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Abstract

We extend to infinite dimensional separable Hilbert spaces the Schur convexity property
of eigenvalues of a symmetric matrix with real entries. Our framework includes both the case
of linear, selfadjoint, compact operators, and that of linear selfadjoint operators that can be
approximated by operators of finite rank and having a countable family of eigenvalues. The
abstract results of the present paper are illustrated by several examples from mechanics or
quantum mechanics, including the Sturm-Liouville problem, the Schrödinger equation, and
the harmonic oscillator.
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1 Introduction

An important notion in the finite dimensional theory of convex functions is that of Schur convexity.

Roughly speaking, Schur-convex functions are real-valued mappings which are monotone with

respect to the majorization ordering. A rigorous definition is stated in what follows. Let R
n
≥

denote the cone of vectors with nonincreasing components, that is,

R
n
≥ = {x = (x1, x2, . . . , xn) ∈ R

n; x1 ≥ x2 ≥ . . . ≥ xn} .

The dual cone of the cone R
n
≥ is defined by

(Rn
≥)+ =

{

y ∈ R
n; (x, y) ≥ 0 for all x ∈ R

n
≥

}

.

A straightforward computation shows that

(Rn
≥)+ =

{

y ∈ R
n;

j
∑

i=1

yi ≥ 0 for all j = 1, . . . , n − 1 and
n

∑

i=1

yi = 0

}

.
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We recall (see, e.g., Roberts and Varberg [15], Borwein and Lewis [2]) that a function f :

R
n → R is Schur convex if it is (Rn

≥)+-isotone, that is,

x, y ∈ R
n
≥, y − x ∈ (Rn

≥)+ =⇒ f(x) ≤ f(y) .

The Schur-convex functions were introduced by Schur [18] in 1923 and they have many im-

portant applications in analytic inequalities. Hardy, Littlewood and Pólya [7] were also interested

in some inequalities that are related to Schur-convex functions. The notion of Schur-convexity

has shown its importance in many domains. For instance, Merkle proved in [11] that if I ⊂ R is

an interval and f : I → R is differentiable, then f ′ is convex if and only if the mapping

F (x, y) =











f(y) − f(x)

y − x
if y 6= x

f ′(x) if y = x

is Schur convex. This property is applied in order to obtain some inequalities for the ratio of

Gamma functions. We also refer to Hwang and Rothblum [9], who study optimization prob-

lems over partitions of a finite set and obtain conditions that allow for simple constructions of

partitions that are uniformly optimal for all Schur convex functions. Stochastic Schur convexity

properties have been established by Shaked, Shanthikumar and Tong [19]. Exciting results such

as Schur’s analytic criteria for Schur convexity, equivalence with Muirhead’s inequality, majoriza-

tion and stochastic matrix conditions in R
n, and Schur’s majorization inequality can be found

in the excellent book by Steele [20]. Recently, Guan [6] has proved that the complete elemen-

tary symmetric function cr = cr(x) =
∑

i1+...+in=r x
i1
1 . . . x

in
n and the function cr(x)/cr−1(x) are

Schur-convex functions in R
n
+ = {(x1, . . . , xn); xi > 0}, where r is a positive integer and i1, . . . , in

are nonnegative integers.

Zhang [22] proved that every Schur-convex function f : D ⊂ R
n → R is a symmetric function,

that is, f(x) = f
(

xσ(1), . . . , xσ(n)

)

for any permutation σ ∈ Pn and for all x = (x1, . . . , xn) ∈ D.

The converse is not true (see, e.g., Roberts and Varberg [15, p. 258]). However, if I is an open

interval and f : In → R is symmetric and of class C1, then f is Schur-convex if and only if

(xi − xj)

(

∂f

∂xi
−
∂f

∂xj

)

≥ 0 on In,

for all i, j ∈ {1, . . . , n} (see Roberts and Varberg [15, p. 259]).

