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Abstract

3D numerical simulations of ferromagnetic materials carcbmpared with

experimental results via microwave susceptibility. Instipiaper, an optimised
computation of this microwave susceptibility for large ines is proposed. The
microwave susceptibility is obtained by linearisation loé t_andau and Lifchitz
equations near equilibrium states and the linear systerhe swlved are very ill-
conditionned. Solutions are computed using the Conjugaseliént method for
the Normal equation (CGN Method). An efficient preconditiois developed con-
sisting of a projection and an approximation of an “exac€qanditioner in the set
of circulant matrices. Control of the condition number doehte preconditioning
and evolution of the singular value decomposition are shiovthe results.

1 Introduction

Ferromagnetic simulation via the micromagnetic model iga-life computational
challenge. Ferromagnetic materials are used in numerquigations such as radar
protection, magnetic recording or micro electronics. lesen applications, the mag-
netic objects studied are micro or nano-objects which dffecalt and expensive to
craft. Thus, one of the optimisation solutions, for the gshapd composition of such
particles, is numeric simulation. The first step in this tyfesimulation is to com-
pute the dynamic of the magnetisation and the equilibritatest However, a direct
comparison of the results with experiments is impossibte3fo particles. The main
comparison tool is microwave susceptibility as the resapaanumerical curves can
be compared with the physical experiments. At that poinesg\difficulties are en-
countered. The main one is managing a large number of degféeesedom. This is
required to compute interesting configurations with sudfitiaccuracy.

In this article, we use the micromagnetism model in order taleh the magneti-
sation behaviour in ferromagnetic materials. This modaliisesoscopic model, ie. a
model valid for a scale between the one used for microscopixvi!l equations and
the scale of classic macroscopic Maxwell equations. Inrttodel, magnetisation does
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not linearly depend on magnetic excitation but is contrblig a non-linear system: the
Landau-Lischitz equatiorf)(1). This model was introduced®bywn [3,[2].

There are two ways to obtain the equilibrium states. The liystnergy minimi-
sation ([B,[1[]), the second by relaxation of the dynamitey ([p,[}]). The main
advantage of the dynamical approach is to compute an equititstate linked to given
initial data by a life-like dynamic process; then, we canlgglynamical treatments,
via the external field, in order to find specific equilibriuratsts.

Computation of the microwave susceptibility can be perfedrhy two main meth-
ods: the Harmonic Direct Computation and the Fourier TrammsfMethod. The first
method is based upon the use of a linearised version of tHatewoequation pertu-
bated by a time harmonic external field. The second is based tiye injection of an
harmonic perturbation. The Fourier method implies theltggm of a time dependant
problem that is quite ill-conditionned for low frequencigse time step ensuring that
the convergence vanishes swiftly when the frequency dees3dut the linearisation
methods permit the range of frequencies used in the apiplitsato be attained.

2 The microwave susceptibility problem

2.1 The linearisation

In this problem, we are interested in computing the micraveesponse of a ferro-
magnetic system to an external harmonic exitation. We denshat the ferromagnetic
material is homogeneous and contained it alass piecewize domain & denoted
Q. Then, we study the evolution of the magnetisation field i tleighbourhood of
an equilibrium state of the dynamic equation. This equatiotthe micromagnetism
model [1], is given by the Landau-Lifchitz system: findin H'([0,T] x R?, Q; R?)
={m e L*(R*%R?)|Vt € [0,T], miq € H'(Q;R*) andm = 0 in R\Q} such that

{ I — F(m, hegt) = —m A (H(m) +£) —am A (m A (H(m) +£)),€ (0,T] x 9,

(@, 0) = mo(x), ¥t € Q.
_ 1)

where H is a linear operator, front/! ([0, 7] x R3,Q; R3) into H~}(R3;R3), ¢ the
external magnetic field (independent of the magnetisatiohedement o> ([0, T x
R3; R?), o the damping factor (a strictly positive real) and) is a given element of
S2()={m € H'(R*,;R?) | |m|q| = 1, a.e. inQ}. In this model, we can see that
the local module of the magnetisation is naturally presgrve this article, we define
H as follows:Vm € H([0,T] x R3, Q; R3)

H(m) = AAm+ Hy(m) + K(m — (m.u)u)

whereA and K positive real constants andis an element ofi ! (0, 7] x R3,Q; 52)
(S? designates the unit sphere). The operafgis defined in the sense of distributions

onR3 by
rot(Hy(m)) = 0,
div(Hgy(m)) = —div(m).
Now, let us define the equilibrium states of the systEm Q)



Definition 1 For a given/ in L>°(R?; R3) (independent of time), a magnetisation state
my, in HY(R3, ;R3) is an equilibrium state if, and only if,

f(me, £) =0, a.e. inQ.

