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ABSTRACT. The goal of this article is to analyze the time asymptotic stabil-
ity of one dimensional Bloch walls in ferromagnetic materials. The equation
involved in modelling such materials is the Landau-Lifchitz system which is
non-linear and parabolic. We demonstrate that the equilibrium states called
Bloch walls are asymptotically stable modulo a rotation and a translation trans-
verse to the wall. The linear part of the perturbed equation admits zero as an
eigenvalue forbidding a direct proof.

1. INTRODUCTION

Over the last decade, the interest for ferromagnetism modelization had grown
(see [7]). One of the main goals of these mathematical studies is to understand the
behaviour of dynamical structures in ferromagnets [3, 4 [5 [10, 11l 12] to validate
models. The obtained results will be exploited to enhance numerical simulations
of ferromagnets used by physicists [9] to understand and optimise the magnetic
characteristics of ferromagnetic materials. Remembering that the main mean of
observation is the microwave resonance, we understand the importance of studying
the stability of the magnetization in ferromagnets; this study would validate math-
ematically and therefore numerically, the use of that mean of observation. Then,
one of the key points to understand this stability is to analyse the stability of the
microstructures developed by the magnetization: it is to say the walls, separation
zones between the domains in which the magnetization is smooth.

No extensive study of wall stability in micromagnetic states has been done yet.
The three dimensional structure of these objects is very complex and there are
no mathematical description in the three dimensional case and some for the two
dimensional one [T}, [@].

The three dimensional model is the following : we denote by u = (u1, ua, uz) the
magnetic moment defined on R, x Q with values in S? the unit sphere of R, where
Q is the ferromagnetic domain. The variations of u are governed by the following
Landau-Lifschitz equation :

% = —UAherr(u) —uA (A heps(u)).
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The effective field hegy(u) is given by
h(u) = A Au+ hg(u),

where AAw is the exchange field, and where the demagnetizing field hg(u) satisfies
rot(hg(u)) = 0,

(1) div(hg(u)) = —=div(u),
u = 0inR3\ Q.

This system has solutions for regular finite domain € as shown in [5].

In this paper we consider an asymptotic one dimensional model of nanowire
obtained and justified by D. Sanchez in [I4]. In this case the demagnetizing field
writes :

(2) ha(u) = —uges — uzes = uy e3 — u,
where (eq, ez, e3) is the canonical basis of R? and where u = (u1, ug, us).

Remark 1. This model is obtained using a BKW method, taking the limit when
the diameter of the wire tends to zero (see [14]).

Finally using a space scaling factor to set A = 1, for a line along the z-axis we
study the following system

u:RE xR, — S2,

(3) % =—uAh(u) —uA (uA h(u)),
with h(u) i +up eg.

e
Remark 2. The demagnetizing field hq(u) given by Formula only appears in
Landau-Lifschitz Equation in the expression uAhg(u) = uA (ureg —u) = uA(urey).
It is the reason why we can work with the expression of h(u) given in .

The aim of the paper is to study the stability of a static wall profile which
separates the domain in which v = —e; (in the neighborhood of —oo) and the
domain in which u = e; (in the neighborhood of +00).

This profile is given by

tha
My=| 0

1

chax

We remark that Landau-Lifschitz equation is invariant by translation in the
variable z and by rotation around e;. Hence for all A = (6,0) € R x R, the profile
x +— My(z) = Ro(My(z — o)) is a static solution of satisfying lirorgu = —ep and

Emu = e1, where we denote by Ry the rotation of angle 6 around ey:
oo

1 0 0
Ry = 0 cosf —sind
0 sinf cosf
Our main result is the following

Theorem 1. Let € > 0, there exists n > 0 such that, for all vo in H*(R) with
lvg| = 1 for all z in R and such that ||vg — Mol||g2r) < 0, if we denote by v the
solution of (@) with vy as the initial data then, for allt in RT, [[v(t) — Mo || g2(r) < €.
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Furthermore there exists A = (0,0) € R? such that v tends to Ma when t tends to
infinity for the norm H'(R).

The invariance of by rotation-translation implies that the linearized equation
in the neighborhood of My has zero as an eigen-value, which is a major obstruction
to obtain straightly the stability result. In addition all the known results about
the stability of travelling waves are proved for semi-linear equation (see [§]). Here
the considered Landau-Lifschitz equation is quasilinear and we have to combine
variational estimates with the methods used in [§].

