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Summary. We study the stability of travelling wall profiles for a one dimensional
model of ferromagnetic nanowire submitted to an exterior magnetic field. We prove
that these profiles are asymptotically stable modulo a translation-rotation for small
applied magnetic fields.

1 Model for ferromagnetic nanowires

Ferromagnetic materials are characterized by a spontaneous magnetization
described by the magnetic moment u which is a unitary vector field linking
the magnetic induction B with the magnetic field H by the relation B = H+u.
The variations of u are described by the Landau-Lifschitz Equation

∂u

∂t
= −u ∧ He − u ∧ (u ∧ He) (1)

where the effective field is given by He = ∆u + hd(u) + Ha, and the demag-
netizing field hd(u) is deduced from u solving the magnetostatic equations:

div B = div (H + u) = 0 and curl H = 0

where Ha is an appplied magnetic field.
For more details on the ferromagnetism model, see [2], [9], [14] and [18].

For existence results about Landau Lifschitz equations see [3], [4], [10], [17].
For numerical studies see [8], [12] and [13]. For asymptotic studies see [1], [5],
[7], [15] and [16].

In this paper we consider an asymptotic one dimensional model of ferro-
magnetic nanowire submited to an applied field along the axis of the wire. We
denote by (e1, e2, e3) the canonical basis of IR3. The ferromagnetic nanowire
is assimilated to the axis IRe1. The demagnetizing energy is approximated by
the formula hd(u) = −u2e2 − u3e3 where u = (u1, u2, u3) (this approximation
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of the demagnetizing energy for a ferromagnetic wire is obtained using a BKW
method by D. Sanchez, taking the limit when the diameter of the wire tends
to zero in [16]). We assume in addition that an exterior magnetic field δe1 is
applied along the wire axis.

To sum up we study the following system










∂u

∂t
= −u ∧ hδ(u) − u ∧ (u ∧ hδ(u))

with hδ(u) =
∂2u

∂x2
− u2e2 − u3e3 + δe1

(2)

For δ = 0, that is without applied field, we observe in physical experi-
ments the formation of a wall breaking down the domain in two parts: one
in which the magnetization is almost equal to e1 and another in which the
magnetization is almost equal to −e1. Such a distribution is described in our
one dimensional model by the following profile M0:

M0 =





th x
0
1

chx



 . (3)

This profile is a steady state solution of Equation (2) with δ = 0. We
prove in [6] the stability of the profile M0 for Equation (2) without applied
field (when δ = 0).

When we apply a magnetic field in the direction +e1 (that is with δ > 0)
since Landau-Lifschitz Equation tends to align the magnetic moment with
the effective field, we observe a translation of the wall in the direction −e1.
Furthermore, we observe a rotation of the magnetic moment around the wire
axis. This phenomenon is described by the solution of (2)

Uδ(t, x) = Rδt(M0(x + δt)) (4)

where Rθ is the rotation of angle θ around the axis IRe1:

Rθ =













1 0 0

0 cos θ − sin θ

0 sin θ cos θ













We study in this paper the stability of Uδ, we prove that for a small δ, Uδ

is stable for the H2 norm and asympotically stable for the H1 norm, modulo a
translation in the variable x and a rotation around IRe1. This result is claimed
in the following theorem:

Theorem 1. There exists δ0 > 0 such that for all δ with |δ| < δ0 then for
ε > 0 there exists η > 0 such that if ‖u(t = 0, x) − Uδ(t = 0, x)‖H2 < η then
the solution u of Equation (2) with initial data u(t = 0, x) satisfies:
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∀ t > 0, ‖u(t, x) − Uδ(t, x)‖H2 < ε.

In addition there exists σ∞ and θ∞ such that

‖u(t, x) − Rθ∞(Uδ(t, x + σ∞))‖H1 −→ 0 when t −→ +∞.

