Strong convergence for urn models with reducible replacement policy
Romain Abraham, Jean-Stephane Dhersin, Bernard Ycart

To cite this version:

HAL Id: hal-00087017
https://hal.science/hal-00087017
Submitted on 20 Jul 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Strong convergence for urn models with reducible replacement policy

Running title: Urn models with reducible replacements

Addresses: * MAPMO, CNRS UMR 6628, Université d’Orléans, France
** MAP5, CNRS UMR 8145, Université René Descartes, Paris, France
*** LMC, CNRS UMR 5523, Université Joseph Fourier, Grenoble, France

E-mail addresses: * Romain.Abraham@univ-orleans.fr
** Jean-Stephane.Dhersin@univ-paris5.fr
*** Bernard.Ycart@ujf-grenoble.fr

Corresponding author: J.-S. Dhersin

Abstract

A multitype urn scheme with random replacements is considered. Each time a ball is picked, another ball is added, and its type is chosen according to the transition probabilities of a reducible Markov chain. The vector of frequencies is shown to converge almost surely to a random element of the set of stationary measures of the Markov chain. Its probability distribution is characterized as the solution to a fixed point problem. It is proved to be Dirichlet in the particular case of a single transient state to which no return is possible. This is no more the case as soon as returns to transient states are allowed.

Keywords: urn model, Markov chain, strong convergence

AMS Subject Classification: 60F15
1 Introduction

In the vast literature devoted to urn models (see Johnson and Kotz [12] as a general reference), a good number of recent papers have been devoted to random replacement policies. Each time a ball is drawn, the types of balls which are added or removed are random variables, whose distribution depends on the type of the ball that has been picked: see for instance [1, 2, 3, 4, 5, 6, 7, 8, 9]. Strong convergence results [9, 10], as well as functional central limit theorems [2, 8, 11] are now available for a vast range of models. However, in all these references, some irreducibility hypothesis is made to ensure that there is only one possible limit for the frequency vector. Our aim here is to answer the natural question: what happens when there are more than one?

We study the simplest possible model: balls are added one by one, the type of the added ball only depends on the type of the one that has been drawn. We believe that our results can be extended to more general schemes, such as those of Janson [11] or Benaim et al. [3]. The types are numbered from 1 to d. If a ball of type i has been drawn, then a ball of type j is added with probability $p_{i,j}$. The matrix $P = (p_{i,j})$ is a (reducible) stochastic matrix on $\{1, \ldots, d\}$. As expected, the distribution of types converges almost surely to a stationary distribution for the matrix P (Theorem 2.1). The proof is based on the classical stochastic algorithm technique [3, 10, 13], and uses the results of Delyon [5].

The limit is a random element of the set of stationary measures, hence a random convex combination of the measures corresponding to irreducible recurrent classes. The question arises to characterize its probability law. Theorem 3.1 first reduces the problem to computing the d cases where initially a single ball is present, then characterizes those d distributions as the solution to a fixed point problem. The classical Eggenberger-Pólya model [7] can be seen as a particular case of ours: if P is the identity matrix, it is well known that the vector of frequencies converges to a Dirichlet random vector. In our case, it could seem natural to expect a Dirichlet law for the limit stationary distribution: this would be coherent with the numerous connections between Dirichlet distributions and urn models (see for instance [12, 15]). We prove that it is actually the case if no return to a transient state is allowed (Proposition 3.2). We also show in Proposition 3.3 that the asymptotic distribution is not Dirichlet if returns to transient states are allowed.

The convergence result is stated and proved in Section 2, the probability distribution of the limit is studied in Section 3.

2 Almost sure convergence

In this section, the model is described, then the strong convergence result is stated and proved.

Recall that a transition matrix $P = (p_{i,j})$ on the set of types $\{1, \ldots, d\}$ is given. Initially, the number of balls in the urn is n_0 and the distribution of types is X_0 (deterministic or not). At each instant $n > 0$ a ball is added to the urn, hence the number of balls in the urn at time n is $n_0 + n$. The type of the ball which is added
depends on that of a ball drawn with uniform probability. If a ball of type \(i\) has been drawn, the probability to add a ball of type \(j\) is \(p_{i,j}\). We denote by \(X_n\) the distribution of types in the urn at time \(n\): \(X_n\) is a \(d\)-dimensional vector, whose \(i\)-th coordinate is the frequency of type \(i\) after the \(n\)-th addition. It is a random element of the \((d-1)\)-dimensional simplex, denoted by \(\Delta_d\).

\[
\Delta_d = \{ (x_1, \ldots, x_d) \in [0,1]^d, \ x_1 + \cdots + x_d = 1 \}.
\]

We will prove that the frequency distributions \(X_n\) converge almost surely to a stationary distribution of \(P\). We denote by \(S\) their set, i.e. the set of (line) vectors \(x\) in \(\Delta_d\) such that \(xP = x\).

