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1 INTRODUCTION

Exactly solving the MLLA evolution equations for the quarkdagluon inclusive spectra and for 2-
particle correlations inside one jet provided, at smallin [fl], analytical expressions for these ob-
servables, which were unfortunately limited, for techhimgasons to the “limiting spectrumt =
In(Qo/Agcep = 0. The goal of this second work is to go beyond this limit in apragimate scheme
which proves very economical and powerful: the steepestae$SD) method. It offers sizable technical
progress in the calculation of both observables.

First, we perform a SD evaluation of the (quark and) gluomlsinnclusive distributions. Their full
dependence oA is given, including the normalization. The well known shidtsmaller values of of

the maximum of the distribution, as compared with DLA cadtigns is checked, as well as its Gaussian
shape around the maximum. Comparison with the resultsrestaiumerically in[[R] is done.

As shown in [IL], knowing the logarithmic derivatives of tmelusive spectra immediately gives access
to 2-particle correlations. This is accordingly our nexgpstSince, in particular, the former prove to be
infra-red stable in the limih — 0, the result can be safely compared with the exact one olotam]].
The agreement turns out to be excellent, and increaseshetbrtergy scale of the process.

Last, we evaluate 2-particle correlations inside one higlrgy jet and study their behavior @, #
Agcp. That one recovers the results of Fong & Webljér [3] close ¢opisak of the single inclusive
distribution and whem\ — 0 is an important test of the validity and efficiency of the SDtinoel. The
quantitative predictions do not substantially differ fréime ones of[[lL] for the “limiting spectrum”, which
stays the best candidate to reproduce experimental results

A conclusion summarizes the achievements, limitationsepeictations of[1] and of the present work.
It is completed with two technical appendices.

2 STEEPEST DESCENT EVALUATION OF THE SINGLE INCLUSIVE
DISTRIBUTION

We consider the production of one hadron inside a quark ouangiet in a hard process. It carries the
fraction x of the total energyr of the jet. © is the half opening angle of the jet whi is the angle
corresponding to the first splitting with energy fractior« z < 1.

2.1 Variables and kinematics

The variables and kinematics of the process under consinler@e the same as in section 3.1[¢f [1].

2.2 Evolution equations for particle spectra at MLLA

We define like in L] the logarithmic parton densities

Q) = zDg(z), G(l) = zDg(x)
for quark and gluon jets in terms of which the system of evoluequations for particle spectra at small
z (see egs. (42) and (43) di [1]) read
/ / 3 / / /
Q)=o)+ SE[ e ["apaiee + ) (1= 3o - 0)ae.y), ®
Gl,y) = o(¢ / de’/ dy' 2 (¢ + ) (1 —ad(¢ —€))G(£’,y’), )
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where

1 [11 4 20F\ 1 np=3
a= [ N, +—nfTR<1— NF>] £70.935. (3)

The termsx 2 2 in (fl) andx a in (@) account for hard corrections to soft gluon multiptioa, sub-leading
g—qq spllttlngs strict angular ordering and energy conseovati

2.3 Evolution equations; steepest descent evaluation

The exact solution of]2) is demonstrated ih [1] to be givertHeyMellin’s integral representation

— dw dv wé—f—uy/oo ds [(w+ s\ NP
Gy = €+y+)\// i\ — e

00 a/p
= (e / o d” v [ ( v ) o), (4)
2772 o V+s\v+s

where we have exponentiated the kernel (symmetricabim))

B 1 w(v+s)
o(s) = 5w =) In <U(w n s)> — As. (5)
— = 0’

reads (sed]7]) ’
) =2 [ o+ @0~ (@ +0) ©)
Solw, - 2 ﬁ)\ w w .

One makes a Taylor expansionafs) nearbysg:

1 +(w—r)2<0, (7)

o(s) = o(sg) + %a”(so)(s —50)24+0 ((s— 30)2) . 0"(sg) = —fA? B

such that

/oo ds <w(y+s)>1/ﬂ<w—">< v >a/ﬁ ezt @ ¢7(%0) < v >a/ﬁ @
e ~ - .
0o Vts\(wts)v v+s 2 (v +s0)y/|0"(s0)| \V + 50

The condition\ > 1=, /7 < 1 3 guarantees, in particular, the convergence of the petiuecapproach.
Substituting [[8) in[(4) yields

¢(w7y7z7y) a//B
Gt 2[5y [[ 25 () ©
27i)" (v + s0)\/| 0" (s0)| \V + So

where the argument of the exponential is

I 50
Blw—v)  (w+so)v

%in (ﬂ), A appears to the pow&y/2 > 1, which guarantees the fast convergence of the SPiasreases.

