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av. Normandie-Niemen, 13397 Marseille Cedex 20, France
2) Centre de Physique Théorique †
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Abstract

The dynamical effect of the cosmological constant Λ on a single
spherical void evolving in a the universe is investigated within a non
linear perturbation of Newton-Friedmann models. The void expands
with a huge initial burst which freezes asymptotically with time up
to matching Hubble flow. For Ω◦ ∼ 0.3, Λ-effect on the kinematics
intervenes significantly by amplifying the expansion rate at redshift
z ∼ 1.7. As a result, the size increases with the background density and
with Λ, what interprets by the gravitational attraction of borders from
outside regions and the gravitational repulsion of borders. The velocity
flow within the void region depends solely on Λ, it reads ~v =

√

Λ/3~r.
Hence, the empty regions are swept out for spatially closed Friedmann
models what provides us with a stability criterion.

Keywords: Cosmology : Theory, Cosmological Constant, Voids, Large Scale Struc-
tures.

PACS: 98.80.-k,98.65.Dx

1 Introduction

The understanding of the foam like patterns with large empty regions in the
distribution of galaxies within scale up to 100 Mpc, which have been ob-
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served since three decades (see e.g., [27, 16, 17, 7, 25, 5, 15, 4]), has become
an important challenge for the formation theory of cosmological structures
at large scale. Investigations on their statistical properties have been per-
formed by improving identification techniques (see e.g., [24]), by exploring
their formation process in a ΛCDM model through N-body simulations (see
e.g., [13, 26, 12, 20, 3, 29, 23]), by probing their origins (see e.g., [22]), on
the kinematics of giant voids (see e.g., [18]) and on the dynamcis by testing
models of void formation (see e.g., [1, 11, 2]). Herein, we contribute to such
a goal by providing an exact solution of spherical void dynamics. Thanks to
their stability with respect to linear perturbations [19], Friedmann-Lemâıtre
models provide us with a suitable description of the universe at large scales.
These models can be described with a Newtonian approach (see e.g. [21])
by means of Euler-Poisson equations system solutions for whom kinematics
satisfy Hubble (cosmological) law. Except the description of the gravita-
tionelles waves, Newtonian treatment of perturbations leads indeed to sim-
ilar results as those obtained in general relativity [9]. Herein , we define a
model describing the dynamics of an empty spherical shell evolving in an
expanding distribution of dust with the aim of understanding the effect of
the cosmological constant on the evolution of the void.

2 Euler-Poisson equations system

The motion of a pressureless medium (dust) is described by its specific den-
sity ρ = ρ(~r, t) and velocity ~v = ~v(~r, t) at position ~r and time t. These fields
are constraint by Euler equations system

∂ρ

∂ t
+ div (ρ~v) = 0 (1)

∂~v

∂ t
+

∂~v

∂~r
~v = ~g (2)

where ~g = ~g(~r, t) stands for the gravitational field, and satisfy the modified
Poisson-Newton equations

−→

rot ~g = ~0 (3)

div~g = −4πGρ + Λ (4)

where G is Newton constant of gravitation and Λ the cosmological constant.
For the purpose of our investigation, it is convenient to write these equa-

tions with new coordinates, herein named reference coordinates, defined by

(t, ~x =
~r

a
), a > 0 (5)
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where a = a(t) is a monotonic function which verifies Friedmann equation

Ḣ + H2 −
Λ

3
+

4πG

3
ρ◦a

−3 = 0, H =
ȧ

a
, a◦ = a(t◦) = 1 (6)

where ρ◦ is an arbitrary constant, the dotted variables stand for time deriva-
tives. This differential equation admits an integration constant

K◦ =
8πG

3
ρ◦ +

Λ

3
− H2

◦
, H◦ = H(a◦) (7)

and hence it integrates for providing us with

H2 =
Λ

3
−

K◦

a2
+

8πG

3

ρ◦
a3

≥ 0 (8)

The function H(a), which shows an asymptotical value

H∞ = lim
a→∞

H =

√

Λ

3
(9)

provides us with a chronology t 7→ a as reciprocal mapping of a quadrature.
Thus the function a(t) depends on three parameters chosen among Λ, ρ◦,
H◦ and K◦, see Eq. (7).