Eigenvalues of real symmetric matrices exhibit remarkable convexity properties. Let Sn denote

the set of all symmetric matrices X ∈ Mn,n(R). In Borwein and Lewis [2, p. 108] it is stated the

following elementary property of eigenvalues of X ∈ Sn.

The Schur Convexity Property. Let λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X) be the eigenvalues

(counted by multiplicity) of an arbitrary matrix X ∈ Sn. Assume that µ = (µ1, µ2, . . . , µn) ∈ R
n
≥.

Then the functional ϕ(X) =
∑n

i=1 µiλi(X) is sublinear.

A direct consequence of this result is that the mapping ϕ : Sn → R is convex.
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In the particular case µ1 = . . . = µk = 1, µk+1 = . . . = µn = 0 (1 ≤ k ≤ n), we deduce that

the sum of the largest k eigenvalues of a matrix X ∈ Sn is a convex function. An alternative

proof is based on the observation that, for any fixed 1 ≤ k ≤ n,

λ1(X) + λ2(X) + . . .+ λk(X) = sup
A∈A

tr (AATX) , (1.1)

where

A =
{

A ∈ Mn,k(R); ATA = Ik
}

.

Since A is a compact set, the supremum in (1.1) is attained in A. We deduce that the mapping

Sn ∋ X 7−→ λ1(X) + λ2(X) + . . . + λk(X) is convex, as a supremum of linear functions on Sn.

The extreme situations k = 1 and k = n show that both the largest eigenvalue of X and the trace

of X are convex functions on Sn. We also deduce, by taking differences, that
∑n

j=k+1 λj(X) is a

concave function, for all 1 ≤ k ≤ n−1. In particular, the mapping Sn ∋ X 7−→ λn(X) is concave.

A classical result (see, e.g., Borwein and Lewis [2], and Rockafellar and Wets [16]) asserts that

Schur convex functions are precisely restrictions to R
n
≥ of symmetric convex functions. This result

is strictly related to the class of convex functions f : Sn → R (like the functions
∑k

j=1 λj(X))

depending only on the eigenvalues ofX. In fact, if we write diag (λ) (where λ = (λ1, . . . , λn) ∈ R
n)

for the diagonal matrix with diagonal entries λ1, . . . , λn, and define a function Φ : R
n → R by

Φ(λ) = f(diag (λ)), then Φ is convex and symmetric: Φ(λ) = Φ(σ ◦ λ) for all permutation

σ ∈ Pn. The converse is also true: if Φ : R
n → R is a symmetric convex function then the

function f : Sn → R defined by f(X) = Φ(λ(X)) (where λ(X) = (λ1(X), . . . , λn(X))T ) is convex

and satisfies f(U∗XU) = f(X) whenever U ∈ Mn,n(R) is a unitary matrix. The above result is

due to Davis [4].

The above considerations show that it is natural to impose an adequate “symmetry” assump-

tion in order to obtain a Schur convexity property for linear operators defined on arbitrary Hilbert

spaces. That is why we consider throughout this paper linear selfadjoint operators defined on

infinite dimensional Hilbert spaces.

2 A Schur convexity property in Hilbert spaces

In the first part of this section we establish an infinite dimensional version of the Schur convexity

property for linear, selfadjoint and compact operators defined on separable Hilbert spaces. Next,

we extend this property to the class of linear selfadjoint operators that can be approximated by

operators of finite rank. Several examples from mechanics and quantum mechanics illustrate both

cases.

2.1 Schur convexity property for selfadjoint, compact operators

Let H be a separable Hilbert space and assume that S : H → H is a linear, selfadjoint and

compact operator. Since S is compact then, by the Riesz-Schauder theorem (Theorem VI.15 in
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Reed and Simon [13]), the spectrum σ(S) of S is a discrete set having no limit points except

perhaps the origin. Moreover, any λ ∈ σ(S) \ {0} is an eigenvalue of finite multiplicity. Next, the

classical spectral theory of compact selfadjoint operators (see, e.g., Brezis [3, Proposition VI.9])

ensures that σ(S) ⊂ [m,M ] and m,M ∈ σ(S), where m = inf{(Su, u); u ∈ H, ‖u‖ = 1} and

