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Abstract

Among the many factors involved in ultrasound attenuation phenomena, scattering ef-
fects play a major role, even in the unexpected case of soft tissues. It is proposed in this
study to quantitatively evaluate the scattering affecting the measurements, before recon-
structing the absorption parameter alone.

The reconstruction procedure involves three steps: i/ estimating the soundspeed map
using a transmission tomography algorithm. This estimation procedure providesa numer-
ical phantom of the organ probed, cleared of all dissipative components.This absorption
free phantom mimics the (viscoacoustic) tissues imaged except for the densityand absorp-
tion characteristics: the density a priori equals 1000 kg/m3, and the absorption is not taken
into account. The impedance fluctuations in the object are therefore approximated on the
basis of the sound speed contrast; ii/ synthesing the field scattered by the absorption free
phantom; the attenuation observed here results solely from the scattering phenomenon. The
synthesis is carried out using a finite-element time domain code simulating the ultrasonic
propagation through the phantom. It provides the scattering distortion reference introduced
into the log spectral absorption estimator; iii/ reducing the scattering distortionsaffecting
the integrated absorption measured along the ray paths using a log spectralprocedure.

The corrected integrated absorption is then processed using a tomographic reconstruc-
tion procedure that provides an estimate of the absorption distribution. Simple numerical
simulations show the improvement obtained in the absorption estimates with this approach.

KEY WORDS: Absorption tomography; scattering; viscoacoustic propagation model; ul-
trasound.
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1 Introduction

During the past four decades, many clinical studies have suggested that a diagnostic imaging
device sensitive to differences in the attenuation of tissues would be useful for improving de-
tection and characterization procedures [1]-[5].
Several methods have been proposed for estimating ultrasound attenuation, which can be roughly
subdivided into time domain [6]-[9] and frequency domain methods [10]-[14]. Although time-
based techniques are generally easier to use than spectral techniques when making real time
measurements, most authors have adopted a spectral approach [15]. Since tissue attenuation
and beam diffraction are both frequency dependent, estimates obtained in the frequency do-
main tend to be more accurate and the results more consistent. Unfortunately, in vivo tissue
attenuation measurements are difficult to perform [15]: ultrasound attenuation estimates are
generally affected by many factors. Some of these factors, such as phase cancellation, trans-
ducer bandwidth, beam diffraction and focusing, which are system dependent, have been ad-
dressed using dedicated correction techniques [16]-[20].Another important process, which is
often underestimated as far as soft tissues are concerned, is the scattering induced by inhomo-
geneities [21]-[23], which is one of the two main attenuation mechanisms at work in tissues,
the other being the absorption by the medium due to dissipative processes. When dealing with
inhomogeneous media, it is obviously rather difficult to separate the contributions of these two
mechanisms. This is why the scattering has received little attention so far in the case of soft
tissues, since the sound speed variations usually amount toless than 10%.
In absorption transmission tomography studies, two simplifying assumptions are generally
made. First, the diffraction1 effects are ignored; this is equivalent to assuming that wave phe-
nomena can be accounted for in terms of ray acoustics. The second assumption is that the
propagation is rectilinear and that no refraction therefore occurs. Based on these hypotheses,
the absorption images produced [25] are often spoiled by artefacts. Several research groups
have attempted to correct the refraction effects using iterative techniques based on numerical
ray tracing methods [26] or an alternative approach using a perturbation analysis of refraction
[27]. However, when the size of the inhomogeneities presentin the object are of the same order
of magnitude as the wavelength, the ray theory approach is nolonger reliable.

The aim of the present study is to provide means of accountingfor the scattering effects
from which standard absorption tomographic techniques suffer. The error introduced by the
scattering in the log spectral difference method is evaluated and a scattering correction tech-
nique is proposed. Absorption reconstructions based on simulated data show the improvement
obtained using this method.

