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BOUNDS ON THE COEFFICIENTS OF THE CHARACTERISTIC AND

MINIMAL POLYNOMIALS

JEAN-GUILLAUME DUMAS

Abstract. This note presents absolute bounds on the size of the coefficients of the
characteristic and minimal polynomials depending on the size of the coefficients of the
associated matrix. Moreover, we present algorithms to compute more precise input-
dependant bounds on these coefficients. Such bounds are e.g. useful to perform deter-
ministic chinese remaindering of the characteristic or minimal polynomial of an integer
matrix.

1. Introduction

The Frobenius normal form of a matrix is used to test two matrices for similarity. Al-
though the Frobenius normal form contains more in formation on the matrix than the
characteristic polynomial, most efficient algorithms to compute it are based on compu-
tations of characteristic polynomial (see for example [9, §9.7]). Now the Smith normal
form of an integer matrix is useful e.g. in the computation of homology groups and its
computation can be done via the integer minimal polynomial [3].
In both cases, the polynomials are computed first modulo several prime numbers and
then only reconstructed via Chinese remaindering [5, Theorem 10.25]. Thus, precise
bounds on the integer coefficients of the integer characteristic or minimal polynomials of
an integer matrix are used to know how many primes are sufficient to perform a chinese
remaindering of the modularly computed polynomials. Some bounds on the minimal
polynomial coefficents, respectively the characteristic polynomial, have been presented in
[3], respectively in [2]. The aim of this note is to present sharper estimates in both cases.
For both polynomials we present two kind of results: absolute estimates, useful to compare
complexity constants, and algorithms which compute more precise estimates based on the
properties of the input matrix discovered at runtime. Of course, the goal is to provide
such estimates at a cost negligible when compared to that of actually computing the
polynomials.

2. Bound on the minors for the characteristic polynomial

2.1. Hadamard’s bound on the minors. The first bound of the characteristic poly-
nomial coefficient uses Hadamard’s bound, |det(A)| ≤

√
nB2

n
, see e.g. [5, Theorem 16.6],

to show that the coefficients of the characteristic polynomial could be larger, but only
slightly:

Lemma 2.1. Let A ∈ Cn×n, with n ≥ 4, whose coefficients are bounded in absolute value

by B > 1. The coefficients of the characteristic polynomial CA of A are denoted by cj,
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j = 0..n and ||CA||∞ = max{|cj |}. Then

log2(||CA||∞) ≤ n

2

(

log2(n) + log2(B
2) + 0. 21163175

)

Proof. cj , the j-th coefficient of the characteristic polynomial, is an alternate sum of all
the (n − j) × (n − j) diagonal minors of A, see e.g. [4, §III.7]. It is therefore bounded

by H(n, j) =
(

n

j

)
√

(n − j)B2
(n−j)

. First note, that from the symmetry of the binomial

coefficients we only need to explore the ⌊n/2⌋ first ones, since
√

(n − j)B2
(n−j)

>
√

jB2
j

for i < ⌊n/2⌋. O(
√

n) first ones.
The lemma is true for j = 0 by Hadamard’s bound.
For j = 1 and n ≥ 2, we set f(n) = 2

n

(

log2 (H(n, 1)) − n
2

log2(n) − (n − 1) log2(B)
)

. The
numerator of the derivative of f(n) has two roots, one below 2 and one between 6 and 7
and f(n) is increasing from 2 to the second root and decreasing afterwards. With n ∈ Z,
the maximal value of f(n) is at n = 6, for which it is 5

6
log2(5) − 2

3
log2(6) < 0. 21163175.

For other j’s, Stirling’s formula has been extended for the binomial coefficient by Stănică
in [10], and gives ∀i ≥ 2,

(

n

j

)

<
e

1
12n

− 1
12j+1

− 1
12(n−j)+1

√
2π

√

n

j(n − j)

(

n

j

)j (

n

n − j

)n−j

.