This result is a generalization of the stability result concerning the static
walls when δ = 0 in [6]. It looks like the theorems of stability concerning
the travelling waves solutions for semilinear equations like Ginzburg Landau
Equation (see Kapitula [11]). Here we have three new difficulties. The first
one is that the magnetic moment takes its values in the sphere and not in a
linear space. In order to work with maps with values in a linear space we will
use a mobile frame adapted to Landau-Lifschitz equation and we will describe
in Section 2 the magnetic moment in this mobile frame. The second difficulty
is that we have here a two dimensional invariance family for Equation (2)
whereas Ginzburg Landau-Equation is only invariant by translation. This is
the reason why we must use in the perturbations description the translations
and the rotations (see Section 3). The last difficulty is that Landau-Lifschitz
Equation is quasilinear, and then we have to couple variational estimates and
semi-group estimates to control the perturbations of our profiles. Section 4 is
devoted to these estimates.

2 Landau-Lifschitz Equation in the mobile frame

2.1 First reduction of the problem

For u a solution of Landau-Lifschitz Equation (2) we define v by v(t, x) =
R−δt(u(t, x − δt)) (that is u(t, x) = Rδt(v(t, x + δt))). A straightforward cal-
culation gives that u satisfies (2) if and only if v satisfies











∂v

∂t
= −v ∧ h(v) − v ∧ (v ∧ h(v)) − δ(

∂v

∂x
+ v1v − e1)

h(v) =
∂2v

∂x2
− v2e2 − v3e3

(5)

In addition Uδ is stable for (2) if and only if M0 is stable for (5), that is
we are led to study the stability of a static profile, which is more convenient.

2.2 Mobile frame

Let us introduce the mobile frame (M0(x), M1(x), M2), where

M1(x) =







1

ch x
0

−th x






and M2 =





0
1
0




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Let v : IR+
t × IRx −→ S2 ⊂ IR3 be a little perturbation of M0. We can

decompose v in the mobile frame writting

v(t, x) = r1(t, x)M1(x) + r2(t, x)M2 +
√

1 − r2
1 − r2

2M0(x).

Now we can obtain a new version of Landau-Lifschitz Equation: v satisfies
(5) if and only if r = (r1, r2) satisfies

∂r

∂t
= (L + δl)r + G(r)(

∂2r

∂x2
) + H(x, r,

∂r

∂x
) (6)

where

• the linear operator L is given by L = JL with J =

(

−1 −1
1 −1

)

and

L = − ∂2

∂x2
+ 2th 2x − 1

,
• the linear perturbation due to the presence of the applied magnetic field

δe1 is given by δl with l =
∂

∂x
+ thx,

• the higher degree non linear part is G(r)( ∂2r
∂x2 ), where G(r) is a matrix

depending on r with G(0) = 0,
• the last non linear term H(x, r, ∂r

∂x
) is at least quadratic in the variable

(r,
∂r

∂x
).

In addition the stability of the profile M0 for Equation (5) is equivalent to
the stability of the zero solution for Equation (6).

3 A new system of coordinates

We remark that L is a self adjoint operator on L2(IR), with domain H2(IR).

Furthermore, L is positive since we can write L = l∗ ◦ l with l =
∂

∂x
+ thx,

and Ker L is the one dimensional space generated by
1

chx
.

The matrix J being invertible, Ker L is the two dimensional space gener-
ated by v1 and v2 with

v1(x) =

(

0
1

chx

)

, v2(x) =

( 1

ch x
0

)

We introduce E = (Ker L)⊥. We denote by Q the orthogonal projection
onto E for the L2(IR) scalar product.
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Landau-Lifschitz equation (5) is invariant by translation in the variable x
and by rotation around the axis e1. Therefore for Λ = (θ, σ) fixed in IR2, MΛ

defined by MΛ(x) = Rθ(M0(x−σ)) is a solution of Equation (5). We introduce
RΛ(x) the coordinates of MΛ(x) in the mobile frame (M1(x), M2(x)):

RΛ(x) =

(

MΛ(x) · M1(x)
MΛ(x) · M2

)

The map Ψ given by

Ψ : IR2 × E −→ H2(IR)
(Λ, W ) 7−→ r(x) = RΛ(x) + W (x)

is a diffeomorphism in a neighborhood of zero. Thus we can write the solution
r of Equation (6) on the form :

r(t, x) = RΛ(t)(x) + W (t, x)

where for all t, W (t) ∈ E and where Λ : IR+
t 7→ IR2.