Theorem 2.1 The sequence of random vectors \((X_n)\) converges almost surely to a \(S\)-valued random vector.

Proof: The proof is based on the classical technique that consists of expressing \((X_n)\) as a stochastic algorithm (see [3, 13] as general references). That technique has been used several times for proving strong convergence results in urn schemes, for instance by Benaim et al. [8] and Higueras et al. [10].

For \(j = 1, \ldots, d\), let \(e_j\) be the \(d\)-dimensional vector whose \(j\)-th coordinate is 1, and the others 0. For \(x \in \Delta_d\), let \(\epsilon(x)\) denote the probability distribution on \(\{e_1, \ldots, e_d\}\) such that \(\epsilon(x)(e_j) = \sum_{i=1}^{d} x_i p_{i,j}\).

One can write:

\[
X_{n+1} = \frac{n + n_0}{n + n_0 + 1} X_n + \frac{1}{n + n_0 + 1} \varepsilon_n(X_n),
\]

(2.1)

where the conditional distribution of \(\varepsilon_n(X_n)\) knowing \(X_0 = x_0, \ldots, X_n = x_n\) is \(\epsilon(x_n)\).

Denote by \(\eta_n\) the following random vector.

\[
\eta_n = \varepsilon_n(X_n) - X_n P.
\]

The sequence \((\eta_n)\) is adapted to the filtration \(\mathcal{F}_n\) generated by \((X_n)\), and

\[
\mathbb{E}[\eta_{n+1} | \mathcal{F}_n] = 0.
\]

Let us rewrite (2.1) as:

\[
X_{n+1} = X_n + \frac{1}{n_0 + n + 1} (X_n(P - I) + \eta_n).
\]

(2.2)

Hence \(X_n\) can be seen as a Robbins-Monro algorithm. We shall use the results of Delyon [5]. Equation (2.2) is the same as equation (2) in [3], with

\[
h(X) = X(P - I), \quad \gamma_n = \frac{1}{n + n_0 + 1} \text{ and } \eta_n = \varepsilon_n(X_n) - X_n P.
\]

The main steps of the proof are the following.
Step 1 The series \(\sum \gamma_n \eta_n \) converges a.s., hence \((X_n)\) is an A-stable algorithm, (Definition 1 of [3]).

Step 2 The distance from \(X_n \) to the set \(S \) of stationary measures for \(P \) tends to 0 a.s.

Step 3 The sequence \((X_n)\) converges a.s., hence its limit is an element of \(S \).

As \(X_n \) remains in a compact subset of \(\mathbb{R}^d \) (the simplex of probability vectors), step 1 is proved as soon as we can show that \(\sum_{n \geq 0} \gamma_n \eta_n < \infty \). Since the random variables \(\gamma_n \eta_n \) are the increments of a martingale, which is bounded in \(L_2 \), this result is true. Hence it is an A-stable algorithm.

A classical method to study this type of stochastic algorithm is to compare its trajectories to the flow of an ordinary differential equation, which in our case is \(y' = h(y) = y(P - I) \). It is linear, and the non-null eigenvalues of its matrix \(P - I \) all have a negative real part (since \(P \) is a stochastic matrix). Therefore, if \(x \in \mathbb{R}^d \) and \(y_x \) is the solution such that \(y_x(0) = x \), then \(\lim_{t \to +\infty} y_x(t) \) exists.

Step 2 uses Theorem 2.2 p. 2153 of [17]: the limiting set of \((X_n)\) is an internally chain recurrent set for the flow of the ODE \(y' = h(y) \), hence it is included in \(S \). Since \((X_n)\) takes its values in a compact set, and all possible limits of its subsequences are in \(S \), the distance from \(X_n \) to \(S \) must tend to 0.