M = sup{(Su, u); u ∈ H, ‖u‖ = 1}. In conclusion, the spectrum of S is discrete and it consists

of a countable family of eigenvalues (λn(S))n≥1 with the additional property that λn(S) → 0 as

n → ∞. At this stage, the Hilbert-Schmidt theorem (Theorem VI.16 in Reed and Simon [13])

implies that there is a complete orthonormal basis (en)n≥1 of H such that Sen = λnen for all

n ≥ 1, where λn = λn(S). So, Sx =
∑∞

n=1 λn(x, en)en, for all x ∈ H.

We observe that for any fixed positive integer n, the set

{

λ ∈ σ(S); |λ| ≥
1

n

}

is either empty or finite. Thus, we can rearrange the eigenvalues of S such that

λ1(S) ≥ λ2(S) ≥ . . . ≥ λn(S) ≥ . . . > 0 > . . . ≥ λ−n(S) ≥ . . . ≥ λ−2(S) ≥ λ−1(S) . (2.1)

Moreover, the unique limit point of the sequence (λn(S))n∈Z
is 0. If S has a finite number of

negative eigenvalues (say, n), we denote them by λ−1(S) ≤ . . . ≤ λ−n(S) and we set λ−k(S) for

all k ≤ n + 1. We make a similar convention if S has finitely many positive eigenvalues. If 0 is

an eigenvalue of S, we denote λ0(S) = 0.

Denote by K1(H) the vector space of linear, selfadjoint and compact operators S : H → H.

We prove the following infinite dimensional variant of Schur’s convexity property.

Theorem 2.1. Let H be a separable Hilbert space and assume that S : H → H is an arbitrary

compact selfadjoint operator. Assume that the eigenvalues of S are arranged as in (2.1) and let

(µn)n∈Z be real numbers such that µ1 ≥ µ2 ≥ . . . ≥ µn ≥ . . . ≥ µ−n ≥ . . . ≥ µ−2 ≥ µ−1 and
∑∞

n=−∞ µn is an absolutely convergent series.

Then the functional ψ : K1(H) → R defined by ψ(S) =
∑∞

n=−∞ µnλn(S) is convex and lower

semicontinuous.

Proof. We first observe that since S ∈ K1(H) is not assumed to be a nuclear operator,

then the series
∑

n∈Z
λn(S) is not necessarily convergent. However, our hypothesis that the

series
∑∞

n=−∞ µn is absolutely convergent implies that the series
∑∞

n=−∞ µnλn(S) is absolutely

convergent, too, so the mapping ψ is well-defined. Indeed, for all S ∈ K1(H),

|ψ(S)| ≤

∞
∑

n=−∞

|µn| · |λn(S)| ≤ max {−λ−1(S), λ1(S)}

∞
∑

n=−∞

|µn| <∞ .

Any operator S ∈ K1(H) is the norm limit of a sequence of operators of finite rank. Indeed,

if (en)n∈Z is a complete orthonormal basis of H so that Sen = λn(S)en for all n ∈ Z, with λn(S)

arranged as in (2.1), then Sx =
∑∞

n=−∞ λn(S)(x, en)en, for all x ∈ H. Set, for any m ≥ 1,
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Smx =
∑m

j=−m λj(S)(x, ej)ej , for all x ∈ H. Then Sm → S in L(H) as m → ∞ and the

(nontrivial) eigenvalues of Sm are λ1(S) ≥ . . . ≥ λm(S) > 0 > λ−m(S) ≥ . . . ≥ λ−1(S). So, by

the finite-dimensional Schur convexity property, the mapping

ψm : K1(H) → R , ψm(S) =
m

∑

j=−m

µjλj(S)

is sublinear. So, for any S, T ∈ K1(H) and all α ∈ R,

ψm(S + T ) ≤ ψm(S) + ψm(T ) and ψm(αS) = |α|ψm(S) . (2.2)

On the other hand,

|ψ(S) − ψm(S)| =

∣

∣

∣

∣

∣

∣

∑

|j|≥m+1

µjλj(S)

∣

∣

∣

∣

∣

∣

≤ max {−λ−m−1(S), λm+1(S)}
∑

|j|≥m+1

|µj| .