¢ (w,v,ly) =wl+ vy + (10)




Once again, we perform the SD method to evalugte (9). Thdespdiht (wy, 1) satisfies the equations

0p 1 w (v + s0) 1 (v + so)
o T e ety e v ()
0p 1 w (v + so) 1 (w+ s0)
7 _ — A =0. 11b
ov y+ﬁ(w_y)2n(w+so)u By(w—u)+ (w—v) (11b)
Adding and subtractind (IfLa) and (11b) gives respectively
1 (12a)
wolo = ——5— <
T By + A
gl = 1 <i i)_ 2 21nw0(V0+80)_)\WQ+V0+280; (12b)
B(wo— o) \wo 1o B (wo — o) (wo + s0) 1o wo — Vo
(wo, 1) also satisfies (fron{]6))
(w0 + 50) (0 + 50) = == 13)
wo So) (Vo So) — ﬁ)\

One can substitute the expressidns|(11a) (11baody into ([{L0), which yields

2 wo (VO + 80)
= A y) = 1 . 14
# = 9w, 10,6) B(wo— o) (wo+s0) 0 )
Introducing the variable§u, v) [[i] to parametrizewy, o) through
1 Lu(ly) L oty
wo (1g) = ———e"H"Y), wo + 80) (g + 50) = ——=e™\OY) 15
0 (v0) Gy (wo + s0) (0 + s0) NG (15)
one rewrites[(14) and (1Pb) respectively in the form
2 — w—"v
@(M’U)_ﬁ< E—i—y—l—)\—\/X) sinh g — sinh v’ (16)
y—+L (sinh2y —2u) — (sinh2v — 2v) (17a)
y+Ll 2 (sinh2 1t — sinh? v) ’
moreover, sinceyy — vy = (wo — so) — (o — so), (1, v) also satisfy
sinhv  sinhp (17b)
NN/ ESTEN

Performing a Taylor expansion of(w, v, £, y) around(wy, v), which needs evaluating-, 2% and

9 (see appendik A1), treatir@” + \) as a large parameter and making use[df (15) prowdes the SD
result

G(&y)wN(u,mexp[ (VIFy A -Va) = o Su-v)],  (9)

sinh 4 — sinh v Ié;

where

(v, 3) = 5 (E+y+3)

(5) ()

V/meoshv DetA(u,v) \£+y+A
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with (see details in appendix A.1)

(19)

—v) cosh p cosh v+cosh p sinh v—sinh 1 cosh v
DetA(u,v) = B (t+y+A)?® [(M )cosh . a ] :

sinh® p cosh v

2.3.1 Shape of the spectrum given in eq_(L8)

We normalize [(8) by the MLLA mean multiplicity inside one ff]
la 1

a2 3 () 2 - = (wEr-va).

The normalized expression for the single inclusive distidn as a function of = In(1/x) is accord-
ingly obtained by setting = Y — ¢ in ({L§)

G(LY) \/ BY2(Y +\)3/?
ay) -~

mcoshvDetA(p, ) {\/7( Y \/_)<

a
1) +U—B(,u—v) .(20)

sinh g—sinhv

One can explicitly verify that[(20) preserves the positibthe maximum [B][PI[1D] at

Y 1la Y
b = 5 + 55 (VWFX-Va) > 3 1)

as well as the gaussian shape of the distribution arduhd($2&)appendikx Al.2)

G(@, Y) ~ 3 v 2 3 (@ — gmax)Q 22
aY) C\mBY N2 -NR] ) TPAT B o 2 - (@2

In Fig[1 we compare foF” = 10 and\ = 2.5 the MLLA curve with DLA (by settinga = 0 in 3)).
The general features of the MLLA cure]20))at 0 are in good agreement with those ff [2].

0.2 r MLLA, Y=10, A=2.5
DLA, Y=10,A\=25 ——
0.15 |

0.1 r

0.05 |

I=In(1/x)

Figure 1: SD normalized spectrum: DLA (blue), MLLA (greeii);= 10.0, A = 2.5.

The shape of the single inclusive spectrum given[bl (20) eaiiyebe proved to be “infrared stable” (it
has indeed a final limit wheh — 0).



2.4 Logarithmic derivatives

Their calculation is important since they appear in the eggions of 2-particle correlations.

Exponentiating the/, y) dependence of the factav in (L8), we decompose the whole expression in
two pieces
Y=+, (23)

wherey, given in (1§), is the DLA term for the shape of the distributi[j], and

S = —% (1 + %) In(l+y+ N — %wr (1 + %) v+ %ln[Q(uw)] (24)

is the sub-leading contribution (in the sense that its déxig gives the MLLA correction), where

Bl +y+N)3 sinh? 11

@p,v) coshvDet A(p,v)  (p—v) cosh p cosh v+cosh psinh v—sinh g cosh v’

By the definition of the saddle point, the derivatives[of (@8¢r¢ andy respectively read:

p¢ = wo = Yoe", Py = vy = Y€ . (25)

We introduce (see appendix A.3)

0
E(,U,,U) = _% +L(M,U), L(,U,,U) = %%IH[Q(/%U)L
K —1+% 4K K _19, 26
(,v) =1+ 3 + K (u,v), (,v) = 290 n[Q(p, v)] (26)

and make use of

ov ow 1,
7 tanh v <coth,u% — 567()) ,

v

ou 1
3y = tanhv (COth ,ua—y — 5ﬁ7§> ,

that follows from [T7b), to writds,, &4, in terms of %, g—g

0y = —% <1 + % + tanhvlC(p,v)) Be + (L(,u,v) + tanhvcoth,ulC(p,v)) g_l;’ (27a)