Now first 1
12n

− 1
12j+1

− 1
12(n−j)+1

< 1
12n

− 2
6n+1

, since the maximal value of the latter is at

j = n
2
. Therefore, log2

(

e
1

12n
− 1

12j+1 − 1
12(n−j)+1

√
2π

)

≤ log2

(

1√
2π

)

< −1.325.

Then n
j(n−j)

is decreasing in j for 2 ≤ j < ⌊n/2⌋ so that its maximum is n
2(n−2)

.

Consider now the rest of the approximation K(n, j) =
(

n
j

)j (

n
n−j

)n−j √

(n − j)B2
(n−j)

.

We have log2(K(n, j)) = n−j

2
log2(B

2)+ n
2

log2(n)+ n
2
T (n, j), where T (n, j) = log2(

n
n−j

)+
j

n
log2(

n−j

j2 ). Well T (n, j) is maximal for j = −1+
√

1+4en

2e
. We end with the fact that for

n ≥ 4, T
(

n, −1+
√

1+4en

2e

)

− 2
n

log2(
√

2π) + 1
n

log2

(

n
2(n−2)

)

is maximal over Z for n = 16

where it is lower than 0.2052. The latter is lower than 0. 21163175. �

We show the effectiveness of our bound on an example matrix:
[

1 1 1 1 1
1 1 −1 −1 −1
1 −1 1 −1 −1
1 −1 −1 1 −1
1 −1 −1 −1 1

]

.

This matrix has X5−5X4+40X2−80X+48 for characteristic polynomial and 80 =
(

5
1

)√
4

4

is greater than Hadamard’s bound 55.9, and less than our bound 80.66661.
Note that this numerical bound improves on the one used in [6, lemma 2.1] since 0. 21163175 <
2 + log2(e) ≈ 3.4427. While yielding the same asymptotical result, their bound would
state that the coefficients of this polynomial are lower than 21793.

2.2. Locating the largest coefficient. The proof of lemma 2.1 suggests that the largest
coefficient is to be found between the O(

√
n) last ones. We precise this, taking B into

account in next lemma which thus gives a simple search procedure in order to compute a
more accurate bound, as soon as B is known.
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Lemma 2.2. Let A ∈ Cn×n, with n ≥ 4, whose coefficients are bounded in absolute value

by B > 1. The characteristic polynomial of A is CA. Then

||CA||∞ ≤ max
i=0..

−1+
√

1+4
√

eB2n

2
√

eB2

(

n

i

)

√

(n − i)B2
(n−i)

.

Moreover, the cost of computing the associated bound on the size is

O
(√

n

B

)

.

This localization improves by a factor close to 1
B

, the localization of the largest coefficient
proposed in [2, Lemma 4.1].

Proof. Consider H(n, j) =
(

n

j

)
√

(n − j)B2
(n−j)

for j = 2..⌊n
2
⌋. The numerator of the

derivative of H with respect to i is

n!
√

(n − j)B2
n−j (

2H(n − j) − 2H(j) − ln(n − j) − ln(B2) − 1
)

where H(k) =
∑k

l=1
1
l

is the k-th Harmonic number. We have the classical bounds

ln(k) − γ < H(k) < ln(k) − γ + 1
2k

, see e.g. [7, §1.2.7]. This bounds proves that H(n, j)

has at most one extremal value for 2 ≤ j ≤ ⌊n
2
⌋. Moreover, ∂H

∂j

(

n, n
2

)

> ln( 2
nB2 ) − 1 + 2

n

is thus negative, since n ≥ 4. This proves that the maximal value of H(n, j) is found for
j lower than the solution j∗ of the equation

ln

(

n − j∗

(j∗)2

)

= 1 + ln(B2) − 2

2(n − j∗)
.

Now, 2
2(n−j∗)

< 1
2

for 2 ≤ j ≤ ⌊n
2
⌋ and thus we have that ln

(

n−j∗

(j∗)2

)

> 1+ln(B2)− 1
2

which

proves in turn that

j∗ ≤ max{0;
−1 +

√

1 + 4
√

eB2n

2
√

eB2
}.

