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Abstract

The dynamical effect of the cosmological constant Λ on a single
spherical void evolving in a Friedmann-Lemâıtre universe is investi-
gated within a non linear perturbation of Newton-Friedmann models.
The void expansion shows a huge initial burst, which freezes asymp-
totically up to match Hubble expansion. Λ-effect on the kinematics
intervenes significantly by amplifying the expansion rate at redshift
z ∼ 1.7, what corresponds to the loitering period. As a result, the size
increases with Λ (what can be interpreted by the “repulsion gravita-
tional of vacuum”). A stability criterion is ensured for spatially closed
Friedmann models, since the empty regions are swept out.

Keywords: Cosmology : Theory, Cosmological Constant, Voids, Large Scale Struc-
tures.

PACS: 98.80.-k,98.65.Dx

1 Introduction

The understanding of the foam like patterns with large empty regions in the
distribution of galaxies within scale up to 100 Mpc, which have been ob-
served since three decades (see e.g., [24, 13, 14, 6, 22, 4, 12, 3]), has become
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an important challenge for the large scale formation theory. Such an investi-
gation has been performed on their statistical properties by improving iden-
tification techniques (see e.g., [21]), by exploring their formation process in a
ΛCDM model through N-body simulations (see e.g., [10, 23, 9, 17, 2, 26, 20]),
by probing their origins (see e.g., [19]), and on the kinematics of giant voids
(see e.g., [15]) and the dynamcis by testing. models of void formation (see
e.g., [8, 1]). Herein we contribute to such a goal by providing an exact
solution of void dynamics. Thanks to their stability with respect to linear
perturbations [16], Friedmann-Lemâıtre models provide us with a suitable
description of the universe at large scales. These models can be described
within a Newtonian approach (see e.g. [18]) by means of Euler-Poisson
equations system solutions for whom kinematics satisfy Hubble (cosmolog-
ical) law. Except the description of the gravitationelles waves, Newtonian
treatment of perturbations leads indeed to same results as those obtained
in general relativity [7]. Herein , we define a model describing the dynamics
of an empty spherical shell evolving in an expanding distribution of dust
with the aim of understanding the effect of the cosmological constant on the
evolution of the void.

2 Euler-Poisson equations system

The motion of a pressureless medium (dust) is described by its specific den-
sity ρ = ρ(~r, t) and velocity ~v = ~v(~r, t) at position ~r and time t. These fields
are constraint by Euler equations system

∂ρ

∂ t
+ div (ρ~v) = 0 (1)

∂~v

∂ t
+

∂~v

∂~r
~v = ~g (2)

where ~g = ~g(~r, t) stands for the gravitational field, and satisfy the modified
Poisson-Newton equations

−→

rot ~g = ~0 (3)

div~g = −4πGρ + Λ (4)

where G is Newton constant of gravitation and Λ the cosmological constant.
For the purpose of our investigation, it is convenient to write these equa-

tions with new coordinates, herein named reference coordinates, defined by

(t, ~x =
~r

a
), a > 0 (5)
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where a = a(t) is a monotonic function which verifies Friedmann equation

Ḣ + H2 −
Λ

3
+

4πG

3
ρ◦a

−3 = 0, H =
ȧ

a
, a◦ = 1 (6)

where ρ◦ is an arbitrary constant, the dotted variables stand for time deriva-
tives. This differential equation admits an integration constant

K◦ =
8πG

3
ρ◦ +

Λ

3
− H2

◦
(7)

and hence integrates for providing us with

H2 =
Λ

3
−

K◦

a2
+

8πG

3

ρ◦
a3

≥ 0 (8)

The function H(a) shows an asymptotical value

H∞ = lim
a→∞

H =

√

Λ

3
(9)

and provides us with t 7→ a (as reciprocal mapping of a quadrature). Thus
the function a(t) depends on three parameters chosen among Λ, ρ◦, H◦ and
K◦, see Eq. (7).

