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QUANTITATIVE LOWER BOUNDS FOR THE FULL BOLTZMANN

EQUATION, PART I: PERIODIC BOUNDARY CONDITIONS

CLÉMENT MOUHOT

Abstract. We prove the appearance of an explicit lower bound on the solution to the
full Boltzmann equation in the torus for a broad family of collision kernels including in
particular long-range interaction models, under the assumption of some uniform bounds
on some hydrodynamic quantities. This lower bound is independent of time and space.
When the collision kernel satisfies Grad’s cutoff assumption, the lower bound is a global
Maxwellian and its asymptotic behavior in velocity is optimal, whereas for non-cutoff
collision kernels the lower bound we obtain decreases exponentially but faster than the
Maxwellian. Our results cover solutions constructed in a spatially homogeneous setting,
as well as small-time or close-to-equilibrium solutions to the full Boltzmann equation in
the torus. The constants are explicit and depend on the a priori bounds on the solution.
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1. Introduction

This paper is devoted to the study of qualitative properties of the solutions to the full
Boltzmann equation in the torus for a broad family of collision kernels. In this work we
shall quantify the positivity of the solution by proving the “immediate” appearance of a
stationary lower bound, uniform in space. Before we explain our results and methods in
more details let us introduce the problem in a precise way.

1.1. Motivation. The Boltzmann equation decribes the behavior of a dilute gas; when
we assume periodic boundary conditions in space, it reads

∂f

∂t
+ v · ∇xf = Q(f, f), x ∈ T

N , v ∈ R
N , t ∈ [0, T ),

1



2 CLÉMENT MOUHOT

where T ∈ (0,+∞], T
N is the N -dimensional torus, the unknown f = f(t, x, v) is a time-

dependent probability density on T
N
x × R

N
v (N ≥ 2), and Q is the quadratic Boltzmann

collision operator. It is local in t and x and we define it by the bilinear form

Q(g, f) =

∫

RN

dv∗

∫

SN−1

dσB(|v − v∗|, cos θ) (g′∗f
′ − g∗f).

Here we have used the shorthands f ′ = f(v′), g∗ = g(v∗) and g′∗ = g(v′∗), where

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ

stand for the pre-collisional velocities of particles which after collision have velocities v
and v∗. Moreover θ ∈ [0, π] is the deviation angle between v′ − v′∗ and v − v∗, and B is
the Boltzmann collision kernel (related to the cross-section Σ(v − v∗, σ) by the formula
B = Σ|v − v∗|), determined by physics. On physical grounds, it is assumed that B ≥ 0

and that B is a function of |v − v∗| and cos θ =
〈

v−v∗
|v−v∗| , σ

〉

.

In this paper we shall be concerned with the case when B takes the following product
form

(1.1) B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ)

where Φ satisfies either the assumption

(1.2) ∀ z ∈ R, cΦ |z|γ ≤ Φ(z) ≤ CΦ |z|γ

or the mollified assumption

(1.3)

{

∀ |z| ≥ 1, cΦ |z|γ ≤ Φ(z) ≤ CΦ |z|γ
∀ |z| ≤ 1, cΦ ≤ Φ(z) ≤ CΦ

with cΦ, CΦ > 0 and γ ∈ (−N, 1], and b is a continuous function on θ ∈ (0, π], strictly
positive on θ ∈ (0, π), such that

(1.4) b(cos θ) sinN−2 θ ∼θ→0+ b0 θ−1−ν

for some b0 > 0 and ν ∈ (−∞, 2). The assumption (1.1) that B takes a tensorial form
is made for the sake of convenience, since it is a well-accepted hypothesis which covers
important physical cases. Most probably it could be relaxed to non-tensorial collision
kernels with the same kind of controls, up to some technical refinements. The assumption
that b is strictly positive on θ ∈ (0, π) is a technical requirement for Lemma 2.3 and
Lemma 2.4 in Section 2 and it could be relaxed to the requirement that b is strictly
positive near θ ∼ π/2.

Following the usual taxonomy we shall denote by “hard potential” collision kernels the
case when γ > 0, “Maxwellian” collision kernels the case when γ = 0, and “soft potential”
collision kernels the case when γ < 0. When Φ satisfies assumption (1.3) and not (1.2)
we shall speak of “mollified soft potentials” collision kernels or “mollified hard potentials”
collision kernels. In the case when ν < 0, the angular collision kernel is locally integrable,
an assumption which is usually referred to as Grad’s cutoff assumption (see [20]). Thus
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for ν < 0 we shall speak of “cutoff” collision kernels, and for ν ≥ 0 we shall speak of
“non-cutoff” collision kernels.

The main cases of application are “hard spheres” interaction (b constant and Φ(z) =
|z| which corresponds to the case γ = 1 and ν = −1), and interactions deriving from
a 1/rs force (s > 2), where r is the distance between particles, which corresponds to
γ = (s − 5)/(s − 1) and ν = 2/(s − 1) in dimension 3.

In the case when the solution f(t, v) does not depend on the space variable x, we shall
speak of spatially homogeneous solution.

The attempts to quantify the strict positivity of the solution to the Boltzmann equation
are as old as the mathematical theory of the Boltzmann equation, since Carleman himself
established such estimates in his pioneering paper [6]. He showed, for hard potentials with
cutoff in dimension 3, that the spatially homogeneous solutions radially symmetric in v he
had constructed in L∞

6 (RN
v ) 1 (the very first result in the Cauchy theory) satisfy a lower

bound of the form

∀ t ≥ t0 > 0, ∀ v ∈ R
3 f(t, v) ≥ C1 e−C2 |v|2+ε

,

for any fixed t0 > 0 and ε > 0. The constants C1, C2 > 0 are uniform as t → +∞ and
depend on t0, ε and some estimates on the solution. The proof was based on a “spreading
property” of the collision operator and the assumption that the initial datum is uniformly
bounded from below by a positive quantity on a ball centered at the origin (in fact the
weaker assumption of a lower bound on an annulus is sufficient, see [6]).

This result remained unchallenged until the paper from Pulvirenti and Wennberg [30].
They proved, for hard potentials with cutoff in dimension 3, that the spatially homoge-
neous solutions in L1

2(R
N
v )2 with bounded entropy (see [3] and [28]) satisfy a lower bound

of the form
∀ t ≥ t0 > 0, ∀ v ∈ R

3 f(t, v) ≥ C1 e−C2 |v|2,

for any fixed t0 > 0. Again C1, C2 > 0 are uniform as t → +∞ and depend on t0 and
some estimates on the solution. Their proof was also based on the spreading property of
the collision operator but the optimal decay of the lower bound was obtained by some
improvements of the computations. Moreover they made a clever use of the iterated gain
part of the collision kernel in order to establish the immediate appearance of a positive
minoration of the solution on a ball, thus getting rid of the assumption of Carleman on
the initial datum. This paper is the starting point of our study.

Two other methods should be mentioned.
On one hand, Fournier [15, 17] established by delicate probabilistic techniques that

the spatially homogeneous solutions to the Kac equation without cutoff satisfy f(t, v) ∈
C∞((0,+∞) × R

N ) and

∀ t > 0, ∀ v ∈ R
N , f(t, v) > 0.

He proved the same kind of result in [16] for the spatially homogeneous Boltzmann equation
without cutoff in dimension 2 under technical restrictions.

1see Subsection 1.4 for the notations
2id.
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On the other hand there is a work in progress by Villani in order to establish lower
bounds on the solution to the Boltzmann equation using suitable maximum principles.
The most important feature of this new method is that it applies to the non-cutoff case.
For more explanations we refer to [36, Chapter 2, Section 6]. This method has been able to
recover more simply the results by Fournier, and a quantitative lower bound is in progress.
We also refer to the work [18] which proves with the same tools the propagation of upper
Maxwellian bounds for the spatially homogeneous solutions to the Boltzmann equation
for hard spheres.

Finally we note that in the case of the spatially homogeneous Landau equation with
Maxwellian or hard potentials interactions, one can prove a theorem similar to that of
Pulvirenti and Wennberg by means of the standard maximum principle for parabolic
equations, see [9]. Actually the result stated in this paper is not uniform as t → +∞, but
it can be made uniform by the same argument as in the proof of Theorem 1.1 in Section 3
below.

The study of lower bounds is of interest in itself, in order to understand the qualitative
behaviour of solutions to the Boltzmann equation. Moreover recently this interest has
been renewed by the emergence of a new quantitave method in the study of convergence to
equilibrium, the so-called “entropy-entropy production” method (see [31, 32, 10, 37]). This
method requires indeed a control from below on the solution by a function decreasing at
most exponentially, and uniform in time. It has been applied lately to some inhomogeneous
kinetic equations: see [11] for the Fokker-Planck equation and [12] for the full Boltzmann
equation. For instance the main result in [12] asserts that any solution of the Boltzmann
equation satisfying uniform estimates of smoothness and fast decay at large velocities,
combined with a lower bound like

(1.5) ∀ t ≥ t0 > 0, ∀x ∈ T
N , ∀ v ∈ R

N , f(t, x, v) ≥ C1 e−C2 |v|K

for some C1, C2,K > 0, does converge to equilibrium at rate “almost exponential”, i.e.
faster than any inverse power of t. This paper works in some a priori setting on the
solution, since there is no general Cauchy theory whose solutions satisfies suitable estimates
to apply the “entropy-entropy production” method. Nevertheless a natural question is
wether the set of solution satisfying the a priori assumptions of [12] is not trivial, i.e.
reduced to the spatially homogeneous case or to cases for which exponential convergence
results are already known. Our study answers to this question, since the solutions in [21]
satisfy all the estimates of regularity and decay needed in [12], and a consequence of
Theorem 1.1 below is that they also satisfy (1.5) (with K = 2).

1.2. Statement of the results. Now let us introduce the functional spaces and the
macroscopic quantities on the solution. We define bounds uniform in space on the observ-
ables of the solutions. We shall study precisely in Section 5 in which case there is a Cauchy
theory which fits these assumptions. One can say briefly that they are satisfied at least
for hard spheres and inverse power laws interactions, either in the spatially homogeneous
setting, or in the spatially inhomogeneous setting for solutions “in the small” (i.e. for
small time or near the equilibrium).
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Let us consider a function f(t, x, v) ≥ 0 on [0, T )×T
N ×R

N . We define its local density

ρf (t, x) :=

∫

RN

f(t, x, v) dv,

its local energy

ef (t, x) :=

∫

RN

f(t, x, v) |v|2 dv,

a weighted local energy

e′f (t, x) :=

∫

RN

f(t, x, v) |v|γ̃ dv

(where γ̃ is the positive part of (2 + γ)), its local entropy

hf (t, x) := −
∫

RN

f(t, x, v) log f(t, x, v) dv,

its local Lp norm (p ∈ [1,+∞))

lpf (t, x) := ‖f(t, x, ·)‖Lp(RN
v ),

and its local W 2,∞ norm 3

wf (t, x) := ‖f(t, x, ·)‖W 2,∞(RN
v ).

Note that in the sequel we shall systematically speak of hydrodynamical quantities on the
solution in a generalized sense, since we include in this term the quantities e′f , hf , lpf and
wf .