1
Oy = —3 <1 +24 tanhvlC(p,v)) B2 + (E(,u,v) + tanhvcoth,ulC(p,v)) g—': (27b)

B
Using (I7h) and (1Tb) we obtain
0 1 ~ 0 1 ~
8—’; = =507 1+ Q)] a—Z = 50% 14+ e Qu,v)] (28)
where

~ cosh psinh pcoshv — (u — v) cosh v — sinh v

Q(p,v) = (29)

(1 — v) cosh p cosh v + cosh psinh v — sinh p cosh v’

which we have displayed in F{§.2 (useful for correlations).

6



Y+A=7.5
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N W~ OO N ® ©
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o
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N
w
N
[¢)]

1=In(1/x)

Figure 2: Behavior of)(u, v) as a function of = In(1/z).
Inserting [27b) and (28) int¢ (27a) gives the SD logarithdedvatives of the single inclusive distribution

1 ~ ~
Ye(p,v) = 706“4—5@73 {e“Q(,u, v)—tanh v —tanh v Coth,u(l—ke“Q(,u, v))}

_%mg [1tanh o (14K (1, 0)) + Cn0) (14 @ v) )| + 0G),  (30a)

Py (p,v) = 706_“—%a78 [2—1—6_“@(,u, v)+tanh v —tanh v Coth,u(l—ke_“@(,u, v))]
15 h - “HQ 2) (30b
570 | Ltanho( 1+ K (u,v) | = O, ) (1+e7Q(p,v) ) | + O(r5) (30)
where we have introduced (@and K have been written inf (b7) anfi {68))

C(p,v) = L(p,v) + tanhvcothu(l + K (u, U)) (31)

C does not diverge whem ~ v — 0. One has indeed

2 3

9 3% v
lim [L(p,v) + tanhvcoth uK (p,v)] = lim “7“3# =0
11,00 pv—0 4 <1 _ v_S)
P
as well as

~ 3 iz
lim tanhwv coth (1 —|—ei"Q(,u,v)> = lim = —*— = .
11,00 po—0 ] — Yo AL

w1 <m)

In (B04) and[(30Db) it is easy to keep trace of leading and eabithg contributions. The fir€d () term

is DLA [fi] while the secondd a — “hard corrections”) and thirdx 5 — “running coupling effects”)
terms are MLLA corrections®(~3)), of relative orderO(+,) with respect to the leading one. In Hig.3
we plot (30R) (left) and[(3b) (right) for two different valsi of \; one observes that, (1) decreases
(increases) when increases.

For further use in correlations, the logarithmic derivesihave the important property that they do not
depend on the normalization but only on the shape of theesinglusive distribution.



ylaty =75 whaty=75

0.8

A=1.5
0.7 r A=3.5
06 |

0.5
0.4
0.3
0.2 |
0.1

1 2 3 4 5 6 7
1=In(1/x) I=In(1/x)

Figure 3: SD logarithmic derivativeg, ands), of the inclusive spectrum at = 7.5, for A = 1.5 and
A =3.5.

2.4.1 “Limiting spectrum”™ X — 0 (Qo = AgQcD)

Since the logarithmic derivatives are “infrared stabledgsabove), we can take the limit — 0 in
B0#)[30p)*, and compare their shapes with the ones obtainef] in [5];istdene in Figs[]4 anfl 5, at
LEP-l energy £0¢ = 91.2GeV,Y = 5.2) and at the unrealistic valug = 15.

The agreement between the SD and the exact logarithmicatiges is seen to be quite good. The
small deviations € 20%) that can be observed at largéthe domain we deal with) arise from NMLLA
corrections that one does not control in the exact solutiime agreement gets better and better as the
energy increases.

3 T T T T T T T T
Y, Exact Solution, Y=5.2 Wy, Exact Solution, Y=5.2
>5 Y, SD, Y =5.2, A=0 25 L Wy, SD, Y =5.2, \=0
2 |-
15
1 |-
0.5
0 . . . . . . . . . . . . .
0.5 1 1.5 2 2.5 3 3.5 4 45 5 0 1 2 3 4 5

I=In(1/x) I=In(1/x)

Figure 4: SD logarithmic derivatives, (left) and, (right) compared with the ones df [1] &t = 5.2.

It is checked in appendi (A.4) thdt {18) satisfies the evofuequation|[(2); the SD logarithmic deriva-
tives (30h) and[(3Db) can therefore be used in the approgicetulation of 2-particle correlations at
A # 0. This is what is done in the next section.

3 2-PARTICLE CORRELATIONS INSIDEONEJETAT A#0 (Qo# Agcp)

We study the correlation between 2-particles inside onefjéialf opening anglé® within the MLLA
accuracy. They have fixed energies = w1 /E, o = wyo/E (w1 > wy) and are emitted at arbitrary

“For this purpose,a) has been numerically inverted.



