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Abstract

We present an accurate Lagrangian method based on vortetgmievel-sets, and immersed boundary
methods, for animating the interplay between two fluids agil isolids. We show that a vortex method
is a good choice for simulating bi-phase flow, such as liquid gas, with a good level of realism. Vortex
particles are localized at the interfaces between the twdsfland within the regions of high turbulence.
We gain local precision and efficiency from the stable adeacpermitted by the vorticity formulation.
Moreover, our numerical method straightforwardly solestivo-way coupling problem between the fluids
and animated rigid solids. This new approach is validatedutlih numerical comparisons with reference
experiments from the computational fluid community. We abow that the visually appealing results
obtained in the CG community can be reproduced with inctaffeciency and an easier implementation.

1 Introduction

Fluids interacting with solid objects are a common, yetifssting every-day life experience. Our tendency
to stare at turbulent liquids and at smoke dynamic behawiotp observe different objects splashing into
water makes us very critical when we see such phenomenadugg®ad with a computer. Yet, the demand
for plausible fluids in computer-generated movies and gamegh. This has led many computer graphics
researchers to tackle the challenge, although still cenettlas one of the most difficult problem in the
computational fluids community.

The interactions we generally observe in real life involeeesal components: typically, water with a free
surface in contact with the air, which interacts with both ahd moving rigid bodies. These interactions
result in really complex phenomena (turbulences, spladhdsbles, interesting subsequent motion of the
solids), due to the interplay between the two fluids and thidsoT his paper presents a Lagrangian approach,
based on vortex particles, for accurately, yet efficienttygating this interplay. We show that vortex particles
provide a good solution to the modelling of bi-phase flow vathquid component. Since they concentrate
the computational power in discontinuous and turbulenioregy the complex phenomena occurring at the
interface between the two fluids are represented with a gooal bf precision. Meanwhile, the numerical
method we present straightforwardly solves the two-waypting problem between the fluids and animated
rigid solids, without the need for complex boundary cordis.
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Previous Work

The simulation of fluids and of their interplay with solid ebjs has attracted a lot of attention in the CG
community within the past few years. Great advances weentBcmade towards this goal.

[@] presented the first 3D simulation of liquids. They rdl@n an Eulerian formulation to solve the Navier-
Stokes equations for incompressible fluids. A semi-Lagmnagnethod for advecting the fluid which guar-
anties the stability of the simulation was then proposec@}c [Because of high numerical dissipation, these
kind of simulations loose part of their vorticity over timeeproblem which was tackled i|ﬂ16].

Lagrangian methods based on particles provide a good atteerto Eulerian simulations, since they enable
to dynamically follow the fluid. Thé&moothed Particles Hydrodynamics (SPH) formulation was adapted by
[@] in order to transport an implicit boundary with surfageasion. More recentlymG] used this formula-
tion to simulate fluid-fluid interactions such as boiling erahnd managed to obtain interesting phenomena
such as air bubbles in water. Closer to the Navier-Stokeatams for incompressible quidﬂZS] proposed
a particle based solution callé&dioving Particle Semi-Implicit (MPS). While straightforwardly able to track
multiple fluids, particles-only methods mostly suffer fraine difficulty to conserve the dynamic properties
of the fluids, especially when dealing with boundaries.

Among these approaches, vortex methc@s EB[]Z?, 2] wereingedanimating gaseous phenomena. They
are particularly interesting since they focus the resotuth the regions of high turbulence. They rely on
the vorticity formulation of the Navier-Stokes equationgll known in applied mathematics for being an
accurate alternative to Eulerian methods (s‘,]ae [9]). Vopexicles were also introduced to add subgrid tur-
bulences on top of an Eulerian simulation of liquids or ga@, impressively counteracting the numerical
dissipation due to the underlying Eulerian solver. Up to howtechnique was developed in graphics to
simulate liquids or multi-phases fluids from the vorticityrnulation of Navier-Stokes. This may be due to
the inherent cost of particle methods (frédiN?) to O(NlogN) using [24]), more expensive than Eulerian
methods since a large number of particls$t 1000) are necessary to reach a good level of precision. One of
the contributions of this paper is to show that when adedyiatglemented, the vortex formulation achieves
accurate yet efficient simulations.