Then we define the following uniform bounds

̺f := inf
(t,x)∈[0,T )×TN

ρf (t, x), Ef := sup
(t,x)∈[0,T )×TN

(ef (t, x) + ρf (t, x)) ,

E′
f := sup

(t,x)∈[0,T )×TN

e′f (t, x), Hf := sup
(t,x)∈[0,T )×TN

|hf (t, x)|,

Lp
f := sup

(t,x)∈[0,T )×TN

lpf (t, x), Wf := sup
(t,x)∈[0,T )×TN

wf (t, x).

Remark: In the spatially homogeneous setting all these quantities are independent of the
space variable x and the uniformity in time is in most cases, well-known or obvious (see
Section 5).

Our assumptions on the solution are as follows:

• When γ ≥ 0 and ν < 0 (hard or Maxwellian potentials with cutoff) we shall assume
that

(1.6) ̺f > 0, Ef < +∞, Hf < +∞.

3see Subsection 1.4 for the notations
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• When γ ∈ (−N, 0) (singularity of the kinetic collision kernel) we shall make the
additional assumption that

(1.7) L
pγ

f < +∞

with pγ > N
N+γ (notice that this uniform bound on L

pγ

f implies the one on the

local entropy).
• When ν ∈ [0, 2) (singularity of the angular collision kernel) we shall make the

additional assumption that

(1.8) Wf < +∞, E′
f < +∞

(remark that when γ ≤ 0, we have E′
f ≤ Ef and the second part of this assumption

is not necessary).

Remark: Although the regularity part of the last assumption (1.8) seems quite stronger
compared to the other ones, the regularizing property of the non-cutoff collision operator
often ensures that it holds, at least in some cases (see Section 5), and thus makes it rather
natural.

We now state our main theorems. The first one deals with cutoff collision kernels. In
this theorem a mild solution to the Boltzmann equation with initial datum f0 is a function
f which satisfies (3.1) pointwise (see Definition 3.1 below).

Theorem 1.1. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfy-
ing (1.2) or (1.3), and b satisfying (1.4) with ν < 0. Let f(t, x, v) be a mild solution of
the full Boltzmann equation in the torus on some time interval [0, T ), T ∈ (0,+∞] such
that

(i) if Φ satisfies (1.2) with γ ≥ 0 or if Φ satisfies (1.3), then f satisfies (1.6);
(ii) if Φ satisfies (1.2) with γ < 0, then f satisfies (1.6) and (1.7).

Then for all τ ∈ (0, T ) there exists some ρ > 0 and θ > 0 depending on τ , ̺f , Ef , Hf

(and L
pγ

f if Φ satisfies (1.2) with γ < 0), such that for all t ∈ [τ, T ) the solution is bounded

from below by the uniform Maxwellian distribution with density ρ and temperature θ, i.e.

(1.9) ∀ t ∈ [τ, T ), ∀x ∈ T
N , ∀ v ∈ R

N , f(t, x, v) ≥ ρ
e−

|v|2

2θ

(2πθ)N/2
.

Remarks: Let us comment on the assumptions and conclusions of this theorem:

1. The main case of application of this theorem one should think of is B = |v −
v∗|γ b(cos θ) with b bounded from above and below. It includes the hard spheres model
(when γ = 1 and b = 1), and the so-called “variable hard spheres” model.

2. As the lower bound in (1.9) does not depend on the space variable x, Theorem 1.1
applies to spatially homogeneous solutions as well: take f0 depending only on v and f(t, v)
the corresponding solution of the homogeneous Boltzmann equation, then f(t, v) is also a
solution of the inhomogeneous Boltzmann equation in the torus and Theorem 1.1 gives the
appearance of a Maxwellian lower bound on the v variable. This theorem thus includes and
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extends the previous result of Pulvirenti and Wennberg in [30], valid for hard potentials.
It gives new results for spatially homogeneous solutions in the case of soft potentials with
cutoff (see Section 5).

3. In the inhomogeneous case, Theorem 1.1 applies to the solutions of Ukai [33] near
the equilibrium for hard spheres, or to the solutions of Guo [21] near the equilibrium for
soft potentials with cutoff (see Section 5).

4. More generally this theorem can be seen as an a priori result on the renormalized
solutions (see [14] and [8, Chapter 5]), the only theory of solutions in the large at now.
For instance for a gas of hard spheres in a torus, its converse says that if the solution f
vanishes, then either the local density ρf has to vanish somewhere in the torus, or the
local density ρf , energy ef or entropy hf have to blow-up somewhere in the torus.

Now let us state the result we get for long-range interaction models, i.e. collision kernels
with an angular singularity. In this theorem a mild solution to the Boltzmann equation
with initial datum f0 is a function f which satisfies (4.3) pointwise (see Definition 4.1
below).

Theorem 1.2. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfy-
ing (1.2) or (1.3), and b satisfying (1.4) with ν ∈ [0, 2). Let f(t, x, v) be a mild solution of
the full Boltzmann equation in the torus on some time interval [0, T ), T ∈ (0,+∞] such
that

(i) if Φ satisfies (1.2) with γ ≥ 0 or if Φ satisfies (1.3), then f satisfies (1.6) and (1.8);
(ii) if Φ satisfies (1.2) with γ < 0, then f satisfies (1.6), (1.7) and (1.8).

Then for all τ ∈ (0, T ) and for any exponent K such that

K > 2
log
(

2 + 2ν
2−ν

)

log 2
,

there exist C1 > 0 and C2 > 0 depending on τ , K, ̺f , Ef , E′
f , Hf , Wf (and L

pγ

f if Φ

satisfies (1.2) with γ < 0), such that

∀ t ∈ [τ, T ), ∀x ∈ T
N , ∀ v ∈ R

N , f(t, x, v) ≥ C1 e−C2 |v|K .

Moreover in the case when ν = 0, one can take K = 2 (Maxwellian lower bound).

Remarks: Let us comment on the assumptions and conclusions of this theorem:

1. One can check that this theorem is consistent with Theorem 1.1 when ν → 0.
Notice that the situation when ν = 0 is particular: the collision operator is non-cutoff and
corresponds to some “logarithmic derivative”.

2. This theorem is, to the knowledge of the author, the first quantitative lower bound
result for non-cutoff collision kernels. It applies for instance to the spatially homogeneous
solutions recently obtained in [13] (see Section 5).

3. We mention that an extension of Theorem 1.1 and Theorem 1.2 to the case of a
bounded open set Ω with specular reflection ou bounce-back boundary condition on ∂Ω is
in progress, and will be treated in a second part of this work.
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1.3. Methods of proof. In the spatially homogeneous case the proof of [30] proceeds
in two steps: first the construction of an “upheaval point” for the solution after a small
time, i.e. a uniform minoration on a ball; second a “spreading process” of this bound
from below after a small time by the collision process, iterated infinitely many times.
Both these steps are based on a mixing property of the gain part of the collision operator,
which is reminiscent of the regularization property of this gain part, discovered by Lions
(see [24, 25] or [36, Chapter 2, Section 3.4] for a review). The second step was already
present in [6] and systematically used in [30]. The main contributions of our paper are:

(1) a strategy to deal with space dependent solutions (Section 3), based on an im-
plementation of the “upheaval” and “spreading” steps along each caracteristic,
keeping track carefully of the constants in order to get uniform estimates accord-
ing to the choice of the characteristic;

(2) a strategy to deal with non cutoff collision kernels (Section 4), based on the use
of a suitable splitting of the collision operator between a cutoff part which still
enjoys the spreading property, and a small non-cutoff part, for which we give L∞

estimates of smallness thanks to the regularity assumptions on the solution. A
precise balance between these two parts then allows to obtain the lower bound in
the non cutoff case, although slighlty weaker;

(3) the implementation of the general method for soft potentials as well (i.e for collision
kernels with a singular kinetic part), and in any dimension (Sections 3 and 4);

(4) a detailed discussion of the connection between these results and the existing
Cauchy theories (Section 5).

Here we adopt the point of view of an a priori setting which allows to treat separately the
issue of the lower bound and the one of establishing a priori estimates on the solution.
Therefore we do not adress the question of obtaining such a priori estimates in the general
case, which is open at now. This point of view should be understood as a unified approach
for all existing Cauchy theories, as well as a way to obtain a priori results when no Cauchy
theory exists, or when the solutions are too weak.

The paper runs as follows. Section 2 remains purely functional, Section 3 and 4 work
on arbitrary solutions in a priori setting, and only Section 5 deals with solutions which
have effectively been constructed by previous authors. Section 3 is devoted to the proof
of Theorem 1.1, Section 4 to the proof of Theorem 1.2 and Section 5 applies these two
theorems to the existing Cauchy theories.

1.4. Notation. In the sequel we shall denote 〈·〉 =
√

1 + | · |2. We define the weighted

Lebesgue space Lp
q(RN ) (p ∈ [1,+∞], q ∈ R) by the norm

‖f‖Lp
q(RN ) =

[∫

RN

|f(v)|p 〈v〉pq dv

]1/p

if p < +∞ and

‖f‖L∞
q (RN ) = sup

v∈RN

|f(v)| 〈v〉q
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when p = +∞. The Sobolev space W k,p(RN ) (p ∈ [1,+∞] and k ∈ N) is defined by

‖f‖W k,p(RN ) =





∑

|s|≤k

‖∂sf(v)‖p
Lp





1/p

,

with the usual notation Hk = W k,2. Concerning the collision kernel we define the L1 norm
of b on the unit sphere when ν < 0 (integrable angular collision kernel) by

nb =

∫

SN−1

b(cos θ) dσ = |SN−2|
∫ π

0
b(cos θ) sinN−2 θ dθ,

and in the case ν ∈ [0, 2) we define

mb =

∫

SN−1

b(cos θ) (1 − cos θ) dσ = |SN−2|
∫ π

0
b(cos θ) (1 − cos θ) sinN−2 θ dθ,

which is always finite (since ν < 2), and is related to the cross-section for momentum
transfer (see [36, Chapter 1, Section 3.4]). Finally we define

ℓb = inf
π/4≤θ≤3π/4

b(θ)

which is strictly positive by assumption.
In the following we shall keep track explicitely of the dependency of the constants ac-

cording to the bounds on the collision kernel and the estimates on the solution. As a
convention, “cst” shall systematically denote any constant depending only on the dimen-
sion N , γ, ν and b0. For a real x, we shall denote x+ the positive part of x and we recall
the shorthand γ̃ = (2 + γ)+.

2. Functional toolbox

In this section we shall gather functional tools useful for the sequel. On one hand,
Lemma 2.1, Lemma 2.5 are precised versions of well-known results adapted to our study:
we need L∞ estimates whereas the usual framework of such estimates are integral spaces.
On the other hand, Lemma 2.3 and Lemma 2.4 are essentially generalizations of results
in [30]. We extend these results for any cutoff potentials (in the sense of (1.2) and (1.4)
with ν < 0), in any dimension. Moreover we intend to use these results in the context
of spatially inhomogeneous solutions, using the fact that the collision operator is local in
t and x, which allows to see these variables as parameters in the functional estimates.
Thus we shall track precisely the dependence of these estimates on the hydrodynamical
quantities: ρf , ef , e′f , hf , lpf , wf .
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2.1. The cutoff case. We introduce Grad’s splitting

Q(g, f) = Q+(g, f) − Q−(g, f)

Q+(g, f) :=

∫

RN

dv∗

∫

SN−1

dσB(|v − v∗|, cos θ) g′∗f
′

Q−(g, f) :=

∫

RN

dv∗

∫

SN−1

dσB(|v − v∗|, cos θ) g∗f

where Q+ is called the gain term and Q− is called the loss term. We write the loss term
as

Q−(g, f) = L[g] f

with

(2.1) L[g(t, x, ·)](v) = nb

∫

RN

Φ(v − v∗) g(t, x, v∗) dv∗.