The paper is organized as follows : in Section 2 we describe the perturbations of
My in the mobile frame (My(x), Mi(x), Ms), where M;(z) = 0,—thx) and
M, = (0,1,0), writing

u(t, ) =1 (t, )My (z) + ro(t,x) Mo + \/1 — 172 — r2My(z).

We obtain then an equivalent formulation of Equation where the unknown is
r = (ry,r2), of the form:

(e

r r 0%

(@ O tri P 0
where Lr denotes the linear part.

The stability of My for Equation is then equivalent to the stability of the
zero solution for Equation .

The two parameters family of static solutions M, for Equation induces in
the new coordinates a two parameters family Rj of statics solutions for Equation
. In Section 3, we decompose the solution r of in

r(t,x) = RA(t) (z) + W (x)

where W € (Ker £)+. This decomposition is rather classical for the study of static
solution stability for semi-linear parabolic equations (see [§]). This technique has
also been used in [2] to demonstrate the stability of travelling waves in thin films
or in [I3] in the case of the radially symmetric travelling waves in reaction-diffusion
equations.
The main difficulty here is that Equation is quasilinear and then the non
2

) o°r . . .
linear term F' depends also on ——. We then use Section 5 variational estimates for

the non linear part combined Wﬁh more classical linear estimates on the operator
L (proved in Section 4).

In the following we denote by - the scalar product in R3, and by (| ) the scalar
product in L?(R).

2. EQUATION FOR THE PERTURBATIONS OF THE WALL

2.1. Moving frame. We consider the following moving frame (Mo (z), M1(z), M2)
with

My = (1) ,oMy=| BT | and M= | 1
chz —thz

We consider u as a little perturbation of My and we write u on the form

(5) u(t,x) =r1(t,x)M1(x) + rot, z) Ma(z) + \/1 — (r1(t,2))% = (ra(t, x))2 Mo(z).
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We denote A = /1 —172 —r2. In order to ensure the regularity of A\, we as-

1
sume that [[u — Mo| g ®) < 5 This assumption is correct since we study little

perturbations of M.

BT
. (ﬁ\{ - ChwlM];
) dg%ﬁoi 7%3& N 1
* Tdr T _Ch2$M1 B cthMO’

1
® :chL'M() + 7Mla
chx
e W(My) = fMy where f(x) = 2th2x — 1.

Furthermore
h(u) = agMy + a1 My + agMa,
with )
ao = g%j Ty A L
_ O, 1 oA
“= O t ez 5a
0%
ay =55
We replace u by its expression in Equation , and we obtain that
%Mo + %Z\ﬂ + %Mz
(6) = — (riaz — roa1) My — (reag — Aag) My — (Aay — riag) Mo

— /\(’I“QCLQ — /\CLQ)MQ + )\()\Ch — Tlao)Ml +7r (7‘1&2 — Tga,l)MQ
— 7‘1(>\a1 — T‘lao)MO — T2(7’1(L2 — Tgal)Ml + ’I"Q(T‘QCLO — )\QQ)MO.

Projecting Equation @ in the directions M; and M, we obtain that if u is
solution of then

0
o Ltl = —raap + Aag + M Aay — riag) — ro(rias — raaq),
”
a—tz = —(Aa; —r1a9) — Mraap — Aag) + r1(rias — raaq).

Remark 3. Fquation 18 equivalent to Equation . Indeed we write Equation

(@) on the form :

ou

Z_F

g~
where F(u)(x)is orthogonal to u(z) for all z € R.

FEquation @ is the projection of (@ on the directions My and Ms, that is if
(r1,m2) satisfies Equation @, then w = ri My + roMs + \/1 — r? — r3 My satisfies

(% — F(u)) My = (% — F(u)) - M2 =0.

We remark that u = r1 My + roMs + /1 — 12 — r2My is a normed vector field,

0
thus 8—1; -u = 0. Furthermore, u- F(u) = 0. Thus, if (r1,72) satisfies Equation (H),



STABILITY FOR STATIC WALLS IN FERROMAGNETIC NANOWIRES 277

then (@ — F(u)) - XMy = 0 and since A # 0 (since we consider little perturbations

ot
13
of My) we obtain that the third component of 8—1: — F(u) is zero.