Animation and visualization of water in contact with the aéquire the precise transport and rendering of
the interface between them. Because of the discontinuitiiefluids’ physical properties at the interface,
the resolution of the Navier-Stokes equations was mostetithe restricted to the liquid component and
to the interface regiorﬁMleS]. However, this preventsudating some interesting phenomena such as air
bubbles inside the liquid. A multi-phase method was reggimésented to take care of both fluids, achieving
impressive bubbles movemeniis|[21]. As in this last work, ineutate bi-phase fluids. We present a different
solution, based on the vorticity formulation, which soltes problem in an intuitive and efficient way.

Fluid-structure interaction is considered as a really lopgpblem by both the CG and applied mathematics
communities. The most difficult issue is to compute the fliigelocity at the objects boundaries while
ensuring that no fluid penetrates any obsta@. [19] predamte of the first methods in CG for generating
interaction forces between fluids and rigid solids. Re@etﬂ] provided a solution that treats the rigid body
as a fluid and extracts its associated movement from the Slvilocity. ] presented the first technique
able to handle the interactions with thin deformable andirapjects represented by meshes. This method
was further improved bmS] to allow the melting and burnafghese solids. Closer to our vortex particles
approach,?] used the panel method to impose no-slip aftdnoagh constraints on the fluid by emitting
new particles at the solid’s boundaries. This one-way atgon method, while well adapted for gases, is
based on an explicit representation of the object whichhef density of particles was too low, does not
prevent the flow from penetrating. Although achieving ingsiee results, these methods are sometimes hard
to implement or require complex treatments where the oltjrathes the fluid. Furthermore, they do not
provide any validation of the correctness of the fluid’s héts at the boundaries. Although in the spirit



of the rigid fluid method@], the solution we present avoids éxplicit tracking of the fluid/body interface.
Instead, we use a level set formulation on top of a vortidigation algorithm to apply forces and account for
the continuity of velocity at the fluid/body interface.

Overview

Our motivation for using vortex particles lies in the follmg features: they allow to concentrate numerical
efforts on regions of interest and remain stable for langetstep values. Their main limitation, the associated
computational cost, can be alleviated by using an auxiB@h\grid. This is done while keeping the vorticity
formulation of the equations and remaining physically aata

Our first contribution is to use vortex patrticles to simulditephase fluids such as liquid and gas. As we show,
the vortex formulation is very well adapted to tackle thislgem, since the vortex particles are created near
the interface between the two fluids. The second contrihisi@a novel algorithm to simulate the two-way
interactions of the bi-phase fluid with animated rigid badi®ur approach provides a physically sound and
clear-cut fluid-solid model thanks to an algorithm that ishmbust and easy to implement.

Section[P reviews vortex methods. Sectjpn 3 explains how seetilem to simulate bi-phase flow, such as
water in contact with air. Sectid} 4 focuses on the animatiosolids interacting with the fluids. Section
E validates the method through numerical comparisons wiérence experiments from the computational
fluid community. Lastly, Sectioﬂ 6 shows that the visuallpagling results obtained in the CG community
can be reproduced with an increased efficiency.

2 \Vortex Particle Methods

In most fluid simulations, only a part of the flow has an inténggbehavior. The vorticity formulation derived
from the Navier-Stokes equations allows to focus the coatmrtal cost on the region of interest using vortex
particles.

This section gives a quick overview of the vortex particletimod, we refer the reader lﬁ [9] and the references
therein for detailed numerical analysis and discussionkisfmethod.

Definition
We start from the incompressible viscous 3D Navier-Stokgm#ons:

U+ (u-Ou—vAu+0Op=0 Q)
O-u=0 2

wherey; is the velocity’s time derivative of the fluid’s velocity fabu, O - u is the divergent ofi, p is the
pressure and the kinematic viscosity of the fluid. The vorticity is definaslthe curl of the velocity:

w=0xu

(note that in the particular case of a 2D fluid, the vortic#yaiscalar). Taking the curl of equatioﬁls (1) and
@) (after some linear algebra) leads to the vorticity folation of the Navier-Stokes equations:

o+ (u-Dw=(w-0O)u+ vAw. (3)

Solving this single equation is equivalent to solving eouret [;l) and |]2). The ternu - O)w represents
the transport of the vorticity by the fluid’s velocity, thetlenost term of the right-hand side of equatic[h €))



represents the stretching (change of orientation) of thidcity vector while the latter term represents the
vorticity diffusion due to viscosity.