2 Scattering effects in ulrasound absorption estimation

In order to describe the scattering effects induced by the inhomogeneities present in the medium,
we assume that the ultrasound device is a linear system and, within the narrow bandwidth usu-
ally used in ultrasound methods, that the tissue absorptionincreases linearly with the frequency
[28] α(x, f) = α0(x)f . f is the frequency in Hz;α(x, f) is the frequency dependent absorp-
tion coefficient of the tissue at any pointx on a cross-sectional plane.α0(x) is the absorption

1Diffraction corresponds here to wave processes that cannotbe accounted for in terms of ray acoustics. On the
other hand, scattering refers to all reflection processes, whether specular or not [24].
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coefficient of linear frequency dependence (in Np. cm−1. MHz−1). A similar analysis of the
scattering effects on the insertion log spectral difference technique has been proposed by Xu
and Kaufman [21], who took into consideration the transducer diffraction induced distortion.
Here it is proposed to focus on the scattering due to the heterogeneities present in the medium.

Let us consider two transducers, one transmitter and one receiver placed in a water tank
and make two measurements: one with and one without the tissue placed between the trans-
ducers. The amplitude spectrumYw(f) of the ultrasound signal propagating through the water
(reference signal) equals:

|Yw(f)| = |Y0(f)Hw(f)| (1)

whereYw(f) is the Fourier transform of the recorded signalyw(t) defined byYw(f) =

∫
∞

−∞

yw(t)e−i2πftdt.

Y0(f) is the spectral instrumental function, which includes the amplitude spectrum of the electri-
cal input signal and the transfer functions of the transmitting and receiving transducers.Hw(f)
characterizes the effects of the scattering on the ultrasound pulse along the water path alone,
corresponding to the transducer diffraction.

The amplitude spectrumYmes(f) of the signal recorded with the tissue inserted corresponds
to:

|Ymes(f)| = |Y0(f)Hw(f)Hsc(f)| e−(
ray

α0(x)ds)f (2)

whereHsc(f) characterizes the effects of the scattering processes on the ultrasound pulse along
the water - tissue - water propagation path.

Log spectral difference technique

The linear model described above is generally written in thecase of a homogeneous layer of
tissue probed by a plane wave so that the interfaces encountered are perpendicular to the beam;
only absorption occurs in this case. The integrated absorption Aw(f) is the slope of the log
spectral ratio|Yw(f)/Ymes(f)| versus the frequencyf [10]:

Aw(f) =

∫

ray

α0w(x)ds =
ln |Yw(f)| − ln |Ymes(f)|

f
(3)

whereα0w is the absorption coefficient estimated when the scatteringeffects are neglected. This
technique is no longer relevant when ultrasonic absorptiontomography is performed on com-
plex tissue structures where the interfaces are not necessarily perpendicular to the beam. The
lack of scattering considerations will inevitably result in large errors in the estimated absorption
coefficient. Instead of using Eq.(3), the integrated absorption coefficientA(f) is derived from
Eq.(2):

A(f) =

∫

ray

α0(x)ds =
ln |Yw(f)| − ln |Ymes(f)| + ln |Hsc(f)|

f
(4)

The error introduced when Eq.(3) is used instead of Eq.(8) isthe scattering induced distor-
tion D(f):

D(f) =

∫

ray

(α0(x) − α0w(x)) ds =
ln |Hsc(f)|

f
(5)
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3 Correction of scattering effects

It is now proposed to separate the scattering and dissipative mechanisms that contribute to the
attenuation phenomenon by estimatingD(f) and then calculatingA(f) = Aw(f) + D(f).

For this purpose, we will attempt to predict the field scattered by the organ. In the first step,
in order to obtain a rough approximation of the scattering processes, we reconstruct the velocity
map of the object investigated. This velocity map is associated with a constant density map
(1000 kg/m3) and a null attenuation map in order to build up a dissipationfree acoustical model
that we have named thenumerical phantomor simply thephantom. We simulate ultrasonic
wave propagation through this phantom using a finite elementtime domain propagation code.
The amplitude spectrumYsim(f) of the pulse recorded after the simulated wave propagation
through the phantom (inserted between the two transducers)is given by:

|Ysim(f)| =
∣∣∣Y0(f)Hw(f)H̃sc(f)

∣∣∣ (6)

whereH̃sc(f) characterizes the effects of the scattering on the ultrasound pulse along the water
- phantom - water propagation path. Similar spectra are obtained in the absence of the phantom
(water referenceYw(f)). The scattering induced distortioñD(f) is then estimated by:

D̃(f) =
ln

∣∣∣H̃sc(f)
∣∣∣

f
=

ln |Ysim(f)| − ln |Yw(f)|

f
(7)

and is removed from the water-reference integrated absorption Aw(f) in order to obtain the
estimated integrated absorptioñA(f):

Ã(f) =

∫

ray

α̃0(x)ds =
ln |Ysim(f)| − ln |Ymes(f)|

f
(8)

The (estimated) integrated absorptionÃ(f) is therefore given by the slope of the log spectral
ratio |Ysim(f)/Ymes(f)| versus the frequency f. Lastly, a transmission tomographicprocedure
is used to determine the estimated absorption distributionα̃0(x).

