/4+λ1(Ω), where λ1(Ω) is the first eigenvalue of the Dirichlet
Laplacian in Ω. This obviously implies the desired result.

Notice that, when v ∈ L∞(Ω) is divergence free (in the sense of distributions), λ1(Ω, v) ≥
λ1(Ω, 0) = λ1(Ω) (indeed, multiply (1.2) by ϕ and integrate by parts). Thus, it immediately
follows that inf

‖v‖∞≤τ, div(v)=0
λ1(Ω, v) = λ1(Ω) for all Ω ∈ C and τ ≥ 0. We also refer to [10] for

a detailed analysis of the behavior of λ1(Ω, A v) when A→ +∞ and v is a fixed divergence
free vector field in L∞(Ω).

Let now v ∈ L∞(Rn,Rn) be fixed, call ‖v‖∞ = ‖ |v| ‖L∞(Rn,Rn), let Ω vary and define

λ(v,m) = inf
Ω∈C, |Ω|=m

λ1(Ω, v|Ω) = inf
Ω∈C, |Ω|≤m

λ1(Ω, v|Ω) and λ(v,m) = sup
Ω∈C, |Ω|=m

λ1(Ω, v|Ω)

for each m > 0. Because of (1.11) below, there holds λ(v,m) = +∞. On the other hand,
λ(v,m) ≥ Fn(m, ‖v‖∞). However, unlike λ(Ω, τ) or λ(Ω, τ), the infimum in λ(v,m) may
not be reached: indeed, let (xk)k≥k0 be a sequence of points in R

n such that the balls
Bk = xk + Bn

(m/αn)1/n are pairwise disjoint and choose k0 ∈ N and v ∈ L∞(Rn) so that

2−k0 ≤ ‖v‖∞, v|Bk
= (‖v‖∞− 2−k) er(· −xk) and v = 0 outside the balls Bk; from Theorems

1.1, 1.6 and Lemma 2.5 below, one can easily check that, for each Ω ∈ C with |Ω| ≤ m,
λ1(Ω, v|Ω) > λ(v,m) = Fn(m, ‖v‖∞).

Consider now optimization problems (different from the one solved in Theorem 1.1) where
both Ω and v vary. Let m > 0 and τ ≥ 0 be fixed. As was already mentioned in Remark 1.3,

inf
Ω∈C, |Ω|≤m, ‖v‖∞≤τ

λ1(Ω, v) = inf
Ω∈C, |Ω|≤m

λ(Ω, τ) = λ1(Ω
∗, τer).

The optimization problem for λ(Ω, τ) when |Ω| = m with a supremum instead of the infimum
has the following solution:

Proposition 1.8 One has
sup

Ω∈C, |Ω|=m

λ(Ω, τ) = +∞, (1.11)

whence sup
Ω∈C, |Ω|=m

λ(Ω, τ) = +∞.

The proof follows from a min-max formula for λ1(Ω, v) given in [11] (see Section 4.2 in
Appendix).
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Open problem. Finally, we mention as an open problem the characterization of

inf
Ω∈C, |Ω|=m

λ(Ω, τ)

for given m > 0 and τ ≥ 0. As for the infimum of λ(Ω, τ) with the constraint |Ω| = m, is
the infimum of λ(Ω, τ) achieved for the balls ?

We now turn to the strategy of the proof of our results. Remember first that the proof
of the classical Rayleigh-Faber-Krahn inequality (1.1) relies on two fundamental tools. The
first one is a variational formulation of λ1(Ω), which relies heavily on the symmetry of the
Laplacian:

λ1(Ω) = min
u∈H1

0 (Ω)\{0}

∫

Ω

|∇u(x)|2 dx
∫

Ω

u(x)2dx
. (1.12)

The second ingredient of the proof is a spherical rearrangement argument, namely the
Schwarz symmetrization of functions. Namely, if u : Ω → R, the Schwarz spherical re-
arrangement of u is the nonnegative function u∗ : Ω∗ → R which is radially non-increasing
(which means, more precisely, that, if R > 0 is the radius of Ω∗, there exists a non-increasing
function v : [0, R] → R such that u∗(x) = v(|x|) for all x ∈ Ω∗) and satisfies

|{x ∈ Ω; |u(x)| > λ}| = |{x ∈ Ω∗; u∗(x) > λ}|

for all λ > 0. When u ∈ H1
0 (Ω), one has u∗ ∈ H1

0 (Ω), ‖u‖L2(Ω) = ‖u∗‖L2(Ω) and ‖∇u∗‖L2(Ω) ≤
‖∇u‖L2(Ω) (see [33]). Inequality (1.1) follows immediately from (1.12) and these properties
of u∗.

When v 6= 0, the operator −∆+v ·∇ is non-self-adjoint, and there is no simple variational
formulation of its first eigenvalue such as (1.12) –min-max formulations of the pointwise type
(see [11] and Section 4.2) or of the integral type (see [20]) certainly hold, but they do not seem
to help in our context. Therefore, it seems impossible to adapt the “classical” proof to prove
Theorem 1.1. However, the proof of Theorem 1.1 also relies on a new type of rearrangement
argument, which is definitely different from the usual rearrangement of functions.

First, using essentially the maximum principle and the Hopf lemma, one establishes
Theorem 1.5 and Theorem 1.6. Once this is done, we are reduced to proving that λ(Ω, τ) ≥
λ(Ω∗, τ) for all τ ≥ 0, and that equality holds only when Ω is a ball.

To that purpose, we consider the function ϕ satisfying (1.7), and define a suitable rear-
rangement of ϕ, which is different from the spherical symmetrization mentioned before. Let
us briefly explain what the idea of this rearrangement is. Denote by R the radius of Ω∗. For
all 0 ≤ a < 1, define

Ωa =
{
x ∈ Ω, a < ϕ(x) ≤ 1

}

and define ρ(a) ∈ (0, R] such that |Ωa| =
∣
∣
∣Bn

ρ(a)

∣
∣
∣. Define also ρ(1) = 0. The function

ρ : [0, 1] → [0, R] is decreasing, continuous, one-to-one and onto. Then, the rearrangement

7



of ϕ is the radially decreasing function u : Ω∗ → R vanishing on ∂Ω∗ such that, for all
0 ≤ a < 1, ∫

Ωa

∆ϕ(x)dx =

∫

Bn
ρ(a)

∆u(x)dx.

The fundamental inequality satisfied by u, which is also the key point in the proof of Theorem
1.1, is the fact that, for all x ∈ Ω∗,

u(x) ≥ ρ−1(|x|) (1.13)

(see Corollary 3.6 below). Strictly speaking, this fact is not completely correct, because the
function ϕ is not regular enough, and we have to deal with suitable approximations of ϕ.
We refer to Section 3 for rigorous statements and proofs. Let us just mention that the proof
of (1.13) relies, among other things, on the usual isoperimetric inequality in R

n. From (1.13)
and arguments involving the maximum principle and the Hopf lemma again, we derive the
conclusion if Theorem 1.1.

Finally, using again the same construction and the isoperimetric inequality, we prove that
equality in Theorem 1.1 is attained if, and only if, up to translation, Ω = Ω∗ and v = τer.

Remark 1.9 Notice that the proof of Theorem 1.1 given in Section 3 still works for τ = 0
and then provides an alternative proof of the Rayleigh-Faber-Krahn inequality (1.1) for the
Dirichlet Laplacian.

Outline of the paper. The paper is organized as follows: in Section 2, we show Theorem
1.5, Theorem 1.6 and various properties of λ(Ω, τ) and λ(Ω, τ). Using the previous results
and the rearrangement argument briefly described above, we prove Theorem 1.1 in Section
3. Finally, we prove in Appendix the results mentionned in Remark 1.4 and Proposition 1.8.

2 Optimization problems in fixed domains

2.1 Proof of Theorem 1.5

Throughout this section, we fix Ω ∈ C of class C2,α with 0 < α < 1 and τ ≥ 0. The proof of
Theorem 1.5 relies on the following comparison lemma:

Lemma 2.1 Let µ ∈ R and v ∈ L∞(Ω,Rn). Assume that ϕ and ψ are functions in W 2,p(Ω)
for all 1 ≤ p < +∞, vanishing on ∂Ω, satisfying ‖ϕ‖∞ = ‖ψ‖∞. Assume also that ϕ ≥ 0 in
Ω, ψ > 0 in Ω and 





−∆ψ + v.∇ψ ≥ µψ a. e. in Ω,

−∆ϕ + v.∇ϕ ≤ µϕ a. e. in Ω.

Then ϕ = ψ in Ω.
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Proof. Since ψ is not constant in Ω, the Hopf lemma yields
∂ψ

∂ν
< 0 on ∂Ω, where, for all

x ∈ ∂Ω,
∂ψ

∂ν
(x) = ∇ψ(x) · ν(x) and ν(x) denotes the outward normal unit vector at x. Since

ϕ ∈ C1,β(Ω) for all 0 ≤ β < 1, ϕ ≥ 0 in Ω and ϕ = 0 on ∂Ω, it follows that there exists
γ > 0 such that γψ > ϕ in Ω. Define

γ∗ = inf {γ > 0, γψ > ϕ in Ω} .

One clearly has γ∗ψ ≥ ϕ in Ω, so that γ∗ > 0. Define w = γ∗ψ − ϕ and assume that w > 0
everywhere in Ω. Since

−∆w + v · ∇w − µw ≥ 0 in Ω (2.1)

and w = 0 on ∂Ω, the Hopf maximum principle implies that
∂w

∂ν
< 0. As above, this yields

the existence of κ > 0 such that w > κϕ in Ω, whence

γ∗

1 + κ
ψ > ϕ in Ω.

This is a contradiction with the minimality of γ∗.
Thus, there exists x0 ∈ Ω such that w(x0) = 0 (i.e. γ∗ψ(x0) = ϕ(x0)). It follows

from (2.1), the fact that w ≥ 0 in Ω, w(x0) = 0 and from the strong maximum principle,
that w = 0 in Ω, which means that ϕ and ψ are proportional. Since they are non-negative
in Ω and have the same L∞ norm in Ω, one has ϕ = ψ, which ends the proof of Lemma 2.1.

We now turn to the proof of assertion (a) in Theorem 1.5 and begin with the existence
of v:

Lemma 2.2 There exists v ∈ L∞(Ω,Rn) with ‖v‖∞ = τ such that λ(Ω, τ) = λ1(Ω, v) (> 0).