First let us give an L∞ bound on the action of the loss term along the characteristics.

Lemma 2.1. Let g be a mesurable function on R
N . Then

(i) If Φ satisfy (1.2) with γ ≥ 0 or if Φ satisfies (1.3), then

∀ v ∈ R
N , |g ∗ Φ(v)| ≤ cst CΦ ‖g‖L1

2
〈v〉γ+

.

(ii) If Φ satisfy (1.2) with γ < 0, then

∀ v ∈ R
N , |g ∗ Φ(v)| ≤ cst CΦ

[

‖g‖L1
2
+ ‖g‖Lp

]

〈v〉γ+
.

with p > N/(N + γ).

Corollary 2.2. As a straightforward consequence we obtain the following estimates on
the operators L and S defined respectively in (2.1) and (2.6)

(2.2) ∀ v ∈ R
N , |L[g](v)| ≤ CL 〈v〉γ+

and |S[g](v)| ≤ CS 〈v〉γ+

where the constants CL and CS are defined by:

(i) If Φ satisfy (1.2) with γ ≥ 0 or if Φ satisfies (1.3), then

CL = cst nb CΦ eg, CS = cst mb CΦ eg.

(ii) If Φ satisfy (1.2) with γ < 0, then

CL = cst nb CΦ

[

eg + lpg
]

, CS = cst mb CΦ

[

eg + lpg
]

.

Proof of Lemma 2.1. In the case Φ satisfies (1.2) with γ ≥ 0 or (1.3), the proof is obvious
and amounts to a triangular inequality.

In the case Φ satisfies (1.2) with γ ∈ (−N, 0), one can split g ∗ Φ(v) into

g ∗ Φ(v) =

∫

{v∗ ; |v−v∗|≤1}
Φ(v − v∗) g(v∗) dv∗

+

∫

{v∗ ; |v−v∗|≥1}
Φ(v − v∗) g(v∗) dv∗ =: I1 + I2.
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On one hand,

∀ v ∈ R
N , |I2(v)| ≤ CΦ ‖g‖L1 ≤ CΦ ‖g‖L1

2

and on the other hand, by Cauchy-Schwarz inequality

∀ v ∈ R
N , |I1(v)| ≤ CΦ

[

∫

{v∗ ; |v−v∗|≤1}
|v − v∗|γp′ dv∗

]1/p′

‖g‖Lp

which gives the result since

cst =

∫

{v∗ ; |v−v∗|≤1}
|v − v∗|γp′ dv∗ =

∫

{u ; |u|≤1}
|u|γp′ du < +∞

as soon as γp′ > −N , i.e p > N
N+γ . �

The next lemma uses the mixing property of Q+ in order to obtain a minoration of
Q+(Q+(·, ·), ·) on a ball. This will be the starting point for the construction of an “upheaval
point” by the iterated Duhamel formula.

Lemma 2.3. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfying (1.2)
or (1.3), and b satisfying (1.4) with ν ≤ 0. Let g(v) be a nonnegative function on R

N with
bounded energy eg and entropy hg and a mass ρg such that 0 < ρg < +∞. Then there
exist R0 > 0, δ0 > 0, η0 > 0 and v̄ ∈ B(0, R0) such that

Q+(Q+(g 1B(0,R0), g 1B(0,R0)), g 1B(0,R0)) ≥ η0 1B(v̄,δ0)

and R0, δ0, η0 only depend on B, on a lower bound on ρg, and upper bounds on eg and
hg.

Remark: Another strategy to obtain this “upheaval point” for hard potentials could have
been to iterate the regularity property of Q+ in the form proved in [29] in Sobolev spaces
enough times to get some continuous function. We did not follow this method which is less
direct, and leads to harder computations to track the exact dependence of the constant.
Nevertheless the remark emphasizes the fact that the mixing property used here on Q+

is a linear one, which is consistent with the regularity theory for this operator (see the
regularity theory of Q+ in the cutoff case in [29]).

Proof of Lemma 2.3. This lemma is a slight variant of [30, Lemma 3.1], whose proof can
be straightforwardly adapted here. Note that this proof was made assuming that b is
bounded below by a positive quantity on the whole interval [0, π] but as pointed out
in [30, Proof of Lemma 3.1] the proof still works the same under the sole assumption on
b that it is bounded below by a positive quantity near θ ∼ π/2, which is satisfied under
our assumptions on b.

Therefore we only generalize the formula in the proof to any dimension and to any
power γ of the collision kernel, and we precise the dependence of R0, δ0 and η0 according
to the quantities ρg, eg and hg.
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First let us suppose that Φ satisfies (1.2) with γ ≥ 0, in order to satisfy the assumptions
of [30, Lemma 3.1]. As for R0, in the proof of [30, Lemma 3.1] R0 is chosen such that

∫

|v|≤R0

g(v) dv ≥ ρg

2
.

The estimate
∫

|v|≥R0

g(v) dv ≤ eg

R2
0

yields the possible choice

R0 =

√

2 eg

ρg
.

Then it is straigthforward to see that δ0 depends only on upper bounds on eg and hg, and

η0 = cst ℓb cΦ R
γ−(3N−1)
0 δ2N

0 .

The case of a mollified kinetic collision kernel Φ (assumption (1.3)) with γ ≥ 0 reduces
to the case of a kinetic collision kernel satisfying (1.2) with γ ≥ 0. Indeed when γ ≥ 0, we
have the bound from below Φ(z) ≥ cΦ |z|γ for all z ∈ R

N and the proof is unchanged.
When Φ satisfies (1.2) or (1.3) with γ < 0, we first choose R0 as above, with R0 ≥ 1

(it is possible up to take a bigger R0). Then we use that on B(0, R0), we have that
Φ(z) ≥ cΦ Rγ

0 , which means we can apply the formula above for the case γ = 0, and the
final formula for η0 is unchanged. �

The next lemma gives a precise estimate of the “spreading property” of Q+ (according

to the velocity variable), which is pictured in Figure 1: for any R′ <
√

r2 + R2, for any v
in the ball with radius R′, it is possible to find collisions with post-collision velocity v, v∗
and taking the pre-collision velocity v′∗ inside the ball with radius R and the pre-collision
velocity v′ inside the ball with radius r.

Lemma 2.4. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfying (1.2)
or (1.3), and b satisfying (1.4) with ν ≤ 0. Then for any v̄ ∈ R

N , 0 < r ≤ R, ξ ∈ (0, 1),
we have

(2.3) Q+(1B(v̄,R),1B(v̄,r)) ≥ cst ℓb cΦ rN−3 R3+γ ξN/2−1 1
B
(

v̄,
√

r2+R2(1−ξ)
).

As a consequence in the particular quadratic case δ = r = R, we obtain

(2.4) Q+(1B(v̄, δ),1B(v̄, δ)) ≥ cst ℓb cΦ δN+γ ξN/2−1 1
B
(

v̄, δ
√

2(1−ξ)
)

for any v̄ ∈ R
N and ξ ∈ (0, 1).

Remark: In the sequel we shall use the quadratic version of Lemma 2.4 (i.e when r = R)
which seems compulsory when one wants to obtain the optimal Maxwellian decrease at
infinity for the lower bound. Nervertheless we give a bilinear version since it highlights
again the fact that the “spreading effect” of Q+ is a linear one.
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RR’

r

v

v*

v’

v’*

Figure 1. Spreading property of Q+

Proof of Lemma 2.4. This result is a bilinear version of [30, Lemma 3.2], written here in
any dimension and for any power γ. Thus we only recall the main steps of the proof,
especially those where the bilinearity, the dimension N , or γ play some role.

First we deal with collision kernel such that Φ satisfies (1.2) with γ ≥ 0. As a general
property Q+ satisfies the homogeneity relation

Q+(g, f)(λv) = λN+γ Q+(g(λ·), f(λ·))(v)

and the invariance by translation allows to reduce the proof of (2.3) to the proof of

Q+(1B(0, 1),1B(0, p)) ≥ cst ℓb cΦ pN−3 ξN/2−1 1
B
(

0,
√

1+p2(1−ξ)
)

with p ≤ 1 stands for r/R. Now by isotropic invariance we can assume v = z eN with

z <
√

1 + p2 and (e1, . . . , eN) an orthonormal basis. By Carleman representation [7], we
have

Q+(1B(0, 1),1B(0, p))(v = z eN) ≥

cΦ

∫

v′∈RN

1B(0, p)(v
′)

|v − v′|N−1−γ

[

∫

v′∗∈Evv′

1B(0, 1)(v
′
∗)b̃(θ) dv′∗

]

dv′

where Evv′ is the hyperplan orthogonal to v′ − v and containing v. We write the integral
along v′ in spherical coordinates centered in v and we use the bound from below b̃(θ) =
b(θ) (sin θ/2)−γ ≥ cst ℓb for θ ∈ [π/4, 3π/4] given by the assumptions on b

Q+(1B(0, 1),1B(0, p))(v = z eN) ≥

cst ℓb cΦ

∫ +∞

0

∫

SN−1

1B(0, r)(v + ρσ) ργ Vol (Evv′ ∩ B(0, 1) ∩ Cv,ρ) dρ dσ,
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where

Cv,ρ =

{

u ∈ R
N , tan

π

8
ρ ≤ |u − v| ≤ tan

3π

8
ρ

}

.

Finally it is easy to see that the integrand is invariant under rotation around the axis
(0, eN), which allows to simplify the part of integration over the unit sphere S

N−2 of the
hyperplan orthogonal to (0, eN):

Q+(1B(0, 1),1B(0, p))(v = z eN) ≥

cst ℓb cΦ

∫ +∞

0

∫ π

0
(sin α)N−2 1B(0, r)(v + ρσ) ργ Vol (Evv′ ∩ B(0, 1) ∩ Cv,ρ) dρ dα.

where σ in the integrand stands for any −(cos α)eN + (sin α)u with u is any vector of the
set of unit vectors orthogonal to eN. Some elementary geometrical computation lead to

Vol (Evv′ ∩ B(0, 1)) = cst
(

1 − z2 cos2 α
)

N−1
2 1{cos2 α≤1/z2}

and shows that

Evv′ ∩ B(0, 1) ⊂ Cv,ρ

when

a
(

z sin α +
√

1 − z2 cos2 α
)

≤ ρ ≤ b
(

z sin α −
√

1 − z2 cos2 α
)

with

a := tan−1 3π

8
< 1, b := tan−1 π

8
> 1.