Then, for a given equilibrium state,, associated to an external stétave define the
microwave susceptibility

Definition 2 For a given equilibrium staten,, associated to an external field we
denote a susceptibility tensor of the order 3 complex mesnd¢) defined by

X))k = *%()\k,mz)o,sz, V(l, k) € {1,2,3}7,

with A\, = (xe™? and (; is a contant vector oR3. Furthermore, we suppose that
(Ck)keq1,2,3) is an orthogonal basis ak*. Then, for allk in {1, 2, 3}, m;. is a solution
of @) for the external field, + ¢ and the intial datang = my.

Formally, if the excitation(;, is sufficiently small, then the magnetisation responses
will be also small and we can define this response for ekeény{1, 2, 3} by

iwt
Mg — My = [ € )

with i, € H(R3,Q; C3). In the following we suppose thaj, andy;, are of the same
order.
Then, if we re-write the systerfi] (1) verified by, the linearised equation gives

(iw — Digoh — Dag)(pr) = D1,e(Cr) (2)
where, for alkw in L>°(R?; R?), we set
Dy (w) = —my Aw —ame A (mg Aw),

Dy yp(w) = (H(me) + ) ANw+ame A (wA (H(mg) + )

2.2 The discretisation of the linearised equation

In order to discretise the equation, we consider a mondlitR) such that) ¢ K(Q).
Ideally, this monolith is the smaller containiyy Then, K(£2) is discretised using a
regular cubic mesh of cell$;);c N, Whereh is the length of a cell andV}, is the set of
the indices. We s&i;, = UieNm,,,h, Q; whereN;,;, C N}, is the set of indices such
that, for everyi in N, 5, 0 N Q # 0.
Then, we choose as a discrete space for all euclidian dpace
Wi(F) = {u € L*(R* F)|lu = 0in R*\ K (Q) andVi € Ny, uq, is a constarjt
for eachu in Wy, we set.Vi € Ny, u; = u)q,. We choose thé.? scalar product on
R? as the scalar product div;,, we denote i{u, v)o.o for all u,v in L?(R3; F). Then,
setting
Py
L2(R3%F) — Wu(F)

u — Pu(u) =) <%/Qiud$)



wherel; is defined forr in R3 by 1;(z) = 1 if « belongs ta;, 1;(x) = 0 otherwise.
Py designates the canonical injectionid}, (F') onto L?(R?; F).
These definitions lead to the following formulas for the di$e magnetic contribu-
tions:
H,)=P,0H,0P;,

and
Hd,h :PhOHdOP]:,

the analysis off, ; is straightforward. On the other hand, the analysigfQf;, is
not direct, in particular, it has been demonstrated thatdigcretisation preserves the
main properties of the demagnetisation operafgi( H, is a projection operator), and
a lower estimate of its lower eigenvalue is given. Furtheemthe computation of this
operator is very expensive: the discrete matrix is a fullrimatThen, to optimise its
computation, we choose to use a regular cubic mesh whichreasspecific structure
for the discrete operator. This block-Toeplitz structural@es us to reduce the storage
of the matrix from# (N, )? to O(#(Ny,)) and the computation cost from (N, )? to
O(#(Ny) log(#(Ny))). For complete analysis of the discretisationféj, see [B].
The Laplacian operator is discretised using the clasgipaint scheme, the discretised
operator is designated in the following By;,. The total discretised magnetic field is
then defined by

Hh(m) = AApm + Hd,h(m) + Ha,h(m).

Then, for a given external fieldin W, (R3), we setmy, ¢, element ofiV}, (S?),
the equilibrium state of the discretised version ﬂf (1). sThiate is obtained using
an explicit time discretisation combined with an optimisatof time which ensures
its stability (see[Jo[ 0[] 71). This equilibrium state, agmsgreviously, is such that:
Vi e Np, 36; < 0and

Hy(mpo)l = Biman L,

we setHy(mp ) = Bi(mp,e) Where By is a diagonal operator. Knowing an equi-
librium state for the discretised sytem, we can define thealiised discrete system:
Yw € RY,

(iw — D1ne(Hp — Be))pn = D1.peCn 3)

whereD, j, ¢ is the operatoD; , built for them,, , equilibrium state.