Therefore

ψm(S) → ψ(S) as m→ ∞. (2.3)

Thus, by (2.2) and (2.3), ψ is a sublinear functional. In particular, ψ is convex.

It remains to argue that ψ is lower semicontinuous, that is, ψ(S) ≤ lim infn→∞ ψ(Sn) for all

S ∈ K1(H), provided Sn ∈ K1(H) and ‖Sn − S‖ → 0 as n→ ∞. The key ingredient is Theorem

4.2 in Gohberg-Krein [5], which asserts that λj(S) = limn→∞ λj(Sn). Fix an integer m ≥ 1 and

choose arbitrarily 0 < ε < max {−λ−m(S), λm(S)}. It follows that there exists N0 = N0(ε) ∈ N

such that, for all n ≥ N0,

ψm(S) =
m

∑

j=−m

µjλj(S) =
m

∑

j=−m

µ+
j λj(S) −

m
∑

j=−m

µ−j λj(S)

≤

m
∑

j=−m

µ+
j (λj(Sn) + ε) −

m
∑

j=−m

µ−j (λj(Sn) − ε)

=

m
∑

j=−m

µjλj(Sn) + ε

m
∑

j=−m

|µj| = ψm(Sn) + ε

m
∑

j=−m

|µj | .

Taking ε→ 0 we obtain ψm(S) ≤ ψm(Sn), for all positive integers m and n. So, for all n ≥ 1,

ψ(S) = lim
m→∞

ψm(Sn) ≤ lim
m→∞

ψm(Sn) = ψ(Sn) .

We deduce that ψ(S) ≤ lim infn→∞ ψ(Sn) and the proof is concluded.

Examples. 1. Sturm-Liouville differential operators. Many eigenvalue problems in quantum

mechanics as well as classical physics are described by the Sturm-Liouville problem











−
d

dx

(

p(x)
dy

dx

)

+ q(x)y = Λy in (0, L)

y(0) = y(L) = 0 ,

(2.4)
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where y(x) is the quantum mechanical wave function or other physical quantity, while p ∈ C1[0, L]

(p > 0 in [0, L]) and q ∈ C[0, L] are given functions that are determined by the nature of the

system of interest. We can assume, without loss of generality, that q ≥ 0 in [0, L]. Indeed, if not,

we choose C ∈ R sufficiently large such that q + C ≥ 0 in [0, L] (in such a case, Λ is replaced

by Λ + C in (2.4)). Fix f ∈ L2(0, L). Thus, by the Lax-Milgram lemma, there exists a unique

u ∈ H2(0, L) ∩H1
0 (0, L) such that











−
d

dx

(

p(x)
dy

dx

)

+ q(x)y = f in (0, L)

y(0) = y(L) = 0 .

Let S : L2(0, L) → L2(0, L) be the operator defined by Sf = u. Then, by Theorem VIII.20 in

Brezis [3], S is linear, selfadjoint, compact, and nonnegative. Let λ1(S) ≥ λ2(S) ≥ . . . ≥ λn(S) ≥

. . . > 0 denote the eigenvalues of S. Then Λn(S) = 1/λn(S) is an eigenvalue corresponding to

the Sturm-Liouville problem (2.4). In the particular case p ≡ 1 and q ≡ 0, a straightforward

computation shows that λn(S) = L2(n2π2)−1.

Let µn (n ≥ 1) be real numbers such that µi ≥ µj if i < j and such that the series
∑∞

n=1 µn

converges absolutely. So, by Theorem 2.1, the mapping

S 7−→
∞
∑

n=1

µnλn(S)

is convex and lower semicontinuous.