We will re-write Equation (5) in the coordinates (Λ, W ). Taking the scalar
product of (5) with v1 and v2 we obtain the equation satisfied by Λ, and using
Q the orthogonal projection onto E , we deduce the equation satisfied by W .
After this calculation we obtain that r is solution of Equation (5) if and only
if (Λ, W ) satisfies the following system


















∂W

∂t
= (L + δl + KΛ)W + R1(x, Λ, W )(

∂2W

∂x2
) + R2(x, Λ, W,

∂W

∂x
)

dΛ

dt
= M(W,

∂W

∂x
, Λ)

(7)

where

• KΛ : H2(IR) −→ E is a linear map satisfying

∃K1, ∀ Λ ∈ IR2, ∀ W ∈ E , ‖KΛW‖L2(IR) ≤ K1|Λ|‖W‖H2(IR) (8)

• the non linear terms take their values in E and satisfy that there exists a
constant K2 such that for |Λ| ≤ 1 and for all W ∈ E

‖R1(., Λ, W )(
∂2W

∂x2
)‖L2(IR) ≤ K2‖W‖H1(IR)‖W‖H2(IR)

‖R2(., Λ, W,
∂W

∂x
)‖H1(IR) ≤ K2‖W‖2

H1(IR)

(9)

• M : H1(IR) × L2(IR) × IR2 −→ IR2 satisfies

∃K3, ∀ Λ such that |Λ| ≤ 1, ∀ W ∈ E , |M(W,
∂W

∂x
, Λ)| ≤ K3‖W‖H1(IR)

(10)
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Theorem 1 is equivalent to the following Proposition:

Proposition 1. There exists δ0 > 0 such that for δ with |δ| < δ0, we have the
following stability result for Equation (7): for ε > 0 there exists η > 0 such
that if |Λ0| < η and if ‖W0‖H2 < η then the solution (Λ, W ) of (7) with initial
value (Λ0, W0) satisfies

1. for all t > 0, ‖W (t)‖H2 ≤ ε and |Λ| ≤ ε,
2. ‖W (t)‖H1 tends to zero when t tends to +∞,
3. there exists Λ∞ ∈ IR2 such that Λ(t) tends to Λ∞ when t tends to +∞.

The last section is devoted to the proof of Proposition 1.

4 Estimates for the perturbations

4.1 Linear semi group estimates

On E we have Re (sp L) ⊂] −∞,−1]. In particular this fact implies that the
H2 norm is equivalent on E to the norm ‖Lu‖L2. Furthermore it implies good
decreasing properties for the semigroup generated by L. We first prove that
this decreasing property is preserved for the linear part of the Equation on W
in (7) for a little applied field, and if we assume that Λ remains little.

The operator l is an order one operator dominated on E by L, thus there
exists δ0 > 0 such that if |δ| < δ0, Re (sp L + δl) ⊂] −∞,−1/2[.

Let us fix δ such that |δ| < δ0. With Estimate (10), if Λ remains small, KΛ

is a little perturbation of L+ δl. This implies that for Λ little, the semigroup
generated by L + δl + QKΛ has the same good decreasing properties than L,
that is there exists ν0 > 0 such that if |Λ(t)| remains less than ν0 for all t,
then there exists K4 and β > 0 such that

‖SΛ(t)W0‖H1 ≤ K4e
−βt‖W0‖H1

≤ K4
e−βt

√
t
‖W0‖L2 .