Then, for each elementof 17, (R?), we associate a unique elemé&hof R3# (V)
defined by

1
Vi € Ny, U; € R? andU; = ﬁ/ u(zx) de.
Qi
Using this bijection betweel;, (R?) andR3#(N») | we can write a matricial version
of the linearised discrete version ¢f (1): fibgl in R3#(N+) such that, for a givei;,
built on {;, we have
MUy = D Yy, 4)



where, for every/ in R3#(N») for everyi in N,

(M,U); = hlg/ <(zw—D1thh—Bg (ZUI))

i€ENp,

(DY) = hlg/ <D1,h7g <Z Ykﬂ-li)) dzr

i1ENp,

and

For use in the remainder of this paper for everjn R3#(V») we set:
DHU = -M,U +iwU

thenH is the matrix associated to the discrete operatpr— B,.

2.3 Some properties of the discrete systen](4)

We setM,, the element oR3#(Nr) associated tany, ;. Let us defindmy, ¢]* by
(M)t = (W e C3#N) i € Ny, My, W; = 0},

and we designate bi;* the projection fromC3#(V») into my, .. Then we can demon-
strate:

Theorem 1 For everyY in R3#(Nr) and for everyw strictly positive, the systerﬂ (4)is
regular and its solution is in an element fof, ,]*

Proof: If U is the solution of[[4), then we have
iwU = DY + HU),

knowing thatD sends elements @3#(V+) in [mh,g]L, we conclude thal/ is also an
element ofmy, ¢]*

Then, considering’ in [my, ¢]*, due to the structure off, we haveHV as an
element of[my, ,]*. Each diagonal block (83) has Ox + i anda — i as eigenval-
ues. Knowing that the eigenvalues Bf (symetric matrix) are real, we deduce that
the eigenvalues oD H are complex numbers of non vanishing real parts unless the
eigenvalueis null. Then, the eigenvaluesidf, can not vanish.

O
The conditioning number of the matriX,, can be estimated

Theorem 2 For everyw real strictly positive, we have

condM,) < \/w2+(1+a2)(1+%)(h—é+1+K)

w2



Proof: Thistheoremis proved using the Courant-Fisher theoreimdionitian matrices
which provides formulae for the highest and lowest eigamsl The proof is then
classical and uses the fact tHat D is the projection matrix ofiny, ,]* multiplied by
(1+ a?).

O

We notice that the conditioning number cdid,,) bahaves as expected whenends
to infinity:

lim condM,) = 1.
Here, the fact that grows to infinity means that it dominat<§§. Now, if we consider
thatw is fixed, the behaviour of coifd/,,) shows that the system is ill-conditioned

lim cond M) = co.
i condM) = oc

Thus, the pre-conditioning of the system is essential. ¢t the most interesting part
of the spectrum of susceptibility for numerous applicagitthe low frequency part.

3 The precontioning strategy

3.1 Choice of the inversion method

In order to solve systenﬂ(4), we chose an iterative methasctivice is conditioned
by the fact that the matrices considered are non-symmeitimftrices and the order
of the systems to solve is great (up10°). Three main iterative methods are used
commonly to solve non symmetric systems:

e the normal conjugate gradient (CNG),
e the generalised minimal residual method (GMRES),
¢ the conjugate gradient squared (CGS).

As shown in the article of Nachtigal, Reddy and TrefethEri,[hbne of this three
methods could be considered as a cure-all for all non-symerststems. As the con-
vergence quality of CGS and GMRES is influenced by eignevalustering of the
system matrix, CNG method convergence depends on singallax elustering. As the
preconditionning strategy presented in this article ibagon the amelioration of the
singular value clustering, we chose, of course, the CNG atktlrurthermore, tests
not presented in this article show that the CNG method seelms inore adaptated for
this type of system, even if not preconditioned.