2. The electron atom model. On the Hilbert space H = L2(R3), let x, y, z be the components

of the momentum of the electron and denote by r = (x, y, z) its position. Consider on H the

selfadjoint operator

S = ∆ +
α

|r|
, |r| =

√

x2 + y2 + z2 .

Notice that the potential V (|r|) = α/|r| is the energy of the electric field surrounding the electron,

α depends on the electron’s charge, and |r| is its distance from the atom’s nucleus. As established

in Reed and Simon [14], S has no eigenvalues for any α < 0 and, if α > 0, then all eigenvalues of

S are

λn(S) =
α

4n2
, n = 1, 2, . . .

Let (µn)n≥1 be a sequence of real numbers such that µ1 ≥ µ2 ≥ . . . ≥ µn ≥ . . . and the series
∑∞

n=1 µn converges absolutely. So, by Theorem 2.1, the mapping

S 7−→

∞
∑

n=1

µnλn(S)

is convex and lower semicontinuous.
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3. Nonrelativistic model for 2-electron atom. Set H = L2(R6) and define on H the selfadjoint

operator

S = ∆1 +
α

|r1|
+ ∆2 +

β

|r2|
,

where α, β > 0, rk = (xk, yk, zk), and

∆k =
∂2

∂x2
k

+
∂2

∂y2
k

+
∂2

∂z2
k

, for all k = 1, 2.

Cf. Reed and Simon [14], the eigenvalues of S are precisely

λn,m(S) =
α

4n2
+

β

4m2
, n,m = 1, 2, . . .

The countable family of positive numbers (λn,m(S))n,m≥1 can be rearranged in a sequence

(γp(S))p≥1 such that γi(S) ≥ γj(S) provided i < j. Let (µp)p≥1 be a sequence of real numbers

such that µ1 ≥ µ2 ≥ . . . ≥ µp ≥ . . . and the series
∑∞

p=1 µp converges absolutely. Thus, by

Theorem 2.1, the mapping

S 7−→

∞
∑

p=1

µpγp(S)

is convex and lower semicontinuous.

4. Schrödinger operators with periodic potential. The basic equation of quantum mechanics

is the Schrödinger equation

i~ψt = −
~

2

2m
∆ψ + V (x)ψ . (2.5)

Schrödinger [17] studied the stationary equation

λϕ = −
~

2

2m
∆ϕ+ V (x)ϕ , (2.6)

which follows from (2.5) through ψ(x, t) = ϕ(x)e−iλt/~. From (2.6) Schrödinger derived the

spectrum of the hydrogen atom. In this case, V is the potential of the electrostatic attracting

force of the atomic nucleus, while from the eigenvalues λ of (2.6) one obtains the energy levels of

the electron of the hydrogen atom.

Solutions of Schrödinger’s equation have to fulfill strict conditions to be useful in describing

the electron. Some of the solutions are associated with special values of the electron’s energy

level, known as eigenvalues. We consider in what follows the class of piecewise continuous po-

tential functions V : R → R which are periodic of period 2π. Let S denote the one dimensional

Schrödinger operator associated to V defined on L2
per(R) with 2π-periodic conditions. This op-

erator is defined as follows: for any f ∈ L2
per(R) periodic of period 2π, let u ∈ H1

per(R) be the

unique solution of the problem










−u′′ + V (x)u = f in (0, 2π)

u(0) = u(2π), u′(0) = u′(2π) .
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Then S is defined by L2
per(R) ∋ f 7−→ u = Sf ∈ L2

per(R). According to Theorem XIII.89 in Reed

and Simon [14], S has a countable family of eigenvalues λ1(S) > λ2(S) > . . . > λn(S) > . . . and

λn(S) → 0 as n → ∞. Assume that µn (n ≥ 1) are real numbers such that µi ≥ µj if i < j and

such that the series
∑∞

n=1 µn converges absolutely. So, by Theorem 2.1, the mapping

S 7−→

∞
∑

n=1

µnλn(S)

is convex and lower semicontinuous.