From now, let div and
−→

rot denote the differential operators defined with
respect to ~x, Euler-Poisson-Newton equations system reads in term of ref-
erence coordinates defined in Eq. (5) as follows

∂ρc

∂ t
+ div (ρc~vc) = 0 (10)

∂~vc

∂ t
+

∂~vc

∂~x
~vc + 2H~vc = ~gc (11)

−→

rot ~gc = ~0 (12)

div~gc = −
4πG

a3
(ρc − ρ◦) (13)

where

ρc = ρa3, ~vc =
d~x

dt
(14)

act respectively as the density and the velocity fields of medium in the
reference frame, and

~gc =
~g

a
+

(

4πG

3a3
ρ◦ −

Λ

3

)

~x (15)

as the acceleration field.
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2.1 Newton-Friedmann and Vacuum models

Equations (10, 11) have two obvious solutions :

1. herein named Newton-Friedmann model (NF), it is defined by

ρc = ρ◦, ~vc = ~0, ~gc = ~0 (16)

According to Eq. (8,14), a and H recover now their usual interpre-
tations in cosmology as expansion parameter and Hubble parameter
respectively, ρ◦ = ρa3 identifies to the density of sources in the co-
moving space and K◦ (interprets in General Relativity as) its scalar
curvature. We limit our investigation to motions which do not cor-
respond to bouncing solutions. Accordingly, an analysis on roots of
third degree polynomials tell us that the constraint

K3
◦

< (4πGρ◦)
2 Λ (17)

must be satisfied. Hence, the kinematics shows two distinct behaviours
characterised by the sign of K◦. Namely, H decreases with time by
reaching its asymptotic value H∞ either upward (K◦ ≤ 0) or downward
(K◦ > 0) from a minimum defined by

Hm = H∞

√

1 −
K3

◦

Λ (4πGρ◦)
2

< H∞ (18)

at a = 4πGρ◦K
−1
◦

(named loitering period).

2. herein named Vacuum model (V), it is defined by

ρc = 0, ~vc = (H∞ − H) ~x, ~gc =
4πG

a3
ρ◦~x (19)

3 Spherical voids in Newton-Friedman universe

For modelling the dynamics of a spherical void in a uniform dust distribu-
tion we use a covariant formulation of Euler-Poisson equations system (see
Appendix A). The model is obtained by sticking together the local solutions
V and NF of Euler-Poisson equations system. It accounts for the dynamics
of their common border (i.e. boundaries conditions), which is a material
shell , see Sec. 3.1. For convenience in writing, each symbol S, V and NF
denotes both the medium and the related dynamical model. A qualitative
analysis of solutions is performed in Sec. 3.2, a general discussion is given in
Sec. 3.3.
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3.1 Dynamical model

We consider three distinct media : a material shell with null thickness (S), an
empty inside (V) and outside a uniform dust distribution (NF). These media
behave such that S makes the juncture of V with NF as given in Eq. (16,19).
The tension-stress on S is assumed to be negligible, what is characterised by
a (symmetric contravariant) mass-momentum tensor defined as follows

T 00
S = (ρS)c, T 0j

S
= (ρS)cv

j
c , T jk

S
= (ρS)cv

j
cv

k
c (20)

The background is described by the following mass-momentum tensor

T 00
NF = ρc, T 0j

NF
= 0, T jk

NF
= 0 (21)

According to Appenix A, since the eulerian function(al)

T (x 7→ γ) =

∫

T µν
S

γµνdtdS +

∫

T µν
NF

γµνdtdV (22)

vanishes when γ reads in the form γµν = 1

2

(

∂̂µξν + ∂̂νξµ

)

, one has

∫

S

(

(

∂0ξ0 + gj
cξj

)

+ (∂jξ0 + ∂0ξj − 2Hξj) vj
c + vj

cv
k
c ∂jξk

)

(ρS)c dtx2dΩ

= −

∫

NF

ρc∂0ξ0 dtx2dxdΩ (23)

where dΩ stands for the solid angle element. The radial symmetry of solu-
tions enables us to write the reduced peculiar velocity and acceleration of a
test particle located on the shell as follows

~vc = α~x, ~gc = β~x (24)

where the functions α = α(t) and β = β(t) have to be determined. A by
part integration of Eq. ( 23) provides us with

∫ t2

t1

(∂0(ρS)c + 3(ρS)cα − ρcαx)x2ξ0dt (25)

=

∫ t2

t1

(

∂0 ((ρS)cα) + 4(ρS)cα
2 + 2H(ρS)cα − (ρS)cβx−1

)

x3ξ̃dt

where x = ‖~x‖ stands for the radius of S and ξ̃ =
√

ξ2
1

+ ξ2
2

+ ξ2
2
. This

equality must be fulfilled for all bounded time interval and compact support
1-form. Hence, we easily derive the conservation equations for the mass