3.5

‘ W, Ex‘act Soldtion, Y:iS ‘ Wy, ExLact Solu‘tion, Y:i5
3 1 Y, SD, Y =15, A=0 25 Yy, SD, Y =15, A=0
25
2 L
1.5
1k
0.5
0 . . . . . ; . . . . . . .
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

1=In(1/x) I=In(1/x)

Figure 5: SD logarithmic derivatives, (left) andy, (right) compared with the ones di [1] &t = 15.

anglest, ©,. The constrair®, > O, follows from the angular ordering in the cascading proc€sse
has® > O, (see Fig. 1 of[[1]).
3.1 Variables and kinematics

The variables and kinematics of the cascading process finreddike in section 3.2 of [1].

3.2 MLLA evolution equations for correlations

The system of integral evolution equations for the quark gldn jets two-particle correlation reads
(see egs. (65) and (66) df [1])

GA(ty.n), (32)

@) Cr 121 Y2 5 3
Q (517y2777)—@1(5172/1)692(5272/2):?/ dt | dyvy(€+y) [1—15(5—51)]
cJo Jo

41 Y2
GO tr,2,m) — Ga (b1, ) Galtare) = [ [ dyaf(e+ )|t~ ad(e - 0] GO e,y m)
0 0

(a—b) /O Py 4 )Gy G+ 0. (39)

ais defined in[{3) while

11 4
c—onfTR

p— % 0.915
AN, | 3 3 R

(34)

Cr\?] ns=
(-25) ]

3.3 MLLA solutionat A # 0

The quark and gluon jet correlatofs andC, have been exactly determined for akyn [@] by respec-
tively settingQ® = C,Q:Q2 andG? = C,G1G> into (32) and [(33). In the present work we limit
ourselves to the exact MLLA solution which consists in netifey all O(43) corrections in equations
(64) and (84) of[[lL].



3.3.1 Gluon jet

At MLLA, the logarithmic derivatives o) (23) can be truncated to the saddle point derivativgsp,
of (L@). The MLLA solution of [3B) then reads (see (77)[h [1])

MLLA 1—0b(p10+ p20) — 01

-1 35
G 1+ A+ A +6 (35)
where we introduce
A =2 (901,&02,;, - 901,y902,£), (36)
A =52 (801,25%,3; + 01,y P20 + 01 pp2,y + <P1,y5¢2,z); (37)
1 1 0x 1 0x

=In(1+— S = —2X 38
X n<+1—|—A>, Xe X@E’ Xy Xay’ ( )
51 =y ° [Xe(sm,y + 024) + Xy(1,0 + @2,4)] . (39)

[B8) is obtained by usind (5):
A(p1, p2) = 2cosh(ur — p2) = O(1), (40)

which is the DLA contribution[[7], while[(37) (see appenlixiB obtained by usind (R5)] (7a) arjd (R7b)

e Moo g + e7H201)1 ¢ + el ovg y + eH2 01y
o
it is a next-to-leading (MLLA) correction. To g€t (38), wedfituse [(40), which gives

Al(p, p2) = = O(); (41)

- tanh 542 Oy Ous - tanh H5£2 opr  Ous (42)
Xe= 79 cosh(uy —pg) \ OF ol Xy =779 cosh(ug —pe) \ Oy oy )’
and then[(28) to get
_3 tanh Hk2 eMQy — e2Qq g2 tanh £5k2 eMQy — e H2Qy
% 1—|—2005h(,u1—,ug) 2 ’ N1 cosh(,ul—,ug) 2

which areO(~3). They should be plugged intp (39) together witH (25), whitleg

2sinh? (L4542)
:BPYO : 2 (p1—p2
3 + 4sinh (T)

(@(Ml,vl) +@(M2,U2)) = O0(%); (43)

itis also a MLLA term. ForQ > Q¢ > Agcp we finally get,

MLLA 1 —byg (et + et2) — &y
Collr, b, YV, ) MR 1
ol b2 ) 14 2cosh(pur — p2) + A'(p1, p2) + 61

(44)

where the expression fak’ ([f4) is written in appendiX]B. It is important to notice thiat ~ 0 near
01 =~ 0y (1 ~ pe) while it is positive and increases agyets larger (sed (R9) and Hig.2); it makes the
correlation function narrower iff; — (s|.