3.2 An example of singular value repartition and of CNG conve
gence rate

In the remainder of this paper, we have chosen to illusttegedsults presented using
a plain example. This example has been chosen for the low,drfl2, of its system



which facilitates the visualisation (done with Matlab).€limesh chosen issax 4 x 4
regular cubic mesh of a cubic domain. We set it in the dimerniegs systemd =
0,88 1071%, K = 0,57 1072, a« = 0,5 and the cube length is equal 16=6. For
this bench, we would want to choosebetweenuv,,;, = 0,452 10° Hz andw,,qz =
0,452 10° Hz. In Fig. 2 the error evolution for the CNG is shown. Here veé
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Figure 1: Singular value decompostion for the non-prediord system.

chosen a final error criteria af)=>. With no preconditioning, the system converges in
56 iterations fotv,,,;;, and 48 iterations fow,,, .., the precontioning number is almost
equal to 7500 (slight variations betweef,;,, andw,,,q.)-

10°

10 20 30 40 50 60
Iteration

Figure 2: Residue of the CNG far,,,;,,.



3.3 The preconditioning strategy
We have three main goals to build the preconditioner:
e to use the known properties of the system,
e decrease the conditioning number sensitivity to the mesh si
e build a cheap preconditioner (memory size and computdtausd).

The first point is taken into account by using the result presgin Theorenﬂ 1: the
right side of the preconditioner will be a projection ¢ny, ,]-. This first step of
projection eliminates the cluster of singular values rie@nd ensures a convergence in
48 iterations fokv,,,;, and of 27 iterations faw,,,q .

3.4 The “exact” preconditioner

As a first stage, we would want to build a symmetric left preorer. The non sym-
metry of M,, comes from the operatdp, ;. In fact, we have

Dipow= —mg/\w+aPJ‘w
sh, 14

3

the first part of the operator is a rotation, and the secontlgpprojection. Then, it
is possible to prove thab, ; ( does not have a main influence on the singular value
decomposition. This means that we may choose a left pretionei M, ., built on the
operator

iw — «a(Hy, — By),

That is to say, if we sell the matrix built on the operatdi;, — By
My =iwld — oH.

Inthe sequel, even if we do not write the projection to ligittee notations, we consider
that the system is right preconditioned By . Then, we prove the following theorem

Theorem 3 For eachw andh strictly positive, we have

cond M, L M.) < /1+ g(h,w) 2+ g(h,w)?]

where

2+ e?)(1 4 5)% A + 1+ K)?
g(h’w)_\/ + (14 5)2(f + 1+ K)?

Proof: In the spacému]% we have:D = R + ald, whereld is the eye matrix on
space[my, ¢]* and R is the matrix associated to the operatan,A. Moreover, for
everyU in [my, ]+, we have

(HU, mh,g) = (U, Hmh,g) = 0,



this implies, by breaking off of the elements fofi;, /]-, that HU is an element of
[mn.¢]*. We remark also that by working im, ¢+, we have

R? = —Id.
Then, we have
M;iM, = (iwH™'-Id)H 'NH,
where
Ny,=-RH+(1-a)H=NH.

Then, for every/ in [mu]i, we have the following relation
M7IMVMIIMYV = |V +2R[V.M; L NoV]+ |MZIN, V2

We designate aR [z] the real part of a complex number
Furthermore, we have the following estimations:

I(HT'RH)| = [(HT'R* H)?| = 1,
this implies that| H 'R H|| = 1. So, using the fact than

H™'NH = -H'RH + (1 — a)Id,

we have
|H™'N H|| < V2 + a2
and

2
_ w _
IMA0 = max (55 +1)7" < glh,w).
h J

where); is the eigenvalues of the matri in [my ]+ anthL is the set of indeces of
[mg,h]l.

Then, using the lowest eigenvalue controlled by projeqpiart of the precondioner
we conclude the proof of the Theorem.

Finally, we have the good behaviour of the preconditionrystesn when the mesh
lengthh tends taD:

lim (M, S M,) <142+ a2,
h—0 ?
This version of the preconditioner gives excellent comtfdhe conditionning number

but needs the inversion of a full matrix. This leads us to #eoad stage in which we
will replace the complete operatéf;, by its laplacian part.



3.5 Preconditioning by the Laplacian component: the directap-
proach

The Laplacian part of{}, is the most punitive part of the matrid/,, in terms of pre-
conditioning. The idea in this section is to develop an appnate conditionef/, ., A
built on the operator

w — AA}L — B.