This inequality is possible as soon as

1 − z2 cos2 α ≤ λ2 z2 sin2 α

with λ = (b − a)/(b + a) < 1. If one sets y = z cos α as a new variable, this inequality
means

y ≥
√

1 − λ2 z

1 − λ2

and one gets

Q+(1B(0, 1),1B(0, p))(v = z eN) ≥

cst ℓb cΦ

∫ 1

max

{√
z2−1,

√

1−λ2 z2

1−λ2

}

∫ min{y+
√

1−z2+y2, b(
√

z2−y2−
√

1−y2)}

max{y−
√

1−z2+y2, a(
√

z2−y2+
√

1−y2)}

ργ

(

1 − y2

z2

)
N−3

2
(

1 − y2
)

N−1
2 dy dρ.

Now setting z =
√

1 + p2(1− ξ) and computing an expansion of this expression according
to ξ in the same way as in the end of the proof of [30, Lemma 3.2], one gets the following
estimates:

(

1 − y2
)

N−1
2 =

(

2(1 + p2)ξ
)

N−1
2 + O(ξ

N+1
2 )
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(

z2 − y2
)

N−3
2 = pN−3 + O(ξ)

∫ min{y+
√

1−z2+y2, b(
√

z2−y2−
√

1−y2)}

max{y−
√

1−z2+y2, a(
√

z2−y2+
√

1−y2)}
ργ dρ =

√

2(1 + p2)ξ − 2(1 − y) + O(ξ3/2).

Then similar computations as in the proof of [30, Lemma 3.2] conclude the proof (for the

integration on y, the condition y ≥
√

(1 − λ2 z2)/(1 − λ2) plays no role at the limit since
√

(1 − λ2 z2)/(1 − λ2) →ξ→0 cst < 1).
As for the previous lemma the case of a mollified kinetic collision kernel Φ (assump-

tion (1.3)) with γ ≥ 0 reduces the case of a kinetic collision kernel satisfying (1.2) with
γ ≥ 0 since we have the bound from below Φ(z) ≥ cΦ |z|γ for all z ∈ R

N and the proof is
unchanged.

When Φ satisfies (1.2) or (1.3) with γ < 0, we use that on B(0, R), we have that
Φ(z) ≥ cΦ Rγ (assuming R ≥ 1 without restriction for the sequel) which means we can
apply the formula above for the case γ = 0, and the final formula (2.3) is unchanged. �

2.2. The non-cutoff case. The two lemmas below will be useful in the treatment of
non-cutoff collisions kernels. They express the fact that non-grazing collisions constitute
the dominant term of the collision operator as long as “spreading effect” is concerned.
They are essentially based on the by now well-known idea of using symmetry-induced
cancellations effects in order to deal with the angular singularity (see [35, 1, 2]).

In the case of non cutoff collision kernels, the usual Grad’s splitting Q = Q+ −Q− does
not make sense anymore. However, the following splitting still makes sense:

Q(g, f) =

∫

RN

dv∗

∫

SN−1

dσ B g′∗ (f ′ − f) +

(∫

RN

dv∗

∫

SN−1

dσ B (g′∗ − g∗)

)

f

=: Q1 + Q2(2.5)

Thanks to the cancellation Lemma [1, Lemma 1], the operator Q2 can be written

Q2(g, f) = S[g] f

with

(2.6) S[g](v) := |SN−2|
(

∫ π/2

0
sinN−2 θ

[

1

cosN+γ(θ/2)
− 1

]

b(θ) dθ

)

Φ ∗ g(v).

Corollary 2.2 gives L∞ estimates (2.2) on S. Now let us turn to the L∞ estimates for
Q1.

Lemma 2.5. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfying (1.2)
or (1.3), and b satisfying (1.4) with ν ∈ [0, 2). Let f, g be mesurable functions on R

N .
Then

(i) If Φ satisfy (1.2) with 2 + γ ≥ 0 or if Φ satisfies (1.3), then

∀ v ∈ R
N , |Q1(g, f)(v)| ≤ cst mb CΦ ‖g‖L1

γ̃
‖f‖W 2,∞ 〈v〉γ̃ .
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(ii) If Φ satisfy (1.2) with 2 + γ < 0, then

∀ v ∈ R
N , |Q1(g, f)(v)| ≤ cst mb CΦ

[

‖g‖L1
γ̃

+ ‖g‖Lp

]

‖f‖W 2,∞ 〈v〉γ̃ .

with p > N/(N + γ + 2).

Remarks: 1. In the treatment of Q2, the “derivative-like” difference (f ′ − f) can be
transferred to the angular part of the collision kernel by a process of change of variable
which plays the same role as integration by part for classical differential operators. One
can not do the same in Lemma 2.5 because there is no “decoupling” of the two arguments
f and g.

2. The proof of Lemma 2.5 is based on a similar idea as cancellation lemmas in [35, 1, 2].
We make a Taylor expansion of (f ′− f) for small deviation angles in order to compensate
for the grazing collision singularity of the collision kernel. However for smooth functions
the quantity (f ′ − f) compensate only for a singularity of order 1. Thus one has to use
the symmetry of the collision sphere in order to compensate for strong singularities: to
compensate for a singularity of order 2, one has to kill the first order term of the Taylor
expansion of (f ′ − f) by integrating on the (N − 2)-dimensional sphere included in the
collision sphere which is orthogonal to the vector v − v∗ and contains v′.

3. Note that Lemma 2.5 is reminiscent of [2, Proposition 4] which implies that the
complete non cutoff operator Q satisfies the following inequality

‖Q(g, f)‖W−2,1 ≤ C ‖g‖L1
γ̃
‖f‖L1

γ̃

Essentially the difference is that Lemma 2.5 is intended to provide an L∞ control. This
is why it requires an Lp bound on the solution for soft potentials. The proof of [2,
Proposition 4] uses a duality argument and the pre-post collisional change of variable to
pass the “derivative-like” difference on the dual test function. The (N − 2)-dimensional
sphere on which cancellations occur does not appear explicitely in the representation
formula as in our proof, but is rather implicit in a projection argument. Here we proceed
directly, using Carleman representation.

Proof of Lemma 2.5. In order to isolate the exact sphere on which we want to use sym-
metry properties, we use the Carleman representation (exchanging the roles of v′ and
v′∗)

Q1(g, f)(v) =

∫

RN

dv′∗
g′∗

|v − v′∗|N−1

∫

Ev,v′∗

dv′ b(cos θ)Φ(v − v∗) (f ′ − f)

where Ev,v′∗ denotes the hyperplan orthogonal to the vector v − v′∗ and containing v.
Now let us write the integration of the v′ variable in spherical coordinate of center v, i.e
v′ = v + ρσ where ρ ∈ R+ and σ describes the (N − 2)-dimensional unit sphere of Ev,v′∗ ,

denoted by S
N−2
v−v′∗

.

Q1(g, f)(v) =

∫

RN

dv′∗
g′∗

|v − v′∗|N−1

∫ ∞

0
dρ b(cos θ)Φ(v−v∗) ρN−2

(

∫

S
N−2

v−v′∗

dσ
(

f(v+ρσ)−f(v)
)

)

.
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Now let us study more precisely the quantity

I =

∫

S
N−2

v−v′∗

dσ
(

f(v + ρσ) − f(v)
)

.

If ∇f denotes the gradient of f and ∇2f its Hessian matrix, one has the following Taylor
expansion:

f(v + ρσ) = f(v) + ρ
(

∇f(v) · σ
)

+
ρ2

2

〈

∇2f(v + ρ′σ) · σ, σ
〉

where 0 ≤ ρ′ ≤ ρ. By bounding the last term and taking the integral over σ, we get the
estimate

∣

∣

∣

∣

∣

∣

I − ρ





∫

S
N−2

v−v′∗

dσ
(

∇f(v) · σ
)





∣

∣

∣

∣

∣

∣

≤ ρ2

2
|SN−2| ‖f‖W 2,∞ .

As the term involving ∇f vanishes by symmetry, we obtain

|I| ≤ ρ2

2
|SN−2| ‖f‖W 2,∞ .

Thus we get for some function φ in L1
γ̃

∣

∣

∣

∣

∫

RN

Q1(g, f)(v)φ(v) dv

∣

∣

∣

∣

≤ ‖f‖W 2,∞ |SN−2|
∫

RN

dv

∫

RN

dv′∗
g′∗

|v − v′∗|N−1

∫ ∞

0
dρ b(cos θ)Φ(v − v∗)

ρN

2
|φ(v)|

≤ ‖f‖W 2,∞

∫

RN

dv

∫

RN

dv′∗
g′∗

|v − v′∗|N−1

∫ ∞

0
dρ ρN−2

∫

S
N−2

v−v′∗

dσ b(cos θ)Φ(v − v∗)
ρ2

2
|φ(v)|

≤ CΦ ‖f‖W 2,∞

∫

R2N×SN−1

dv dv∗ dσ b(cos θ)
(

sin(θ/2)
)2 |v − v∗|2+γ |g′∗| |φ|.

Finally we cut the integral in two parts, for θ ∈ [0, π/2] and for θ ∈ [π/2, π]. For the
first part we use the pre-postcollisional change of variable and the change of variable
(v, v∗, σ) → (v′, v∗, σ) used in the cancellation lemma [1, Lemma 1] whose jacobian is

cos−(N+γ)(θ/2) and is thus smaller than 2
N+γ

2 for θ ∈ [0, π/2]. For the second part we

use the change of variable (v, v∗, σ) → (v, v′∗, σ) whose jacobian is sin−(N+γ)(θ/2), which

is smaller than 2
N+γ

2 for θ ∈ [π/2, π]. Thus we get

∣

∣

∣

∣

∫

RN

Q1(g, f)(v)φ(v) dv

∣

∣

∣

∣

≤

CΦ 2
N+γ

2 ‖f‖W 2,∞

∫

R2N×SN−1

dv dv∗ dσ b(cos θ)
(

sin(θ/2)
)2 |v − v∗|2+γ |g∗| |φ|
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and so, if Φ satisfy (1.2) with 2 + γ ≥ 0 or if Φ satisfies (1.3), we get
∣

∣

∣

∣

∫

RN

Q1(g, f)(v)φ(v) dv

∣

∣

∣

∣

≤ CΦ
‖f‖W 2,∞

2
N+γ

2
+1

(

∫

SN−1

dσ b(cos θ) (1 − cos θ)

)

‖g‖L1
γ̃
‖φ‖L1

γ̃
,

and if Φ satisfy (1.2) with 2 + γ < 0, then
∣

∣

∣

∣

∫

RN

Q1(g, f)(v)φ(v) dv

∣

∣

∣

∣

≤

CΦ
‖f‖W 2,∞

2
N+γ

2
+1

(

∫

SN−1

dσ b(cos θ) (1 − cos θ)

)

[

‖g‖L1
γ̃

+ ‖g‖Lp

]

‖φ‖L1
γ̃
.