Proof. In this proof, we write λ instead of λ(Ω, τ). Let (vk)k≥1 be a sequence of L∞(Ω,Rn)
functions with ‖vk‖∞ ≤ τ such that λ1(Ω, vk) converges to λ, and, for all k ≥ 1, set λk =
λ1(Ω, vk) and ϕk = ϕΩ,vk

. For all k ≥ 1, one has

−∆ϕk + vk · ∇ϕk = λkϕk a. e. in Ω.

Since the vk’s are uniformly bounded in L∞(Ω,Rn), since the ϕk’s are uniformly bounded
in Lp(Ω) (say, 1 < p < +∞) and since the λk’s are bounded, the Agmon-Douglis-Nirenberg
estimates (see [1, 18]) show that the ϕk’s are uniformly bounded in W 2,p(Ω) for all 1 < p <
+∞. Therefore, up to a subsequence, there exist ϕ belonging to W 2,p(Ω) for all 1 ≤ p < +∞
and to C1,β(Ω) for all 0 ≤ β < 1, and a function f ∈ L∞(Ω) such that ϕk converges to ϕ
weakly in W 2,p(Ω) and strongly in C1,β(Ω), and vk · ∇ϕk converges to f for the ∗-weak
topology of L∞(Ω). Observe that ϕ = 0 on ∂Ω, ϕ ≥ 0 in Ω and ‖ϕ‖∞ = 1. Since, for all
k ≥ 1, −∆ϕk ≤ λkϕk + τ |∇ϕk| a. e. in Ω, one has







−∆ϕ ≤ λϕ+ τ |∇ϕ| a. e. in Ω,

−∆ϕ + f = λϕ a. e. in Ω.
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It follows that f ≥ −τ |∇ϕ| a. e. in Ω. For all x ∈ Ω, define

v(x) =







−τ ∇ϕ(x)

|∇ϕ(x)| if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0.

Since ϕ is not constant, one has ‖v‖∞ = τ . Set µ = λ1(Ω, v) and ψ = ϕΩ,v (recall that
ψ ∈ W 2,p(Ω) for all 1 ≤ p < +∞). The very definition of λ(Ω, τ) yields that λ ≤ µ.
Moreover,

−∆ϕ + v · ∇ϕ = −∆ϕ− τ |∇ϕ| ≤ λϕ ≤ µϕ a. e. in Ω,

whereas −∆ψ+v ·∇ψ = µψ a. e. in Ω, ψ is positive in Ω, ϕ is non-negative in Ω, ϕ = ψ = 0
on ∂Ω and ‖ϕ‖∞ = ‖ψ‖∞ = 1. Lemma 2.1 therefore yields ϕ = ψ in Ω. Thus,

µϕ = −∆ϕ + v · ∇ϕ ≤ λϕ ≤ µϕ a. e. in Ω,

which means that λ = µ, or, in other words, that λ(Ω, τ) = λ1(Ω, v). Lastly, λ1(Ω, v) > 0 as
already underlined in Section 1.

To prove the “uniqueness” statement in Theorem 1.5, we first establish the following
result:

Lemma 2.3 Let v0 ∈ L∞(Ω,Rn) with ‖v0‖∞ ≤ τ such that λ1(Ω, v0) = λ(Ω, τ) and call
ϕ = ϕΩ,v0. Then ϕ ∈ C2,α(Ω) (up to the choice of the continuous representant in the class
of ϕ), ‖v0‖∞ = τ and v0 · ∇ϕ = −τ |∇ϕ| a. e. in Ω.

Proof. Define, for all x ∈ Ω,

v(x) =







−τ ∇ϕ(x)

|∇ϕ(x)| if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,

so that ‖v‖∞ = τ (indeed, ϕ is not constant in Ω). If λ = λ1(Ω, v), one has λ ≥ λ(Ω, τ).
Moreover, for ψ = ϕΩ,v, one has







−∆ϕ + v · ∇ϕ = −∆ϕ− τ |∇ϕ| ≤ −∆ϕ + v0 · ∇ϕ = λ(Ω, τ)ϕ ≤ λϕ a. e. in Ω,

−∆ψ + v · ∇ψ = λψ a. e. in Ω.

Since ψ > 0 in Ω, ϕ > 0 in Ω, ψ = ϕ = 0 on ∂Ω and ‖ψ‖∞ = ‖ϕ‖∞ = 1, Lemma 2.1 ensures
that ψ = ϕ. As a consequence, λ = λ(Ω, τ), and v0 · ∇ϕ = −τ |∇ϕ| a. e. in Ω. Therefore,
since ‖v0‖∞ ≤ τ and ϕ is not constant, one gets ‖v0‖∞ = τ . Furthermore, up to the choice
of the continuous representant in the class of ϕ, ϕ satisfies

−∆ϕ = τ |∇ϕ| + λ(Ω, τ)ϕ ∈ C0,α(Ω),

hence ϕ ∈ C2,α(Ω) from Schauder estimates [18]. That ends the proof of Lemma 2.3.

The last result for the proof of Theorem 1.5 is the following one:
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Lemma 2.4 Let λ ∈ R and ϕ ∈ C2,α(Ω), such that ϕ = 0 on ∂Ω, ϕ > 0 in Ω, ‖ϕ‖∞ = 1
and

−∆ϕ− τ |∇ϕ| = λϕ in Ω.

Then λ = λ(Ω, τ) and, if v ∈ L∞(Ω,Rn) is such that ‖v‖∞ = τ and λ(Ω, τ) = λ1(Ω, v), then
ϕ = ϕΩ,v.

Proof. Let v ∈ L∞(Ω,Rn) such that ‖v‖∞ = τ and λ(Ω, τ) = λ1(Ω, v) (such a v exists
thanks to Lemma 2.2), and set ψ = ϕΩ,v, so that

−∆ψ + v · ∇ψ = −∆ψ − τ |∇ψ| = λ(Ω, τ)ψ in Ω

from Lemma 2.3. Define also

w(x) =







−τ ∇ϕ(x)

|∇ϕ(x)| if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0.

One has ‖w‖∞ = τ and

−∆ϕ + w · ∇ϕ = −∆ϕ− τ |∇ϕ| = λϕ in Ω,

so that, by uniqueness of the first eigenvalue and eigenfunction for −∆ + w · ∇, one has
ϕ = ϕΩ,w and λ = λ1(Ω, w) ≥ λ(Ω, τ). As a consequence,

−∆ϕ + v · ∇ϕ ≥ −∆ϕ− τ |∇ϕ| = λϕ ≥ λ(Ω, τ)ϕ in Ω.

Another application of Lemma 2.1 shows that ϕ = ψ = ϕΩ,v, and that λ = λ(Ω, τ).

We now complete the
Proof of Theorem 1.5. The existence of v and the identity v · ϕ = −τ

∣
∣∇ϕ

∣
∣ in Ω have

already been proved. Let v1 and v2 ∈ L∞(Ω) with ‖v1‖∞ ≤ τ , ‖v2‖∞ ≤ τ and λ1(Ω, v1) =
λ1(Ω, v2) = λ(Ω, τ). Note ϕ1 = ϕΩ,v1 and ϕ2 = ϕΩ,v2, so that ϕ1, ϕ2 ∈ C2,α(Ω), v1 · ∇ϕ1 =
−τ |∇ϕ1| and v2 ·∇ϕ2 = −τ |∇ϕ2| a. e. in Ω by Lemma 2.3. Furthermore, ‖v1‖∞ = ‖v2‖∞ =
τ . One has







−∆ϕ1 + v1 · ∇ϕ1 = −∆ϕ1 − τ |∇ϕ1| = λ(Ω, τ)ϕ1 in Ω,

−∆ϕ2 + v2 · ∇ϕ2 = −∆ϕ2 − τ |∇ϕ2| = λ(Ω, τ)ϕ2 in Ω.
(2.2)

Lemma 2.4 therefore shows that ϕ1 = ϕ2 := ϕ, which yields v1(x) = v2(x) =
−τ∇ϕ(x)/|∇ϕ(x)| almost everywhere in the set of x ∈ Ω such that ∇ϕ(x) 6= 0. What
remains to be proved is the fact that ∇ϕ(x) 6= 0 for almost every x ∈ Ω (that will then im-
ply the uniqueness of v in Theorem 1.5 and the fact that |v(x)| = τ almost everywhere in Ω).
To that purpose, we recall that, for all p ≥ 1 and all function g ∈ W 1,p(Ω), ∇g = 0 almost
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everywhere in the set {x ∈ Ω, g(x) = 0}. For each 1 ≤ i ≤ n, this observation applied with
∂ϕ

∂xi
yields

∫

{∇ϕ=0}

∆ϕ(x)dx =
n∑

i=1

∫

Ω

∂2ϕ

∂x2
i

(x)1{∇ϕ=0}(x)dx = 0,

where 1E denotes the characteristic function of a set E. Therefore, since λ(Ω, τ) > 0, (2.2)
ensures that ∫

{∇ϕ=0}

ϕ(x)dx = 0,

and since ϕ(x) > 0 for all x ∈ Ω, one has |{∇ϕ = 0}| = 0, which ends the proof of assertion
(a) in Theorem 1.5.

The proof of assertion (b) is entirely similar, except for the proof of the existence of v, for
which we need to know a priori that, given Ω ∈ C and τ ≥ 0, there exists C > 0 such that,
for all v ∈ L∞(Ω,Rn) satisfying ‖v‖∞ ≤ τ , one has λ1(Ω, v) ≤ C. But this is true in virtue
of Proposition 5.1 in [11], which yields the existence of some constant C(Ω, τ) ≥ 0 such that
|λ1(Ω, v) − λ1(Ω, 0)| ≤ C(Ω, τ) ‖v‖∞.

2.2 The case of a ball

This section is devoted to the
Proof of Theorem 1.6. Denote by R > 0 the radius of Ω, namely Ω = Bn

R, and let
ϕ = ϕΩ,v. Recall that

−∆ϕ− τ |∇ϕ| = λ(Ω, τ)ϕ in Ω,

thus, ϕ ∈ C2,β(Ω) for all 0 ≤ β < 1 from Schauder estimates [18]. Let A be an orthogonal
transformation in R

n and ψ = ϕ ◦ A. Easy computations show that ψ satisfies the same
equation as ϕ, and Lemma 2.4 ensures that ψ = ϕ in Ω. In other words, ϕ is radial, and
we may define u : [0, R] → R such that, for all x ∈ Ω, ϕ(x) = u(|x|). The function u is
continuous in [0, R], positive in [0, R), its maximum in [0, R] is 1 and u(R) = 0.