Step 3 is an application of Theorem 2 in [3]. Let us prove first that \(S \) satisfies condition (B) of [3]. This condition says that there should exist a neighborhood \(N \) of \(S \) in \(\mathbb{R}^d \), and two functions \(\pi, W \), uniformly Lipschitz, defined on \(N \), taking values in \(\mathbb{R}^d \) and \(\mathbb{R} \) respectively, and such that

(a) \(|\pi(y(t)) - \pi(y(s))| \leq |W(y(t)) - W(y(s))| \) for any solution \((y(u), s \leq u \leq t)\) of \(y' = h(y) \) on \(N \).

(b) \(\pi(x) = x \) if \(x \in S \).

Here we shall take \(N = \mathbb{R}^d \) and \(\pi(x) = \lim_{t \to +\infty} y_x(t) \). From the same observation on eigenvalues of \(P - I \) as in step 2, it follows that \(\pi \) is Lipschitz. If \((y_x(u), s \leq u \leq t)\) is any solution of \(y' = h(y) \), then by definition of \(\pi \), \(\pi(y_x(s)) = \pi(y_x(t)) \) and (a) holds with \(W = 0 \). Of course, if \(x \in S \) then \(h(x) = 0 \) and \(y_x \) is constant and equal to \(x \). Thus \(x \in S \) implies \(\pi(x) = x \), hence (b).

In order to apply the first part of Theorem 2 in [3] there remains to prove that:

\[
\sum_{n=0}^{\infty} \gamma_n \left| \sum_{i=n}^{\infty} \gamma_i \eta_i \right| < +\infty.
\]
Let us write:

\[
\mathbb{E} \left[\sum_{n=0}^{\infty} \gamma_n \left(\sum_{i=n}^{\infty} \gamma_i \eta_i \right) \right] = \sum_{n=0}^{\infty} \gamma_n \mathbb{E} \left[\sum_{i=n}^{\infty} \gamma_i \eta_i \right] \\
\leq \sum_{n=0}^{\infty} \gamma_n \mathbb{E} \left[\left(\sum_{i=n}^{\infty} \gamma_i \eta_i \right)^2 \right]^{1/2} \\
= \sum_{n=0}^{\infty} \gamma_n \left[\sum_{i=n}^{\infty} \gamma_i^2 \right]^{1/2} < +\infty.
\]

Hence step 3, which ends the proof of Theorem 2.1. \(\square\)

3 Asymptotic distribution

Theorem 2.1 proves that the distribution of types in the urn converges to a random element of the set \(S\) of stationary distributions for the transition matrix \(P\). In this section we characterize the probability law of that random element.

Assume the recurrent classes for the transition matrix \(P\) are numbered from 1 to \(k\). For \(c = 1, \ldots, k\), denote by \(\pi_c\) the unique element of \(S\) whose coordinates are positive on class number \(c\) and null elsewhere. Any element of \(S\) is a convex combination of the \(\pi_c\)'s. We shall denote by \(\sigma\) the one to one correspondence between \(S\) and \(\Delta_k\) defined by:

\[
\forall \alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k, \quad \sigma^{-1}(\alpha) = \sum_{c=1}^{k} \alpha_c \pi_c .
\]

Our goal is to describe the distribution of \(\sigma(\lim X_n)\), which depends on the initial state of the urn. We will generically denote by \(A^*\) the \(\Delta_k\)-valued random variable \(\sigma(\lim X_n)\) for \(X_0 = \ast\):

- \(A^{X_0}\) if the initial state of the urn is the random distribution \(X_0\),
- \(A^{x_0}\) if the initial state of the urn is the deterministic distribution \(x_0\),
- \(A^{(i)}\) if the urn initially contains a single ball of type \(i\).

Observe that the distribution of \(X_0\) is discrete. Obviously,

\[
A^{X_0} \overset{(d)}{=} \sum_{x_0} A^{x_0} \mathbb{I}_{X_0 = x_0} ,
\]

where \(X_0\) and all the \(A^{x_0}\)'s are mutually independent.