Since this holds for all φ ∈ L1
γ̃ , this yields the result by duality, with cst = CΦ/(2

N+γ
2

+1).
�

3. Proof of the lower bound in the cutoff case

In this section we shall prove Theorem 1.1. Since the collision operator is local in t and
x, the idea of the proof is to apply first Lemma 2.3 and then Lemma 2.4 iterated on each
characteristic of the free transport operator, in order first to obtain an upheaval point,
and then to “spread” the minoration. It yields for each characteristic of the transport
flow a Maxwellian lower bound with macroscopic velocity v̄, temperature θ and density
ρ depending on the characteristic. Then a uniform control on v̄, θ and ρ yields the
global Maxwellian lower bound. This control is based on the uniform bounds on the
hydrodynamic quantities. The lower bound is also made uniform as t → +∞ thanks to
these uniform bounds.

The main tool is the Duhamel representation formula, written along the characteristics
(which reduce to lines in the case of periodic boundary conditions):

∀ t ∈ [0, T ), ∀x ∈ T
N , ∀ v ∈ R

N ,

f(t, x + vt, v) = f0(x, v) exp

(

−
∫ t

0
L[f(s, x + vs, ·)](v) ds

)

(3.1)

+

∫ t

0
exp

(

−
∫ t

s
L[f(s′, x + vs′, ·)](v) ds′

)

Q+[f(s, x + vs, ·), f(s, x + vs, ·)](v) ds

where L was defined in (2.1). We define the concept of solution we shall use in the cutoff
case, i.e. the concept of mild solutions (see [8, Section 5.3] for an analogous definition).

Definition 3.1. Let f0 be a measurable function non-negative almost everywhere on T
N ×

R
N . A measurable function f = f(t, x, v) on [0, T ) × T

N × R
N is a mild solution of the

Boltzmann equation to the initial datum f0(x, v) if for almost every (x, v) in T
N × R

N :

t 7→ L[f(t, x + vt, ·)](v), t 7→ Q+[f(t, x + vt, ·), f(t, x + vt, ·)](v)

are in L1
loc([0;T )), and for each t ∈ [0, T ), the equation (3.1) is satisfied and f(t, x, v) is

non-negative for almost every (x, v).
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Proposition 3.2. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfy-
ing (1.2) or (1.3), and b satisfying (1.4) with ν < 0. Let f(t, x, v) be a mild solution of the
full Boltzmann equation in the torus on some time interval [0, T ) (T ∈ (0,+∞]), which
satisfies

(i) assumption (1.6) if Φ satisfies (1.2) with γ ≥ 0 or if Φ satisfies (1.3),
(ii) assumptions (1.6) and (1.7) if Φ satisfies (1.2) with γ ∈ (−N, 0).

Then for any fixed τ ∈ (0, T ) and x ∈ T
N , there exists some R0 > 0 and some v̄ ∈ B(0, R0)

such that

(3.2) ∀n ≥ 0, ∀ t ∈
[

τ − τ

2n+1
, τ
]

, ∀v ∈ R
N , f(t, x + vt, v) ≥ an 1B(v̄,δn)

with the induction formulae

an+1 = cst Ce
a2

nδγ+N
n ξ

N/2+1
n

2n+1

δn+1 =
√

2 δn(1 − ξn)

where (ξn)n≥0 is any sequence in (0, 1), R0 > 0, a0 > 0, δ0 > 0, Ce depend only on τ , B,
̺f , Ef and Hf (plus L

pγ

f if Φ satisfies (1.2) with γ ∈ (−N, 0)), and v̄ ∈ B(0, R0) depend

on the same quantities plus x.

Proof of Proposition 3.2. Step 1: Initialization

We apply Lemma 2.3 to the right-hand side member of the Duhamel representation iterated
twice. More precisely, the equation (3.1) yields on one hand

f(t, x + vt, v) ≥ f0(x, v) e−CL t 〈v〉γ+

and on the other hand

f(t, x + vt, v) ≥
∫ t

0
e−CL (t−s) 〈v〉γ+

Q+
[

f(s, x + vs, ·), f(s, x + vs, ·)
]

(v) ds.

If we iterate the latter, we get

f(t, x + vt, v) ≥
∫ t

0
e−CL (t−s) 〈v〉γ+

Q+
[(

∫ s

0
e−CL (s−s′) 〈v〉γ+

Q+
[

f(s′, x+vs′, ·), f(s′, x+vs′, ·)
]

(·) ds′
)

, f(s, x+vs, ·)
]

(v) ds.

Whenever ϕ is some function on R
N , we denote by ϕR0 the truncation ϕ1|v|≤R0

. We can
bound from below by

∀ v ∈ R
N , |v| ≤ R0, f(t, x + vt, v) ≥ Q+

[

Q+
[

fR0
0 (x, ·), fR0

0 (x, ·)
]

, fR0
0 (x, ·)

]

(v)
∫ t

0
e−CL (t−s) Rγ+

0 e−CL s Rγ+

0

(

∫ s

0
e−CL (s−s′) Rγ+

0 e−2 CL s′ Rγ+

0 ds′
)

ds
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and thus after some computation

∀ v ∈ R
N , |v| ≤ R0, f(t, x + vt, v) ≥ e−CL t Rγ+

0

(

1 − e−CL t Rγ+

0
)2

2(CL Rγ+

0 )2

Q+
[

Q+
[

fR0
0 (x, ·), fR0

0 (x, ·)
]

, fR0
0 (x, ·)

]

(v).

Then the use of Lemma 2.3 concludes the initialization n = 0 of the proof with

a0 = e−CL τ Rγ+

0

(

1 − e−CL (τ/2) Rγ+

0
)2

2(CL Rγ+

0 )2
η0

where δ0, R0, η0 depend on ̺f , Ef , Hf (as in the statement of Lemma 2.3) and v̄ depend

on the same quantities plus x (via the function fR0
0 (x, ·)).

Step 2: Proof of the induction

Now let us suppose that the induction property holds for n:

∀ t ∈
[

τ − τ

2n+1
, τ
]

, ∀ v ∈ R
N , f(t, x + vt, v) ≥ an 1B(v̄,δn).

The Duhamel representation yields the following lower bound

∀ t ∈
[

τ − τ

2n+2
, τ
]

, ∀ v ∈ R
N , f(t, x + vt, v) ≥
∫ τ− τ

2n+2

τ− τ

2n+1

e−CL (t−s) 〈v〉γ+

Q+
(

an 1B(v̄,δn), an 1B(v̄,δn)

)

ds,

which easily leads to

∀ t ∈
[

τ − τ

2n+2
, τ
]

, ∀ v ∈ R
N , f(t, x + vt, v) ≥

e−CL
τ

2n+1 〈v〉γ+ ( τ

2n+2

)

a2
n Q+

(

1B(v̄,δn),1B(v̄,δn)

)

.

Now the application of Lemma 2.4 gives

∀ t ∈
[

τ − τ

2n+2
, τ
]

, ∀ v ∈ R
N , f(t, x + vt, v) ≥

cst e−CL
τ

2n+1 〈v〉γ+ ( τ

2n+2

)

a2
n δN+γ

n ξN/2−1
n 1

B
(

v̄, δn

√
2(1−ξn)

)

and thus if δn+1 = δn

√
2(1 − ξn), we get

∀ t ∈
[

τ − τ

2n+2
, τ
]

, ∀ v ∈ R
N , f(t, x + vt, v) ≥

cst e−CL 〈R0〉γ
+ τ

2n+1 δγ+

n+1

( τ

2n+2

)

a2
n δN+γ

n ξN/2−1
n 1B(v̄, δn+1).
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As an easy induction shows, we have δn ≤ δ0 2n/2 and so

CL 〈R0〉γ
+ τ

2n+1
δγ+

n+1 ≤ CL 〈R0〉γ
+ τ

2n+1
(δ0 2n/2)γ

+

which is uniformly bounded from above since γ ≤ 1. Thus the exponential term

e−CL 〈R0〉γ
+ τ

2n+1 δγ+

n+1

is bounded from below uniformly by some constant Ce > 0. We deduce that

∀ t ∈
[

τ − τ

2n+2
, τ
]

, ∀ v ∈ R
N , f(t, x+vt, v) ≥ cst Ce

(

a2
n

2n+1

)

a2
n δN+γ

n ξN/2−1
n 1B(v̄, δn+1).

This concludes the proof. �

Now we can apply Proposition 3.2 along the characteristics in order to prove Theo-
rem 1.1.

Proof of Theorem 1.1. We shall divide the proof into three steps for the sake of clarity.
Each step is embodied in a lemma. For these three lemmas we make the same assumptions
on B and f as in Theorem 1.1.

Step 1: Choice of (ξn)n≥0 and asymptotic behavior of (an)n≥0

Lemma 3.3. For any x ∈ T
N and τ ∈ (0, T ), there exists v̄(x) ∈ B(0, R0) and ρ, θ > 0

such that

(3.3) ∀ v ∈ R
N , f(τ, x + τv, v) ≥ ρ

e−
|v−v̄|2

2θ

(2πθ)N/2
.

The constants R0, ρ, θ depend on τ , ̺f , Ef and Hf (and L
pγ

f if Φ satisfies (1.2) with

γ < 0).

Proof of Lemma 3.3. Let us now chose the sequence (ξn)n≥0. The most natural choice is
a geometrical sequence ξn = ξn+1 for some ξ ∈ (0, 1). With this choice we can estimate
the asymptotic behaviour of the sequence (δn)n≥0. Explicitely

δn = δ0 2n/2 (1 − ξ) (1 − ξ2) · · · (1 − ξn) = δ0 2n/2 Πn
k=0(1 − ξk)

and thus as ξ ∈ (0, 1) one easily gets

δn ≥ cδ 2n/2

where the constant cδ depends on δ0 and ξ. It follows that

∀n ≥ 0, ∀ t ∈
[

τ − τ

2n+1
, τ
]

, ∀ v ∈ B(v̄, cδ 2n/2), f(t, x + vt, v) ≥ an.

By plugging this into the expression of the Maxwellian distribution

ρ
e−

|v−v̄|2

2θ

(2πθ)N/2
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we deduce that a sufficient condition to obtain (3.3) is the following lower bound on the
coefficients an appearing in the minoration (3.2): an ≥ α2n

for some α ∈ (0, 1). Indeed
the parameter θ can then be fixed such that

e−
c2δ
2θ ≤ α.

Afterwards one can fix the parameter ρ in order that

a0 ≥ ρ

(2πθ)N/2

for |v − v̄| ≤ δ0, which leads to (3.3).
Let us prove this bound from below on the sequence (an)n≥0. If one denotes

λn =
δγ+N
n ξ

N/2+1
n

2n+1

one gets explicitely

an = (cst Ce)
2n−1

[

λn−1 λ2
n−2 · · · λ2n−1

0

]

a2n

0 .

As for the sequence (λn)n≥0, we have λn ≥ cst λn with

λ =
2(γ+N)/2 ξN/2+1

2

and so

an ≥ (cst Ce)
2n−1 λ[(n−1)20+(n−2)21+···+02n−1] a2n

0 .

If λ > 1 the proof is clearly finished. If λ ∈ (0, 1) it remains to study the quantity

An =
[

(n − 1)20 + (n − 2)21 + · · · + 02n−1
]

An easy computation shows that An = 2n − (n + 1) and so An ≤ 2n. It yields an ≥ α2n

with α := cst Ce λa0. �

Step 2: Uniformization of the spatial dependence

Lemma 3.4. For any τ ∈ (0, T ), there exists ρ′, θ′ > 0 such that

(3.4) ∀x ∈ T
N , ∀ v ∈ R

N , f(τ, x, v) ≥ ρ′
e−

|v|2

2θ′

(2πθ′)N/2
.