∂0(ρS)c + (3(ρS)c − ρcx)α = 0 (26)
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and for the momentum

dα

dt
+

(

1 +
ρc

(ρS)c
x

)

α2 + 2Hα +
β

x
= 0 (27)

With Eq. (5), the calculation of the gravitational force from the entire shell
acting on a particular point1 provides us with

β =
4πG

a3

(

ρc

3
−

(ρS)c
2x

)

(28)

About mass conservation, it is noticeable that

(ρS)c =
1

3
ρcx (29)

is solution of Eq. (26), what ensures that the amount of matter which forms
the shell comes from its interior. Hence, Eq. (27) transforms

dα

dt
+ 4α2 + 2Hα −

2πG

3

ρc

a3
= 0 (30)

It is convenient to use the dimensionless variable

χ = 4
α

H◦

a2 (31)

where the ratio α H−1
◦

stands for the expansion rate of S in the reference
frame. Hence, Eq. (30) tranforms into a Riccati equation

dχ

da
=

(

Ω◦ −
χ2

a

)

1
√

P (a)
(32)

where
P (a) = λ◦a

4 − k◦a
2 + Ω◦a, P (1) = 1 (33)

with the following dimensionless parameters2

λ◦ =
Λ

3H2
◦

, Ω◦ =
8πGρ◦
3H2

◦

, k◦ =
K◦

H2
◦

(34)

According to Eq. (14,31), the evolution of the radius of S is given by

x = xi exp

(

∫ a

ai

χda

4a
√

P (a)

)

(35)

where xi and ai stands for the initial values at time ti.
1The modified newtonian gravitation field reads ~g =

(

Λ

3
−

Gm

r3

)

~r
2These notations are preferred to the usual ΩΛ = λ◦ and ΩK = −k◦ for avoiding

ambiguities on the interpretation of cosmological parameters, see e.g., [8],[10].
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3.2 Qualitative analysis

For the analysis of the expansion of the shell S, we use the following dimen-
sionless quantities : the magnification X and the expansion rate Y . They
are defined as follows

X =
x

xi

, Y =
α

H◦

(36)

Their corresponding diagrams versus the expansion parameter a characterise
the dynamics of S, they are obtained from Eq. (32, 35) by numerical inte-
gration. Since the mapping t 7→ a(t) = 1/(1 + z) is a monotonic function of
t in the present investigation, the evolution of X and Y with cosmic time
t or with redshift z can be straightforwardly derived. Instead of having an
exhaustive analysis, we limit our investigation around the generally accepted
values λ◦ = 0.7 and Ω◦ = 0.3. The initial conditions lie on the expansion
rate Yi and the formation date ti, as expressed by means of ai = a(ti). The
values ai = 0.003 and Yi = 0 (void initially expanding with Hubble flow)
are used as standard in our discussion. The kinematics of the expansion is
described in Sec. 3.2.1, the dependence on cosmological parameters is anal-
ysed in Sec. 3.2.2, and on initial conditions in Sec. 3.2.3, the results are
synthesised in Sec. 3.2.4.

3.2.1 Kinematics

The expansion velocity of the shell S with respect to its centre reads

~v = yH~r, y = 1 +
Y

h
, h =

H

H◦

(37)

where y stands for the corrective factor to Hubble expansion. The general
trend of the kinematics can be derived from the diagram y versus a in Fig. 1.
It results from the initial conditions ai = 0.003, Yi = 0, and the cosmological
parameters Ω◦ = 0.3. and λ◦ = 0, λ◦ = 0.7, λ◦ = 1.4. The shell S expands
faster than Hubble expansion (y > 1) at early stages of its evolution with no
significant dependence on Λ. Λ-effect appears later by preserving the curve
from an earlier decreasing. If λ◦ > 0.7 (i.e., k◦ > 0) then it is characterised
by a significant protuberance at z ∼ 1.7, the larger the λ◦ (i.e., k◦) the
higher the bump. It is due to the existence of a minimum value Hm of
Hubble parameter H which is reached during the cosmological expansion,
see Eq. (18). After this period the expansion of S reaches asymptotically
Hubble behaviour. It is interesting to note that the present epoch (a = 1)

7
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Figure 1: The corrective factor to Hubble expansion.

appears quite peculiar because of the relative proximity of curves, but it is
solely an artefact3.

3.2.2 Dichotomy between cosmological parameters

The growth of spherical voids is investigated by means of X and Y diagrams
with respect to cosmological parameters Ω◦ and λ◦, with the aim of disentan-
gling their related effects, herein named Ω-effect and Λ-effect respectively.