We claim that u is decreasing in [0, R]. First, there exists r0 ∈ [0, R) such that u(r0) = 1.
If r0 > 0, since

−∆ϕ + v · ∇ϕ = λ(Ω, τ)ϕ > 0 (2.3)

in Bn
r0 , the maximum principle shows that ϕ(x) ≥ 1 for all x ∈ Bn

r0, and therefore that
ϕ(x) = 1 in Bn

r0
, which contradicts (2.3). Thus, u(0) = ϕ(0) = 1 and u(r) < 1 for all

0 < r ≤ R. Assume now that u is not decreasing in [0, R]. This means that there exist
0 ≤ r0 < r1 ≤ R such that u(r0) ≤ u(r1). Notice that r1 < R, 0 < r0 and set m = u(r1) ∈
(0, 1). Since u is continuous, there exists r2 ∈ (0, r0] such that u(r2) = m and m < u(r) ≤ 1
for all r ∈ [0, r2). Since (2.3) holds in the spherical shell U = {x ∈ R

n; r2 < |x| < r1}, the
maximum principle applied to ϕ in U shows that ϕ(x) ≥ m for all x ∈ U . If ϕ(x0) = m for
some x0 ∈ U , the the strong maximum principle implies that ϕ is constant in U and this is
impossible because of (2.3). Therefore, ϕ(x) > m in U , and Hopf lemma yields

u′(r2) = ∇ϕ(x) · er(x) > 0
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for all x with |x| = r2. This contradicts the definition of r2.
Finally, u is decreasing in [0, R] and Hopf lemma applied to (2.3) on the boundary of

any ball Bn
r with r ∈ (0, R] implies that ∇ϕ(x) · er(x) < 0 for all x ∈ Ω\{0}. To sum up,

∇ϕ(x) = u′(|x|)er 6= 0 for all x ∈ Ω \ {0} and, for all x 6= 0,

v(x) = −τ ∇ϕ(x)

|∇ϕ(x)| = τer(x)

from Lemma 2.3.
The argument for v is completely similar, and this ends the proof of Theorem 1.6.

2.3 Further properties of λ(Ω, τ), λ(Ω, τ) and Fn(m, τ)

We prove here the continuity and monotonicity of the maps τ 7→ λ(Ω, τ) and τ 7→ λ(Ω, τ).

Lemma 2.5 Let Ω ∈ C be fixed. Then the function τ 7→ λ(Ω, τ) is continuous and decreasing
in [0,+∞).

Proof. That this function is non-increasing follows at once from the definition of λ(Ω, τ).
Let now 0 ≤ τ < τ ′ be given. Under the notations of part (a) of Theorem 1.5, there is a
(unique) v ∈ L∞(Ω,Rn) such that λ(Ω, τ) = λ1(Ω, v) and ‖v‖∞ ≤ τ (actually, ‖v‖∞ = τ).
Since ‖v‖∞ < τ ′, the uniqueness result in Theorem 1.5 yields λ1(Ω, v) > λ(Ω, τ ′). Therefore,
the map τ 7→ λ(Ω, τ) in decreasing in [0,+∞).

Fix now τ ≥ 0, let (τk)k≥1 be a sequence of non-negative numbers converging to τ and
write λk = λ(Ω, τk). For each k ≥ 1, Theorem 1.5 provides the existence of a function
ϕk ∈ C2,α(Ω) (0 < α < 1 is so that Ω is of class C2,α) such that

−∆ϕk − τk |∇ϕk| = λkϕk in Ω (2.4)

with ϕk > 0 in Ω, ϕk = 0 on ∂Ω and ‖ϕk‖∞ = 1. Observe that the sequence (λk)k≥1 is
bounded (if A > 0 is such that 0 ≤ τk ≤ A for all k, one has 0 < λ(Ω, A) ≤ λk ≤ λ(Ω, 0))
and therefore the ϕk’s are uniformly bounded in W 2,p(Ω) for all 1 ≤ p < +∞ and then, again
because of (2.4), the functions ϕk are uniformly bounded in C2,α(Ω). Up to a subsequence,
the sequence (λk)k≥1 converges to λ > 0 and there exists a function ϕ ∈ C2,α(Ω), such that
(ϕk)k≥1 converges to ϕ strongly in C2,β(Ω) for all 0 ≤ β < α. One therefore has

−∆ϕ− τ |∇ϕ| = λϕ in Ω,

and ϕ ≥ 0 in Ω, ‖ϕ‖∞ = 1, ϕ = 0 on ∂Ω. Since −∆ϕ ≥ 0 in Ω, the strong maximum
principle yields ϕ > 0 in Ω. It follows from Lemma 2.4 that λ = λ(Ω, τ). Thus, the sequence
(λk)k≥1 is bounded and any converging subsequence of (λk)k≥1 converges to λ(Ω, τ), which
shows that λk → λ(Ω, τ) and ends the proof of Lemma 2.5.

Similarly, the following result holds

Lemma 2.6 Let Ω ∈ C be fixed. Then the function τ 7→ λ(Ω, τ) is continuous and increasing
in [0,+∞).
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The proof is similar to the one of Lemma 2.5, except that the function ϕ obtained in the
end of the argument satisfies −∆ϕ + τ |∇ϕ| = λϕ in Ω. Setting

v(x) =







τ
∇ϕ(x)

|∇ϕ(x)| if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,

one has −∆ϕ+ v · ∇ϕ ≥ 0 on Ω, and the strong maximum principle yields ϕ > 0 on Ω, and
one concludes as in the proof of Lemma 2.5.

Remark 2.7 An immediate application of Proposition 5.1 in [11] yields that, for given
Ω ∈ C, the map v 7→ λ1(Ω, v) is continuous as well (with respect to the L∞ norm for v).

Remark 2.8 From Theorem 1.6 and Lemma 2.5, one gets that Fn(m, τ) = λ1(B
n
(m/αn)1/n , τer)

is decreasing in τ . Furthermore, because of the strict monotonicity of the first eigenvalue
with respect to the inclusion of the domains, Fn(m, τ) is decreasing in m as well.

Actually, the map (m, τ) 7→ Fn(m, τ) is continuous on (0,+∞) × [0,+∞). The proof of
this fact is very similar to the one of Lemma 2.5.

3 Proof of the main Faber-Krahn type inequality

This section is devoted to the proof of Theorem 1.1. For the sake of clarity, we divide the
proof into two parts : first, in Section 3.1, we prove that, for all τ ≥ 0 and Ω ∈ C, there holds
λ1(Ω, v) ≥ λ1(Ω

∗, τer) for all v ∈ L∞(Ω) with ‖v‖L∞(Ω) ≤ τ . One recalls that Ω∗ denotes the
open Euclidean ball of R

n with center 0 and such that |Ω∗| = |Ω|. Then, in Section 3.2, we
discuss the case of equality.

3.1 Proof of inequality λ1(Ω, v) ≥ λ1(Ω
∗, τer)

Let τ ≥ 0 and Ω ∈ C be fixed, of class C2,α for some 0 < α < 1. Let R > 0 be the radius
of the ball Ω∗, namely Ω∗ = Bn

R and R = (|Ω|/αn)1/n. Recall that er denotes the unit radial
vector field: er(x) = x/|x| for x 6= 0.

In order to prove the first part of Theorem 1.1, one shall show that λ1(Ω, v) ≥ λ1(Ω
∗, τer)

for all v ∈ L∞(Ω) such that ‖v‖L∞(Ω) ≤ τ . Owing to the definition of λ(Ω, τ), it is then
enough to prove that

λ(Ω, τ) ≥ λ1(Ω
∗, τer).

From the characterization of λ(Ω, τ) in Theorem 1.5, let us call ϕ the unique solution of
(1.7), such that ϕ > 0 in Ω, ‖ϕ‖L∞(Ω) = 1 and ϕ = 0 on ∂Ω. Namely, the function ϕ, of
class C2,α(Ω), satisfies







−∆ϕ = τ |∇ϕ| + λ(Ω, τ)ϕ =: f in Ω
ϕ > 0 in Ω
ϕ = 0 on ∂Ω.

(3.1)
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Furthermore, as already underlined in Section 1, λ(Ω, τ) is positive and, on ∂Ω = {x ∈ Ω,
ϕ(x) = 0}, ∇ϕ 6= 0 from Hopf Lemma. Therefore, the continuous function f is positive in
Ω if τ > 0. If τ = 0, then f is continuous in Ω, positive in Ω, and it vanishes on ∂Ω.

From Stone-Weierstrass Theorem, let us choose a sequence (fk)k∈N of polynomial func-
tions such that

fk → f in C0(Ω) as k → +∞.

If τ > 0, one can assume without loss of generality that fk > 0 in Ω for all k ∈ N. If τ = 0,
setting f̃k = fk − minΩ fk + 1/(k + 1) and renaming f̃k as fk, one still has that fk → f
uniformly in Ω and fk > 0 in Ω for all k ∈ N.

For each k ∈ N, call ϕk the unique solution in C2,α(Ω) of

{
−∆ϕk = fk in Ω

ϕk = 0 on ∂Ω.

The maximum principle implies that ϕk > 0 in Ω for all k ∈ N.
We first work with a fixed k (large enough if necessary) and we will then pass to the limit

as k → +∞ at the end of the proof.
Let first k ∈ N be fixed and let us introduce a few notations which will be used throughout

this section. Call
Mk = max

x∈Ω
ϕk(x)

and, for a ∈ [0,Mk],
Σk,a = {x ∈ Ω, ϕk(x) = a}.

The function ϕk can be written as ϕk = ϕ′
k + ϕ′′

k where ϕ′
k is a polynomial function such

that −∆ϕ′
k = fk, and ϕ′′

k is harmonic in Ω. Therefore, ϕk is analytic in Ω. On the other
hand, Hopf lemma implies that ∂ϕk

∂ν
< 0 on ∂Ω (ν is the outward unit normal on ∂Ω), whence

the set {x ∈ Ω, ∇ϕk(x) = 0} is included in some compact set Kk ⊂ Ω. It then follows that
the set

Zk = {a ∈ [0,Mk], ∃x ∈ Σk,a, ∇ϕk(x) = 0}
of the critical values of ϕk is finite ([35]) and can then be written as

Zk = {ak,1, · · · , ak,mk
}

for some mk ∈ N
∗. Observe also that Mk ∈ Zk and that 0 6∈ Zk. One can then assume that

0 < ak,1 < · · · < ak,mk
= Mk.