5. Indefinite weight elliptic problems on the whole space. Consider the class of measurable

functions V : R
N → R (N ≥ 3) such that V + ∈ LN/2(RN ), where V = V + − V −. We observe

that this class contains potentials V satisfying V +(x) ≤ C(1 + |x|2)−α for all x ∈ R
N , where

α > 1 and C is a positive constant. For some fixed λ > 0, let E be the completion of C∞
0 (RN )

with respect to the norm

‖u‖2 =

∫

RN

[

|∇u|2 + max
(

λV −, ω
)

u2
]

dx ,

where ω(x) = K(1+|x|2)−1 with K > 0 sufficiently small. Then, by Lemma 0 in Allegretto [1], the

operator S : E → E∗ →֒ E defined by Sϕ = V +ϕ is compact and selfadjoint. Next, by Theorem 1

in Allegretto [1], there exist infinitely many eigenvalues λ1(S) > λ2(S) ≥ . . . ≥ λn(S) ≥ . . . ≥ 0

of S with λn(S) → 0 as n→ ∞. So, if µn (n ≥ 1) are real numbers such that µi ≥ µj if i < j and
∑∞

n=1 |µn| < ∞ then, by Theorem 2.1, the mapping S 7−→
∑∞

n=1 µnλn(S) is convex and lower

semicontinuous.

2.2 A more general framework

Consider the class K2(H) of linear selfadjoint operators S : H → H having a countable family of

eigenvalues and such that S can be approximated by operators of finite rank. For any operator

S ∈ K2(H), passing eventually at a rearrangement, let λ1(S) ≥ λ2(S) ≥ . . . ≥ λn(S) ≥ . . . denote

the eigenvalues of S.

Fix a family µ = (µ1, µ2, . . . , µn, . . .) of real numbers such that µi ≥ µj if i < j. Consider the

class K2,µ(H) of operators S ∈ K2(H) such that the series
∑∞

n=1 µnλn(S) converges.

Under these hypotheses, we establish the following infinite dimensional version of the Schur

convexity property.

Theorem 2.2. The functional ψ : K2,µ(H) → R defined by ψ(S) =
∑∞

n=1 µnλn(S) is convex and

lower semicontinuous.

Proof. By the definition of K2,µ(H), for any operator belonging to this class there exists a

sequence (Sn)n≥1 of operators of finite rank such that ‖Sn − S‖ → 0 as n→ ∞. So, by Theorem

4.2 in Gohberg-Krein [5], we have limn→∞ λj(Sn) = λj(S), for all positive integer j. Define, for

8



all m ≥ 1,

ψm : K2,µ(H) → R , ψm(S) =

m
∑

j=1

µjλj(S) .

Therefore

lim
n→∞

m
∑

j=1

µjλj(Sn) =

m
∑

j=1

µjλj(S) = ψm(S) . (2.7)

On the other hand, since S ∈ K2,µ(H),

lim
m→∞

ψm(S) =

∞
∑

j=1

µjλj(S) = ψ(S) . (2.8)

Let S, T ∈ K2,µ(H) and assume that Sn, Tn are operators of finite rank such that ‖Sn−S‖ → 0

and ‖Tn − T‖ → 0 as n→ ∞. Applying the Schur convexity property we obtain

ψm(Sn + Tn) ≤ ψm(Sn) + ψm(Tn) , for all m,n ≥ 1 .

Taking n→ ∞ and using (2.7) we find

ψm(S + T ) ≤ ψm(S) + ψm(T ) , for all m ≥ 1 .

Next, by (2.8), we deduce that

ψ(S + T ) ≤ ψ(S) + ψ(T ) , for all S, T ∈ K2,µ(H) .

A similar argument shows that ψ is positive homogeneous.

The lower semicontinuity of ψ follows with the same arguments as in the proof of Theorem

2.1.

Examples. 1. Schrödinger operators with arbitrary potential. Let H0 denote the differential

operator d2/dx2 on L2(0, 1) with the boundary conditions u(0) = u(1) = 0 and assume that V ∈

L∞(0, 1) is an arbitrary potential. Let λn(S) be the nth eigenvalue of the operator S = H0 + V .