1. The dependence on the outside density. — The comparison of dia-
grams with a vanishing cosmological constant λ◦ = 0 corresponding to
parameter values Ω◦ = 0.15, 0.3, 0.45 on Fig. 2 shows that the larger
the Ω◦ the larger the magnification. Such an effect results from the
attraction of shell particles toward denser regions. The growth looks
like a huge burst which freezes asymptotically up to matching Hubble
expansion (Y = 0), the larger the Ω◦ the larger the expansion rate Y ,
see Fig. 3. This trend is not significantly modified by other acceptable
values of λ◦.

2. The dependence on the cosmological constant. — With a constant
Ω◦ = 0.3 the comparison of diagrams corresponding to parameter val-

3Indeed, the three curves cross at a > 1 but not all in only one point.
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Figure 2: The magnification X — dependence on density.
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Figure 3: The expansion rate Y — dependence on density.

9



ues λ◦ = 0, 0.7, 1.4 on Fig 4 shows that the larger the λ◦ the larger
the magnification. As for Ω-effect, Λ-effect amplifies the magnification

!!"!#$%

!!"!&$'

!!"!&

1

2

3

X

0 0.2 0.4 0.6 0.8 1
a

"!"!&$(

Figure 4: The magnification X — dependence on the cosmological constant.

which increases nonlinearly with λ◦. With Λ > 0 this phenomenon
interprets as a repulsive effect of gravity in empty regions (also named
gravitational repulsion of vacuum. The expansion rate Y does not
characterises Λ since the related curves do not disentangle, see Fig 5.
Figure 1 shows that Λ-effect is late and weak on Y . However, it has a
cumulative effect which is reflected on X.

3. Interpretation of parameter k◦. — According to Eq. (19), the velocity
of a test-particle within S reads ~v = H∞~r. In the reference frame
this motion translates as follows : in general, the test-particle moves
toward the centre of S but if k◦ > 0 then it starts moving toward
its border at date a(t⋆) = 8

3
πGρ◦K

−1
◦

. Such a property of sweeping
out the void region (due to H < H∞) interprets as a stability crite-
rion for void regions. A dimensional analysis of Eq. (7) shows that the
Newtonian interpretation of k◦ = λ◦ + Ω◦− 1 corresponds to a dimen-
sionless binding energy for the universe4. Because K◦ is an integration
constant, this provides us with a meaningful procedure for comparing

4The lower k◦ the faster the cosmological expansion. Note that it works with an
opposite direction for the expansion of spherical voids.
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Figure 5: The expansion rate Y — dependence on the cosmological constant.

the magnitudes of Λ-effect or Ω-effect between different world models
at constant k◦. For Friedmann model, k◦ stands for the dimension-
less spatial curvature (of the comoving space), k◦ > 0 world models
correspond to spatially closed universes.

3.2.3 Dependence on initial conditions

The dependence of S on the formation date is investigated with Yi = 0
and ai = 0.003, ai = 0.03, and ai = 0.3 respectively, and by assuming
Ω◦ = 0.3 and λ◦ = 0.7. According to Fig. 6, the earlier the date of birth
the larger the magnification X. Figure 7 suggests the existence of a limiting
curve a 7→ Y defined by ai = 0, which characterises Ω◦. All expansion rate
curves related to other formation dates are located in lower part and reach it
asymptotically. One can expect that the effects on the dynamics of growth
resulting from reasonable initial expansion rates Yi 6= 0, related to physical
processes (e.g., supernovae explosions), are negligible at primordial epoch5,
what legitimises the initial condition Yi = 0 at ai = 0.003. Evolutions with
other initial conditions on Yi can be deduced from that since any given point
(ai, Yi) in the diagram belongs to a single evolution curve.

5Since Hubble expansion is all the more important towards the past, the earlier the
formation date the weaker this effect, according to Eq. (37).
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Figure 7: The expansion rate Y — dependence on the formation date.
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3.2.4 Synthesis