While it would be possible to solve this equation on a tradisél 3D grid, the use of particles to transport
vorticity permits to gain in precision and efficiency. Canir to velocity which is mostly non zero in the
whole domain, vorticity is localized in region of turbulezsceven if there can be high velocities everywhere.
In consequence, by the use of particles, computationalgioeds focused where vorticity exists. Another
advantage is that the advection of vorticity is not subjgdtethe time-step constraint inherent to Eulerian
methods, which stands that < |u|max.

Vortex particle methods consist in representing the vef@lt w by a set of particles:

W(X) = Vpwpl (X—Xp)
b

wherexp, wp andvp are respectively the location, strength and volume of glary and { is a smooth
distribution function, typically a Gaussian. Due to thedntpressibility constraint, the volumeg remain
constant. Rewriting equatioﬂ (3) in a Lagrangian formolatithe particles’ location and strength are inte-
grated using:

Dxp

T’[ - U(Xpat)v (4)
Dw
Wp = (w-0)u+ vAw, (5)

whereDg/Dt = dq/dt + (u- 0)qg denotes the rate of change of a quantity the Lagrangian frame of a fluid
element advected by the fluid. Particles’ velocity and witstiderivatives have to be determined in a self-
consistent way from the vorticity field.

Coupling Vortex Particles with a Grid

As we plan to simulate fluids which may become turbulent an ttiequire many particles, we use both
vortex particles and a 3D grid: firstly, spatial differetitims are cheaper on a grid; secondly it guaranties
an approximately constant cost when solving the equatiasty, it solves with no extra cost the problem
of redistributing the particles over time. This last pomimportant because particles advected by the fluid
will naturally tend to cluster in some area or to move awayrfreach other thus leaving unresolved spaces
between them.

A fast and accurate solution is to superpose a uniform grithernparticle distribution: at each time step
particles are remeshed on that grid (thus, the particldsmev, = h® whereh is the grid’s cells spacing).
Remeshing at every time-step can be interpreted as a clagghobrder finite-difference schemes, as long as
it is done with high order redistribution schemes (4¢e [tEfcample).

Given the vorticity field, velocity is computed on the grid imgans of a fast grid solver (in our experiments
we used the FishPack Iibralﬂ?)l] in order to solve the follaylPoisson equation:

ALIJ = —W, (6)
to obtain the so-called stream functignwhich is differentiated to obtain the velocities :
u=0Oxuy. @)

This solution to compute the velocity field from the vortjcis faster than the particle based solution used in
[@] when the number of particles increases.

In practice particles are advanced with a second or foudkerdRunge-Kutta method. During each substep
velocity and vorticity’s time derivative (the right handisiof the vorticity equatior[|(3)) are interpolated from



the grid onto the particle locations. The accuracy of thealalgorithm heavily relies on the quality of the
interpolation formulas used to remesh particles on theaitito interpolate back fields at particle locations.
It is common practice in CFD to use smooth interpolation folas which preserve moments of order up to
2. The stencil on which particles are remeshed extends tiothieearest grid points in each direction. The
cost of the algorithm thus scales linearly with the numbegyasticles. A number of numerical validations on
challenging test cases in CFD has allowed to attest the acgof remeshed particle methods. These studies
are backed by a recent theoretical analysis which demaestrat remeshed particle methods are equivalent
to a class of high order finite-difference schemes not stbge€FL conditions ([Z]).

3 Bi-phase fluids

We present here an intuitive method for simulating bi-pHagds which benefits from the vortex particles
formulation. Before explaining the particularity of bi-pe fluids, we first consider the vorticity problem in
the presence of a fluid of variable density.

For variable density and viscosity flows, the vorticity etimla(ﬂ) must be replaced by:

W+ (u-Dw=(w-0)u+0- (vOw) + (Opx Op)p 2
+0x (pg)+O-[(0x v)Ou (8)

whereg is the gravity field p is the density and' = v(p) is the variable kinematic viscosity. This equation
has to be supplemented by a transport equatiop farfor Op.