The constants ρ′, θ′ depend on τ , ̺f , Ef and Hf (and L
pγ

f if Φ satisfies (1.2) with γ ∈
(−N, 0)).

Proof of Lemma 3.4. This step is straightforward: the right-member term in the esti-
mate (3.3) depends on the space variable x only through v̄(x). However, as a consequence
of Lemma 2.3, v̄ is always included in the ball B(0, R0) for some radius R0 depending only
on the a priori bounds on the solution. Thus

e−
|v−v̄|2

2θ ≥ e−
|v|2

θ e−
R2

0
θ
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and the proof is complete up to the choice of some new parameters ρ′, θ′: one can take
θ′ = θ/2 and

ρ′ = ρ
e−

R2
0

θ

2N/2
.

�

Step 3: Uniformization of the time dependence

Lemma 3.5. For any τ > 0, there exists ρ′, θ′ > 0 such that

∀ t ∈ [τ, T ), ∀x ∈ T
N , ∀ v ∈ R

N , f(t, x, v) ≥ ρ′
e−

|v|2

2θ′

(2πθ′)N/2
.

The constants ρ′, θ′ depend on the a priori bounds on the solution.

Proof of Lemma 3.5. Again this step is straightforward: one can check that the lower
bound (3.4) does not depend on the precise form of the solution f(t, x, v) for t ∈ [0, τ ],
x ∈ T

N , v ∈ R
N , but only on the uniform bounds. It means that the same argument

could be started not from t = 0 anymore, but at any time (as long as the bounds used are
uniform in time). As the lower bound appears after some time τ > 0 (arbitrary small),
we get the lower bound for any time t ≥ τ by making the proof start at t − τ . �

This concludes the proof of Theorem 1.1. �

4. Proof of the lower bound in the non-cutoff case

In this section we shall prove Theorem 1.2. Again we use the spreading property along
each characteristic but we use the spreading property on the gain part of a truncated
collision operator. The remaining part will be treated thanks to the L∞ estimates proved
in Section 2.

We assume that ν ∈ [0, 2) and we make the following splitting for any ε ∈ (0, π/4):

Q = Q+
ε − Q−

ε + Q1
ε + Q2

ε

where Q+
ε and Q−

ε are the usual Grad splitting for the collision operator with collision
kernel

BS
ε := Φ

[

b1|θ|≥ε

]

=: Φ bS
ε ,

and Q1
ε and Q2

ε are the splitting introduced in (2.5) applied to the non-cutoff collision
operator with collision kernel

BR
ε := Φ

[

b1|θ|≤ε

]

=: Φ bR
ε .

For the sake of clarity the index ε shall be recalled on each quantity that depends on this
splitting.
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It is straightforward to check that bS
ε ≥ ℓb on [π/4, 3π/4], since bS

ε = b for θ ∈ [π/4, 3π/4]
and thus the constants given by the application of Lemma 2.3 and Lemma 2.4 on Q+

ε are
uniform according to ε. Moreover we have

(4.1) nbS
ε
∼ε→0

b0

ν
ε−ν , mbR

ε
∼ε→0

b0

2 − ν
ε2−ν

for ν ∈ (0, 2) and

(4.2) nbS
ε
∼ε→0 b0 | log ε|, mbR

ε
∼ε→0

b0

2 − ν
ε2

when ν = 0.
The basic tool is the Duhamel formula written in the following way

∀ t ∈ [0, T ), ∀x ∈ T
N , ∀ v ∈ R

N ,

f(t, x + vt, v) = f0(x, v) exp

(

−
∫ t

0
(Sε + Lε)[f(s, x + vs, ·)](v) ds

)

(4.3)

+

∫ t

0
exp

(

−
∫ t

s
(Sε + Lε)[f(s′, x + vs′, ·)](v) ds′

)

(Q+
ε + Q1

ε)[f(s, x + vs, ·), f(s, x + vs, ·)](v) ds

where Lε and Sε are the operators introduced in Section 2 corresponding respectively to
Q−

ε and Q2
ε. We shall systematically use the L∞ estimates given by (2.2) and Lemma 2.5,

written in the following form

Lε[f ] ≤ Cf nbS
ε
〈v〉γ+

, Sε[f ] ≤ Cf mbR
ε
〈v〉γ+

, Q1
ε(f, f) ≤ Cf mbR

ε
〈v〉(2+γ)+

for a constant Cf depending on the uniform bounds on f .
Let us define the concept of mild solution we shall use in the non-cutoff case.

Definition 4.1. Let f0 be a measurable function non-negative almost everywhere on T
N ×

R
N . A measurable function f = f(t, x, v) on [0, T ) × T

N × R
N is a mild solution of the

Boltzmann equation to the initial datum f0(x, v) if there exists ε0 > 0 such that for all
0 < ε < ε0, for almost every (x, v) in T

N × R
N :

t 7→ Q+
ε [f(t, x + vt, ·), f(t, x + vt, ·)](v), t 7→ Q1

ε[f(t, x + vt, ·), f(t, x + vt, ·)](v),

t 7→ Lε[f(t, x + vt, ·)](v), t 7→ Sε[f(t, x + vt, ·)](v)

are in L1
loc([0;T )), and for each t ∈ [0, T ), the equation (4.3) is satisfied and f(t, x, v) is

non-negative for almost every (x, v).

Let us prove the equivalent of Proposition 3.2 in the non cutoff case. Here we shall
write the induction formula for a general sequence of time intervals ∆n.

Indeed, on one hand at each step n of the induction the spreading effect of the gain
part Q+

ε is now balanced by the perturbation Q1
ε, which imposes a careful choice of the

splitting parameter ε for each n to get a lower bound on

Q+
ε (f, f) + Q1

ε(f, f) ≥ Q+
ε (f, f) − |Q1

ε(f, f)|.
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This yields a sequence (εn)n≥0 going to 0 as n goes to infinity.
On the other hand at each step n of the induction we have the following action of

−Q−
ε + Q2

ε along the characteristic in the estimate from below on the solution:

e
−Cf

(

m
bR
εn

+n
bS
εn

)(

∑

k≥n+1 ∆k

)

〈v〉γ+

.

It makes the lower bound decrease and this exponential term goes to 0 when the splitting
parameter ε goes to 0 (since nbS

ε
goes to infinity as ε goes to 0). That is why we shall

choose time intervals ∆n whose size decreases very fast to 0 as n goes to infinity, in order
to limit the action of this part during a time interval.

Proposition 4.2. Let B = Φ b be a collision kernel which satisfies (1.1), with Φ satisfy-
ing (1.2) or (1.3), and b satisfying (1.4) with ν ∈ [0, 2). Let f(t, x, v) be a mild solution
of the full Boltzmann equation in the torus on some time interval [0, T ) (T ∈ (0,+∞]),
which satisfies

(i) assumptions (1.6) and (1.8) if Φ satisfies (1.2) with γ ≥ 0 or if Φ satisfies (1.3);
(ii) assumptions (1.6), (1.7) and (1.8) if Φ satisfies (1.2) with γ ∈ (−N, 0).

Then for any fixed τ ∈ (0, T ) (small enough) and x ∈ T
N , any sequence (∆n)n≥0 of positive

numbers such that
∑

n≥0 ∆n = 1, there exists some R0 > 0 and v̄ ∈ B(0, R0) such that

∀n ≥ 0, ∀ t ∈
[(

n
∑

k=0

∆k

)

τ, τ

]

, ∀v ∈ R
N , f(t, x + vt, v) ≥ an 1B(v̄,δn).

The sequence an satisfies the induction formula

(4.4) an+1 = cst ∆n+1 exp

[

−
[

Cf a2
n δN+γ−γ̃

n ξ(N/2−1)
n

]− ν
2−ν

(

∑

k≥n+1

∆k

)

δγ+

n+1

]

a2
nδγ+N

n ξ(N/2+1)
n

if ν ∈ (0, 2) and

(4.5) an+1 = cst ∆n+1 exp

[

− cst log
[

Cf a2
n δN+γ−γ̃

n ξ(N/2−1)
n

]

(

∑

k≥n+1

∆k

)

δγ+

n+1

]

a2
nδγ+N

n ξ(N/2+1)
n

if ν = 0. The sequence δn satisfies the induction formula

δn+1 =
√

2 δn(1 − ξn).

Here (ξn)n≥0 is any sequence in (0, 1), the constants R0 > 0, a0 > 0, δ0 > 0 and Cf

depend only on τ , ̺f , Ef , E′
f , Hf , Wf (plus L

pγ

f if Φ satisfies (1.2) with γ ∈ (−N, 0)),

and v̄ ∈ B(0, R0) depends on the same quantities plus x.
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Proof of Proposition 4.2. In this proof we shall use estimates of Section 2 as well as several
equations established in the proofs of Section 3.

Step 1: Initialization

The initialization here is simpler than for the cutoff case since we assume some regularity
on the solution, and thus we do not need the regularizing property of the iterated gain
term. First we give a straightforward lemma:

Lemma 4.3. Let g a non-negative function on RN such that eg and wg are bounded, and
ρg satifies 0 < ρg < +∞. Then there are R0, δ0, η > 0 and v̄ ∈ B(0, R0) such that

g(v) ≥ η 1B(v̄,δ0),

where R0, δ0, η > 0 are explicit constants depending on the upper bounds on ρg, eg, wg

and the lower bound on ρg.

Proof of Lemma 4.3. Using the bound on the energy of g, the choice

R0 =

√

2eg

ρg

implies that
∫

|v|≤R0

g(v) dv ≥ ρg

2
.

So there is v̄ ∈ B(0, R0) such that

g(v̄) ≥ ρg

2Vol
(

B(0, R0)
) .

As wg controls the Lipschitz norm, we have

∀ v1, v2 ∈ R
N , |g(v1) − g(v2)| ≤ wg |v1 − v2|

and thus if we take

δ0 =
ρg

4Vol
(

B(0, R0)
)

wg
, η =

ρg

4Vol
(

B(0, R0)
) ,

we get g(v) ≥ η 1B(v̄,δ0). �

Now we fix x ∈ T
N and we deduce from the representation (4.3) that

∀ t ∈ [0, τ ], ∀ v ∈ R
N , f(t, x + vt, v) ≥ f0(x, v)e−

∫ t
0 (Sε+Lε)[f(s,x+vs,·)](v) ds

+

∫ t

0
e−

∫ t
s
(Sε+Lε)[f(s′,x+vs′,·)](v) ds′ Q1

ε[f(s, x + vs, ·), f(s, x + vs, ·)](v) ds.