Let div and
−→

rot denote the differential operators defined with respect
to ~x, Euler-Poisson-Newton equations system reads in term of reference
coordinates defined in Eq. (5) as follows

∂ρc

∂ t
+ div (ρc~vc) = 0 (10)

∂~vc

∂ t
+

∂~vc

∂~x
+ 2H~vc = ~gc (11)

−→

rot ~gc = ~0 (12)

div~gc = −
4πG

a3
(ρc − ρ◦) (13)

where

ρc = ρa3, ~vc =
d~x

dt
(14)

act respectively as the density and the velocity fields of medium in the
reference frame, and

~gc =
~g

a
+

(

4πG

3a3
ρ◦ −

Λ

3

)

~x (15)

as the acceleration field.
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2.1 Newton-Friedmann and Void models

Equations (10, 11) have two obvious solutions :

1. herein named Newton-Friedmann model (NF), it is defined by

ρc = ρ◦, ~vc = ~0, ~gc = ~0 (16)

According to Eq. (8,14), a and H recover now their usual interpre-
tations in cosmology as expansion parameter and Hubble parameter
respectively, ρ◦ = ρa3 identifies to the density of sources in the co-
moving space and K◦ (interprets in General Relativity as) its scalar
curvature. We limit our investigation to motions which do not cor-
respond to bouncing solutions. Accordingly, an analysis on roots of
third degree polynomials tell us that the constraint

K3
◦

< (4πGρ◦)
2 Λ (17)

must be satisfied. Hence, the kinematics shows two distinct behaviours,
which are characterised by the sign of K◦ :

• if K◦ > 0 then H decreases with a downto a minimum defined by

Hm = H∞

√

1 −
K3

◦

Λ (4πGρ◦)
2

(18)

at a = 4πGρ◦K
−1
◦

and hence it increases toward its asymptotic
value H∞ as defined in Eq. (9).

• if K◦ ≤ 0 then H decreases with a down to H∞.

2. herein named Void model (V), it is defined by

ρc = 0, ~vc = (H∞ − H) ~x, ~gc =
4πG

a3
ρ◦~x (19)

3 Spherical voids in Newton-Friedman universe

For modelling the dynamics of a spherical void in a uniform dust distribu-
tion we use a covariant formulation of Euler-Poisson equations system (see
Appendix A). The model, which is obtained by sticking together the local
solutions V and NF of Euler-Poisson equations system as given in Sec. (2.1),
accounts for the dynamics of boundaries conditions. It describes the evo-
lution of their common border, which is a material shell , see Sec. 3.1. For
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conveniences in writing, each symbol S, V and NF denotes both the medium
and the related dynamical model respectively. A qualitative analysis of so-
lutions is performed in Sec. (3.2) with respect of model parameters and in
particular the cosmological constant Λ.

3.1 Dynamical model of spherical voids

We consider three distinct media : a material shell (S), an empty inside (V)
and a uniform dust distribution outside (NF). These media behave such that
S makes the juncture of V with NF as given in Eq. (16,19). The tension-stress
on S is assumed to be negligible, which is characterised by a (symmetric
contravariant) mass-momentum tensor defined as follows

T 00
S = (ρS)c, T 0j

S
= (ρS)cv

j
c , T jk

S
= (ρS)cv

j
cv

k
c (20)

and outside S, the mass-momentum tensor of NF reads

T 00
NF = ρc, T 0j

NF
= 0, T jk

NF
= 0 (21)

Since the eulerian function(al)

T (x 7→ γ) =

∫

T µν
S

γµνdtdS +

∫

T µν
NF

γµνdtdV (22)

vanishes when γ reads in the form γµν = 1

2

(

∂̂µξν + ∂̂νξµ

)

, one has

∫

S

(

(

∂0ξ0 + gj
cξj

)

+ (∂jξ0 + ∂0ξj − 2Hξj) vj
c + vj

cv
k
c ∂jξk

)

(ρS)c dtx2dΩ

= −

∫

NF

ρc∂0ξ0 dtx2dxdΩ (23)

where dΩ stands for the solid angle element. The radial symmetry of solu-
tions enables us to write the reduced peculiar velocity and acceleration of a
test particle located on the shell as follows

~vc = α~x, ~gc = β~x (24)

where the functions α = α(t) and β = β(t) have to be determined. A by
part integration of Eq. ( 23) provides us with

∫ t2

t1

(∂0(ρS)c + 3(ρS)cα − ρcαx)x2ξ0dt (25)

=

∫ t2

t1

(

∂0 ((ρS)cα) + 4(ρS)cα
2 + 2H(ρS)cα − (ρS)cβx−1

)

x3ξ̃dt
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where x = ‖~x‖ stands for the radius of S and ξ̃ =
√