Thus for little perturbations of My, Equation (@ is equivalent to @

We detail Equation (|7]) replacing the a;’s by their values. We obtain that Landau-
Lifschitz equation is equivalent for little perturbations of M to the following system:

ory 0%\ shx 8r1 1 0?ry

o "‘2W"‘2”<x)‘%“m+ Or iy N
28%r OA

2y 2r 1
*7’1’"28 P b2 g —rigd -2 chxax
—Ar, 2 89:2 — A2ryf(x) — 2002 b}?f + 227y %Tzl 0}11 ,

(8) ory 927, 1 oA 972 shz
£ = _ ) 2
ot )\axz )\Chiléa trgs +T1)\f( )+ Tl h 2
o 11 0 T2 25 7“2 0%ry 9 1 O\
" o cm+ N T T
_ 2 _ o bt
/\rg — Nrof(x) = 2Ariro—— s 42Xy 25, tha’

We denote r = (ry,72), and we define  : B(0,3) C R? — R by pu(¢&) =
V1 —1&]7 =1 (that is A = 1+ pu(r)). We then write Equation (8) on the condensed
form detailed in the following proposition:

Proposition 1. The function u € C*(RT; H*(R; S?)) such that ||u — My||p~ < 1
satisfies Landau-Lifschitz equation if and only if
u=r1 My +roMy ++/1 —r? —r3My where r = (r1,72) satisfies:

0 0?r or or Or

,
O T e me ) mey 2 2 P,
with
. -1 -1 02
o L=JL with J = 1 1 andL:—a2—|—f(werecallthatf()
2th2x — 1),
e G(r) is the matriz defined by:
2
rir T
- 22 2 22 5 + ()
_ 1—r{—r; 1—r{—r;
G(r) 2 J
_ (’I“)— L _ r17T2
8 1—7r?—r3 1—rf—1r32

e Hy(x,r) is the matriz defined by:
2 ro\/1— 13 — 13 — 1173 —ry — Tor?
Hi(z,r) = - ( 2 1" 173 22 221 , ).
V1—r{—rschz rg — T3 V1—ri{—rirg+rir;
o Hy(r) € L2(R?) is a symmetric bi-linear form defined by
V91=712—r3r 4+
1—r —7“23 2 2
Ha(r)(&1,62) = 1 2 ! 2 2 ((1_7”1 _7"2)(51'52)+(7"'§1)(7“'f2))7
—Try—ryra—mn
3
V1—rf—1r3
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e P is defined by
P(z,r)

shx shx

—rou(r) f(z) — 27427"1% + (rf +r3)rf(z) — 21— i — T%r%ﬁth
= shx shax
P + 2 0 () — 2T v

The properties concerning G, Hy, Hy and P are summarized in the following
proposition:
Proposition 2.
G € C®(B(0,1/2); M*(R)) and G (&) = O([¢]?),
H; € C*°(R x B(0,1/2); M2(R)) and Hy(z,7) = O(|r|),
Hy € C®(B(0,1/2); L2(R?)), with Ho(z,7) = O(|r|),
P € C*®(R x B(0,1/2); R?) with P(z,r) = O(|r|?) uniformly in z € R.

3. A NEW SYSTEM OF COORDINATES
We remark that L is a self adjoint operator on L?(R), with domain H?(R).

Furthermore, L is positive since we can write L = [* ol with [ = e +thz, and Ker
x
1

L is the one dimensional space generated by e
c

The matrix J being invertible, Ker £ is the two dimensional space generated by
e1 and ey with

0 1
(10) ei(z) = ( 1 >7 ex(x) = < chz ) :
chx 0

We introduce € = (Ker £)*. We denote by @ the orthogonal projection onto &
for the L?(R) scalar product.

Landau-Lifschitz equation is invariant by translation in the variable z and by
rotation about the axis e;. This two parameters family of invariance explains the
presence of the eigenvalue zero (of multiplicity 2) for the linearized operator £. We
will write the solution w as a rotation-translation of My plus a term in £.