We apply Lemma 4.3 to the function f0(x, ·) to obtain

∀ t ∈ [0, τ ], ∀ v ∈ R
N , f(t, x + vt, v) ≥ η 1B(v̄,δ0)e

−
∫ t

0
(Sε+Lε)[f(s,x+vs,·)](v) ds

+

∫ t

0
e−

∫ t

s
(Sε+Lε)[f(s′,x+vs′,·)](v) ds′ Q1

ε[f(s, x + vs, ·), f(s, x + vs, ·)](v) ds.
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for some v̄ ∈ B(0, R0). Then we restrict the inequality on the ball B(v̄, δ0) ⊂ B(0, R0 +δ0)
and we use the estimates on Sε, Lε and Q1

ε to get

∀ t ∈ [0, τ ], ∀ v ∈ B(v̄, δ0), f(t, x + vt, v) ≥ η 1B(v̄,δ0)e
−Cf

(

m
bR
ε

+n
bS
ε

)

〈v〉γ+
τ

− τ Cf mbR
ε
〈v〉γ̃ .

Using the bounds on the velocity in the ball we get (up to modifying the constant Cf )

∀ t ∈ [0, τ ], ∀ v ∈ B(v̄, δ0), f(t, x + vt, v) ≥ η 1B(v̄,δ0)e
−Cf

(

m
bR
ε

+n
bS
ε

)

τ − τ Cf mbR
ε
.

Then we assume (up to reducing τ) that τ ≤ 1, and we choose first ε0 small enough such
that

Cf mbR
ε0

≤ η

4

and then τ small enough such that

e
−Cf

(

m
bR
ε0

+n
bS
ε0

)

τ ≥ 1

2
.

This shows that

∀ t ∈ [0, τ ], ∀ v ∈ B(v̄, δ0), f(t, x + vt, v) ≥ η

4
1B(v̄,δ0),

which concludes the initialization with v̄, δ0 and η0 = η/4.

Step 2: Proof of the induction

As for the proof of the induction, we proceed quite similarly as in the proof of Proposi-
tion 3.2. We suppose that the nth step is satisfied:

∀ t ∈
[

( n
∑

k=0

∆k

)

τ, τ

]

, ∀ v ∈ R
N , f(t, x + vt, v) ≥ an 1B(v̄,δn).

We use the following lower bound given by the Duhamel representation (4.3) and the
estimate on Q1

ε:

∀ t ∈
[(

n+1
∑

k=0

∆k

)

τ, τ

]

, ∀ v ∈ R
N ,

f(t, x + vt, v) ≥
∫ t

(
∑n

k=0 ∆n)τ
e
−Cf

(

m
bR
ε

+n
bS
ε

)

(t−s) 〈v〉γ+

[

Q+
ε (an 1B(v̄,δn), an 1B(v̄,δn)) − τ Cf mbR

ε
〈v〉γ̃

]

ds.
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Thus by applying Lemma 2.4 on Q+
ε , we obtain

∀ t ∈
[(

n+1
∑

k=0

∆n

)

τ, τ

]

, ∀ v ∈ R
N ,

f(t, x + vt, v) ≥
∫ t

(
∑n

k=0 ∆n)τ
e
−Cf

(

m
bR
ε

+n
bS
ε

)

(t−s) 〈v〉γ+

[

cst a2
n δN+γ

n ξ(N/2−1)
n 1B(v̄,δn+1) − τ Cf mbR

ε
〈v〉γ̃

]

.

Then we restrict the inequality to the ball B(v̄, δn+1) to obtain, using the bounds on the
velocity and up to modifying the constant Cf :

∀ t ∈
[(

n+1
∑

k=0

∆n

)

τ, τ

]

, ∀ v ∈ B(v̄, δn+1),

f(t, x + vt, v) ≥
∫ t

(
∑n

k=0 ∆n)τ
e
−Cf

(

m
bR
ε

+n
bS
ε

)

(t−s) δγ+

n+1

[

cst a2
n δN+γ

n ξ(N/2−1)
n 1B(v̄,δn+1) − τ Cf mbR

ε
δγ̃
n+1

]

.

Then (assuming τ ≤ 1) we choose ε = εn such that

τ Cf mbR
ε

δγ̃
n+1 ≤ 1

2
cst a2

n δN+γ
n ξ(N/2−1)

n

which is possible since mbR
ε
→ε→0 0. More precisely by using the equivalent of mbR

ε
for

ε ∼ 0, simple computations show that we can take

εn = cst
[

Cf a2
n δN+γ−γ̃

n ξ(N/2−1)
n

] 1
2−ν

where the constant Cf is independent of n and depends only on the uniform bounds on f .

Then we restrict the time integration to the interval [(
∑n+1

k=0 ∆n)τ, (
∑n+1

k=0 ∆n)τ ] (since
the integrand is non-negative) which yields

∀ t ∈
[(

n+1
∑

k=0

∆n

)

τ, τ

]

, ∀ v ∈ B(v̄, δn+1),

f(t, x + vt, v) ≥ cst

∫ (
∑n+1

k=0 ∆n)τ

(
∑n

k=0 ∆n)τ
e
−Cf

(

m
bR
εn

+n
bS
εn

)

(t−s) δγ+

n+1 a2
n δN+γ

n ξ(N/2−1)
n 1B(v̄,δn+1)

≥ cst e
−Cf

(

m
bR
εn

+n
bS
εn

)(

∑

k≥n+1 ∆k

)

δγ+

n+1 ∆n+1 a2
n δN+γ

n ξ(N/2−1)
n 1B(v̄,δn+1).
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Finally the argument in the exponential is seen to be equivalent to

[

Cf a2
n δN+γ−γ̃

n ξ(N/2−1)
n

]− ν
2−ν

(

∑

k≥n+1

∆k

)

δγ+

n+1

when ν ∈ (0, 2) and

−cst log
[

Cf a2
n δN+γ−γ̃

n ξ(N/2−1)
n

]

(

∑

k≥n+1

∆k

)

δγ+

n+1

when ν = 0 (for some new constant Cf depending on the uniform bounds on f), which
concludes the proof. �

We are now able to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. We only study the asymptotic behavior of the coefficients an. The
two other steps of the proof (uniformization of the spatial and time dependences) are
exactly similar as those in the proof of Theorem 1.1.

We fix ξ ∈ (0, 1) and define ξn = ξn. We saw above that with this choice δn ∼ cst 2n/2.
First we deal with the case ν > 0. Let us choose any κ > 2 + 2ν/(2− ν), and take for the
time intervals

∆n+1 =
αβκn

∑

k≥0 αβκk−1

where α ∈ (0, 1) and 2ν/(2 − ν) < β < κ − 2. We shall establish by induction the lower
bound

(4.6) an ≥ ακn

.

One easily sees that this estimate (4.6) implies that

∀ v ∈ R
N , f(τ, x + τv, v) ≥ C1 e−C2 |v|K

for a suitable choice of C1, C2 > 0 and

K =
log κ

log
√

2
,

and thus concludes the proof.
The initialization of the induction is made by choosing α such that α ≤ a0. Then

we suppose the lower bound satisfied for an and we show first that the argument of the
exponential in (4.4) is uniformly bounded. A simple computation establishes that

∑

k≥n+1

∆k ≤ cst ∆n+1 = cst αβκn
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where the constant is independent of n. Thus

[

a2
n δN+γ−γ̃

n ξ(N/2−1)
n

]− ν
2−ν

(

∑

k≥n+1

∆k

)

δγ+

n+1

≤
[

2γ+/2

(

Cf2(N+γ−γ̃)/2)ξ(N/2−1)
)ν/(2−ν)

]n

α(β− 2ν
2−ν )κn

and the right-hand side member of this inequality goes to 0 as n goes to infinity. So the
exponential term is uniformly bounded from below by some constant Ce > 0 depending
on the uniform bounds on the solution f .

So the induction formula (4.4) defining an yields

an+1 ≥ cst Ce ∆n+1 a2
nδγ+N

n ξ(N/2−1)
n

and thus

an+1 ≥ cst Ce α(2+β)κn
[

2(N+γ)/2)ξ(N/2−1)
]n

≥ cst ακn+1

if α is small enough (using κ > 2 + β) and the induction is proved.
Now for the case ν = 0, we choose the following time intervals

∆n+1 =
βn

∑

k≥0 βk−1

where β ∈ (0, 1). We shall establish by induction the lower bound

an ≥ α2n

which implies (as in the proof of Theorem 1.1) that

∀ v ∈ R
N , f(τ, x + τv, v) ≥ C1 e−C2 |v|2

for a suitable choice of C1, C2 > 0 and thus concludes the proof.
We suppose the lower bound satisfied for an and we show first that the argument of the

exponential in (4.5) is uniformly bounded. We have
∑

k≥n+1

∆k ≤ cst ∆n+1 = cst βn

where the constant is independent of n, and so
∣

∣

∣

∣

∣

∣

log
[

Cf a2
n δN+γ−γ̃

n ξ(N/2−1)
n

]

(

∑

k≥n+1

∆k

)

δγ+

n+1

∣

∣

∣

∣

∣

∣

≤ | log Cf | + cst 2n(γ+/2+1) βn + cstn 2nγ+/2 βn

which goes to 0 if β is taken small enough. So the exponential term is uniformly bounded
from below by some constant Ce > 0 depending on the uniform bounds on the solution f .

The induction formula (4.5) defining an yields

an+1 ≥ cst Ce ∆n+1 a2
nδγ+N

n ξ(N/2−1)
n
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and thus

an+1 ≥ cst Ce a2
n

[

2(N+γ)/2)ξ(N/2−1)β
]n

.

Then if we denote

λ = 2(N+γ)/2)ξ(N/2−1)β

a similar computation as in the proof of Proposition 3.2 gives

an ≥ (cst Ce)
2n−1 λ[(n−1)20+(n−2)21+···+02n−1] a2n

0 ≥ (cstCe λa0)
2n

and thus an ≥ α2n
if one takes α ≤ cst Ce λa0 and the induction is proved. This concludes

the proof. �

5. Application to the existing Cauchy theories

In this section we shall use Theorem 1.1 and Theorem 1.2 to study solutions which have
been constructed by previous authors, by connecting these theorems to some existing
results in the Cauchy theory of the Boltzmann equation.

First we give a theorem which summarizes the situation in the spatially homogeneous
setting for cutoff potentials in cases where the collision kernel does not present a singularity
for vanishing relative velocity (a case which is not so well understood and for which Lp

estimates have not yet been derived).

Theorem 5.1. Let B = Φ b be a collision kernel satisfying assumptions (1.1), with Φ
satisfying assumption (1.2) with γ ≥ 0 or (1.3), and b satisfying (1.4) with ν < 0. Let f0

be a nonnegative initial condition on R
N
v with finite mass, energy. Then

(i) there exists a unique solution f(t, v) with constant mass and energy to the spatially
homogeneous Boltzmann equation, defined for all times;

(ii) if f0 has finite entropy, then the entropy of the solution remains uniformly bounded
and the solution satisfies

∀ t > 0, ∀ v ∈ R
N , f(t, v) ≥ ρ(t)

e
− |v|2

2θ(t)

(2πθ(t))N/2
.

The constants ρ(t), θ(t) > 0 are explicit and depend on the mass, energy and
entropy of f0; they are uniform for t → +∞ but not necessarily for t → 0.