The set Yk = [0,Mk]\Zk of the non critical values of ϕk is open relatively to [0,Mk] and
can be written as

Yk = [0,Mk]\Zk = [0, ak,1) ∪ (ak,1, ak,2) ∪ · · · ∪ (ak,mk−1,Mk).

For all a ∈ Yk, the hypersurface Σk,a is of class C2 and |∇ϕk| does not vanish in Σk,a.
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Therefore, in Yk, the functions






gk : a 7→
∫

Σk,a

|∇ϕk(y)|−1dσk,a(y)

hk : a 7→
∫

Σk,a

fk(y)|∇ϕk(y)|−1dσk,a(y)

ik : a 7→
∫

Σk,a

dσk,a(y)

(3.2)

are continuous in Yk, where dσk,a denotes the surface measure on Σk,a for a ∈ Yk.
For all a ∈ [0,Mk), let

Ωk,a = {x ∈ Ω, a < ϕk(x) ≤Mk}

and ρk(a) ∈ (0, R] be defined so that

|Ωk,a| = |Bn
ρk(a)| = αnρk(a)

n,

where one recalls that αn is the volume of the unit ball Bn
1 . One extends the function ρk at

Mk by ρk(Mk) = 0.

Lemma 3.1 The function ρk is a continuous decreasing map from [0,Mk] onto [0, R].

Proof. The function ρk : [0,Mk] → [0, R] is clearly decreasing since

|{x ∈ Ω, a < ϕk(x) ≤ b}| > 0

for all 0 ≤ a < b ≤Mk.

Furthermore, for all a ∈ (0,Mk] and all 1 ≤ i ≤ n, since
∂2ϕk
∂x2

i

= 0 almost everywhere on

the set where
∂ϕk
∂xi

= 0 as already mentioned in the proof of Theorem 1.5, one has

∫

Σk,a

∆ϕk(x)dx =

n∑

i=1

(
∫

Ω

∂2ϕk
∂x2

i

(x) × 1
{

∂ϕk
∂xi

>0}
(x) × 1{ϕk=a}(x)dx

+

∫

Ω

∂2ϕk
∂x2

i

(x) × 1
{

∂ϕk
∂xi

<0}
(x) × 1{ϕk=a}(x)dx

)

.

But, using the same observation again, 1
{

∂ϕk
∂xi

<0}
(x)×1{ϕk=a}(x) = 1

{
∂ϕk
∂xi

>0}
(x)×1{ϕk=a}(x) =

0 for almost every x ∈ Ω. As a consequence,
∫

Σk,a

∆ϕk(x)dx = 0.

But −∆ϕk = fk and the continuous function fk is positive in Ω. One then gets that |Σk,a| = 0
for all a ∈ (0,Mk]. Notice that |Σk,0| = |∂Ω| = 0 as well. Lastly, ρk(0) = R and ρk(Mk) = 0.

Therefore, the function ρk is continuous in [0,Mk]. As a conclusion, ρk it is then a
one-to-one and onto map from [0,Mk] to [0, R].

16



Lemma 3.2 The function ρk is of class C1 in Yk and

∀a ∈ Yk, ρ′k(a) = −(nαnρk(a)
n−1)−1gk(a),

where the function gk is defined in (3.2).

Proof. Fix a ∈ Yk. Let η > 0 be such that [a, a+ η] ⊂ Yk. For t ∈ (0, η),

αn(ρk(a + t)n − ρk(a)
n) = |Ωk,a+t| − |Ωk,a| = −

∫

{a<ϕk(x)≤a+t}

dx

= −
∫ a+t

a

(
∫

Σk,b

|∇ϕk(y)|−1dσk,b(y)

)

db

from the co-area formula. Hence,

αn(ρk(a+ t)n − ρk(a)
n)

t
→ −gk(a) as t→ 0+

for all a ∈ Yk, due to the continuity of gk in Yk. Similarly, one has that

αn(ρk(a+ t)n − ρk(a)
n)

t
→ −gk(a) as t→ 0−

for all a ∈ Yk\{0}.
The conclusion of the lemma follows since Yk ⊂ [0,Mk), whence ρk(a) 6= 0 for all a ∈ Yk.

The key-point in the proof of Theorem 1.1 is the construction of some auxiliary functions
uk defined in Ω∗. For each k ∈ N, the function uk is obtained from ϕk by a special new type
of symmetrization.

Remember that Ω∗ = Bn
R and define first, for all r ∈ (0, R],

vk(r) =
1

nαnrn−1

∫

Ω
k,ρ−1

k
(r)

∆ϕk(x)dx,

where ρ−1
k : [0, R] → [0,Mk] denotes the reciprocal of the function ρk. Set vk(0) = 0.

Lemma 3.3 The function vk is continuous in [0, R], and negative in (0, R].

Proof. The continuity of vk in (0, R] is a consequence of Lemma 3.1 and the fact that ∆ϕk
is continuous and thus bounded in Ω.

For 0 < r ≤ R, one has

|vk(r)| ≤ (nαnr
n−1)−1‖∆ϕk‖∞ αnr

n = n−1‖∆ϕk‖∞ r,

thus vk is continuous at 0 as well.
The negativity of vk in (0, R] follows from the negativity of ∆ϕk (in other words the

positivity of fk) in Ω and the fact that |Ωk,a| > 0 for all a ∈ [0,Mk).
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For all x ∈ Ω∗, set

uk(x) = −
∫ R

|x|

vk(r)dr.

The function uk is then radially symmetric in Ω∗, decreasing in the variable |x|, positive in
Ω∗, vanishing on ∂Ω∗ and, from Lemma 3.3 and the fact that vk(0) = 0, uk is of class C1(Ω∗).

Call
Ek = {x ∈ Ω∗, |x| ∈ ρk(Yk)}.

The set Ek is a finite union of spherical shells and from Lemma 3.1, it is open relatively to
Ω∗ and can be written as

Ek = {x ∈ R
n, |x| ∈ (0, ρk(ak,mk−1)) ∪ · · · ∪ (ρk(ak,2), ρk(ak,1)) ∪ (ρk(ak,1), R]}.

with 0 = ρk(ak,mk
) = ρk(Mk) < ρk(ak,mk−1) < · · · < ρk(ak,1) < R. Notice that 0 6∈ Ek.

Lemma 3.4 The function uk is of class C2 in Ek.

Proof. By definition of uk, it is enough to prove that the function

wk : r 7→
∫

Ω
k,ρ−1

k
(r)

∆ϕk(x)dx = −
∫

Ω
k,ρ−1

k
(r)

fk(x)dx

is of class C1 in ρk(Yk) (⊂ (0, R]).
Let r be fixed in ρk(Yk) = (0, ρk(ak,m−1)) ∪ · · · ∪ (ρk(ak,2), ρk(ak,1)) ∪ (ρk(ak,1), R] and let

η > 0 be such that [r − η, r] ⊂ ρk(Yk). For t ∈ (0, η), one has

wk(r − t) − wk(r) =

∫

{ρ−1
k (r)<ϕk(x)≤ρ−1

k (r−t)}

fk(x)dx

=

∫ ρ−1
k (r−t)

ρ−1
k (r)

(
∫

Σk,a

fk(y)|∇ϕk(y)|−1dσk,a(y)

)

da =

∫ ρ−1
k (r−t)

ρ−1
k (r)

hk(a)da,

where hk is defined in (3.2). Since ρ−1
k is of class C1 in ρk(Yk) from Lemma 3.2 and since hk

is continuous in Yk, it follows that

wk(r − t) − wk(r)

−t → hk(ρ
−1
k (r))(ρ−1

k )′(r) = −nαnr
n−1hk(ρ

−1
k (r))

gk(ρ
−1
k (r))

as t→ 0+.

The same limit holds as t → 0− for all r ∈ ρk(Yk)\{R}. Therefore, the function wk is
differentiable in ρk(Yk) and

w′
k(r) = −nαnr

n−1hk(ρ
−1
k (r))

gk(ρ
−1
k (r))

for all r ∈ ρk(Yk).

Since ρ−1
k is continuous in [0, R], and gk and hk are continuous in Yk, the function wk is of

class C1 in ρk(Yk). That completes the proof of Lemma 3.4.

The central argument is the following pointwise inequality satisfied by the “symmetrized”
function uk obtained from ϕk. This inequality has its own independent interest. Besides the
definition of uk, it uses the classical isoperimetric inequality.
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Proposition 3.5 For all x ∈ Ek and for all ω ≥ 0,

∆uk(x) + ω |∇uk(x)| ≥ min
y∈Σ

k,ρ−1
k

(|x|)

(∆ϕk(y) + ω |∇ϕk(y)|). (3.3)

Furthermore, for any unit vector e of R
n, the function

Uk : [0,Mk] → R+

a 7→ uk(ρk(a)e)

is continuous in [0,Mk], differentiable in Yk, and

∀a ∈ Yk, U ′
k(a) ≥ 1. (3.4)

The first part of this proposition means that, for each x ∈ Ek and ω ≥ 0, there is a point
y ∈ Ω such that ϕk(y) = ρ−1

k (|x|) and

∆uk(x) + ω |∇uk(x)| ≥ ∆ϕk(y) + ω |∇ϕk(y)|.

Before doing the proof of Proposition 3.5, let us first state the following

Corollary 3.6 For all x ∈ Ω∗,
uk(x) ≥ ρ−1

k (|x|).

Proof. On the one hand, Yk = [0, ak,1) ∪ (ak,1, ak,2) ∪ · · · ∪ (ak,mk−1,Mk) and the function
ρk is continuous in [0,Mk], differentiable in Yk (Lemmata 3.1 and 3.2) and ρk(0) = R. On
the other hand, the function uk is of class C1(Ω∗), radially symmetric, uk(x) = 0 as soon as
|x| = R. Corollary 3.6 then follows from (3.4) and mean value theorem.

Proof of Proposition 3.5. Fix x ∈ Ek and η > 0 such that {y, |x| − η ≤ |y| ≤ |x|} ⊂ Ek.
Call r = |x|. One has

∫

Σ
k,ρ−1

k
(r)

|∇ϕk(y)|dσk,ρ−1
k (r)(y) = −

∫

∂Ω
k,ρ−1

k
(r)

∂ϕk
∂ν

(y)dσk,ρ−1
k (r)(y),

where ν denotes the outward unit normal to ∂Ωk,ρ−1
k (r) (note that ∂ϕk

∂ν
< 0 on ∂Ωk,ρ−1

k (r) by

definition of Ωk,ρ−1
k (r)). Green-Riemann formula and the choice of uk yield

∫

Σ
k,ρ−1

k
(r)

|∇ϕk(y)|dσk,ρ−1
k (r)(y) = −

∫

Ω
k,ρ−1

k
(r)

∆ϕk(y)dy

= −nαnrn−1vk(r) = nαnr
n−1|∇uk(x)|.