The matrix)M, ., A is a band matrix which could be more easily handled thin,, the
earlier version of the preconditioner. This approximadrthe preconditionen/, .,
will be all the more accurate as the norms of the operdigrand H, are dominated by
%. As seen in Fig[]3, the clustering of the singular value dguasition obtained for
the system preconditioned By, ., A is good. The convergence of the CNG algorithm
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Figure 3: Singular value decomposition of the system prditomed byM, ., A

using this method is very good: 7 iterations &gy,;,, and 9 iteration fot,, . (see Fig.
7)8
3.6 The approximated preconditioner

Nevertheless, the use of the pre-conditiohé&y,, A stays expansive. The solution is
to build an easily invertible approximation 8f, ., ». Here we will use here the work
of [LF]. The idea is to project the matriX,, ., » into the circulant matrix space in the
sense of the Froebenuis norm.

Given a circulant matrixC n by n on C generated by, vector ofC", we have

V(i,j) € {1,...,n}*andp € {1,...,n}, Cij =c, if j—i=p—1 orj—i=n—pl.

Then, as shown iff[12], for every matrd n by n onC, the projectiorC of M on the

10
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Figure 4: Residue of the system preconditionnedfy,, .

space of the circulant matrices of ordeis generated by the vectogiven by

n—p+1 n

1
Vp € {17 "'7”}) Cp = g Z Ml,l—p+1 + Z Ml,l+n—p+1
=1

l=n—p+2

The three dimensional projection is more complex but thenndega is contained
in the one-dimensional projection.

When the circulant approximation matrix is built, the irsien is performed in
the Fourier space (the matrix produced is block-diagona 81 Fourier space), then
the precondioning is of complexit® (N log(N)) for each iteration of the inversion
method. The other main advantage of the method is that thageds reduced to
O(N).

In this section, we have to keep in mind that the structuretlsre@e dimensional
one: the considered matrices are 3 level block matrices implies that the projection
must be performed on the 3 levels block circulant matrices.

In the small example presented to illustrate the paper,ysies precontioned by
the approximated preconditioner converges in 30 iteratfonthe smaller frequency
and 26 iterations for the highest (see Hily. 6). The convemgenrve is very good in
the sense that the slope is quasi-constant. This point e guportant: susceptibility
computations do not need high numerical accuracy. Effelgtithe results obtained
will be compared to experimental results for which the eisaguite important. This
comes form the fact that the samples used for experimentarai@be perfect and that
the measurement tools do not have very high precision fertyipie of experiment.
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Figure 5: Singular value decomposition of the system prditimmed by the circulant
approximation of\, ., A.

4 Numerical simulations

We present here the number of iterations for the simulatioa ferromagnetic dot.

This dot is meshed by a regular grid, sizet®#x 32. In this monolith a cylinder with

the axisz and a circular basis (32 cells for thalirection and 64 64 for the others)is

included. The total number of degrees of freedom is 3932 r€sults shown here
have been computed on the parallel machines of ONERA andaDigsiation.

4.1 Parallel implementation

There are two possible levels of parallelisation for thisljpem: local parallelisation
for computations of each iteration and global paralleisabf the frequency compu-
tations.

The global parallelisation is a repartition of each freqryecomputation through
the processors. A main process distributes the computatieach processor such that
each processor is always occupied. This part is implemersied MPI.

The local implementation, not used for the results presEmeee, is the parallelisa-
tion of the total magnetic field over the domain. In this comagion, one part is more
expensive than the others: the demagnetisation field. Inttae computation of de-
magnetisation is accelerated by using its Toeplitz stmcﬂseeﬁ%]). This computation
strategy uses 3 dimensionnal FFT intensively. To enhare@éhformance, we have
to parallelise the FFT computation. To do so, we have chasese¢ OPEN-MP. This
choice avoids the transposition of the data via the clubtrrust be performed while
using a distributed memory system. The results are vergfgaig: for a cubic struc-
ture and sufficient number of cells (for instancé2ax 32 x 32 mesh), the computation
time of FFT is divided byl.9 on a node of two processors.

12
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Figure 6: Residue of the system preconditioned by the @rdubpproximation
My

4.2 Description of the benchmark statistics and results

The aim is to compute the susceptibility of a cylinder of palioy (see for example
[E] for this type of results). The parameters of the mataria the following:

Parameter Value
A 0.1787510~ 11
«o 0.05

In the following table[]L, we give the number of iterations érectionsz andy.
The directionz in this computation is omitted because there is no resorminthis
direction.