10



3.3.2 Quark jet

The MLLA solution of (3P) reads (see (93) ii] [1])

Cy—1 MLLA N, 1+ A
C,—1 ~ CF{1+(b—a)(¢1e+¢2£) ST A (45)
Inserting [3p){(39) into[(45) we get
MLLA N, 1+ 2cosh(py — p2)
YA R+ 2 Y,A) —1) |1+ (b— oy et :
Coll1, 62, Y, ) + g (Coltn 02,0 —1) [ (b= (e et AL

which finally reduces (fof) > Q¢ > Agcp) to

LLA

N, 1 o e
Collr, o, v, ) R 2 [(C (El,EQ,YA)—1>+ (b—a) ¢ e
Cr 2

o 1+ COSh(,u,l — Mg):| ’

(46)

3.4 Sensitivity of the quark and gluon jets correlators to the value ofA

Increasing) translates into taking the limits, Agcp — 0 (Y =L+ y < X, Q > Qo > Agep) in
the definition of the anomalous dimension via the runningpting constant{y = vo(«s), see (44) in
[fl]). It allows to neglect, y with respect to\ as follows

1 Hy<h 1

Bl +y+ N 0= By 47

such thaty, can be taken as a constant. Estimatifjg (4) in the region 1 < s < 1 needs evaluating
the kernel

1 (w+s)\P ) \Pacrn i 1/Blw=v) <1 s>a/6
v+s \(w+s)v v+s T wv v
S Ll s, 111 232+11 1 333+
T vlw Y a2\ ) ETss\e 1) B
Integrating [4B) oves, using [4F) and/;” s" e~ = £, we get

=3 ) (3G ()
v =8 (1w —a)

W% +y) =

(48)

which, after inverting the Mellin’s representation (132)H, gives

<1
Gl,y) ~ exp(2v\Lly— afygy). (49)
Taking the same limit in[(1ya) anfl (17b) gives respectively

— 0 ty<n 1.y by ly—+¢
I anhp=p=c-lnZ,  p-v 5 X P~ v (50)

Furthermore, we us¢ (50) to show hdw](23) reduces to the expaom (49)°

2 w—uv EHy<A
= = &= 29/
¢ /B sinh p1 — sinh v 0 ’

*we setd = 0in (), ) and only consider termsa

11



a/B
Yo la l+y a lal+y a
S Y it Y PRt
<1/0+80> Qﬂn< A) v~ — Y
Ly
£ —a’ygy. (51)

Thus, sincew = £ In ¥ (B0), (30R) and[(30b) simplify to

Hy<A Yy bhy<h 14
Yy = 706“:70\/;7 vy~ e “—GVSZ’YO\/;—G’Y%- (52)

Therefore, taking the limiB, Agcp — 0 (A — o0) leads to the simplified model described in section
4.2 of [1]. Setting, for the sake of simplicity; ~ ¢» in (B4)@%), wherej; vanishes, we obtain, in the
high energy limit

) =1+ 12 (=30  wittan) | eyt =143 [5-5 (Gars) wien)| . 69

Cr |3 21\3
where

1 1 Tr Tr Cp Tr C}% ny=3
b—-a=—(11-8—+28/—— —24————= ~ 0.6

3a 18 ( N, * N, N, N, N(:2 ’
5 2 TR TR CF TR C% nf:3
— b=—|11+—=4+—— —6——= ~ 2.5. 54
3¢ 9< AR A S A (c4)

Thus, when\ increases by decreasing,cp, 1 o 7o decreases and the correlatdrg (53) increase. For
LHC, a typical value isY’ = 7.5 and we compare in Fid] 6, at fixe@y, the limiting case\ ~ 0

(Qo = Agcp =~ 253MeV) with A = 1.0 (Agep = 100MeV) and X ~ 2.3 (Agcp = 25MeV). As
predicted by[(53), the correlation increases wheg:p — 0 at fixedQo.

It is also sensitive to the value 6Jy. As seen in[(§3), sincg = In % — ¢, if one increases) (since
Agcp is fixed, o does not change), thereby reducing the available phase,gpacorrelators increase.

This dependence of the correlators at fixesl-p is displayed in Figl7 fob.3 GeV < Q, < 1.0GeV at
L1 = {5 = 3.0 (soft parton).

1.4

1.8

— Y=7.5,A=23
1.6 t — Y=7.5A=1.0
Y=7.5, =0

— Y=7.5,A=23
1.3 — Y=7.5,A=1.0
Y=7.5, A=0

1.2 r 1.4

1.1 - 1.2
1 .
09 0.8 -

0.8 b 0.6 -

07 L L L L L L 04 L L L L L L
5 6 7 8 9 10 11 5 6 7 8 9 10 11
I+, I+,

Figure 6: Varying)\ at fixedQo; Agcp dependence al, (left) andC, (right)

In the simplified model which leads tp {53), andC, respectively go to the asymptotic values and
14 N./3CF. This is however not the case in the general situatiog 0, as can be easily checked by

12



1.16 1.35

l;=1,=30,SD l;=l,=3.0,SD

1.14 | 1.3
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€y (Qo)
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1.1 ¢
1.04 |

102 b 1.05

0.98 |+ 0.95
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 7: Varying\ at fixedAgcp = 253 MeV'; Qo-dependence df, (left) andC, (right) at/; = {5 =
3.0

using {30R) and[(3Db); for example, near the maximum of thgilution (« ~ v — 0), a contribution
o< A3/2J[(Y + X\)3/2 — X3/2] occurs in the term proportional tin (53) that yields negative values ¢f
when\ increases.

3.5 Extension of the Fong and Webber expansion; its limiA = 0

In the Fong-Webber regime, the energies of the two regidieaeticles stay very close to the peak of the
inclusive hump-backed distribution that j&; — £,.4.| < o o< [(Y 4+ X)3/2 — A3/2]1/2 (see [2R)).