(3.5)

In the sequel, let
Ss,s′ = {z ∈ R

n, s < |z| < s′}
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be the spherical shell of R
n between the radii s and s′, with 0 ≤ s < s′. Let t be any real

number in (0, η). A similar calculation as above gives
∫

Sr−t,r

∆uk(y)dy =

∫

∂Sr−t,r

∂uk
∂ν

(y)dσ(y) = nαn[r
n−1vk(r) − (r − t)n−1vk(r − t)],

where dσ and ν denote the superficial measure on ∂Sr−t,r and the outward unit normal to
Sr−t,r. By definition of vk, one gets that

∫

Sr−t,r

∆uk(y)dy =

∫

Ω
k,ρ

−1
k

(r)
\Ω

k,ρ
−1
k

(r−t)

∆ϕk(y)dy. (3.6)

For a ∈ [0,Mk), call

jk(a) =

∫

Ωk,a

|∇ϕk(y)|dy.

The Cauchy-Schwarz inequality gives

[jk(ρ
−1
k (r)) − jk(ρ

−1
k (r − t))]2 =





∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|dy





2

≤
∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−t)

∣
∣
∣×
∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|2dy.

Thus,
∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|dy
∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−t)

∣
∣
∣

≤ A :=
ρ−1
k (r − t) − ρ−1

k (r)

jk(ρ
−1
k (r)) − jk(ρ

−1
k (r − t))

×

∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|2dy

ρ−1
k (r − t) − ρ−1

k (r)
.

(3.7)

The first factor in the right-hand side of the above inequality converges to 1/ik(ρ
−1
k (r)) as

t → 0+ (where ik is defined in (3.2)), from the co-area formula and the facts that ik is
continuous in Yk ∋ ρ−1

k (r) and ρ−1
k is continuous in [0, R]. Similarly,

∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|2dy

ρ−1
k (r − t) − ρ−1

k (r)
→
t→0+

∫

Σ
k,ρ

−1
k

(r)

|∇ϕk(y)|dσk,ρ−1
k (r)(y) = nαnr

n−1|∇uk(x)|

from (3.5). Therefore,

A →
t→0+

nαnr
n−1

ik(ρ
−1
k (r))

|∇uk(x)| ≤ |∇uk(x)| (3.8)
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from the isoperimetric inequality applied to Σk,ρ−1
k (r) = ∂Ωk,ρ−1

k (r) and ∂Bn
r (namely,

nαnr
n−1 ≤ ik(ρ

−1
k (r))). As a consequence,

lim sup
t→0+

∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|dy
∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−t)

∣
∣
∣

≤ |∇uk(x)|. (3.9)

Let ω ≥ 0 be fixed and let (εl)l∈N be a sequence of positive real numbers, such that εl → 0
as l → +∞. It follows from (3.6) and (3.9) that there exists a sequence of positive numbers
tl ∈ (0, η) such that tl → 0 and

∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−tl)

[∆ϕk(y) + ω |∇ϕk(y)|]dy
∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−tl)

∣
∣
∣

≤

∫

Sr−tl,r

∆uk(y)dy

∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−tl)

∣
∣
∣

+ ω (1 + εl)|∇uk(x)|.

(3.10)

Since uk is radially symmetric and of class C2 in Ek (Lemma 3.4), and since

∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−tl)

∣
∣
∣ = |Sr−tl,r|

for all l ∈ N, the right-hand side of (3.10) converges to ∆uk(x) + ω |∇uk(x)| as l → +∞.
On the other hand, since the function ϕk is of class C2(Ω), (3.10) shows that there exists

a sequence of points (yl)l∈N of Ω such that ϕk(yl) ∈ [ρ−1
k (r), ρ−1

k (r − tl)] and

lim sup
l→+∞

[∆ϕk(yl) + ω |∇ϕk(yl)|] ≤ ∆uk(x) + ω |∇uk(x)|.

Up to extraction of some subsequence, one can assume that yl → y ∈ Ω, with ϕk(y) = ρ−1
k (r)

(namely y ∈ Σk,ρ−1
k (r)) and

∆ϕk(y) + ω |∇ϕk(y)| ≤ ∆uk(x) + ω |∇uk(x)|.

That completes the proof of inequality (3.3).
For the proof of (3.4), let us first observe that the function Uk is differentiable in Yk,

from Lemma 3.2 and the fact that uk is of class C1(Ω∗). Furthermore, since uk is radially
symmetric and decreasing with respect to the variable |x| and since ρk is itself decreasing, it
is enough to prove that

|ρ′k(ρ−1
k (|x|))| × |∇uk(x)| ≥ 1

for all x ∈ Ek.
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Fix x ∈ Ek and use the same notations as above. It follows from (3.7) that, for t ∈ (0, η),

1 ≤ A×

∣
∣
∣Ωk,ρ−1

k (r)\Ωk,ρ−1
k (r−t)

∣
∣
∣

∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|dy

= A× αn[ρk(ρ
−1
k (r))n − ρk(ρ

−1
k (r − t))n]

ρ−1
k (r) − ρ−1

k (r − t)
× ρ−1

k (r) − ρ−1
k (r − t)

∫

Ω
k,ρ−1

k
(r)

\Ω
k,ρ−1

k
(r−t)

|∇ϕk(y)|dy
.

(3.11)

Since ρ−1
k is continuous in [0, R] and ρk is differentiable in Yk ∋ ρ−1

k (r), the second
factor in the right-hand side of the above inequality converges to nαnr

n−1ρ′k(ρ
−1
k (r)) =

−nαnrn−1|ρ′k(ρ−1
k (r))| as t → 0+. On the other hand, as already underlined earlier in the

proof, the third factor converges to −1/ik(ρ
−1
k (r)) as t→ 0+. Together with (3.8), the limit

as t→ 0+ in (3.11) leads to

1 ≤ nαnr
n−1

ik(ρ
−1
k (r))

× |ρ′k(ρ−1
k (r))| × |∇uk(x)|. (3.12)

The isoperimetric inequality yields nαnr
n−1 ≤ ik(ρ

−1
k (r)), whence

1 ≤ |ρ′k(ρ−1
k (r))| × |∇uk(x)|

and the proof of Proposition 3.5 is complete.

Lemma 3.7 For all ε > 0, there exists k0 ∈ N such that

−∆uk − (τ + ε) |∇uk| ≤ [λ(Ω, τ) + ε] uk in Ek (3.13)

for all k ≥ k0.

Proof. Let us first recall that ϕ is of class C2,α(Ω) and satisfies (3.1). As already underlined
at the beginning of this section, |∇ϕ| and ϕ are continuous nonnegative functions in Ω, which
do not vanish simultaneously. There exists then γ > 0 such that

|∇ϕ| + ϕ ≥ γ > 0 in Ω.

Fix ε > 0. Since

−∆ϕk = fk → f = τ |∇ϕ| + λ(Ω, τ)ϕ = −∆ϕ as k → +∞

uniformly in Ω, standard elliptic estimates imply that ϕk → ϕ as k → +∞ in W 2,p(Ω) for
any 1 ≤ p < +∞, whence ϕk → ϕ in C1,β(Ω) for all β ∈ [0, 1). As a consequence,

∆ϕk + (τ + ε)|∇ϕk| + [λ(Ω, τ) + ε] ϕk →
k→+∞

∆ϕ + (τ + ε)|∇ϕ| + [λ(Ω, τ) + ε] ϕ

= ε(|∇ϕ| + ϕ)
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uniformly in Ω. But
ε(|∇ϕ| + ϕ) ≥ εγ > 0 in Ω

from the choice of γ. Therefore, there exists k0 ∈ N such that

∆ϕk + (τ + ε)|∇ϕk| + [λ(Ω, τ) + ε] ϕk ≥ 0 in Ω (3.14)

for all k ≥ k0.
Let k ∈ N be such that k ≥ k0 and let x be in Ek. From Proposition 3.5, there exists

y ∈ Ω such that ϕk(y) = ρ−1
k (|x|) and

∆uk(x) + (τ + ε)|∇uk(x)| ≥ ∆ϕk(y) + (τ + ε)|∇ϕk(y)|.

Thus,

∆uk(x) + (τ + ε)|∇uk(x)| ≥ −[λ(Ω, τ) + ε] ϕk(y) = −[λ(Ω, τ) + ε] ρ−1
k (|x|) (3.15)

from (3.14). Inequality (3.13) follows from Corollary 3.6 and the fact that λ(Ω, τ) + ε ≥ 0.

Lemma 3.8 For all ε > 0,

λ(Ω, τ) + ε ≥ λ1(Ω
∗, (τ + ε)er) = λ(Ω∗, τ + ε). (3.16)

Proof. Fix ε > 0 and let k ∈ N be large enough so that (3.13) holds. Let ψ be the solution
(unique up to multiplication) of (1.9) with coefficient τ+ε instead of τ . Namely, ψ ∈ C2(Ω∗)
solves






−∆ψ − (τ + ε)|∇ψ| = −∆ψ + (τ + ε)er · ∇ψ = λ1(Ω
∗, (τ + ε)er)ψ

= λ(Ω∗, τ + ε)ψ in Ω∗

ψ > 0 in Ω∗

ψ = 0 on ∂Ω∗.

(3.17)

Assume that the conclusion of Lemma 3.8 does not hold, namely assume that

λ(Ω, τ) + ε < λ(Ω∗, τ + ε). (3.18)

We shall argue as in the proof of Lemma 2.1 and compare uk with ψ. Let us first point out
that, from Hopf lemma, ∂ψ

∂ν
is negative and continuous on the compact ∂Ω∗, where ν is the

outward unit normal to ∂Ω∗. Furthermore, ψ is (at least) of class C1(Ω∗) and is positive in
Ω∗. On the other hand, the function uk is (at least) of class C1(Ω∗). Therefore, there exists
η0 > 0 such that

∀ η ≥ η0, uk ≤ ηψ in Ω∗.

Call
η∗ = inf {η > 0, uk ≤ ηψ in Ω∗}.