This system is often simplified by assuming small densityatimns: in the so-called Boussinesq approxima-
tion, pressure and velocity terms ﬂ (8) disappear and weéreith

w~+ (U-O)w=(w-0)u+0- (vOw) + 0 x (pg). 9)

Itis important to note that, in the case of two fluids with dams viscosity and variable density, this equation

shows that vorticity is produced where density gradienéslacated, that is at the interface between the
fluids. Thus computation is localized in this narrow bandahitdlearly reduces the theoretical cost compared
to traditional methods. Accordingly tﬂ (9), the particledrticity change in equatior[](S) becomes:

Dwp

o (w-O)u+ 0 (vOw) + 0O x (pg). (10)

We now consider the simpler problem of a bi-phase fluid in a@a®® where the density (resp. viscosity)
takes only two different valueg; (resp.vy) in a domairQ; andp; (resp.v,) in a domain; (Q = Q1 UQy).
We use a level set (noteg) to capture the interface between those two domains:

<0forxeQq,
p(x)¢ =0forxeQi1NQy,
>0forxe Qs .

Typically, we initializeg as a signed distance. This level set function satisfies agmahequation which can
be solved either in its primitive form:
@+ (u-0)e=0 (11)

or in its gradient (vector) form:
(O@)+ (u-0)0p = —(Te-D)u (12)

The latter equation is very similar to the vorticity equatend thus gradient @ andw are both located near
the interface.



In this case particles carry strengths of vorticity andtgf, from which we can deducé x p needed in
equation [(10) (see below).

But contrary to[[B], we advect the level sebn the grid with a semi-Lagrangian method. The surface ¢ensi
is defined in terms of the curvature @f(see [15]):

Kk (@)de.

whererT is the surface tension coefficient. This term is added to trdoity equation ). The level set is
interpolated onto the particles during the remeshing step.

In order to be able to solve equati(lO), we need to knowesitly and viscosity fields. They are defined in
the whole domain thanks to a smoothed versioof the Heaviside function (with values 0 and 1 respectively
for positive and negative arugments, and wheiga small parameter of the order of the grid-size) based on
the level set:

p=piH(p/e)+ p2(1—H(@/¢)).

The same convention is used for viscosity. From this fortntait is trivial to deduce the density gradient
Op: Op = (p1— p2)09l (@/<) /€. Obtainingd x p is straightforward.

As the computation dﬂ8 is much more involved and expensiea ﬂ;rquatiorﬂg, we have implemented the
latter. Despite the fact that the Boussinesq approximappties on small density variations, we have found
that simulating a bi-phase fluid with a high difference of sign(e.g. pair = 1 andpwaer =~ 1000) using this
technique provides visually realistic results (for botlids dynamic and interface localization).

Algorithm

In summary, the following process is applied to advance fliomet,, = nAt tot, 1. Only steps 5 and 8 differ
from the standard implementation we presented in Sefftion 2:

1. Find the stream function by solving equatitEh (6) on thd,gri

. Compute the velocity™*! from equation |Z|7),

. Compute the stretching terfw- O)u on the grid,

. Interpolate velocity and the stretching term on the phasi

. Advance the particles: advect them with velocity (ecpm@l)) and vorticity change (equatioEklO));
Advect the fluid’s level set with the velocity on the grid,

6. Distribute the particles onto the grid to get the adveutaticity,

7. Compute and integrate the viscosity téfim(vAw) on the grid,

8. Create fresh vortex particles, carryimgandOe, from the grid if vorticity is greater than a threshold.

a b~ wWN

Note that we used @ scous splitting algorithm [E]] to handle separatly the advection and the diffusion ef th
vorticity. Please refer to figufg 1 for a visual explanatiéthe algorithm.

4 Coupling Fluids with Animated Solids

We propose a new approach which, with the adjoint power of/titeex particles and level set methods, can
be used to compute fluid-solid interactions in an intuitivermer and for a low additional cost. Our approach
is to consider the fluid-body system, during the interactimtessing step, as two fluids of different densities
and different constitutive laws.