Near the maximum of the single inclusive distributibn~ ¢, ~ Y/2 (1,v — 0, see appendik A.2)

A\ 2 3 02 ~ 2 1/ X \*?
1i == lim K; = =——¢ li =S4+
0= () mi= gt Q=55 ()

whereC, K; andQ are defined in[(31)[($8) anfl {29). Keeping only the termsalirie ;» and the term
quadratic in the differencgu; — u2), one has

AL A €1~£§Y/2 9 2\3/2 -
+ ~ 0 2+ (= p2)” — a0 (24 p1+ p2) — B 2+3(Y+)\)3/2_,\3/2 (55)
and 32
Oy~la~Y )2 ] A
L §ﬂ’¥0(ﬂ1 — o) |2+ (Y—Jr)\> ] ; (56)
81 can be neglected, sineg(u1 — p2)? < (w1 — p2)? < 1. Then, in the same limit[ (}4)[ (46) become
{1~ lo~Y —
02(51752,5/, A) A /21+ L= b2+t p2) 3/2 )
A
3+ (1 — p2)? — avo (24 w1 + p2) — B 2+3(Y+A)3/2 —7
(57)
IRRS 9P N, 1
Colr, b2, Y, N) = 1+ o [(cgwl,@,x N-1)+ 20— a0 2+ + /m} (58)
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Using (64) one has

Y+ A 9 (Y_|_)\)1/2
[(V + A)3/2 — 23/2]” (=t i > 3 s

(Ml—,uz)Q ~9 [Y_(El + 62)]

such that the expansion ¢f{57),](58)jim o /s reads

. 4 (VN2 -0)) (2 ¥ +N2Y \n
ngl?e?vyv)‘):g_ + 15+ <—a—b> Y0

(Y + M\)3/2 — A3/2 3 (Y + A2 - 22 J\3

1(2 \3/2 1 (Y + X2 + ) 2

2
Ne (N[ ((r+0"P0-6)\" 12, (v+2"y (5

00y, 09, YV, \) = 14 oC g e | -5 3010

Cq( 1,02, Y, \) +3CF+CF (Y + A)3/2 — \3/2 4 3+(Y+)\)3/2—)\3/2 3a—i— o

1 (2 A3/2 1 /5 (Y + N2 (01 + 05) )
T3 (5 TN )\3/2> oty <§a+ b) ( ¥z e |0 Otn). (60)

Therefore, near the hump of the single inclusive distrdti{44),{4p) behave as a linear functions of the
sum(¢; + ¢2) and as a quadratic functions of the differeriée— ¢»). At the limit A = 0, one recovers
the Fong-Webber expressidn [3].

3.6 Comparison with the exact solution of the evolution equ#ons: A = 0

In Figs[$ we compare the SD evaluation of the gluon correlaith the exact solution of[1] ak = 0.
The difference comes from sub-leading corrections of ofgehat are not present iff (44). For example,
—By2 ~ —0.2 atY = 5.2 occurring in the exact solution (69) di [1] is not negligitidat is absent in
®4) and [4p). That is why, the SD MLLA curve lies slightly aieothe one of[[1] at small; + /5.
The mismatch becomes smallerYat= 7.5, since—ﬁ73 ~ —0.13. However, wher/; + ¢5 increases,
the solution of [l1] takes over, which can be explained by carmg the behavior of the SD MLLA;
obtained in [43) and., b in [[]. Namely, whiled; remains positive and negligible fé ~ ¢5, d., be
decrease and get negative whign+ ¢, — 2V, see Fid]9 (left), which makes the correlations slightly
bigger in this region. As¢; — /5| increasesy; is seen in Fid]9 (right) to play the same rolefass,

do in the solution[[[1] and therefore, to decrease the cdioela The agreement between both methods
improves as the energy scale increases. A similar behawlds ffior the quark correlator.

In [fl], strong cancellations between the MLLA and the NMLLA 6, were seen to take place, giving
very smallé, andd,; this eased the convergence of the iterative method bugdaisestions concern-
ing the relative size of MLLA and NMLLA corrections and thelidity of the perturbative expansion.
However, since; is itself, there, entangled witbtomeNMLLA corrections, no definitive conclusions
could be drawn. The present work and Hig. 9, by showing trelov . andsé,. of [l play the same
role as thegpure MLLAG; which is now calculated, suggests (though it is not a dematish) that the
perturbative series is safe. Itis indeed compatible wighftiowing scheme: iJ1], the pure MLLA part
of §; is the same as that in the present work; the cancellatiorflj wcur between NMLLA corrections
included ind; andd,; these are eventually of the same order of magnitude as Mg, but they are
only parts of all NMLLA corrections; this leaves the poskipithat the sum of all NMLLA corrections
to 6; and all NMLLA terms ofd, are separately smaller than the pure MLLA termsigfthat is that
strong cancellations occinetween NMLLA correctionghe ones included, because of the logic of the
calculation, in [|1], and those which were not be taken intooaat.
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Figure 8: Comparison between correlators given by SD anfl]iraf A = 0.