For this correction method to work, the scattering effects have to be fairly similar in both the
tissue sample and the numerical phantom so that the relationHsc(f) ≈ H̃sc(f) is acceptable.
The sound speed, density and absorption fluctuations all contribute to the scattering effects. In
practice, the density map is not known and in order to overcome the fact that the parameter
distributions are difficult to observe, we assume that the object has a constant density equal
to 1000 kg/m3. In the case of adipose tissues, this will be an overestimate, and in that of
muscle and stroma tissues, it will be an underestimate. The impedance fluctuations are therefore
approximated by the sound speed variations.
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4 Application to simulated data

In order to assess the scattering correction procedure, we consider a numerical tissue-like model
(Fig. 1) whose scattering response is computed using a Finite Element time domain Method
(FEM). This method has been extended to include absorption-dispersion effects. The governing
numerical expressions on which the FEM is based can be found in the references [29] and [30].

A grid consisting of 1730× 1730 pixels (∆x=0.016 mm, 27.7 mm× 27.7 mm) is used. The
ring antenna, which is composed of 360 equally spaced transducers (point-like transmitters and
receivers, central frequency 2.5 MHz,λ=0.6 mm), has a radius of R=13.2 mm. Each transducer
emits a short pulse, while the remaining elements act as receivers. The temporal and spectral
plots of the transmitted pulses are shown in figure 2. The academic cylindrical model, which
is immersed in water (density 1000 kg/m3, velocity 1500 m/s), simulates a fluid object having
the following characteristics: density 950 kg/m3, velocity 1470 m/s (without any dissipative
considerations) and absorption 6 Np/m/MHz. The external radius of the cylinder is 11 mm.
The diameters of the inclusions are d0=8λ=3.6 mm, d1=4λ=2.4 mm and d2=2λ=1.2 mm. The
inclusions have the following characteristics: density 1060 kg/m3, velocity 1600 m/s (without
any dissipative considerations) and absorption 19 Np/m/MHz. Figure 3 shows the variations
α(f)/f in function off obtained with the viscoacoustic code. One can observe here that the
simulated absorptionα(f) is almost linear with the frequency in the case of both tissues.

Figure 4 illustrates the velocity map reconstructed using the layer stripping technique pre-
sented in the references [31] [32]. The average estimate of the inclusion sound speed is 1634
m/s and the standard deviation is 15%, which corresponds to the dispersion curves given in
figure 5. In the case of the inclusions, the dispersion (Fig. 5) induces sound speed changes in
the 20 m/s to 30 m/s range in the 1.5 - 4 MHz frequency bandwidth.

Ultrasound propagation was simulated through the estimated absorption free phantom hav-
ing the velocity map shown in figure 4 and the scattering correction procedure was applied. We
must point out that we have regularized the inclusions borders (the inclusions were given the
shape of regular ellipses) in order to prevent irregularities in shape from increasing the scatter-
ing phenomenon. Tomographic reconstructions were performed using the fan beam algorithm
described by Kak and Slaney [33]. 360 projections taken overan angle of 360o in transmis-
sion were used. In figure 6, in the case of a given transmitter (x=0.65 mm, y=13.85 mm), the
projection data of the analytical integrated absorption and the estimated integrated absorption
(obtained with the simulated data) are compared. At receivers 90o to 270o (those used in trans-
mission tomography), the absorption estimates were greatly improved, especially in the case of
the two largest inclusions 8λ and 4λ in diameter. In the case of these two inclusions, the maxi-
mum relative error was 53% without correcting and 7% after correcting the scattering effects.