Then, by Theorem XIII.82.5 in Reed and Simon [14],

λn(S) = −n2π2 +

∫ 1

0
V (x)dx+ o(1) as n→ ∞. (2.9)

Fix the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S)

converges. Using the asymptotic estimate (2.9), we deduce that, for the last purpose, it is enough

to choose µn so that µn = O (n−p), for some p > 3. Then, by Theorem 2.2, the mapping

S 7−→

∞
∑

n=1

µnλn(S)

is convex and lower semicontinuous.
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2. Wave functions on infinite depth wells. Fix arbitrarily the positive numbers a and b. Define

the following discontinuous potential energy of a particle in the force field

V (x) =























−∞ if x < −b

0 if −b < x < a

−∞ if x > a .

Consider the Schrödinger equation










~
2

2m
ψ′′ + V (x)ψ = λψ

ψ(−b) = ψ(a) = 0 ,

where m is the mass of the particle and ~ is Dirac’s constant (reduced Planck’s constant). Cf.

Pluvinger [12, p. 102], the definition of V forces ψ = 0 outside (−b, a). A straightforward

computation shows that the eigenvalues of the associated operator S are given by

λn(S) = −
~

2π2

2m(a+ b)2
n2 .

Fix the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S)

converges. The above expression of eigenvalues shows that it is enough to choose µn so that

µn = O (n−p), for some p > 3. Applying Theorem 2.2, we deduce that the mapping

S 7−→
∞
∑

n=1

µnλn(S)

is convex and lower semicontinuous.

3. Linear harmonic oscillator. Consider the Schrödinger equation on the whole real axis














~
2

2m
ψ′′ + V (x)ψ = λψ

lim
|x|→∞

ψ(x) = 0 = 0 .
(2.10)

In the particular case where V (x) = −mω2x2/2 the above problem describes the linear harmonic

oscillator. Cf. Pluvinger [12, p. 74] the energy levels of the corresponding linear operator S are

given by λn(S) = −~ω(n + 1/2). So, letting (µn)geq1 so that µi ≥ µj if i < j and such that the

series
∑∞

n=1 µnλn(S) converges, Theorem 2.2 implies that the mapping S 7−→
∑∞

n=1 µnλn(S) is

convex and lower semicontinuous.

We point out that in the case of Morse potentials V (x) = V0

(

e−2x/a − 2e−x/a
)

the number of

eigenvalues of the problem (2.10) is finite.

4. Periodic standing waves of Schrödinger’s equation. In his Ph.D. thesis defended in 1923, de

Broglie showed that an electron, or any other particle, has a wave associated with it. The second
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equation established by de Broglie establishes that the kinetic energy of a particle is directly

proportional to its angular frequency. De Broglie’s work resulted in the equation λ = ~ω, where

λ is the kinetic energy of the associated wave and ω is the angular frequency of the particle.

With the same notations as in the previous example, we consider the Schrödinger equation with

periodic boundary conditions























~
2

2m
ψ′′ + V (x)ψ = λψ in (−b, a)

ψ(−b) = ψ(a)

ψ′(−b) = ψ′(a) .

Outside the fundamental segment of length L = a + b the standing wave ψ is prolonged by

periodicity such that ψ(x + L) = ψ(x), for all x ∈ R. In Pluvinger [12, p. 108] it is provided

a class of potentials V for which the associated bound state energies to the above problem are

given by

λn(S) = −
2~π

L
n .

Thus, by Theorem 2.2, the mapping S 7−→
∑∞

n=1 µnλn(S) is convex and lower semicontinuous,

provided (µn)n≥1 are chosen so that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S) converges.