3.7 Comparison with Fong-Webber and LEP-I data; howA = 0 is favored

Let us consider, at thg° peakY = 5.2 (E© = 91.2 GeV at LEP-I energy), the processe™ — ¢g. As
can be induced from Fig.8, the results obtained in the ptegerk by the (approximate) SD method are
very close to the ones obtained in subsection 6.3]of [1] byeiaet solution of the evolution equations.
Accordingly, the same comparison as [ih [1] holds with respeboth Fong & Webber’s result§][3] and
OPAL data [B].

It is also noticeable that, since, &t= 0, correlations already lye above (present) experimentalesy
and since an increase dtends to increase the predictions, the limiting spectriayssthe best candidate
to bring agreement with experiments.

4 CONCLUSION

Let us, in a few words, summarize the achievements, but hksdirnitations of the two methods that
have been used respectively fh [1] (exact solution of MLLAlation equations) and in the present work
(steepest descent approximate evaluation of their sokitio

Achievements are threefold:

- in [f[], MLLA evolution equations for 2-particle correlatis have been deduced at smalind at any
A; their (iterative) solution can unfortunately only be eagsed analytically at the limit — 0;

- by the steepest descent method, which is an approximateothednalytical expressions for the spec-
trum could instead be obtained far#£ 0, which enabled to calculate the correlation at the samé dédve
generality;

- one could move away from the peak of the inclusive distriout

15



0<ly-1,<0.1, Y=7.5,A=0 0.9<l;-l,<1.1, Y=7.5,A=0

0.1 T T T T T T 0.6
5,, SD
0.5 3¢
)
0.05 — &
0.4 r
0 0.3
0.2
-0.05
0.1 r
0.1 , , , , , , 0 . . . . . .
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(I + L)Y (I + L)Y

Figure 9: Comparison between the $Pandé,, . of [Maty =7.5 X=0.

So doing, the limitations of the work of Fong & Webber haveishad. Their results have been recovered
at the appropriate limits.

The two methods numerically agree remarkably well, despitenavoidable entanglement of MLLA +
some NMLLA corrections in the first one.

The limitations are the following:

- the uncontrollable increase af when one goes to smaller and smaller transverse momenteouaip
ments in this directions mainly concern the inclusion ofpenturbative contributions;

- departure from the limiting spectrum: it cannot of courppear as a limitation, but we have seen that
increasing the value of, by increasing the correlations, does not bring bettereagest with present
data; it confirms thus, at present, that the limiting spexctisithe best possibility;

- the LPHD hypothesis: it works surprisingly well for inciue distributions; only forthcoming data will
assert whether its validity decreases when one studiefigssive processes (like correlations);

- last, the limitation to smalt: it is still quite drastic; departing from this limit mostgisably lye in the
art of numerical calculations, which makes part of forthamyprojects.

Expectations rest on experimental data, which are beirlgatet at the Tevatron, and which will be at
LHC. The higher the energy, the safer perturbative QCD id,tha better the agreement should be with
our predictions. The remaining disagreement (but muchlemidan Fong-Webber’s) between predic-
tions and LEP-1 results for 2-particle correlations staaslan open question concerning the validity of
the LPHD hypothesis for these observables which are notitsdiisive as the distributions studied in
[B]. The eventual necessity to include NMLLA corrections caly be decided when new data appear.
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A DOUBLE DERIVATIVES AND DETERMINANT

A.1 Demonstration of eq. [1D)

We conveniently rewrite[ (11la) and (11b) in the form

8_¢:2w—1/£+ v 10) _)\I/—|—280+ 1 , (61)
ow w-—v w—v w—v w—v  fwlw-—"v)
%:w—2yy_ w n 10) +>\w+2so_ 1 . (62)
o  w-—v w—v w—vV w—v  priw-—v)
The Taylor expansion of (L0} ii](9) reads
1 9? 162
P(w,v, 4, y) = ¢p(wo, vo, 4, y) + 2 8—(;2 (wo, 10)(w — wo)? + 2 87(2 (wo, 10) (v — v0)?
82
+8w(;by (wo, 1) (W — wo) (v — o). (63)

The expressions of the second derivatives follow directiynf (61) and[(62)

¢ _ 0] 2w—v 4
0w?  (w—v)? (Cry+2) + (w—1)? Buw?(w—r)? * Blw—v)2(2s0 +w+v)’
0% B 1) w—2v 4
w2 (w—v)? (Cry+2) + (w—v)? * Br?(w — v)? * Blw—1v)2(2s0 +w+v)’
2
76 _ (L+y+A) — A ! - .

owdv  (w—v)2 (w=v)? fww-v)? Bw-r)>2s+w+r)

(@) and its solution can be written in the form

2
G~ // d*v e_%UTAU = —
v Det A

where

w ig a2 2 1 92 2 2
ow Owov
’U:(w,lj), vT: > DetA = Det :a—(ga—(s—<a¢> .
526 826 Ow? v Owldv