For A = (6,0) fixed in R? we know that the profile M, rotated of the angle 6
and translated of ¢ is a solution of Landau-Lifschitz equation. We denote by My
this solution:

1 0 0
Mp(x)=| 0 cosf —sinf | My(x— o),
0 sinf cosé
and we introduce R (z) the coordinates of My (z) in the basis (M;(z), Ma(z)):

= (i )

In a neighborhood of zero (which represents the wall profile My in the frame
(My, Ms)), we use a coordinate system given by
(11) r(z) = Ra(z) + W(x),
with (A, W) € R? x €.
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The map r — (A, W) is a diffeomorphism from a neighborhood of zero in H?(R)
to a neighborhood of zero in R? x £. Indeed let r € H?(R). In order to use the
coordinate system , there must exist a unique pair (A, W) € R? x £ such that
r(xz) = Ra(x) + W(x).

If r = Ry + W then taking the scalar product of r» with e; and es, since W €
& = (Ker £)* and since (eq, e2) defined by is a basis of Ker L, we have

(12) (rler) = (Raler) and (r]es) = (Rale2).
Furthermore, if A € R? satisfies then W =7r—-Rj €&
We define 1 : R?> — R? by
W= ()
Therefore defines a system of coordinates in a neighborhood of 0 if ¢ is a local
ii/f(fg())toighism in a neighborhood of zero. This is the case since 9 is C* and since

We compute now the equation of the perturbation in the coordinates (A, W).
We write the solution r of Equation @D on the form :

r(t,x) = Ra () + W(t, z),

where for all ¢, W (t) € £ and where A : R} — R2.

We will rewrite Equation @ in the coordinates (A, W). The equation on A is
obtained by taking the scalar product of @D with e; and es. The equation on W is
obtained using ) the orthogonal projection onto £.

If A = (0,0) is fixed, we know that @ — Ry () satisfies (9 that is we have:

d’Rp dRA

— )+ H — )+ H —, —)+P =0.

LRA + G(RA)( 02 )+ Hy(z, Rp)( Iz )+ Ha(Ra)( Iz du )+ P(z,Ry) =0
In order to isolate the linear part in W we perform the Taylor expansion for G,

H,, H, and K, and we have at order 1:

dRy dRA

G(Ra + W) = G(Ra) + G(Ry, W)(W),

with

~

G(v1,v2)(§) = /01 G'(v1 + sv2)(€)ds,
and at order 2:
G(Ry + W) = G(Rp) + G'(Ry) (W) + G(Ra, W)(W®),
where
Glon () = | 1= )G (0 + 512, E)ds.

We will use the same notations for Hy, Hy and K.
‘We have
1914

do do
13 — R —O0sR —=LW+T+...Ts,
(13) i 0 A+dt A+ ot + 171 + 5
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where
(14)
W
T1 = IC}\W = G(RA)ﬁ7
oW dRy OW 2R
Ty = KXW := Hy(z, Ra) 5 — + 2Ha(Ra)( dA 5+ G’(RA)(W)WQA
OR Ry dR
+H1<x,RA><W>a—A + Hy(R)(W)(= =) + P/, Ra) (W),
) v ot
Rl LE A W ‘?}T (RA,W)(W)jv
7, = Ry, AW, O0) = ma(By 1 w)(OE T
oW . dRy OW
+H1($»RA7W>(W)<%) +2H2;R];\,W)(W)(%,%), .
= Ra(, A, W) = G(Ra, W) (W) (75 5%) + Ha (o, Ry, W) (W)(=5)

+ B, W) W) (R D0y B Ry w) (W),

We take the scalar product in L?(R) of (13) with e; and es. Since (e; %—V;’) =
(LW ]e;) = 0, we obtain that:

5
(1) ANG = 2T
where
_ ( (e1]0gRy) (e1]05Ry)
(16) A(A) = ( (62|8ZR2) (€2|50R2) )7

and
o= (i)

We remark that A(0) = Id, thus for A little enough, we can inverse the matrix
A(A) and we can write the equation satisfied by A on the form:

(17) B = M) W) + Mo, OV )
where
MAW) = AT +T)
(18) oW
Ma(W, ST ) = A)THTE 4 T4 T)

Applying the projection operator @ to yields to the following evolution
equation for W:

(19)
2
O = LW+ QIAW + QR (e, A, W)( 1) +QRa(e, AW, S0 )+ QR A, W),

where the linear operator K is defined by

(20) KAW = KAW + KAW + KXW,
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with
(21) KAW = =M (A)(W)3p Ry — MT(A)(W)0o Ry,
and where the nonlinear term Ro(z, A, W, aa—W) is given by:
x
(22)
ow ow ow ow

A —) =R4H(z, A —— ) =M (A —_— —M32(A ——)O0sRn.