Theorem 3.1 below reduces the distribution of \(A^{x_0}\) to those of the \(A^{(i)}\)'s, then expresses the \(A^{(i)}\)'s as a solution of a fixed point problem.
Theorem 3.1

1. Let \(n_0 \) be the initial number of balls. For \(b = 1, \ldots, n_0 \) let \(A_b \) be a copy of \(A^{i(b)} \), where \(i(b) \) is the type of ball \(b \). Let \(Y = (Y^{(1)}, \ldots, Y^{(n_0)}) \) be a random vector, uniformly distributed on \(\Delta_{n_0} \). Assume that \(A_b, b = 1, \ldots, n_0 \) are mutually independent, and independent from the vector \(Y \). Then

\[
A^{(d)} = \sum_{b=1}^{n_0} Y^{(b)} A_b.
\] (3.3)

2. For \(i = 1, \ldots, d \), let \(A^{(i)'}, A^{(i)''} \) be independent copies of \(A^{(i)} \); let \(Y^{(i)} \) be uniformly distributed on \([0, 1] \); let \(U_i \) have distribution \((p_{i,j})_{j=1,..,d}\). Assume all these random variables are mutually independent. Then

\[
A^{(i)} = \sum_{j=1}^{d} I_{U_i = j} \left(Y^{(j)} A^{(i)'} + (1 - Y^{(j)}) A^{(j)''}\right).
\] (3.4)

Proof. Assume the \(n_0 \) initial balls are labelled from 1 to \(n_0 \). Assume that at each step the ball that has been added receives the same label as the one that has been drawn. Replacing types by labels, one gets a standard Eggenberger-Pólya urn \([\text{7}]\). Denote by \(Y_n = (Y^{(b)}_n), b = 1, \ldots, n_0 \) the distribution of labels at time \(n \): it converges a.s. to a random vector \(Y \) whose distribution is uniform on the simplex \(\Delta_{n_0} \). For \(b = 1, \ldots, n_0 \), denote by \(Z^{(b)}_n \) the \(d \)-dimensional vector of the frequencies of types among the balls with label \(k \) at time \(n \). By Theorem 2.1, \(Z^{(b)}_n \) converges a.s. to a random variable \(Z^{(b)} \), distributed as if initially the urn only had one ball with label \(i(b) \): the distribution of \(Z^{(b)} \) is that of \(A^{i(b)} \). Moreover these random variables are mutually independent. The overall distribution of types at times \(n \) decomposes as

\[
X_n = \sum_{b=1}^{n_0} Y^{(b)}_n Z^{(b)}_n.
\]

As \(n \) tends to infinity, \(X_n \) tends to

\[
X = \sum_{b=1}^{n_0} Y^{(b)} Z^{(b)},
\]

Hence equation (3.3).

Assume now that initially, a single ball of type \(i \) is present. At time 1, another ball is added, which is of type \(j \) with probability \(p_{i,j} \). Let us apply point 1 with \(n_0 = 2 \): if two balls of types \(i \) and \(j \) are present, then the final distribution is that of

\[
Y^{(i)} A^{(i)'} + (1 - Y^{(i)}) A^{(j)''}.
\]

The limit starting with one single ball of type \(i \) or the two balls of time 1 must be the same, hence equation (3.4). \(\square \)
Equations (3.3) and (3.4) characterize the distribution of A^{x_0}, for any x_0. This follows from standard results of Letac [14] and Chamayou and Letac [4]. In practice, finding the actual distribution of A^{x_0} may be rather intricate. We shall give two examples with a single transient state, one with no possible return (Proposition 3.2), the other with possible returns (Proposition 3.3).

Observe that from the point of view of A^{x_0}, the contents of recurrent classes is not relevant: each recurrent class can be aggregated into one single absorbing state. Thus one can assume with no loss of generality that the transition matrix P has k absorbing states and $d - k$ transient states.

Proposition 3.2 Assume the matrix P is the following

$$P = \begin{pmatrix}
0 & p_2 & \cdots & p_d \\
0 & 1 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{pmatrix},$$

with $p_2 + \ldots + p_d = 1$. Assume moreover that initially a single ball of type 1 is present.

The probability distribution of $A^{(1)}$ is the Dirichlet distribution on Δ_{d-1}, with parameter (p_2, \ldots, p_d).

Proof: The result can be proved directly by the classical method of moments, using Theorem 3.1. This was our original approach. We are indebted to Brigitte Chauvin and Nicolas Pouyanne for the more elegant argument which follows.