Unlike the method in|]5], our method computing the forcesligpoiby the solid on the fluid (and vice-versa)
does not require the explicit tracking of the interface. Wstéad use a level set method combined with a



vorticity is denoted by red circles). The magenta cunges (particles’ vorticity is denoted by green discs). The
represents the interface between the two fluids. thick dashed (resp. thin dotted) magenta represents the
advected level set (resp. level set at previous time).

.
[ 4
[ 4
@
o

on background) are distributed onto the grid. Step 8:
remeshing step: create fresh particles where vorticity is
strong enough (green crosses denote the fact that parti-
cles were not created because vorticity was too small).

Figure 1: Algorithm summary

vorticity creation penalization term that enforces velpcontinuity at the fluid-solid interface.

In order to simplify the equations we assume here a singid,sthle extension to multiple solids being
straightforward.

At time zero the body is represented by the zero surface ofel &et function noted her¢ in order to
not confuse the reader with the fluid’s level getTypically, we initialize the level set function as a signed
distance to the body boundary, negative inside the solit iElthe only costly part of the method but it does
not influence its efficiency since it is done as a precompanati

We now denote byi"*! the velocities found in step 2 of the previous algorithm.eAfthis step, we project
the velocities in the grid onto rigid body velocity*** inside the solid using the following formula:

U= ([ H(g /e /([ H(g/e) o). (13)

U™ stands for the mean velocity inside the solid. A similar eiquedefines the mean vorticity. Integration
is performed on the whole domain covered by the solid). Astrae time, we enforce continuity of velocities
at the fluid-solid interface with a penalization technichattwe will describe below.

At this stage, velocity and vorticity in the whole domain at#ained by the formula :

utt = UMH(@/e) +UMH(1-H(9/¢)). (14)

A similar formula is used to obtain the vorticity fietd"1. Step 3 and 4 of the algorithm now use these fields
for computing the stretching term and for the interpolation the particles.

Step 5 is modified in two ways. First, we take care of the selidEnsity exactly in the same way as we
have done for bi-phase fluids. Thus, particles now carry tadignt of a fluid with three different densities.



Secondly, we need to advect the solid’s level set. This isdost after step 5 of the algorithm of Section
E. As the solid’s velocity gives a translation and a rotatierms, the latter problem is easily solved by
simply applying the rigid transformation between the alitevel set position at tim and its current posi-
tion. In consequence, this scheme does not suffer from temhgiffusion and only implies a low diffusion
depending on the order of the spatial interpolation. In cqpeeiments, we use a simple first order interpolant.

It remains to explain the penalization method to enforcedig} continuity. We use the penalization method
of [: assume we want to solve Navier-Stokes equations inid lomain outside a solid doma with
velocity u at the interface. The penalization model reads

Ut + (u-0)u—vAu+Op= A xs(u—u), (15)

where xs denotes the characteristic function of the solid don&{d inside and O outside) and > 1 is
a penalization parameter. Adapting this method to the sitytformulation for our problem leads to the
substitution of the initial vorticity equatiofij(3) by:

W+ (u-0)w = (w-0)u+ vVAw+ A xs(w— w)
+Adsn x (U—u), (16)

whered,s is the 1D Dirac mass supported by the solid boundaryraigdthe unit normal, pointed inward.
Thus, to be consistent with the level set representatioadts, the final equation is:

W+ (U-D)w= (w-0)u+vAw+AH(¢/&)(w— w)

+A%/8)D¢ x (T— u). (17)

The penalization term tends to cancel the vorticity differeinside the body and adds vorticity at the fluid-
solid interface. This term is computed on the grid after tbmputation of the fluid’s velocity at step 2 of
the algorithm. It is then interpolated on the particles apst. We use an explicit scheme to discretize it and
choosel = 1/4t to enforce the stability of this scheme.

5 Validation

In this section, we validate the robustness and the phyaamalracy of our method for computing the inter-
actions between fluids and solids. We compare our resultsetoeference work fron] [22] obtain with the
STAR-CD' software, a well-known software in the Computational FIDichamic community, implementing
fluid-body interactions fronm5].