RQ(Ia aV[/v 8:3) RQ(Ia 7I/Va 81‘) MQ( 7W5 Oz )GQRA MQ( ’VV7 ox )8 N
L ) de do

Remark 4. In the projection of Equation we have replaced o and E by

their expressions given by Equation . In the previous equations, M} and M?
are respectively the first and the second component of M,;.

We have thus proved the following proposition:

Proposition 3. Ifr: (t,z) — r(t,z) is small enough for the norm L> (R} ; H*(R)),
then we can write r on the form

r(t,x) = R (x) + W(t, x),
with A € L®(R};R2) and W € L=(R/;E). This decomposition is unique.
Furthermore r is solution for Equation (9)) if and only if (A,W) satisfies the
system coupling FEquation and Equation (17)).
4. LINEAR ESTIMATES

4.1. Study of the operator L. The self-adjoint operator L is a compact pertur-
2

bation of 9.2 + 1, thus its essential spectrum is [1,4o00[. Furthermore, we can
r
0
write L =" ol with [ = ~ 3 + thx, thus L is positive and 0 is a simple eigenvalue
x
associated with the eigenvector ——.
chz

We denote E = (Ker L)*. The restriction of L on E is a symmetric definite
positive operator. We denote by a > 0 its smallest eigenvalue.

Proposition 4. There exists constants Ky and Ko such that for allu € E

Ki||L2ul| 2 < |lullg < Ka||L3ul|re,
K1||§U||L2 < lullg2 < K2||L7:||L27
Ki||[L2ul|pe < [|ullgs < Kal|L2ul| 2.

Proof. Since « is the smaller eigenvalue of L on E, we have:
1
(23) VueH, |ulr: < EHLUHL?-
Furthermore,

lu”llze = l[u” = fu+ full> < |L(u)llz2 + [ flloeJul 2,

thus with the previous inequality, we obtain that there exists a constant K such
that for all w in F

(24) [ull > < K| Lul| g2

Since the domination of the L? norm of Lu by the H? norm of u is obvious, we
conclude the proof of the H? estimate.
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Now we have L?u = u® — 2fu” — 2f'v — f"u+ f2u that is

[ 2@ < IL2ull L2y + Cullull 2wy
since f, f’ and f” are bounded on R

< |ILPull 2y + CLK || Lul| 2
with Estimate (24))
< ( )L ul L2 ®),

. a . .
with Estimate applied on Lu
thus we obtain that there exists a constant Cy such that
[l g2y < Coll L2ul| 2wy

Since the opposite bound is obvious, we obtain an estimate about the H* norm.
By interpolation result, we deduce the intermediate estimates and we conclude
the proof of Proposition O

4.2. Estimates for the perturbed operator £ + QK. We recall that ICp is
defined by .

We remark that since A — Rj is regular and since Ry—g = 0, there exists a
constant C3 such that

ORA

(25) IRANl o=y + |5 =Ml (r) < CslAl

Therefore by properties of G, Hq, Hg and P, there exists then a constant Cy
such that
AW + ’C?\WHB(R) < Gyl Al [[W]| g2
Furthermore by properties of M; and Proposition [4 since Q is an orthogonal
projection in L?, there exists a constant Cj such that

(26) QAW [ 2r) < Cs|A| [LW || 2
In the same way, we prove that there exists a constant Cf such that
(27) |2 QAW |2y < CHIAL I L2W | L2r)-

In addition, for W € &

(QIAWIW) = (KAW|W)
since QW =W

2
= [em)Gpw

_ /G, 8RA aWW /G R oW OW
Oz Ox

by integration by parts
(QERAWIW)| < ColAIWI,1 g,
with estimate

where the constant Cg does not depend on A nor on W.
Writing that

[(QIRW + QAW |W)| < IIQ’C%WJrQQ’CiWHLzHWIIL?
< Gr|Al[W][g,

we obtain then that there exists a constant Cg such that

(28) (QEAW|W)| < Cs|A[IILEW |2z
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We denote by S (t) the semi-group generated by the linear operator £ + QKx.
We have the following proposition:

Proposition 5. There exists 3 > 0, there exists 11 > 0, there exists a constant K3
such that if |A(t)| < m for allt > 0 then fort >0

ISA(E)Wollar < Kze ™ [Wol s,
—pt

B
€
ISa(t)Woll g < KSW”WOHL%

for Wo e E

Proof. We fix W, € £ and we denote by W the solution of the Cauchy problem

{ %—Vf — LW + QKAW,

We set A(t) = | L2W (t)[[32z)-

dA 1 OW 1
— = 2AL2——|L2
dt ( ot ‘ W)

ow
2S5 L)

2JLWI|LW) + (QKAW|LW)
2| LW 2z, + 2(QKAW|LIV)
2| LW (172gy + 2C5| Al | LW |32 g),

IA

with Estimate (26]).

1
We fix n} = oA and for |A| < 7] we obtain that
5

dA

dt

IN

— LW (32w,

IN

1 1
_K722HW”§I2(]R) < _?ZQHW”?F(R)
with Proposition [4]

K? o1 2
_FHLQWHLZ(R)

3
with Proposition
K?

IN

_KE,
thus A(t) < A(0)e *3 and then with Propositionthere exists a constant K% such
that

W e ) < Kie™” HIWoll (),
LS
2K2’
We set now B(t) = [W(t)[3a ) + tILEW (1)1 m)-

with g/ =
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%: (W|8W) (LAW(LAw) + 20t 2 o 1LEW)
= 2AW|LW) + 2(W|QKAW) + (W|LW)+2t(6—W\LW)
= —(WILW) +2(W|QKAW) + 2t [—HLWHLQ(R) + (QKAW|LIY)
<

AW ey + 2SI LW
—2t| LW |22 g) +2tc’|A| LW 72 gy
with Estlmates ) and .

We set 1y =min( ) and if |A| < 7} we obtain that

4Cf

dB 1.1
T S —§|1|L2W||i2(R) — LW |72
< _@HWH%II(R) - tfg||W||H2(R)
with Proposition [4]
2 Kl2 1
< _@HWH[P(R) - tK722H|L2W||L2(R)
with Proposition [4]
K?
< 1
- 2K3

X
Therefore B(t) < B(0)e %3’ We remark that B(0) = [[Wo| r2(r), thus if we
2

K7
denote B’ = _ﬁ’ we obtain that

1 _ 17
W (D172 @y + HILZW L2y < [WollZa@e ™,
and so using Proposition [4] there exists a constant K4 such that

”t

K/
W ()| 1 (m) < v 2| WollL2rye™

Setting n1 =min(n},ny), f =min(F’, ") and K3 =max(K}, KY), we conclude
the proof of Proposition a

5. STABILITY

We consider (A, W) the solution of System (17)-(L9) with initial data (Ao, W) €
R2 x (H2(R))2.

In a first step, under Hypothesis H:” A(t) remains little”, we prove that if W is
small, then W (¢) remains closed to zero for the H? norm.

In a second step, under Hypothesis H, we show that in addition, (1 + ¢)?W (t)
remains bounded for the H' norm.

As a conclusion, we establish that Hypothesis H is justified when Ag and W, are
small.

In the following subsection, we prove preliminary estimates on the non linear
terms.
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5.1. Preliminary nonlinear estimates.

Lemma 1. There exists a constant K4 such that for all X € R? such that |\| < m
and all w € &,

MO < Kalwln ),
w
Malw, T2 N < Kl ey

Proof. We recall that M; and My are defined by .
We have for k£ =1..2

T1|€k /G R)\ d 2( ) . ek(m)d:v

_ _/R<G’(RA)( fk)eﬁa(m)f’“) de

by integration by parts
[(Thlex)| < ClA[[Jw] 2 (),

thus
77| < ClAl[Jwll ()

Furthermore, with the definition of T5 (cf. Equation ) there exists a constant
C such that

T3] < Cllwl| g (my |\l

Since the matrix A(A) is invertible for |A| < 1y, we obtain the estimation on M;.