(11)

We can then use the Duhamel formula to solve the equation on W in (7):

W (t) = SΛ(t)W0 +

∫ t

0

SΛ(t − s)R1(s)ds +

∫ t

0

SΛ(t − s)R2(s)ds

and then using the estimates (9) and (11) we obtain that if |Λ(t)| remains less
than ν0 then there exists K5 such that

‖W (t)‖H1 ≤ K5e
−βt‖W0‖H1 +

∫ t

0

K5
e−β(t−s)

√
t − s

‖W (s)‖H1‖W (s)‖H2

+

∫ t

0

K5e
−β(t−s)‖W (s)‖2

H1

(12)
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4.2 Variational estimates

We see that Estimate (12) is not sufficient to conclude since we have the H2

norm of W in the right hand side of this estimate. In order to dominate this
H2 norm, we multiply the equation on W in (7) by J2L2W and we obtain
that there exists a constant K6:

d

dt
‖LW‖2

L2 + ‖L 3

2 W‖2
L2 (1 − K6‖LW‖L2) ≤ 0

¿From this estimate we deduce that if ‖LW‖L2 < 1
K6

, then 1−K6‖LW‖L2

is positive, thus d
dt
‖LW‖2

L2 is negative and ‖LW‖L2 remains less than 1
K6

.

So if ‖LW0‖L2 < 1
K6

, then for all t ‖LW (t)‖L2 ≤ ‖LW0‖L2. This property

gives a bound for the H2 norm of W since the H2 norm is equivalent on E
to ‖LW‖L2, and reducing the H2 norm of W0, we obtain the first part of the
conclusion 1 in Proposition 1.

4.3 Conclusion

Let us assume that ‖LW0‖L2(IR) ≤ 1
K6

. Then for all t, ‖W (t)‖H2(IR) ≤
C1‖LW (t)‖L2 ≤ ‖LW0‖L2 ≤ C2‖W0‖H2(IR), where C1 and C2 are constants.

Multiplying (12) by (1 + t)2, defining G(t) = max
[0,T ]

(1 + s)2‖W (s)‖H1 , we

obtain that there exists a constant K7 such that if |Λ(t)| remains less than ν0

we have:
G(t) ≤ K7G(0) + K7G(t)‖W0‖H2 + K7(G(t))2

If we suppose in addition that ‖W0‖H2 ≤ 1
2K7

we obtain that

0 ≤ K7G(0) − 1

2
G(t) + K7(G(t))2 := P (G(t)) (13)

The polynomial map P (ξ) = K7ξ
2 − 1

2ξ + K7G(0) has for G(0) small
enough two positive roots. We denote by ξ(G(0)) the smallest one. For G(0)
little enough we have G(0) ≤ ξ(G(0)) ≤ 2K7G(0) (we can a priori assume
that K7 ≥ 1 for example). Estimate (13) implies that for all t, G(t) ≤ ξ(G(0))
that is

∀ t > 0, ‖W (t)‖H1(IR) ≤
ξ(G(0))

1 + t2
≤ 2K7G(0)

1 + t2
. (14)

This implies that ‖W (t)‖H1(IR) tends to zero when t tends to +∞. It remains
to prove that Λ remains less that ν0 and admits a limit when t tends to +∞.

Plugging Estimate (14) in the equation on Λ in (7) and using (10), we
obtain that dΛ

dt
is integrable on IR+, that is Λ admits a limit when t tends to

+∞. Furthermore, by integration we have

∀ t, |Λ(t)| ≤ |Λ(0)| +
∫ t

0

K3
2K7G(0)

1 + s2
ds ≤ |Λ(0)| + πK3K7G(0)

Reducing |Λ0| and G(0) = ‖W0‖H1(IR) we obtain that for all t, |Λ(t)| remains
less than ν0, which justifies all our estimates a posteriori.
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9. Laurence Halpern and Stéphane Labbé: Modélisation et simulation du comporte-
ment des matériaux ferromagétiques. Matapli, 66, 70–86 (2001).

10. J.-L. Joly, G. Métivier, J. Rauch: Global solutions to Maxwell equations in a
ferromagnetic medium. Ann. Henri Poincaré, 1, 307-340, (2000).
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