For this purpose, we first study the 2D case of a falling cydim@vhich may be seen as a falling disk) in a fluid
of constant density, submited to gravitational forces. e tihhe following parameters: boundary conditions
are periodic in a square domain of siz8 & 1.0, cylinder’s radius is @, fluid’s and cylinder’s density are re-
spectivelypsiig = 1 andpgyiinder = 2, kinematic viscosity is 0.001, gravity is—1ey ande = 26x = 28y = h

(¢ is used for computing the smoothed Heaviside function amddidistribution values). Time steps (resp.
cells size) ar&dt1og = 0.01 (resp.hysg = 7.8125- 103), dt,56 = 0.0038 (resp.hysg = 3.90625 10-3) and
dt00=0.0027 (resphzgo= 3.33-103) for grids of dimension 12& 128, 256x 256 and 300< 300 respec-
tively. The two last time steps are constrained by the diffustability condition for an exptheslicit scheme.
Their simulation uses a time stepdtfcern = 0.0005 and a 2D radial grid following the cylinder, 15800 cells
80 x 200 nodes (radialtangential) and first cell abr = 0.65- 1073, This type of grid is time consuming,
but well adapted for a sharp resolution of this particulatpem as it permits to focus the computations

1Get more informations on STAR-CD at http://www.cd-adapom/sitemap.html
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Figure 2:y velocities of the cylinder under gravity influence with a R&@vection for our method, compared
to the reference curve.

near the cylinder where precision is the most importanthBeirs and Kern’s scheme ar®rder in space
and Kern’s method is®lorder in time while we are using a Runge-Kutta 2 method foeatlag the particles.

They component of the velocity obtained with our method (see ﬁ@)ris quite similar to the one obtained
with [@] thus proving that our method well computes thedslivelocity coupled with the application of
gravity to the solid. As the spatial precision increase, dbeves converge tey = —0.47. These results
are quite interesting for computer graphics since, eveaghave are using time steps 20 times bigger (for
128x 128) than the other method and cells 10 times bigger, wepstiform a robust treatment of boundaries.

The vorticity created around the cylinder is also a reveadjnantity, both physically (for fluid’s dynamics)
and visually (for turbulences visualisation) importante \@bmpare our vorticity field to the one obtained
with Kern’s method, isovalues ab are shown in figurﬂ 3: vorticity creation and localizatioe aimilar.
Notice that vorticity is not null inside our cylinder, this because of the small widthused to represent the
solid. The vorticity trail created behind the cylinder i thignature of a good boundary treatment, we refer
the reader to|E3] for high-resolution simulations and iaitst analysis of the flow around a cylinder with
constant velocity.

6 Implementation and results

We have implemented our algorithm with a Runge-Kutta 2 atiweof vortex particles and second order in
space differentiations. For the following examples, weehased a low order interpolation for advecting the
level set.

In all the results we present now, we use a common grayity —10e,, viscosity for water iSVyger =
1.0-1075, for air v4y = 0.82- 106, water’s density is set to 1 and air’s density to@L. The surface tension
coefficient is 10°. All our results were computed on an Opteron 2GHz with 2Go efirary.

We present different types of simulations, in figLﬂes 4 ﬂndﬁ’scare falling in water, rendering is done with
MAYA ™ |n figure@i an initialy vertical volume of water is falling @everal solids and in figuﬂa 5, we have



(a) Reference vorticity isovalues frorEtZZ]. (b) Vorticity isovalues using our method with a
300x 300 grid.

Figure 3: Vorticity isovalues at time. B (top) and 25 (bottom).

made two spheres fall in a tank of water, similarlyﬁo [5]. Bwse last two examples, the rendering was done
with OpenGL. A summary of the performance of the method ivioled in table[ll.

In the first example, shown in figuﬂa 4, the cup has demqsity = 1.5. We see that, when entering the liquid,
the cup encapsulates air which makes it roll over after aeylai the captured volume tends to ride up due
to gravitational forces. One can see in the last two imageseotlip, the big bubble escaping and merging
back with the air. Figurf] 7 shows similar simulations wite ame cup starting with different orientations.
One can observe the effect of surface tension and air cagton the dynamic of the cups and fluids. The
grid’s dimension is 106 100 and the time step used for the two simulations wa$.0The total time spent
for 1300 iterations per simulation was approximately 3 lsour

As a second example, we took a “wall” of water which, undewiyafalls down and breaks the construction
(seeﬂi). One can see in the third image the creation of a wathkeedop of the water surface. This wave then
breaks and merges with the water under it.