The real number η∗ is positive since uk > 0 in Ω∗. There holds

uk ≤ η∗ψ in Ω∗.
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Two cases may then occur : either uk < η∗ψ in Ω∗, or minΩ∗(η∗ψ−uk) = 0. Let us first deal
with

Case 1 : uk < η∗ψ in Ω∗. Since uk is of class C1(Ω∗), radially symmetric and decreasing
with respect to the variable |x|, one has er ·∇uk = −|∇uk| in Ω∗. It then follows from (3.13)
and (3.18) that

−∆uk + (τ + ε)er · ∇uk < λ(Ω∗, τ + ε)uk in Ek ∩ Ω∗

(remember that uk > 0 in Ω∗).
Call z = η∗ψ − uk. From the definition of ψ in (3.17), one gets that

−∆z + (τ + ε)er · ∇z > λ(Ω∗, τ + ε)z in Ek ∩ Ω∗. (3.19)

But z is positive in Ω∗ and it is of class C2(Ek) and of class C1(Ω∗). Furthermore, z vanishes
on ∂Ω∗ = {x ∈ R

n, |x| = R} and

Ek ∩ Ω∗ ⊃ Sρk(ak,1),R = {x, ρk(ak,1) < |x| < R},
with ρk(ak,1) < R. Hopf lemma yields ∂z

∂ν
< 0 on ∂Ω∗. As in the beginning of the proof of

this lemma, there exists then ε0 > 0 such that z ≥ ε′uk in Ω∗ for all ε′ ∈ [0, ε0]. Hence,
uk ≤ ηψ in Ω∗ for all η ≥ η∗/(1 + ε0). That contradicts the minimality of η∗ and case 1 is
ruled out.

Case 2 : the case where minΩ∗(η∗ψ−uk) = minΩ∗ z = 0 is itself divided into two subcases :
either minΩ∗∩Ek

z = 0, or z > 0 in Ω∗ ∩ Ek and there exists y ∈ Ω∗\Ek such that z(y) = 0.
In the first subcase, since Ek∩Ω∗ is open and z, which satisfies (3.19), is nonnegative and

vanishes at some point x ∈ Ek∩Ω∗, the strong maximum principle implies that z vanishes in
the connected component of Ek ∩ Ω∗ containing x. That is impossible because of the strict
inequality in (3.19).

Therefore, only the second subcase could occur. In that subcase, owing to the definition
of Ek, |y| = ρk(ak,i) < R for some i ∈ {1, · · · , mk} and there is r0 > 0 such that

S = S|y|,|y|+r0 = {y′, |y| < |y′| < |y| + r0} ⊂ Ek ∩ Ω∗.

The function z is of class C2(S) ∩ C1(S), it is positive in S and vanishes at y ∈ ∂S. Fur-
thermore, z satisfies (3.19) (at least) in S. Hopf lemma implies that er · ∇z(y) > 0, where
er = y/|y| if y 6= 0, and er may be any unit vector if y = 0. But z is of class C1(Ω∗) and it
has a minimum at y ∈ Ω∗, whence ∇z(y) = 0. This gives a contradiction.

Case 2 is then ruled out too and the proof of Lemma 3.8 is complete.

Proof of the inequality λ1(Ω, v) ≥ λ1(Ω
∗, τer). Let us now complete the proof of the first

part of Theorem 1.1. To do so, remember that the function ω 7→ λ(Ω∗, ω) is continuous in
R+ (see Section 2.3, Lemma 2.5). Therefore, passing to the limit as ε → 0 in (3.16) yields

λ(Ω, τ) ≥ λ(Ω∗, τ).

On the other hand, from Theorem 1.6, λ(Ω∗, τ) = λ1(Ω
∗, τer). As a conclusion,

λ1(Ω, v) ≥ λ(Ω, τ) ≥ λ(Ω∗, τ) = λ1(Ω
∗, τer)

for all v ∈ L∞(Ω) with ‖v‖L∞(Ω) ≤ τ . That completes the proof of formula (1.3) in Theo-
rem 1.1.
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3.2 Characterization of the case of equality in (1.3)

We use in this section the same notations as in Section 3.1. Assume first that Ω is a ball,
say with the origin as center (up to translation). In other words, assume that Ω = Ω∗. It
follows from Theorems 1.5 and 1.6 that, for all v ∈ L∞(Ω∗) with ‖v‖L∞(Ω∗) ≤ τ , the equality
λ1(Ω

∗, v) = λ1(Ω
∗, τer) holds only when v = τer.

Consider now the case where Ω is not a ball and call R = (|Ω|/αn)1/n the radius of Ω∗.
We shall prove that

λ1(Ω, v) > λ1(Ω
∗, τer) = λ(Ω∗, τ)

for all v ∈ L∞(Ω) with ‖v‖L∞(Ω) ≤ τ . Owing to the definition of λ(Ω, τ), it is enough to
prove that

λ(Ω, τ) > λ(Ω∗, τ). (3.20)

The proof is divided into several lemmata.
First, the isoperimetric inequality yields the existence of β > 0 such that

area(∂Ω) =

∫

∂Ω

dσ∂Ω(y) ≥ (1 + β)nαnR
n−1, (3.21)

where the left-hand side is the (n− 1)-dimensional area of ∂Ω.
Call d(x,A) the Euclidean distance of a point x ∈ R

n to a set A ⊂ R
n. For all γ > 0,

define
Uγ = {x ∈ Ω, d(x, ∂Ω) ≤ γ}

and for all y ∈ ∂Ω, call ν(y) the outward unit normal to Ω. Since ∂Ω is of class C2,
there exists γ1 > 0 such that the segments [y, y − γ1ν(y)] are included in Ω and pairwise
disjoint when y describes ∂Ω (thus, the “segments” (y, y − γ1ν(y)] describe the set {x ∈ Ω,
d(x, ∂Ω) ≤ γ1} as y describes ∂Ω).

Lemma 3.9 Let ϕ ∈ C2,α(Ω) solve (3.1) with ‖ϕ‖L∞(Ω) = 1 and call

m = min
y∈∂Ω

|∇ϕ(y)|.

Then m > 0 and there exists γ2 ∈ (0, γ1] such that, for all γ ∈ (0, γ2], |∇ϕ| 6= 0 in Uγ,

∇ϕ(y − rν(y)) · ν(y) < 0 for all y ∈ ∂Ω and r ∈ [0, γ], and ϕ ≥ γm/2 in Ω\Uγ.

Proof. Let us first observe that m > 0 since ϕ is (at least) of class C1(Ω) and ∂ϕ
∂ν

(y) =
∇ϕ(y) · ν(y) < 0 for all y ∈ ∂Ω (from Hopf lemma).

Assume that the conclusion of the lemma does not hold. Then there exists a sequence of
positive numbers (γl)l∈N → 0 such that one of the three following cases occur : 1) either for
each l ∈ N, there is a point xl ∈ Uγl such that ∇ϕ(xl) = 0, 2) or for each l ∈ N, there are a
point yl ∈ ∂Ω and a number rl ∈ [0, γl] such that ∇ϕ(yl − rlν(yl)) · ν(yl) ≥ 0, 3) or for each
l ∈ N, there is a point xl ∈ Ω\Uγl such that ϕ(xl) < γlm/2.

In the first case, after passing to the limit up to extraction of some subsequence, there
would exist a point x ∈ ∂Ω such that ∇ϕ(x) = 0. This is impossible. Similarly, in the second
case, there would exist a point y ∈ ∂Ω such that ∇ϕ(y) · ν(y) ≥ 0, which is still impossible.
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Assume that the third case occurs. Let yl ∈ ∂Ω be such that

dl := |xl − yl| = d(xl, ∂Ω) ≥ γl > 0.

Up to extraction of some subsequence, one has xl → x ∈ Ω and ϕ(x) ≤ 0 by passing to the
limit as l → +∞ in the inequality ϕ(xl) < γlm/2. Since ϕ > 0 in Ω, it follows that x ∈ ∂Ω,
whence |xl − yl| → 0 and yl → x as l → +∞. On the one hand, the mean value theorem
implies that

ϕ(xl) − ϕ(yl)

|xl − yl|
= ∇ϕ(zl) ·

xl − yl
|xl − yl|

→ −∇ϕ(x) · ν(x) = |∇ϕ(x)| as l → +∞,

where zl is a point lying on the segment between xl and yl (whence, zl → x as l → +∞).
On the other hand, since ϕ = 0 on ∂Ω,

ϕ(xl) − ϕ(yl)

|xl − yl|
=
ϕ(xl)

dl
<
γlm

2γl
=
m

2
.

Hence, |∇ϕ(x)| ≤ m/2 at the limit, which contradicts the definition and the positivity of m.

In the sequel, we use the same functions ϕk as in Section 3.1, together with the same sets
Zk, Yk, Ωk,a, Σk,a and functions ρk, uk, etc.

Lemma 3.10 There exist k1 ∈ N and a0 > 0 such that [0, a0] ⊂ Yk for all k ≥ k1, and

ik(a) =

∫

Σk,a

dσk,a(y) = area(Σk,a) ≥
(

1 +
β

2

)

nαnR
n−1

for all k ≥ k1 and a ∈ [0, a0], where β > 0 is given in (3.21).

Proof. Let γ2 > 0 be as in Lemma 3.9. By compactness of Uγ2 and ∂Ω, and since ϕ is of
class C1(Ω), there is δ > 0 such that |∇ϕ| ≥ δ in Uγ2 and ∇ϕ(y − rν(y)) · ν(y) ≤ −δ for all
y ∈ ∂Ω and r ∈ [0, γ2].

Since ϕk → ϕ in C1(Ω) as k → +∞ (the convergence actually holds in C1,α′
(Ω) for all

0 ≤ α′ < 1), there exists k1 ∈ N such that

∀ k ≥ k1, |∇ϕk| ≥ δ/2 > 0 in Uγ2 , ϕk ≥ γ2m/4 > 0 in Ω\Uγ2
and

∀ k ≥ k1, ∀ y ∈ ∂Ω, ∀ r ∈ [0, γ2], ∇ϕk(y − rν(y)) · ν(y) ≤ −δ/2 < 0. (3.22)

Let k ∈ N be fixed such that k ≥ k1. It especially follows that, for all a ∈ [0, γ2m/8],

Σk,a = {x ∈ Ω, ϕk(x) = a} ⊂ Uγ2 , (3.23)

whence |∇ϕk| 6= 0 everywhere on the C2 hypersurface Σk,a. Thus,

[0, γ2m/8] ⊂ Yk.
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Furthermore, for all y ∈ ∂Ω, the segment [y, y − γ2ν(y)] is included in Ω and there exists
θ ∈ [0, 1] such that

ϕk(y − γ2ν(y)) = ϕk(y)
︸ ︷︷ ︸

=0

−γ2ν(y) · ∇ϕk(y − θγ2ν(y)) ≥
γ2δ

2
;

more precisely, the function κ : [0, γ2] → R, s 7→ ϕk(y − sν(y)) is differentiable and
κ′(s) ≥ δ/2 for all s ∈ [0, γ2].