Concerning My we remark that for £ = 1..2
(Tslex) = /Gm, @) ey(w)ds
dw dey,

dw ~
- -[|& (G(R» w)(w)) W ey () + BB w) ) 2 (@) L ()]
by integration by parts
that is there exists a constant C such that
T3l < Cllwllp )

A straightforward estimate on Ty and T gives that there exists a constant C' such
that |Ty| + |Tx| < C||w||§{1(R), therefore since A(\) is invertible, we conclude the
proof of Lemma O

Lemma 2. There exists a constant Kj5 such that for all A such that |\| < m1 and
allw € &,

2
1QR (2, w)( 2

w
@)”L?(R) < Ksllwllm ) llwll g2 )
HQRl(%)\,w)( )||H1(R) < Ksllwll gz llwll #3w)
[QRa(z, A\, w, )”Hl(R) < Ksllwll e llwll g2 )
[QR3(x, )‘ w)”Hl(R) < K5||1UH%[1(R)-

Proof. 1t is a straightforward application of the definitions of Ry, R2, R3, of the
properties of G, Hy, Hy, and P, and of Proposition O
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5.2. First step: variational estimate on W.

Proposition 6. There exists ny > 0 (with na < n1) such that if |A(t)| < ng for allt,
then, there exists a constant vy such that if ||[LW (t = 0)||p2 < v1, thent — ||LW]|| L2
is decreasing and there exists Kg such that

W)l 2y < Kol[Woll r2(w)-
Proof. We take the scalar product on Equation with J2L2W. We remark that:
.<8WJJ%? ) <8W>Jﬁ?W>:—4<mV|ﬁ ):padnmvﬁ%
o (LW | J2L2W) = —4 (JLW | L2W) = —4 (JL Sw | L3 W) = 4|LEW|2,,
o(QKMVLﬂﬁWﬂ:(LﬂMJW|ﬂLﬂV)mmAme4:—M¢wM1
Estimate (27))
(@AW | J2L°W)| < ACHIAIILEW |7,
o (QRie a1 ) =~ (LHaR A WG] L),
thus with Lemma [

O*W

8x2) |J2E2LV)‘
*W
922 )]
4 Pw 3

— QR (z, A, W LW 12
]

(Qm(x, AW

<4 ‘Lé[QRl(x,A, W)(

IN

with Proposition [4]
4K 3
71||W||H2(R)||W||H3(1R)||L2WHL2(R)
with Lemma [2
4K K2 3

) 2ILW | 2| L2 W17
with Proposition

IN

IN

In the same way, we prove that

ow 4K K2
‘(QRZ@ AW G | LW )' 22| LW |2 | L2 W32,
and that

|(QRa(x, A, W)|J2L2W) | < LW || 2 ]| L2 W 2.

4K5K3
K
Therefore we obtain that if |A| < 79, then

6Agk5

d 3 3
aﬂﬂmﬁr+ﬂL”Vﬁ2§ﬂ%mWﬁWW§+' ILW | || LEW 3,

that is:

d 6K5K3
(200 S IEWIEs + L2V (2—2%— e
1

|LW|L2) <o.
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K
6K5K2'
while ||LW (t)|| 12(r) < 71 this quantity remains decreasing with Equation (29), and
thus remains less than ;.

Therefore, with Proposition [4, we have:

We fix 1o < mp such that 2Cins < 1, and we set v, = If |A] < 19 then

K
VEZ 0, W (O)llmzm) < Kl LW (0) 2w < Kol LWollpag) < 22 [Woll a2,

K
and we conclude the proof setting Kg = ?2 g
1

5.3. Second step: parabolic estimates on W. Using Equation we have:

PwW

922 )(s)ds

W(t) = Sal W@y/&m—@mhqum
¢
+/ Sa(t — $)QRa(z, A, W, a—W)(s) ds
Ot (9x
+ [ Sa(t = 9)QRa(ar, A, W)(s) s,
0
and with Proposition |5, we know that while |A(¢)| < n; there exists a constant K3
such that
IW(E | mw < Kze ™ ”V[;O(UH;(R
+ Jo Ks“= QR (. A, W) (%) (5) | 2y ds
—B(t—s) 8W
/Kw“ QR (e, A, W, 7)) s e