Now for the complexity, we use the following recursive scheme to compute the bound:
{

log(H(n, 0)) = n
2

log(nB2)

log(H(n, j + 1)) = log(H(n,j)
B

) + log(n−j

j+1
) + n−j−1

2
log(n − j − 1) − n−j

2
log(n − j)

�

Note that Chen and Qi proposed a sharper bound on the Harmonic numbers, H(k) <

ln(k) − γ + 1
2k+ 1

3

[1]. Using this bound, one can replace every
√

e by e
7
13 in the lemma.

3. Eigenvalue bound on the minimal polynomial

For the minimal polynomial the Hadamard bound may also be used, but is too pessimistic
an estimate, in particular when the degree is small. Indeed, one can use Mignotte’s
bound on the minimal polynomial, as a factor of the characteristic polynomial. There,
||minpolyA ||∞ ≤ 2d||CA||∞||, see [8, Theorem 4]. This yields that the bit size of the largest
coefficient of the minimal polynomial is only d bits less than that of the characteristic
polynomial.
Therefore, one can could rather use a bound on the eigenvalues determined by considera-
tion e.g. of Gershgörin disks and ovals of Cassini (see [11] for more details on the regions
containing eigenvalues, and [3, Algorithm OCB] for a blackbox algorithm efficiently com-
puting such a bound). This gives a bound on the coefficients of the minimal polynomial
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of the form βd where β is a bound on the eigenvalues and d is the degree of the minimal
polynomial.
We can then use the following lemma to bound the coefficients of the minimal polynomial:

Lemma 3.1. Let A ∈ Cn×n with its spectral radius bounded by β ≥ 1. Let minpolyA(X) =
∑d

k=0 miX
i. Then

∀i, |mi| ≤
{

βd if d ≤ β

min{
√

βd
d

; 1√
2dπ

edβd} otherwise

This improves the bound given in [3, Proposition 3.1] by a factor of log(d) when d >> β.

Proof. Expanding the minimal polynomial yields |mi| ≤
(

d

i

)

βd−i by e.g. [8, Theorem

IV.§4.1]. Then, if d ≤ β, we bound the latter by diβd−i.
Now, when d ≥ β, we get the fist bound in two steps: first, for i ≤ d

2
, we bound the

binomial factor by di and thus get
(

d

i

)

βd−i ≤ diβ
d
2
−iβ

d
2 < d

d
2 β

d
2 since d > β ; second, for

i > d
2
, we bound the binomial factor by dd−i and thus get

(

d

i

)

βd−i ≤ dd−iβd−i < d
d
2 β

d
2 .

The second bound, when d ≥ β is obtained by bounding the binomial coefficients by
the middle one,

(

d
d
2

)

, and using Stănică’s bound on the latter. This gives that
(

d

i

)

βd−i ≤
1√
2π

√

4
d
2

d
2 2

d
2 βd. �

For matrices of constant size entries, both β and d are O(n). However, when d and/or β is
small relative to n (especially d) this may be a striking improvement over the Hadamard
bound since the length of latter would be of order n log(n) rather than d log(β).
This is the case e.g. for the Homology matrices in the experiments of [3]. Indeed, for
those, AAt, the Wishart matrix of A, has very small minimal polynomial degree and has
some other useful properties which limit β (e.g. the matrix AAt is diagonally dominant).
For example, the most difficult computation of [3], is that of the matrix n4c6.b12 which
has a degree 827 minimal polynomial with eigenvalues bounded by 117. The refinement
of lemma 3.1 yields there a gain in size on the one of [3] of roughly 5%. In this case, this
represents saving 23 modular projections and an hour of computation.

4. Conclusion

We have presented in this note bounds on the coefficient of the characteristic and minimal
polynomials of a matrix. Moreover, we give algorithms with low complexity computing
even sharper estimates on the fly.
The refinements given here are only constant with regards to previous results but yield
significant practical speed-ups.
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