The computation has been carried out on a node composed oWw8r#dBM
(1.1GHz) with 16 GO of Ram. An iteration takes almost 24 sesorthe complete
computation took 36 hours.

w/1,356 (Hz) | iterations forx | error iterations i fory | error

3.0010° 57 4.921072 | 127 4.9810~2
2.7310° 100 4.851072 | 137 4911072
2.4910° 198 4.90102 | 267 4.991072
2.2610° 146 4.991072 | 272 4.951072
2.0610° 188 4.991072 | 329 4.901072
1.8810° 290 4.96102 | 356 4.911072
1.7110° 316 4.991072 | 317 4.851072
1.5510° 326 4.981072 | 386 4.941072
1.4110° 390 4.99102 | 355 4.941072
1.2910° 298 5.0010~2 | 376 4.971072
1.1710° 329 4.881072 | 354 4.881072
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w/1,356 (Hz) | iterations forx | error iterations i fory | error

1.0710° 490 4971072 | 286 4.931072
9.7110% 615 4911072 | 400 5.0010~2
8.8410* 664 499102 | 504 4.95102
8.0510* 638 4941072 | 416 4.81102
7.3310% 436 4941072 | 371 4.921072
6.6710* 318 4961072 | 319 4.70102
6.0710* 291 4981072 | 294 4.921072
5.5310* 351 4.851072 | 266 4.91102
5.0310* 377 4911072 | 258 4.78102
4.5810* 433 4991072 | 252 4.96102
4.1710% 480 4971072 | 248 4.851072
3.7910* 543 4911072 | 247 4751072
3.4510% 592 4951072 | 248 5.001072
3.1410* 547 499102 | 248 4.91102
2.8610* 549 4.861072 | 248 5.0010~2
2.6110* 571 4931072 | 247 4971072
2.3710% 618 4991072 | 243 4.99102
2.1610* 653 4901072 | 244 4.99102
1.9710* 686 4.621072 | 247 4.92102
1.7910% 723 4.831072 | 251 4.92102
1.6310% 779 4901072 | 254 4.971072
1.4810% 839 4941072 | 257 4.99102
1.3510% 855 4901072 | 265 4.8610~2
1.2310* 842 499102 | 267 4.95102
1.1210% 832 4901072 | 273 4.95102
1.0210* 832 4941072 | 279 4.96102
9.2710° 835 4.9210~2 | 280 4981072
8.44103 691 4921072 | 289 4.89102
7.6810° 843 4961072 | 292 4.94102
6.9910° 856 4981072 | 296 4.97102
6.3610° 868 4901072 | 302 5.0010~2
5.79103 875 4931072 | 305 4.941072
5.27103 888 4831072 | 311 4.951072
4.80103 893 4.9810~2 | 316 4991072
4.37103 907 4941072 | 319 4.94102
3.98103 913 4921072 | 327 4.94102
3.62103 923 4971072 | 328 4.99102
3.3010° 944 4.9910~2 | 336 4911072
3.0010° 951 4.8510~2 | 339 4941072

Table[L: Iteration table.
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5 Conclusion

The goal of the study was to allow the computing of micro-wsweceptibility of ferro-
magnetic particles with thin details. This last point cdlfer very large meshes (about
300000 degrees of freedom) for which the classical invansiethods with no precon-
ditionning did not work at all, or required such a large antoafniterations that the
computation times for an acceptable range of frequenciesfarafrom useful. The
strategy presented in this article is an industrial comiparia approach, and obtains
interesting results for a large spectrum of benchmark. Qdatjpns of realistic ex-
periments have been performed (skd [14.[18, 15]) for phiysystems where it was
possible to compare results with physical experiments.eSprablems remain, in par-
ticular, the strategy developed aims at the laplacian pfatthe total magnetic field
whereas some systems are revealed to be principally infaaeny the demagnetising
field. The next step is to extend the strategy of the paperderaio include the de-
magnetisation part of the magnetic field in the approximatedonditioner. The main
difficulty of the extension is algorithmic: to build a goodailant approximation of
block Toeplitz matrices. An another interresting pointtiedy would be the implemen-
tation of an efficient parallelised FFT algorithm for dibtrted memory systems. The
main problem of such an implementation would be the optitiieaf the transposition
phase of the data through the memory nodes of the distritmyttdm.
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