ξ2
1

+ ξ2
2

+ ξ2
2
. This

equality must be fulfilled for all bounded time interval and compact support
1-form. Hence, we easily derive the conservation equations for the mass

∂0(ρS)c + (3(ρS)c − ρcx)α = 0 (26)

and for the momentum

dα

dt
+

(

1 +
ρc

(ρS)c
x

)

α2 + 2Hα +
β

x
= 0 (27)

With Eq. (5), the calculation of the gravitational force from the entire shell
acting on a particular point1 provides us with

β =
4πG

a3

(

ρc

3
−

(ρS)c
2x

)

(28)

About mass conservation, it is noticeable that

(ρS)c =
1

3
ρcx (29)

is solution of Eq. (26), what ensures that the amount of matter which forms
the shell comes from its interior. Hence, Eq. (27) transforms

dα

dt
+ 4α2 + 2Hα −

2πG

3

ρc

a3
= 0 (30)

It is convenient to use the dimensionless variable

χ = 4
α

H◦

a2 (31)

where the ratio α H−1
◦

stands for the expansion rate of S in the reference
frame. Hence, Eq. (30) tranforms into a Riccati equation

dχ

da
=

(

Ω◦ −
χ2

a

)

1
√

P (a)
(32)

where
P (a) = λ◦a

4 − k◦a
2 + Ω◦a, P (1) = 1 (33)

with the following dimensionless parameters

λ◦ =
Λ

3H2
◦

, Ω◦ =
8πGρ◦
3H2

◦

, k◦ =
K◦

H2
◦

(34)

1The modified newtonian gravitation field reads ~g =
(

Λ

3
−

Gm

r3

)

~r
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Hence, according to Eq. (14,31), the radius of S is given by

x = xi exp

(

∫ a

ai

χda

4a
√

P (a)

)

(35)

where xi and ai stands for the initial values at time ti.

3.2 Qualitative analysis

For the analysis of the expansion of the shell S, we use the following dimen-
sionless quantities : the magnification X and the expansion rate Y , which
are defined as follows

X =
x

xi

, Y =
α

H◦

(36)

Their corresponding diagrams versus the expansion parameter a characterise
the dynamics of S, they are obtained from Eq. (32, 35) by numerical integra-
tion. The evolution of X and Y with cosmic time t and/or with redshift z can
be derived in a straightforward way, since the mapping t 7→ a(t) = 1/(1+ z)
is a monotonic function of t in the present investigation. Instead of having
an exhaustive analysis, we limit our investigation around the generally ac-
cepted values of cosmological parameters λ◦ = 0.7 and Ω◦ = 0.3. The initial
conditions lie on the expansion rate Yi and/at the formation date ti of the
void as expressed by means of ai = a(ti). Similarly as for the previous cos-
mological parameters values, the values ai = 0.003 and Yi = 0 (void initially
expanding with Hubble flow) are used as standard in our discussion. The
kinematics of the expansion is described in Sec. 3.2.1, the dependence on
cosmological parameters is analysed in Sec. 3.2.2, and on initial conditions
in Sec. 3.2.3. A synthesis of these results is given in Sec. 3.4.

3.2.1 Kinematics

The expansion velocity of the shell S with respect to its centre reads

~v = yH~r, y = 1 +
Y

h
, h =

H

H◦

(37)

where H◦ stands for the value of Hubble parameter at time t◦ (i.e., a◦ =
a(t◦) = 1) and y for the corrective factor to Hubble expansion. The general
trend of the kinematics is given by the diagram y versus ln a in Fig. 1. It
results from the initial conditions ai = 0.003, Yi = 0, and the cosmological
parameters Ω◦ = 0.3. and λ◦ = 0, λ◦ = 0.7, λ◦ = 1.4. The shell S expands
faster than Hubble expansion (y > 1) at early stages of its evolution with no

7



!!"!#$%
!!"!&$'

!!"!&

1

1.1

1.2

1.3

y

-4 -2 0
ln(a)

"!"!&$(

Figure 1: The corrective factor to Hubble expansion.

significant dependence on Λ, which appears later. Λ-effect is characterised
by a significant protuberance at z ∼ 1.7 on the diagram, the larger the λ◦

the higher the bump. It is due to the existence of a minimum value Hm

of Hubble parameter H which is reached during the cosmological expansion
(also referenced as a loitering period), see Eq. (18). After this period the
kinematics reaches asymptotically Hubble expansion. It is interesting to
note that the present epoch (a = 1) seems to be quite peculiar because of
the relative proximity of curves, but it is solely an artefact2.