As a result, the expansion of a spherical void does not show a linear regime,
but a huge initial burst which freezes asymptotically up to matching Hub-
ble expansion. Its radius (in the reference frame) x increases from an initial
size xi with the cosmological parameters Ω◦ and λ◦. The related individual
effects interpret respectively by the gravitational attraction from the outer
parts and by the gravitational repulsion of its borders (or the vacuum from
the inner parts). The larger these parameters the higher the magnification
X = x/xi. The dynamics is sensitive to Ω-effect at primordial epochs and
to Λ-effect later on. The evolution of its expansion velocity (in the refer-
ence frame) ~vc = Y H◦~x with time does not characterise λ◦ but Ω◦. On the
other hand, the cosmological constant intervenes significantly on the kine-
matics by means of the corrective factor y to Hubble expansion by preserving
the expansion from an earlier decreasing. Moreover, spatially closed world
models are characterised by a significant expansion of voids which reaches
its maximum at redshift z ∼ 1.7 (with Ω◦ ∼ 0.3), the larger the λ◦ (i.e.,
k◦) the higher the expansion rate. Notwithstanding, the perturbation on
redshift of sources located on the shell of expanding voids does not exceed

∆ z =
XY

1 + z

xiH◦

c
(38)

which is a tiny value (∼ 10−3) because of counterbalancing behaviours of X
and Y . The interior of voids shows a de Sitter expansion ~v =

√

Λ/3~r which
sweeps out it if k◦ > 0, what interprets as a stability criterion. The expansion
rate evolutions related to formation dates show a common envelope curve
which characterises the density parameter Ω◦.

3.3 Discussion

It is clear that such a simple model should be applied with caution to ob-
served distribution of galaxies since the effects related to foamlike patterns
are not considered. Moreover, because Newtonian approach is used instead
of general relativity, it applies solely to reasonable sized voids6 so that the
main features should remain qualitatively reliable. On the other hand, based
on the connection of two exact solutions of Euler-Poisson equations system,

6At first glance, on might argue that the related scale should be larger than the size
of background structures in order to make the uniform density hypothesis an acceptable
approximation, what looks like a dilemma. However, such an hypothesis, which applies
to the entire universe, is ensured by the isotropy of CMB.
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which is a huge advantage for investigating properly the behaviour of a single
void, it provides us with an appreciable hint to the dynamics with respect
to cosmological parameters.

4 Conclusion

We investigate the dynamics of an isotropic universe constituted by a spher-
ical void surrounded by a uniform distribution of dust by means of Euler-
Poisson equations system with cosmological constant. It turns out that
the behaviours of both regions (inside and outside the shell) coincide with
Newton-Friedmann (NF) solutions. The connection conditions between these
two regions are investigated in Classical Mechanics, what provides us with
the dynamics of the shell. Such a schema does not correspond to the usual
embedding of a void solution into a cosmological background solution, but
interprets as a non linear perturbation of NF models.

The general behaviour of the void expansion shows a huge initial burst,
which freezes asymptotically up to match Hubble expansion. While the cor-
rective factor to Hubble law on the shell depends weakly on cosmological
constant at early stages, it enables us to disentangle significantly cosmolog-
ical models around redshift z ∼ 1.7. The magnification of spherical voids
increases with the density parameter and with the cosmological constant.
An interesting feature is that for spatially closed Friedmann models, the
empty regions are swept out, what provides us with a stability criterion.

A Appendix : Covariant formulation of Euler-Poisson

equations system

Souriau’s covariant formulation of Euler-Poisson equations[28] can be sum-
marized as follows : The geometrical interpretation of Newton dynamics[6]
shows that the component of gravitational field ~g identify to the only non
null Christoffel components of newtonian connexion

Γj
00

= −gj

Hence, one obtains their expression in the new coordinates system defined
in Eq. (5), and the only non null components read

(Γc)
j
k0

= Hδj
k, (Γc)

j
00

= −gj
c

14



Let T be a function(al) defined on the set of symmetric density tensors
x 7→ γ on newtonian spacetime R

4

T (x 7→ γ) =

∫

R4

T µνγµνdtdV

where dtdV stands for the volume element and T for a symmetric contravari-
ant tensors which accounts for the media. The measure density T is eulerian
if and only if it vanishes for all covariant tensor fields which reads

γµν =
1

2

(

∂̂µξν + ∂̂νξµ

)

where ∂̂ stands for the covariant derivative and x 7→ ξ for a compact support
1-form. In such a case, it is obvious to show that

∂̂µT µν = 0

interprets as Euler equations, in any coordinates systems.
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propriété optiques des quasars. Fluctuations des modèles de Friedmann-
Lemâıtre, thèse d’état – Univ. de Provence (1981)

[10] H.H. Fliche, J.M. Souriau, R. Triay, Astron. & Astrophys. 108, 256
(1982)

[11] Y.Friedmann, T. Piran, Astrophys. J. 548, 1 (2001)

[12] D.M. Goldberg, M.S. Vogeley Astrophys. J. 605, 1 (2004)
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