An explicit calculation gives

DetA:(£+y+>\)2V(w+V)¢_4+ Aw +v) ]

(w—r)? (w—v)2(2s0+w+v)
which, by using[(15) leads t (19).
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A.2 DetA (see eq.[(q]9)) around the maximum

This is an addendum to subsectfon] 2.3

limaq Written in (21) is close to the DLA valu®/2 [[I[B][@]. We then havey ~ v — O0for{ ~ y ~ Y/2.
In this limit, {L7&) and[(17b) respectively translate into

=0 2 (Y + N)*2 - \3/2 wo—0 [N
Y -2/ ~ - ~~ - 64
while
1/2
o g (Y+N (65)
or (Y + )\)3/2 _ )\3/2

should be used to gdt (22). An explicit calculation gives

i ﬁl/Q(Y + )\)3/2 B 3 1/2
u,zljrgo mDetA(u,v)  \ 7B [(Y 4 )\)3/2_)\3/2] )

where

R e
~ 1 3 3 _ 1 3 A 3/2
= gy <1_W> B (Y T A) ' (66)

A.3 The functions L(u, v), K(p,v) in eq. (26)

An explicit calculation gives

L, v) 3coshpy 1 (u — v) coshvsinh p + sinh v sinh p 67)
v) == - =
K 2sinhp 2 (pu — v)cosh pcosh v + cosh psinh v — sinh pcosh v’
and . ( ) cosh -
) i — v) cosh p — sinh
K = ——sinh . 68
(n,v) g SR (1 — v) cosh p cosh v + cosh psinh v — sinh p cosh v (68)

A.4 A consistency check

Let us verify that the evolution equatid (2) is satisfied p§)(within the MLLA accuracy. Differentiat-
ing @) with respect td, y yields the equivalent differential equation

Gey =75 (G — aGy)+0 (1 G)

that can be rewritten in the form

oy + by = 75 (1 — aye) + O(g); (69)

we have neglected next-to-MLLA correctio¥3) (of relative ordery3) coming from differentiating
the couplingy? in the sub-leading (“hard correction”) term a.
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We have to make sure thdt[69) holds including the teths3). In the sub-leading terms we can set
v — ¢ (see [2b)):

(e + 0%e) (0 + 0tby) + Py = 75 (1 — apr). (70)
Isolating correction terms and casting them all on the.l¢f $he equation we get

avgpe + [0edty + 0y0te] + 0oy = 7 — ey (71)
By the definition [(25) of the saddle point we conclude thatrthes. of [71L) is zero such that we have

dw,
w0018 + [wodty + vodie ] + % = 0, (72)
that is,
2 dwo
wo (a’yo + 51/@) + vty + —dy =0. (73)

First, we select the terms a:

1~ 1 1 1 ~
avp _§Q — itanhv et + §tanhvcoth,ue“ + §tanhvcoth,uQ

1~ 1 1 1 ~
+§Q — 3 tanhve ™ — 3 tanh v coth pe™ — 3 tanh v coth p Q

= ay§ [~ tanh v cosh p1 + tanh v coth psinh ] = 0.
From (1%) one deduces

dwo . 1 3~
that is inserted in[(73) such that, for terms3, we have
1 1 1 1 ~ 1 1
B3 | Zet 4 = b Z(Oet — = ZeHh 4 = —H
87 |:2€ + 2tanhv<1—|—K)e 2C’e 20Q+ 7€ + 2tanhv(1—|—K)e
1 1 _~ 3 . 1~
—|—§Ce “—{—§C’Q =037 coshp—ktanhvcosh,u(l—kK) — C'sinh y — 5@ ,

which gives

1~
—BVS’ [Cosh,u —sinhp L — §Q] .

Constructing (sed (29) and appenix]A.3)

~ — h v sinh inh v sinh
O, v) — 2 cosh j1 = —3 cosh i + sinh (u — v) coshvsinh p + sinh v sinh p

(1 — v) cosh p cosh v 4 cosh psinh v — sinh p cosh v
= —2sinh puL(u,v)

we have

1~
—B’yg’ coshpu —sinhpu L — 5@ 0.
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B ANALYTICAL EXPRESSION OF A’(u1, p2) OBTAINED FROM EQ. (41)

Replacing [(3da)(30b) il (k1) and neglecting terms of regatirderO(~3) which are beyond the MLLA
accuracy, we obtain

e 1019 o + eTH261y g + eF10gy + 201y,
0
= —avy [e’“ + et — sinh(puy — /1,2)(@1 — @2) + cosh p1 tanh vg + cosh uo tanh vy

A=

— sinh p;1 tanh vg coth g — sinh ps tanh vy coth g
+ sinh(uy — p2) < tanh v coth ulél — tanh v9 coth /@@2)}
—BY Kcosh (1 — sinh ,u102> + (COSh o — sinh ,UQC'l) + sinh(p1 — p2)(C1Q1 — C2Q5)

+ cosh p1 tanh vy (1 + K2> + cosh p tanh vy <1 + Kl)} ) (74)
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