Consider a Pólya-Eggenberger urn with $2(d-1)$ types. The types are divided into two matching halves: for $i = 2, \ldots, d$, there is a ‘recurrent’ type r_i and a ‘transient’ type t_i. The replacement policy is deterministic. When a ball of type r_i is drawn, then another ball of the same type r_i is added. When a ball of type t_i is drawn, a ball of the corresponding r_i type is added. Initially, only balls of types t_2, \ldots, t_d are present and the proportion of balls of type t_i is p_i. Classical results on deterministic replacement policies show that the distribution of types converges a.s. to a random distribution that vanishes on types t_2, \ldots, t_d and loads r_2, \ldots, r_d according to a Dirichlet distribution with parameters (p_2, \ldots, p_d): see Gouet [9] and Pouyanne [16].

The deterministic replacement model that has just been described is equivalent to the random replacement model of Proposition 3.2: it suffices to merge all transient types t_i into type 1 to see the correspondence. This proves the result when p_2, \ldots, p_d take rational values. A continuity argument finishes the proof. □

We will now show that the pleasant result of Proposition 3.2 worsens as returns to transient states become possible.

Proposition 3.3 Let $d = 3$, and

$$P = \begin{pmatrix}
0 & p_2 & p_3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},$$

...
with \(p_1, p_2, p_3 \) strictly positive. Starting initially with a single ball of type 1, the distribution \(A^{(1)} \) only charges the two absorbing states 2 and 3. Let us write \(A^{(1)} = (A, 1 - A) \) where \(A \) is the asymptotic frequency of type 2. Let \(\varphi \) be the generating function of moments of \(A \).

\[
\varphi(z) = \sum_{n=0}^{+\infty} E[A^n] z^n.
\]

Then

\[
\frac{1}{\varphi(z)} = (1 - z)^{p_2} 2F_1(p_2, -p_1, 1 - p_1)(z),
\]

where \(2F_1(p_2, -p_1, 1 - p_1) \) is the hypergeometric function with parameters \((p_2, -p_1)\) and \(1 - p_1\).

Having computed the moments of \(A \), it is easy to check that its distribution is not Beta, except in the particular case \(p_2 = p_3 \). Hence the distribution of \(A^{(1)} \) is not Dirichlet.

Proof: From point 2 of Theorem 3.1, \(A \) is equal in distribution to

\[
YA' + (1 - Y)(A''\mathbb{I}_{U=1} + \mathbb{I}_{U=2}),
\]

where \(A' \) and \(A'' \) are distributed as \(A \), \(Y \) is uniformly distributed on \([0, 1]\), \(U \) has distribution \((p_1, p_2, p_3)\) and \((A', A'', Y, U)\) are mutually independent.

Denote by \(c_n = E[A^n] \) the \(n \)-th moment of \(A \). From (3.6), the following induction for \(c_n \) is deduced.

\[
c_n = \frac{1}{n + 1} c_n + \sum_{k=0}^{n-1} \binom{n}{k} E[\rho^k(1 - \rho)^{n-k}](c_k c_{n-k} p_1 + c_k p_2)
\]

\[
\iff nc_n = p_1 \sum_{k=0}^{n-1} c_k c_{n-k} + p_2 \sum_{k=0}^{n-1} c_k
\]

\[
\iff (n + p_1 + p_2)c_n = p_1 \sum_{k=0}^{n} c_k c_{n-k} + p_2 \sum_{k=0}^{n} c_k.
\]

Multiplying by \(z^n \) and summing leads to

\[
z \varphi'(z) + (p_1 + p_2) \varphi(z) = p_1 \varphi(z)^2 + p_2 \frac{\varphi(z)}{1 - z}.
\]

Letting \(\psi = 1/\varphi \) leads to

\[
z(z - 1) \psi'(z) - (p_1(z - 1) + p_2 z) \psi(z) = p_1(1 - z),
\]

from which (3.7) follows.

The technique of conditioning upon the first drawn ball also permits to treat the case where there is a single transient state with possible return, and more than 2 absorbing ones. By induction on \(d \), one can express the distribution of \(A^{(1)} \) using Proposition 3.3.

Acknowledgement: We are indebted to Brigitte Chauvin, Gérard Letac and Nicolas Pouyanne for helpful comments and hints.
References