/Kwtsm&@Amumm
Using Lemma [2] we obtain that
W a1 (w)
< Kse [ Wollm ) + / K3%
/Kw =) K |1V (5) L 2 oy IV (5) oy s

/KthMWUM

—B(t—s

Ks|[W ()l 2 ) W () 122 my dis

Using Proposition |§| we know that if ||[Wol|g2m) < 71 and if [A(t)| remains less
than 7o then ||[W(s)||g2®) < Kol|[Wol g2 r) for all s.
We define G(t) by

G(t) = sup (1+s)*[|W(s)| -
s€0,t]

‘We obtain then that
W) t
< me%mum+mm(/a+s4ﬁﬁwﬁwoﬁ
0

e —B(t—s) t
+ K3 K5 K| Wol| g2 w) G (t ( 1—|—s)72d5+/ eﬁ(ts)(1+s)2).
) o Vi-s 0
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Now there exists a constant K7 such that for all ¢ we have

e Pt K
s < K7
) t . (1+1¢)2
l_S)(l +8)2ds+ [ e P14+ 2s < K
0o Vi—s 0 - a7
t
/0 (1+ 8)74efﬁ(tfs)ds < (152)2 )

Thus we obtain that there exists a constant C such that

L+ MW ()]l < KsK7|Wollm + KsKs KoKz ||[Wo 2 G(t) + K3 K5 K7(G(t))?,

1
and since G is a non decreasing map, denoting oy =max{KsKz, Z}’ ay = K3 K5 Kg K~
and a3 = K3K5K7; we obtain that

(30) G(t) < ar[[Wollm + a2 Wollm=G(t) + a3 (G(2))*.
We have then the following result:

Proposition 7. Let 1y and 1 being given by Proposition [0, There exists vo with
0 < 2 < 71 such that for all § > 0 there exists T > 0 such that if the following
assumptions are satisfied:
(¢) for all t, |A(t)] < ne,
(id) |[LWollz2®) < V2,
(@) [Wollm ) <7,
then for all t > 0 we have

5

||W(t)||H1(]R) < m

Proof. Under Hypothesis (i) and if || LWp||L2(r) < 71 we have proved Estimate .
1
We set 7o :min(ﬂ,vl). Under Hypothesis (i) and (i) we have that for all ¢
2

1
(31) a3(G(t)* = 5G(#) + e[ Wol ) 2 0
. 2 1 1
Let us study the polynomial map P, : £ — a3f* —={+av. fv < v :=
2 16 a3
then this polynomial map has two positive zeros. The smaller one is &; (v) = Ton (1-
%]

V1 —16a;a3v). We remark that since oy > i then & (v) > v.

Let 6 > 0 be fixed.

The map v +— & (v) tends to zero when v tends to zero, so we can fix 7 > 0 such
that for v € [0, 7], £(v) < 4. Even if it means reducing 7 we can assume that 7 < ¢
and 7 < y5/2.

Under Hypothesis (), (i7) and (4i4), the map G(t) satisfies and G(0) =
[Wollrrm) < &1(IWoll 1 (r))- Thus for all ¢, G(t) < & ([|Wol a1 r)) < 6.

This concludes the proof of Proposition [7} O
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5.4. Estimates for A. We integrate Equation between ¢t = 0 and t. We obtain
that

32 MO < ol + [ MU (sDlds+ [ IMa7 (), T Al s

We assume that [Ag| < & and that ||LWyl[z2r) < 72. We fix an arbitrary 6. with
Proposition while [A(%)| remains less that 1y we have, if ||[Wol|z1®) < 7 we have:

||W(t)||H1(]R) < m

Using this estimate in Equation and using Lemma [1| we obtain that while
[A(t)] < o we have:

1
2

We fix § > 0 such that

K 5/+OO L d+K52/+OO 1 _gs<™
o Ay ® T e =g

With Proposition |6| we find 79 > 0 and if |[Ag| < %, ILWollg2r)y < 72 and if

[Woll i1 gy < 7o then with Estimate (33), [A(t)| remains less than 7 for all time,
and all the estimates are true for all time, which concludes the proof of our theorem.
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