5. Generalized model of the helium atom. Let S be the differential operator on L2(R3n) given

by

S =

3n
∑

i=1

(

−
∆i

2mi
−

n

mi

)

+
∑

i<j

(

∇i · ∇j

M
+

1

|ri − rj |

)

,

where M and mi (1 ≤ i ≤ n) are arbitrary positive numbers. Cf. Reed and Simon [14], the above

operator has been introduced by Zhislin and S can be viewed as the Hamiltonian of a system

consisting of a nucleus of mass M and n electrons of masses m1, . . . ,mn, after the center of the

mass motion has been removed. This model generalizes the elementary model of the helium atom

which is described by the operator S on L2(R6) given by

S = −∆1 − ∆2 −
2

|r1|
−

2

|r2|
+

1

|r1 − r2|
.

In both cases (see Kato’s Theorem and Theorem XIII.7 in Reed and Simon [14, p. 89]) the

operator S has a countable family of eigenvalues which can be supposed to be arranged so that

λi(S) ≥ λj(S) if i < j (notice that λ1(S) < −1 in the case of the elementary model of the

helium atom). Fix the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S) converges. Thus, by Theorem 2.2, the mapping S 7−→
∑∞

n=1 µnλn(S) is convex

and lower semicontinuous.

6. Schrödinger operators with unbounded potential. Let V ∈ L1
loc(R

N ) belonging to the class

of operators which are bounded from above and such that V (x) → −∞ as |x| → ∞. Then, by
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Theorem XIII.67 in Reed and Simon [14], the Schrödinger operator S = −∆ +V has a countable

family of eigenvalues such that

λ1(S) ≥ . . . ≥ λn(S) ≥ . . . and λn(S) → −∞ as n→ ∞ .

Consider the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S)

converges. Applying Theorem 2.2, we deduce that the mapping S 7−→
∑∞

n=1 µnλn(S) is convex

and lower semicontinuous.

7. Quasilinear anisotropic Sturm-Liouville problems. Let α ≥ 0, p > 1, and 0 ≤ a < b < ∞.

Assume that q, s ∈ L∞(a, b) and ess infx∈(a,b) s(x) > 0. Consider the quasilinear anisotropic

eigenvalue problem























r−α
(

rα|u′|p−2u′
)′

+ q(r)|u|p−2u = λs(r)|u|p−2u in (a, b)

γ1

(

|u|p−2u
)

(a) + γ2

(

rα|u′|p−2u′
)

(a) = 0

γ3

(

|u|p−2u
)

(b) + γ4

(

rα|u′|p−2u′
)

(b) = 0 ,

(2.11)

where γi ∈ R (i = 1, . . . , 4) such that γ2
1 + γ2

2 > 0 and γ2
3 + γ2

4 > 0.

We distinguish two cases: the regular case where a > 0 or a = 0 and 0 ≤ α < p − 1, and the

singular case defined by a = 0, α ≥ p − 1. In the singular case the boundary condition at the

origin is u′(0) = 0. In both cases Walter [21] proved that problem (2.11) has a countable number

of simple eigenvalues λ1(S) > . . . > λn(S) > . . ., limn→∞ λn(S) = −∞ and the corresponding

eigenfunction un has n − 1 simple zeroes in (a, b). Consider the real numbers µn (n ≥ 1) such

that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S) converges. So, by Theorem 2.2, the mapping

S 7−→
∑∞

n=1 µnλn(S) is convex and lower semicontinuous.

Conclusions. In this paper we have extended the Schur convexity property of the eigen-

values of a symmetric matrix with real entries in the framework of infinite dimensional Hilbert

spaces. First, we have considered the case of linear, selfadjoint, and compact operators. Next,

we have established a corresponding version of the Schur convexity property for linear selfadjoint

operators that can be approximated by operators of finite rank and having a countable family

of eigenvalues. Our abstract results have been illustrated by various examples, including Sturm-

Liouville problems, Schrödinger operators with variable potential, the electron atom model, the

linear harmonic oscillator, the generalized model of the helium atom, and wave functions on infi-

nite depth wells. We have been concerned with linear operators with discrete spectrum and our

results do not cover the case of operators with a continuous spectrum.
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[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Some simple inequalities satisfied by convex functions, Messenger

of Mathematics 58 (1929), 145-152.
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