Call
a1 = min(γ2m/8, γ2δ/4) > 0.

It follows from the above calculation that, for all k ≥ k1, a ∈ [0, a1] and y ∈ ∂Ω, there
exists a unique point φk,a(y) ∈ [y, y − γ2ν(y)] ∩ Σk,a. Moreover, for such a choice of k and
a, the map φk,a is one-to-one since the segments [y, y − γ2ν(y)] are pairwise disjoint when y
describes ∂Ω (because γ2 ∈ (0, γ1]). Lastly,

Σk,a = {φk,a(y), y ∈ ∂Ω} (3.24)

from (3.23).
Let us now prove that the area of Σk,a is close to that of ∂Ω for k large enough and a ≥ 0

small enough. To do so, let us first represent ∂Ω by a finite number of C2,α maps y1, . . . , yp

(for some p ∈ N
∗) defined in B, and for which

∂1y
j(x′) × · · · × ∂n−1y

j(x′) 6= 0 for all 1 ≤ j ≤ p and x′ ∈ Bρ.

Here, B = {x′ = (x1, . . . , xn−1), |x′| < 1} and ∂iy
j(x′) = (∂xi

yj1(x
′), . . . , ∂xi

yjn(x
′)) for 1 ≤

i ≤ n− 1, where yj(x′) = (yj1(x
′), . . . , yjn(x

′)) ∈ R
n. The maps yj are chosen so that

∂Ω = {yj(x′), x′ ∈ B, 1 ≤ j ≤ p}.

Fix k ≥ k1 and a ∈ [0, a1]. For each 1 ≤ j ≤ p, there exists then a map tjk,a : B → [0, γ2]
such that

ϕk(y
j(x′) − tjk,a(x

′)ν(yj(x′))) = a (3.25)

for all x′ ∈ B, and Σk,a = {yj(x′)−tjk,a(x′)ν(yj(x′)), x′ ∈ B, 1 ≤ j ≤ p}. From the arguments

above, each real number tjk,a(x
′) is then uniquely determined, and tjk,0(x

′) = 0.

Since the functions ϕk (say, for all k ≥ k1), y
j and ν ◦ yj (for all 1 ≤ j ≤ p) are (at least)

of class C1 (respectively in Ω, B and B), it follows from implicit function theorem and (3.22)
that the functions tjk,a (for all k ≥ k1, a ∈ [0, a1], 1 ≤ j ≤ p) and

hjk,x′ : [0, a1] ∋ a 7→ tjk,a(x
′)

(for all k ≥ k1, 1 ≤ j ≤ p, x′ ∈ B) are of class C1 (respectively in B and [0, a1]). From the
chain rule applied to (3.25), it is straightforward to check that, for all k ≥ k1, a ∈ [0, a1],
1 ≤ j ≤ p and x′ ∈ B,

(hjk,x′)
′(a) =

−1

ν(yj(x′)) · ∇ϕk(yj(x′) − tjk,a(x
′)ν(yj(x′)))

∈ (0, 2δ−1] from (3.22),
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whence
0 ≤ tjk,a(x

′) = hjk,x′(a) ≤ 2δ−1a (3.26)

because hjk,x′(0) = tjk,0(x
′) = 0.

Similarly,

∂xi
tjk,a(x

′) =
[∂iy

j(x′) − tjk,a(x
′)∂i(ν ◦ yj)(x′)] · ∇ϕk(yj(x′) − tjk,a(x

′)ν(yj(x′)))

ν(yj(x′)) · ∇ϕk(yj(x′) − tjk,a(x
′)ν(yj(x′)))

(3.27)

for all k ≥ k1, a ∈ [0, a1], 1 ≤ j ≤ p, x′ ∈ B and 1 ≤ i ≤ n − 1. For all k, 1 ≤ j ≤ p and
x′ ∈ B, one has ϕk(y

j(x′)) = 0, whence ∂iy
j(x′) · ∇ϕk(yj(x′)) = 0 (for all 1 ≤ i ≤ n − 1).

On the other hand, the functions ϕk converge (at least) in C1,1/2(Ω) to ϕ as k → +∞. As a
consequence,

|∂iyj(x′) · ∇ϕk(yj(x′) − tjk,a(x
′)ν(yj(x′)))| ≤ C1

√

tjk,a(x
′)

for all k ≥ k1, a ∈ [0, a1], 1 ≤ j ≤ p, x′ ∈ B and 1 ≤ i ≤ n − 1, and for some constant C1

defined by

C1 = max
1≤i′≤n−1, 1≤j′≤p, ξ∈B

|∂i′yj
′

(ξ)| × sup
k′∈N, z 6=z′∈Ω

|∇ϕk′(z) −∇ϕk′(z′)|
√

|z − z′|
< +∞.

Call now

C2 = max
1≤j′≤p, ξ∈B, 1≤i′≤n−1

|∂i′(ν ◦ yj
′

)(ξ))| × sup
k′∈N, z∈Ω

|∇ϕk′(z)| < +∞.

Together with (3.27) and (3.22), the above arguments imply that

|∂xi
tjk,a(x

′)| ≤ 2δ−1(C1

√

tjk,a(x
′) + C2t

j
k,a(x

′))

≤ 2δ−1(C1

√
2δ−1a+ 2C2δ

−1a) from (3.26)

for all k ≥ k1, a ∈ [0, a1], 1 ≤ j ≤ p, x′ ∈ B and 1 ≤ i ≤ n− 1.
It follows that

sup
k≥k1, 1≤j≤p, x′∈B, 1≤i≤n−1

|∂xi
(tjk,a ν ◦ yj)(x′)| → 0 as a→ 0, 0 ≤ a ≤ a1. (3.28)

On the other hand, there are some open sets U1, . . . , Up of B such that

area(∂Ω) =

p
∑

j=1

∫

Uj

|∂1y
j(x′) × · · · × ∂n−1y

j(x′)| dx′,

where the sets {yj(x′), x′ ∈ U j} for j = 1, . . . , p are pairwise disjoint and, for any ε > 0,
there are some measurable sets V 1, . . . , V p ⊂ B such that {yj(x′), x′ ∈ V j , 1 ≤ j ≤ p} = ∂Ω,

V j ⊃ U j and

∫

B

1V j\Uj (x′)dx′ ≤ ε for all 1 ≤ j ≤ p. Since all functions yj and tjk,aν ◦ yj (for
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all k ≥ k1, a ∈ [0, a1], 1 ≤ j ≤ p) are of class C1 in B, since each function φk,a is one-to-one
and since (3.24) holds, it follows that

area(Σk,a) =

p
∑

j=1

∫

Uj

|∂1(y
j − tjk,aν ◦ yj)(x′) × · · · × ∂n−1(y

j − tjk,aν ◦ yj)(x′)| dx′

for all k ≥ k1 and a ∈ [0, a1].
One concludes from (3.28) that

sup
k≥k1

|area(Σk,a) − area(∂Ω)| → 0 as a→ 0 with 0 ≤ a ≤ a1.

Because β in (3.21) is positive, there exists then a0 ∈ (0, a1] such that

ik(a) = area(Σk,a) ≥
(

1 +
β

2

)

nαnR
n−1

for all k ≥ k1 and a ∈ [0, a0].
That completes the proof of Lemma 3.10.

Lemma 3.11 With the notations of Lemma 3.10, one has

uk(x) ≥
(

1 +
β

2

)

ρ−1
k (|x|)

for all k ≥ k1 and x ∈ Ω∗ such that ρk(a0) ≤ |x| ≤ R.

Proof. Fix k ≥ k1. From Lemma 3.10, one has Sρk(a0),R ⊂ Ek. Fix any x ∈ Ω∗ such that
r = |x| ∈ [ρk(a0), R] (notice that 0 < ρk(a0) < R and ρ−1

k (r) ∈ [0, a0]). The calculations of
the proof of Proposition 3.5, and especially inequality (3.12), imply that

1 ≤ nαnr
n−1

ik(ρ
−1
k (r))

× |ρ′k(ρ−1
k (r))| × |∇uk(x)|.

But

ik(ρ
−1
k (r)) =

∫

Σ
k,ρ

−1
k

(r)

dσk,ρ−1
k (r)(y) = area(Σk,ρ−1

k (r)) ≥
(

1 +
β

2

)

nαnR
n−1

≥
(

1 +
β

2

)

nαnr
n−1

from Lemma 3.10. Thus,

1 +
β

2
≤ |ρ′k(ρ−1

k (r))| × |∇uk(x)|.

The conclusion of Lemma 3.11 follows from the above inequality, as in the proof of
Corollary 3.6.
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Lemma 3.12 There exist k2 ≥ k1 and η > 0 such that

uk(x) ≥ (1 + η) ρ−1
k (|x|)

for all k ≥ k2 and x ∈ Ω∗.

Proof. Let e be any unit vector in R
n and choose k ≥ k1. Let ũk be the function defined

in [0, R] by ũk(r) = uk(re) for all r ∈ [0, R]. This function is differentiable and decreasing in
[0, R]. Furthermore, Proposition 3.5 and the fact that ρ−1

k is decreasing in [0, R] imply that

−ũ′k(r) ≥ − d

dr
(ρ−1
k (r))

for all r ∈ ρk(Yk) = (0, ρk(ak,m−1))∪ · · ·∪ (ρk(ak,2), ρk(ak,1))∪ (ρk(ak,1), R]. Finite Increment
Theorem yields especially, as in the proof of Corollary 3.6,

uk(re) − uk(ρk(a0)e) ≥ ρ−1
k (r) − a0

for all r ∈ [0, ρk(a0)]. Fix such a r in [0, ρk(a0)] (whence ρ−1
k (r) ∈ [a0,Mk] ⊂ (0,Mk]). One

gets that
uk(re)

ρ−1
k (r)

≥ 1 +
uk(ρk(a0)e) − a0

ρ−1
k (r)

≥ 1 +
βa0

2ρ−1
k (r)

from Lemma 3.11.
But ρ−1

k (r) ≤ Mk = maxΩ ϕk → maxΩ ϕ = 1 as k → +∞. Hence, there exists k2 ≥ k1

such that

uk(re) ≥
(

1 +
βa0

4

)

ρ−1
k (r)

for all k ≥ k2 and r ∈ [0, ρk(a0)]. As in the proof of Corollary 3.6, the conclusion of Lemma
3.12 follows from the above inequality and from Lemma 3.11, with the choice

η = min(β/2, βa0/4) > 0

for instance.