Figures 7 and 8 show the reconstructions obtained when the integrated absorption was cal-
culated neglecting the scattering effects, as in Eq.(3), after correcting the scattering effects, as
done in Eq.(8), respectively. In the case of the classical reconstruction method (Fig. 7), one
can note the artefacts (concentric circles) around the two biggest inclusions. Figure 9 gives
the corresponding line profiles of both reconstructions. Both reconstructions with and without
correction of the scattering effects show that with both methods, objects of twice the wave-
length can be detected. Scattering correction makes it possible to discriminate the size and to
evaluate the absorption of objects of four times the wavelength (Fig. 8). In the case of the
smallest inclusions, neither of these methods of reconstruction was satisfactory, however. The
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Figure 1: Cylindrical academic computer phantom.
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Figure 2: 2.5 MHz cylindrical wave used in the FEM simulations in time and in frequency.
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errors were mainly due to the poor delimitation of the smallest inclusion in the sound speed
map reconstruction (Fig. 4): figure 10 shows the tomographicreconstruction obtained when the
correction was performed with a sound speed map drawn up withreal size objects and the av-
erage sound speeds obtained via the layer stripping method (ambient soft tissues 1480 m/s and
inclusions 1634 m/s). This greatly improved the absorptionestimate of the smallest inclusions.
The weakest point of this method is therefore the fact that itis sensitive to the discrimination of
the inclusions of the same order of size as the wavelength (resonance phenomenon).
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Figure 7: Reconstruction using classical log
spectra difference technique.
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Figure 9: Comparisons of the line profiles of the reconstructed object without (plotted line) and
with (continuous line) correction of the scattering effects.

In conclusion, ultrasound scattering errors due to sound propagation occurring in inhomo-
geneous media blur the image and induce strong artefacts, especially if the size of the hetero-
geneities is of the same order as the wavelength. The reconstructions based on simulated data
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Figure 10: Reconstruction using log spectral difference technique with exact correction of the
scattering effects (a) and line profile (b).

presented here show how applying scattering correction to the overall absorption estimates can
improve the results obtained.

5 Conclusion

The artefacts observed in the tomographic reconstructionsobtained using the classical log spec-
tral difference technique have been mostly due to the fact that the scattering processes have been
neglected. In order to overcome this problem, we have developed a method for estimating the
scattering. Since this process results mainly from the propagation perturbations due to sound
speed contrasts, a sound speed map was first reconstructed. This numerical model provided
the input material for a time-domain finite element code simulating the wave propagation. This
absorption free phantom mimics the tissues (viscous fluid) imaged except for the density and
absorption characteristics: the density is taken a priori to be 1000 kg/m3, and the absorption
is not taken into account. The impedance fluctuations in the object are therefore approximated
in terms of the estimated sound speed contrast. This realistic numerical model can be used
to predict the scattered field without any absorption interference, and this field constitutes our
scattering distortion reference field in the log spectral difference absorption estimates. A tomo-
graphic procedure was used to reconstruct an absorption mapof the tissue under investigation.
Numerical simulations illustrate the results obtained at each step and comparisons show the
improvement obtained in the absorption contrast estimates. These results show that even in
the case of small speed variations (1470 m/s - 1600 m/s), the effects of the scattering are non-
negligible and can greatly degrade the quality of absorption tomographic images.

In practical situations, the method used here to correct theexperimental data may not be as
efficient as with simulated signals. In this study, the simulated dissipative data to be corrected
and the simulated non-dissipative data used for the correction were generated from two ver-
sions of the same propagation code. This situation will differ in experimental contexts, where
the waves undergo all the propagation effects (3D, non linearity, etc). In addition, in practical
situations, the active transducers are all distinct, non-punctual and have their own directivity in-
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dex. Theoretically, this should not greatly affect the absorption measurements, but in practice,
”calibration” and ”spatial deconvolution” are known to be rather delicate processes.

In conclusion, the numerical computations presented here show that the scattering cannot
be overlooked (even in soft tissues) when ultrasound absorption is evaluated using insertion
techniques. The absorption tomographic reconstructions carried out here show the improvement
that can be achieved using the method described. In the case of high contrast objects, current
approaches which operate on phase estimates could be associated with this method to improve
the velocity dispersion estimation.
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