3.2.2 Dependence on cosmological parameters

The growth of spherical voids is investigated by means of X and Y diagrams
with respect of cosmological parameters Ω◦ and λ◦, with the aim of disentan-
gling their related effects, herein named Ω-effect and Λ-effect respectively.

1. The dependence on the outside density. — The comparison of dia-
grams with a vanishing cosmological constant λ◦ = 0 corresponding to
parameter values Ω◦ = 0.15, 0.3, 0.45 on Fig. 2 shows that the larger
the Ω◦ the larger the magnification. Such an effect results from the
attraction of shell particles toward denser regions. The growth looks

2Indeed, the three curves cross with a > 1 but not in only one point.

8



!!"!#$%&

!!"!#$'

!!"!#$(&

1

1.5

2

2.5

X

0 0.2 0.4 0.6 0.8 1
a

"!"!#

Figure 2: The magnification X — dependence on density.
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Figure 3: The expansion rate Y — dependence on density.
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like a huge burst which freezes asymptotically up to matching Hub-
ble expansion (Y = 0), the larger the Ω◦ the larger the expansion
rate Y , see Fig. 3. This trend is not significantly modified by another
acceptable values of λ◦.

2. The dependence on the cosmological constant. — With a constant
Ω◦ = 0.3 the comparison of diagrams corresponding to parameter val-
ues λ◦ = 0, 0.7, 1.4 on Fig 4 shows that the larger the λ◦ the larger
the magnification. As for Ω-effect, Λ-effect amplifies the magnifica-

!!"!#$%

!!"!&$'

!!"!&

1

2

3

X

0 0.2 0.4 0.6 0.8 1
a

"!"!&$(

Figure 4: The magnification X — dependence on the cosmological constant.

tion which increases nonlinearly with λ◦. This phenomenon interprets
as the “repulsive effect of vacuum” (if Λ > 0). The expansion rate
Y does not characterises Λ since the related curves do not disentan-
gle, see Fig 5. Figure 1 shows that Λ-effect is late, and although not
very significant on Y it has a cumulative effect which is reflected on
magnification X.

3. Interpretation of parameter k◦. — A straightforward analysis of Eq. (19)
shows that a test-particle moves from the inside toward the shell as
long as H < H∞, what interprets as a stability criterion since the
void is swept out. Such a criteria is fulfilled only if k◦ > 0. A dimen-
sional analysis of Eq. (7) shows that the Newtonian interpretation of
k◦ = λ◦ + Ω◦ − 1 corresponds to a dimensionless binding energy for
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Figure 5: The expansion rate Y — dependence on the cosmological constant.

the universe3. This provides us with a meaningful procedure for com-
paring the magnitudes of Λ-effect or Ω-effect between different world
models at constant k◦. Let us remind that for Friedmann model k◦
stands for the dimensionless spatial curvature (of the comoving space),
k◦ > 0 correspond to spatially closed universes.

3.2.3 Dependence on the initial conditions

The dependence of S on the formation date is investigated with Yi = 0
and ai = 0.003, ai = 0.03, and ai = 0.3 respectively, and by assuming
Ω◦ = 0.3 and λ◦ = 0.7. According to Fig. 6, the earlier the date of birth
the larger the magnification X. Figure 7 suggests the existence of a limiting
curve a 7→ Y defined by ai = 0, which characterises Ω◦. All expansion rate
curves related to other formation dates are located in lower part and reach it
asymptotically. One can expect that the effects on the dynamics of growth
resulting from reasonable initial expansion rates Yi 6= 0, related to physical
processes (e.g., supernovae explosions), are negligible at primordial epoch4,

3The lower k◦ the faster the cosmological expansion. Note that it works with an
opposite direction for the expansion of spherical voids.

4Since Hubble expansion is all the more important towards the past, the earlier the
formation date the weaker this effect, according to Eq. (37).
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Figure 6: The magnification X — dependence on the formation date.
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Figure 7: The expansion rate Y — dependence on the formation date.
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what legitimises the initial condition Yi = 0 at ai = 0.003. Evolutions with
other initial conditions on Yi can be deduced from that since any given point
(ai, Yi) in the diagram belongs to a single evolution curve.