Conclusion. Fix any ε > 0. From Lemma 3.12 and from (3.15), there exists k3 ≥ k2 such
that

−∆uk(x) − (τ + ε) |∇uk(x)| ≤ [λ(Ω, τ) + ε] ρ−1
k (|x|) ≤ λ(Ω, τ) + ε

1 + η
uk(x)

for all x ∈ Ek and k ≥ k3. As in the proof of Lemma 3.8, one gets that

λ(Ω, τ) + ε

1 + η
≥ λ(Ω∗, τ + ε).

Passing to the limit ε → 0+ in the above inequality yields

λ(Ω, τ) ≥ (1 + η) λ(Ω∗, τ) > λ(Ω∗, τ) = λ1(Ω
∗, τer) (> 0).

That completes the proof of Theorem 1.1.
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4 Appendix

4.1 Behavior of Fn(m, τ) for large τ

This section is devoted to the proof of the results mentioned in Remark 1.4.
First, to prove (1.5), fix m > 0 and τ ≥ 0, set Ω = (−R,R) with 2R = m, and denote

λ = λ1(Ω, τer)

and ϕ = ϕΩ,τer . Theorem 1.6 ensures that ϕ is an even function, decreasing in [0, R] and
Theorem 1.5 yields

−ϕ′′(r) + τϕ′(r) = λϕ(r) for all 0 ≤ r ≤ R,

with ϕ(R) = 0, ϕ > 0 in (−R,R) and ϕ′(0) = 0. For all s ∈ [0, τR], define ψ(s) = ϕ(s/τ),
so that ψ satisfies the equation

−ψ′′(s) + ψ′(s) =
λ

τ 2
ψ(s) for all 0 ≤ s ≤ τR,

with ψ(τR) = 0 and ψ′(0) = 0. Notice that λ depends on τ , but since, for all τ ≥ 0,
0 < λ ≤ λ1((−R,R), 0), there exists τ0 > 0 such that τ 2 ≥ 4λ for all τ ≥ τ0, and we will
assume that τ ≥ τ0 in the sequel. The function ψ can be computed explicitly: there exist
A,B ∈ R such that, for all 0 ≤ s ≤ τR,

ψ(s) = Aeµ+r +Beµ−r,

where µ± = (1 ±
√

1 − 4λ/τ 2)/2. Using the boundary values of ψ and ψ′, one obtains after
straightforward computations:

λ =
τ 2

4

(

1 +

√

1 − 4λ

τ 2

)2

e
−
√

1− 4λ
τ2 τR.

Since λ remains bounded when τ → +∞, it is then straightforward to check that λ ∼ τ 2e−τR

when τ → +∞, and that (1.5) follows.

We now turn to the proof of assertion (1.6). Let n ≥ 2, m > 0, τ ≥ 0 and Ω = Bn
R be

such that |Ω| = m, so that one has R = (m/αn)
1/n and Fn(m, τ) = λ1(Ω, τer). We first

claim that
Fn(m, τ) > F1(2R, τ).

Indeed, write
λ = λ1(Ω, τer) and ϕn = ϕΩ,τer .

Similarly, F1(2R, τ) = λ1((−R,R), τer), and we denote µ = λ1((−R,R), τer) and ϕ1 =
ϕ(−R,R),τer . As before, define ψn(y) = ϕn(y/τ) for all y ∈ τΩ = Bn

τR and ψ1(r) = ϕ1(r/τ) for
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all r ∈ [−τR, τR]. Finally, since ψn is radial, let un : [0, τR] → R such that ψn(y) = un(|y|)
for all y ∈ τΩ = Bn

τR. One has






−u′′n(r) −
n− 1

r
u′n(r) + u′n(r) =

λ

τ 2
un(r) in (0, τR],

−ψ′′
1 (r) + ψ′

1(r) =
µ

τ 2
ψ1(r) in [0, τR],

(4.1)

with u′n(0) = un(τR) = 0, ψ′
1(0) = ψ1(τR) = 0.

Assume that λ ≤ µ. Since u′n < 0 in (0, τR] and un ≥ 0, one obtains






−u′′n(r) + u′n(r) ≤
µ

τ 2
un(r) in [0, τR],

−ψ′′
1 (r) + ψ′

1(r) =
µ

τ 2
ψ1(r) in [0, τR].

(4.2)

Since ψ′
1(τR) < 0 by Hopf lemma, while ψ1(r) > 0 in [0, τR), un(r) > 0 in [0, τR) and

the functions un and ψ1 belong (at least) to C1([0, τR]), there exists then γ > 0 such that
γψ1(r) > un(r) for all 0 ≤ r < τR. Define γ∗ as the infimum of all the γ > 0 such that
γψ1 > un in [0, τR), observe that γ∗ > 0 and define z = γ∗ψ1 − un which is non-negative in
[0, τR] and satisfies

−z′′(r) + z′(r) − µ

τ 2
z(r) ≥ 0 (4.3)

for all 0 ≤ r ≤ τR and z(τR) = 0.
Assume that there exists 0 < r < τR such that z(r) = 0. The strong maximum principle

shows that z is identically zero in [0, τR], which means that γ∗ψ1 = un in [0, τR], and even
that ψ1 = un because ψ1(0) = un(0) = 1. But this is impossible according to (4.1) and (4.2).

Thus, z > 0 in (0, τR). Furthermore, z′(0) = 0, hence z(0) > 0 from Hopf lemma.
Another application of Hopf lemma shows that z′(τR) < 0. Therefore, there exists κ > 0
such that z > κun in [0, τR), whence

γ∗

1 + κ
ψ1 > un in [0, τR),

which is a contradiction with the definition of γ∗.
Finally, we have obtained that µ < λ, which means that Fn(m, τ) > F1(2R, τ).
We look for a reverse inequality. To that purpose, let ε ∈ (0, 1) and R0 > 0 such that

n− 1

R0
< ε. In the following computations, we always assume that τR > R0. Define un and

λ as before. Let

µ′ = λ

((

−
(

R− R0

τ

)

,

(

R− R0

τ

))

, τ(1 − ε)

)

and w the normalized corresponding eigenfunction, so that






−w′′(r) + τ(1 − ε)w′(r) = µ′w(r) in

[

0, R− R0

τ

]

,

w′(0) = 0, w > 0 in

[

0, R− R0

τ

)

, w

(

R− R0

τ

)

= 0.
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For all R0 ≤ x ≤ τR, define v(x) = w

(
x− R0

τ

)

, which satisfies







−v′′(r) + (1 − ε)v′(r) =
µ′

τ 2
v(r) in [R0, τR] ,

v′(R0) = 0, v > 0 in [R0, τR), v(τR) = 0.

Assume that λ ≥ µ′. Since (n− 1)/R0 < ε and u′n(r) < 0 in (0, τR], one therefore has







−u′′n(r) + (1 − ε)u′n(r) ≥
µ′

τ 2
un(r) in [R0, τR],

−v′′(r) + (1 − ε)v′(r) =
µ′

τ 2
v(r) in [R0, τR].

Arguing as before, we see that there exists γ > 0 such that γun > v in [R0, τR). Define γ∗

(> 0) as the infimum of all such γ’s and define z = γ∗un−v, which is nonnegative in [R0, τR]
and satisfies −z′′ + (1 − ε)z′ − (µ′/τ 2)z ≥ 0 in [R0, τR].

Assume that z(r) = 0 for some r ∈ (R0, τR). The strong maximum principle ensures
that z is 0 in [R0, τR], which means that un = v in [R0, τR], which is impossible because
u′n(R0) < 0 = v′(R0).

Therefore, z > 0 everywhere in (R0, τR). Furthermore, z′(R0) < 0, thus z(R0) > 0. On
the other hand, by Hopf lemma, z′(τR) < 0. Thus, there exists κ > 0 such that z > κv in
[R0, τR), whence (γ∗/(1 + κ))un > v in [R0, τR). This contradicts the definition of γ∗.

Thus, we have established that λ < µ′. Straightforward computations (similar to those
of the proof of (1.5)) show that

λ < µ′ =
τ 2

4

(

1 − ε+

√

(1 − ε)2 − 4µ′

τ 2

)2

e−
√

(1−ε)2− 4µ′

τ2 (τR−R0),

and, since λ > F1(2R, τ), formula (1.5) and the fact that m = αnR
n end the proof of (1.6).

4.2 Proof of Proposition 1.8

Let m > 0 be fixed. For any Ω ∈ C and any v ∈ L∞(Ω), one has the following min-max
characterization of λ1(Ω, v) (see [11]):

λ1(Ω, v) = sup
ϕ

inf
Ω

(−∆ϕ + v · ∇ϕ
ϕ

)

, (4.4)

where the supremum is taken over all functions ϕ ∈ W 2,n
loc (Ω) which are positive in Ω. For

ε > 0, consider a domain Ωε ∈ C included in {x = (x1, . . . , xn) ∈ R
n; ε < x1 < 2ε} and

satisfying |Ωε| = m, and let v be any field in L∞(Ωε,R
n) with ‖v‖∞ ≤ τ . Define, for all

x = (x1, . . . , xn) ∈ Ωε,

ϕε(x) = sin
(πx1

3ε

)

.
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Then, for all x ∈ Ωε,

−∆ϕε(x)

ϕε(x)
=

π2

9ε2
,

v · ∇ϕε(x)
ϕε(x)

≥ − 2τπ

3
√

3ε

and thus

λ1(Ωε, v) ≥
π2

9ε2
− 2τπ

3
√

3ε
.

This shows that

sup
Ω∈C, |Ω|=m

λ(Ω, τ) ≥ π2

9ε2
− 2τπ

3
√

3ε
,

and, since this is true for all ε > 0, the assertion (1.11) follows.
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[30] L.E. Payne, G. Pólya and H.F. Weinberger, On the ratio of consecutive eigenvalues,
J. Math. Phys. 35 (1956), 289-298.
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[35] J. Souček and V. Souček, Morse-Sard theorem for real-analytic functions, Comment.
Math. Univ. Carolinae 13 (1972), 45-51.
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