Remark: Let us sketch briefly how it is possible to relax the assumption of the bound-
edness of the entropy of the initial datum in point (ii) in the case γ > 0 in dimension 3.
Indeed Mischler and Wennberg [28, Lemma 2.1] proved in this case that

g = Q+(Q+(f, f), f)

is uniformly integrable, with constants depending on the L1
2 norm of f . The bound on

the entropy is only used in the obtaining of the upheaval point in Lemma 2.3, whose
proof requires the uniform integrability of the function. But in the initialization step of
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Proposition 3.2, it is possible, up some tricky computations, to obtain by iterating twice
more the Duhamel representation

∀ v ∈ R
N , |v| ≤ R0, f(t, x+vt, v) ≥ CT,R0,B Q+

[

Q+
[

gR0
0 (x, ·), gR0

0 (x, ·)
]

, gR0
0 (x, ·)

]

(v)

where g0 = Q+(Q+(f0, f0), f0). As g0 is uniformly integrable (with explicit bounds) by
the result of Mischler and Wennberg above, one can apply Lemma 2.3 to

Q+
[

Q+
[

gR0
0 (x, ·), gR0

0 (x, ·)
]

, gR0
0 (x, ·)

]

(v)

to get the upheaval point and the rest of the proof is unchanged.

Proof of Theorem 5.1. Let us prove (i): In the case Φ satisfies assumption (1.2) with γ > 0,
the existence and uniqueness in L1

2 (for solutions with non-increasing energy) are proved
in [28]. In the case γ = 0 or Φ satisfies assumption (1.3) with γ ∈ (−N, 0), existence and
uniqueness in L1

2 can be deduced from Arkeryd [3]: in this case the collision operator is a
bounded bilinear operator in L1, which implies the uniqueness, and the global existence
is proved by the monotonicity argument from [3]. For (ii): In all these cases the mass and
energy are conserved. By the H theorem, if the entropy of the initial datum is bounded,
then it remains bounded uniformly for all times. Thus the solution satisfies (1.6) and one
can apply Theorem 1.1 and concludes the proof. �

Now we give a theorem for non-cutoff mollified hard potentials collision kernels, using a
recent result of Desvillettes and Wennberg [13]. Here S(RN

v ) denotes the Schwartz space
of the functions with all derivatives bounded and decreasing faster at infinity than any
inverse of polynomial.

Theorem 5.2. Let B = Φ b be a collision kernel satisfying assumptions (1.1), with Φ
satisfying assumption (1.3) with γ > 0 and C∞, and b satisfying (1.4) with ν ∈ (0, 2). Let
f0 be a nonnegative initial condition on R

N
v with finite mass, energy and entropy. Then

(i) there exists a solution f to the spatially homogeneous Boltzmann equation with
constant mass and energy and uniformly bounded entropy, defined for all times
and belonging to L∞([t0,+∞),S(RN

v )) for any t0 > 0;
(ii) this solution satisfies

∀ t > 0, ∀ v ∈ R
N , f(t, v) ≥ C1(t) e−C2(t) |v|K

for any exponent K such that

K > 2
log
(

2 + 2ν
2−ν

)

log 2
.

The constants C1(t), C2(t) > 0 are explicit and depend on the mass, energy, en-
tropy of f0 and K; they are uniform for t → +∞ but not necessarily for t → 0.
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Proof of Theorem 5.2. First let us prove (i): Our assumptions on B imply the assump-
tions [13, Assumption 2] on the collision kernel B, namely B = Φ b with Φ a smooth and
strictly positive function such that Φ(z) ∼|z|→+∞ |z|γ with γ ∈ (0, 1], and b such that

b(cos θ) ∼θ→0 cst θ−(N−1)−ν with ν > 0. Concerning the initial datum our assumptions
are exactly those of [13, Assumption 1]. So we can apply [13, Theorem 1] to prove the
existence of a solution, lying in L∞([t0,+∞),S(RN

v )) for any t0 > 0. For (ii): The explicit
bound L∞([t0,+∞),S(RN

v )) for any t0 > 0 immediately implies the uniform bounds (1.6)
and (1.8). Thus one can apply Theorem 1.2 to obtain the lower bound for t ≥ t0 + τ . As
t0 and τ are arbitrarily small this concludes the proof. �

For spatially inhomogeneous solutions we can apply our results to the solutions near
the equilibrium in a torus constructed by Ukai (see [33, 34] and [8, Section 7.6]) for hard
spheres and Guo [21] for soft potentials. For the sake of clarity, we do not explicit in full
details the functional settings in which these solutions are constructed and refer to the
above-mentioned references for more precise definitions.

Theorem 5.3. Let B = Φ b be a collision kernel satisfying assumptions (1.1), with

a- Φ satisfying assumption (1.2) with γ = 1 and b = 1 (solutions of Ukai) or
b- Φ satisfying assumption (1.2) with γ < 0 and b satisfying (1.4) with ν < 0 (solu-

tions of Guo).

Let f0 = M + M1/2h0 (M is the global Maxwellian equilibrium) be a nonnegative initial
condition on T

N
x × R

N
v such that

‖h0‖2
Hs,q :=

∑

|i|+|j|≤s

‖h0〈v〉q‖2
L2(TN×RN ) ≤ ǫ0

with s, q, ǫ0 > 0. Then

(i) for any s′, q′ > 0, if s, q are large enough and ǫ0 is small enough, there exists a

unique solution f to the full Boltzmann equation in Hs′,q′, defined for all times,
with uniform bound in Hs′,q′ depending on ǫ0;

(ii) this solution satisfies

∀ t > 0, ∀x ∈ T
N , ∀ v ∈ R

N , f(t, x, v) ≥ ρ(t)
e
− |v|2

2θ(t)

(2πθ(t))N/2
.

The constants ρ(t), θ(t) > 0 depend on ǫ0; they are uniform for t → +∞ but not
necessarily for t → 0.

Remarks: 1. Most probably the solutions of Ukai could extend to any cutoff hard
potentials, even if they were constructed for hard spheres. Anyhow the method of Guo
would probably recover the result for any cutoff hard potentials as well.

2. The proof of Ukai uses the spectral gap of the linearized collision operator for hard
spheres, which was known to exist since Grad [20]. This spectral gap was obtained by
non-constructive method (essentially the Weyl’s Theorem about compact perturbation of
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the essential spectrum). However explicit estimates on this spectral gap were recently
obtained in [5], which is a step forward into a constructive theory. Nevertheless at now
the proofs of Ukai (and Guo for soft potentials) still do not provide constructive bounds.

3. One can apply the result of convergence to equilibrium of Desvillettes and Villani [12]
to the solutions of Theorem 5.3, which do satisfy every assumption of [12, Theorem 2].
Thus they converges almost exponentially to equilibrium, i.e

‖ft − M‖L1
x,v

≤ Cα t−1/α

where α can be taken as big as wanted when s and q are large enough, and the constant
Cα is explicit according to the uniform regularity bounds on f and the constants in the
lower bound. For the solutions of Ukai in the hard spheres case, this result is weaker than
the exponential convergence to equilibrium already proved by Ukai, but the convergence
to equilibrium was unknown for the solutions of Guo in the case of soft potentials.

4. Let us explain how to skip the “upheaval step” of the proof for solutions near the
equilibrium. Indeed in the case of perturbative solutions, which are L∞ close to a global
Maxwellian distribution, Lemma 2.3 can be bypassed by a more direct argument: up to
reduce the neightborhood of the Maxwellian distribution for the existence theory (i.e.
reducing ǫ0), the uniform L∞ control of smallness on h yields

∀ t ∈ R+, ∀x ∈ T
N , ∀ v ∈ R

N , f(t, x, v) ≥ η0 1B(0,δ0)

for some η0 > 0 and δ0 > 0.

Proof of Theorem 5.3. One can check easily that for s and q large enough and ǫ0 small
enough in the assumptions on the initial data, f0 satisfies the assumptions of [8, Theo-
rem 7.6.2] in the case of Ukai’s solutions, and the assumptions of [21, Theorem 1] for Guo’s
solutions. Then for s large enough, the uniform smoothness estimates on the solution im-
ply in both cases a bound on ‖ht‖L∞

x,v
, uniform for all times, and going to 0 as ǫ0 → 0.

Thus if one take ǫ0 small enough such that
(

sup
t≥0

‖ht‖L∞
x,v

) ∫

RN
v

√

M(v) dv ≤ 1

2

∫

RN
v

M(v) dv

one immediately get

̺f ≥ 1

2

∫

RN
v

M(v) dv > 0

for all times. The uniform upper bounds on the local energy and local entropy (and local
Lp bound) follow from the uniform regularity bounds on the solution. Thus the solution
satisfies (1.6) and (1.7) and one can apply Theorem 1.1 and conclude the proof. �

Finally, let us say a few words about other Cauchy theories.
In the spatially inhomogeneous setting, one could apply Theorem 1.1 to solutions for

small time constructed in [23] (in the cutoff case). We did not detail this application since
we were more interested with global solutions.
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One could also apply Theorem 1.1 to the global weakly inhomogeneous solutions (for
cutoff hard potentials) constructed by Arkeryd, Esposito and Pulvirenti in [4], which
would give a Maxwellian lower bound on these solutions (uniform as t → +∞). Note
that the uniform bounds on the solution obtained in [4] do not seem to be constructive.
As a consequence the Maxwellian lower bound given by Theorem 1.1 would not have
constructive constants.

Concerning the global solutions in the whole space R
N near the vacuum constructed

by Kaniel, Illner and Shinbrot (cf. [22, 27, 19] or [8, Section 5.2]), a lower bound on the
solution f(t, x, v) cannot be uniform in space since f(t, ·, ·) is integrable on R

N
x ×R

N
v , and

it cannot be uniform as t goes to infinity since the solution goes to 0 as t goes to infinity
for every (x, v) such that v 6= 0 (see [8, Theorem 5.2.2]). Our method could not apply,
and is more adapted to evolution problems in bounded domains. We note that for these
solutions in the whole space, in some cases a bound from below on the solutions by a
“travelling Maxwellian”

∀ t ≥ 0, ∀x ∈ R
N , ∀ v ∈ R

N , f(t, x, v) ≥ C(t) e−β |x−tv|2 e−α |v|2

(where α > 0 and β > 0 are absolute constants, and C(t) > 0 is a constant depending on
time) can replace our method to provide a lower bound (see for instance [19], and also, in
the same spirit [26]).

Acknowledgment: Support by the European network HYKE, funded by the EC as
contract HPRN-CT-2002-00282, is acknowledged.
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[7] Carleman, T., Problèmes mathématiques dans la théorie cinétique des gaz. Publ. Sci. Inst. Mittag-

Leffler. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala (1957).
[8] Cercignani, Carlo and Illner, Reinhard and Pulvirenti, Mario, The mathematical theory of

dilute gases, vol. 106 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.
[9] Desvillettes, L. and Villani, C., On the spatially homogeneous Landau equation for hard poten-

tials. I. Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25, 1–2 (2000),
179–259.

[10] Desvillettes, L. and Villani, C., On the spatially homogeneous Landau equation for hard poten-
tials. II. H-theorem and applications. Comm. Partial Differential Equations 25, 1–2 (2000), 261–298.

[11] Desvillettes, L. and Villani, C., On the trend to global equilibrium in spatially inhomogeneous
entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math. 54, 1 (2001),
1–42.
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