Figure[$ shows two spheres falling in water, this case wasried from ES] and we are using the same grid
resolution. While obtaining similar dynamics for solidsldtuids (the turbulent flow is observable by looking
at the white “dust” particles), we have computed this seqeavith a smaller time step of@L, 400 iterations
were performed in 40 minutes which represent approximatelgin of 58.
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Figure 4: Interactions of a rigid object with both air and radllows to simulate complex movements.

Sequence| Grid Resolution| Duration | Time | CPU Time
Steps / Step

Cup1l 100x 100x 100 10s 1300 8.60s

Cup 2 64x 64x 64 10s 1000 2.44s
Spheres 68x 24x 292 4s 400 5.96s
Pyramid 80x 80x 80 3s 600 124s

Sequence| Stream| Particules| Grid Level-Set| Rigids Rigid | Surface| Other
Solve Coupling | Solver | Tension
Cup1l 324% | 4.93% 186% | 23.3% 8.28% | 3.08% | 5.78% | 3.66 %
Cup 2 321% | 4.60% 195% | 21.0% 8.17% | 5.38% | 5.58% | 3.69 %
Spheres | 42.2% | 10.32% | 21.18% | 21.2% 8.35% | 1.23% - 3.04 %
Pyramid | 33,1% | 243% | 6.81% | 255% 245% | 1.06% | 2.05% | 4.50 %

Table 1: Performance measuremerRarticles stands for particle RK2 advection and distributi@rjd for
computation on grid (steps 3 and Zgvel-Set for level set advection, diffusion and reinitialiation.

One can see in the performance synthesis (tﬂble 1) that thiedaof the computational cost is due to the
solving of the Poisson equation, while only a small amouriiroé is dedicated to the particles. The second
costly part of the algorithm stands for the level set opereti The rigid/fluid coupling takes a little more
time to compute than grid-based finite differences commrtatsuch as the stretching or the viscous term

computation.

7 Conclusion and outlook

We have presented the first vortex particle method that learadbi-phase fluid interacting with animated rigid
bodies. Fully based on the vorticity formulation of the Nav&tokes equations, our method takes benefits of
the advection of the vortex particles to achieve precisiwth @bustness for large time steps. Meanwhile, it
relies on a 3D grid for efficiently computing some of the teransl redistributing the particles at each time
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Figure 5: Two sinking spheres showing drafting, kissing amdbling effect [‘ﬁ], reproduced by our method.

step. Both the bi-phase fluid and the moving solids are tdeasing the vorticity equations for a fluid of
variable density, the associated level sets being advégtéte fluid. Moreover, the rigid motion of the solid
is accurately computed by ensuring the continuity of veiesiwith the surrounding fluids.

As our results show, this method brings the two benefits afdainumerically accurate and an efficient way
to simulate fluids interacting with rigid bodies.

Our level set approach for modeling the interface betweeiitids and immersed bodies could be extended
to other cases. One can for instance enrich the type of physiderlying the fluid-body interaction, while
keeping the simplicity provided by the immersed interfappraach and its particle discretization. Using
the framework developed irﬂlO] it is actually possible todile flexible bodies interacting with fluids, a
possibility that we plan to explore. Another idea for futuwrerk is to implement multi-level particle methods
in our fluid-body models. One may envision two types of migtiel discretization. One would be to capture
the interfaces, that is the level-set functions, and the, fibat is the vorticity with different grid resolution.
Using finer resolution for the level-set function shouldallto capture finer details on the interfaces with
little computational overhead. Indeed it should be empsakthat, since the time-step of particle methods
is only constrained by the amount of strain in the flow, refirtime resolution for the level-set functions does
not result in a smaller time-step. Alternatively, one magsider using a full (for the flow and the interfaces)
multi-level vortex method, in the sprit of AMR methods, adpthe lines of ﬂ3]. Fluid-body interactions is a

12



Figure 6: A pyramid encountering a wall of water.

challenging problem to clarify the respective benefits ekthtwo approaches.
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