3.3 Synthesis

As a result, the expansion (in the reference frame) of spherical voids increases
(non linearly) with the cosmological parameters Ω◦ and λ◦, what interprets
respectively by the gravitational attraction from the outer parts and by the
gravitational repulsion of vacuum from the inner parts. The larger these
parameters the higher the magnification X. The dynamics is sensitive to
Ω-effect at primordial epochs and to Λ-effect later on. The evolution of the
expansion rate Y with time does not characterise the cosmological constant
Λ but the density parameter Ω◦. The related diagram stands for an envelope
curve which fits expansion rate evolutions related to other formation dates.
On the other hand, the cosmological constant intervenes significantly on
the kinematics by means of the corrective factor y to Hubble expansion,
which shows a bump at a characteristic redshift z ∼ 1.7 (with Ω◦ = 0.3),
its amplitude increases with Λ. According to Eq. (37), the perturbation on
redshift of sources located on the shell of expanding voids does not exceed

∆ z =
XY

1 + z

xiH◦

c
(38)

which is a tiny value (∼ 10−3) because of counterbalancing behaviours of X
and Y .

3.4 Discussion

Because Newtonian approach is used instead of general relativity, this model
applies solely to reasonable sized voids5 so that the main features should
remain qualitatively reliable. Moreover, it is clear that such a model should
be applied with caution to observed distribution of galaxies since the effects
related to foamlike patterns are not considered. On the other hand, this
model is based on the connection of two exact solutions of Euler-Poisson
equations system, what is a huge advantage for investigating properly the
behaviour of a single void and provides us with an appreciable hint to the
dynamics.

5At first glance, on might argue that the related scale should be larger than the size
of background structures in order to make the uniform density hypothesis an acceptable
approximation, what looks like a dilemma. However, such an hypothesis, which applies
to the entire universe, is ensured by the isotropy of CMB.
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4 Conclusion

We investigate the dynamics of an isotropic universe constituted by a spher-
ical void surrounded by a uniform distribution of dust by means of Euler-
Poison equations system with cosmological constant. It turns out that the
behaviours of both regions (inside and outside the shell) coincide with Fried-
mann solutions. The connection conditions between these two regions are
investigated in Classical Mechanics, what provides us with the dynamics of
the shell. Let us emphasise that such a schema does not correspond to the
usual embedding of a void solution into a cosmological background solu-
tion, but interprets as a non linear perturbation of Newton-Friedmann (NF)
models.

The general behaviour of the void expansion shows a huge initial burst,
which freezes asymptotically up to match Hubble expansion. While the cor-
rective factor to Hubble law on the shell depends weakly on cosmological
constant at early stages, it enables us to disentangle significantly cosmolog-
ical models around redshift z ∼ 1.7. The magnification of spherical voids
increases with the density parameter and with the cosmological constant.
An interesting feature is that for NF-models which correspond to spatially
closed Friedmann models, the empty regions are swept out, what provides
us with a stability criterion.

A Appendix : Covariant formulation of Euler-Poisson

equations system

Souriau’s covariant formulation of Euler-Poisson equations[25] can be sum-
marized as follows : The geometrical interpretation of Newton dynamics[5]
shows that the component of gravitational field ~g identify to the only non
null Christoffel components of newtonian connexion

Γj
00

= −gj

Hence, one obtains their expression in the new coordinates system defined
in Eq. (5), and the only non null components read

(Γc)
j
k0

= Hδj
k, (Γc)

j
00

= −gj
c

Let T be a function(al) defined on the set of symmetric density tensors
x 7→ γ on newtonian spacetime R

4

T (x 7→ γ) =

∫

R4

T µνγµνdtdV

14



where dtdV stands for the volume element and T for a symmetric contravari-
ant tensors which accounts for the media. The measure density T is eulerian
if and only if it vanishes for all covariant tensor fields which reads

γµν =
1

2

(

∂̂µξν + ∂̂νξµ

)

where ∂̂ stands for the covariant derivative and x 7→ ξ for a compact support
1-form. In such a case, it is obvious to show that

∂̂µT µν = 0

interprets as Euler equations, in any coordinates systems.
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