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Abstract

In order to perform deterministic chinese remaindering of the charac-

teristic or minimal polynomial, precise bounds on the size of their integer

coefficients and ways to refine these bounds on the fly are presented.

1 Bound on the minors

1.1 Hadamard’s bound on the minors

The first bound of the characteristic polynomial coefficient uses Hadamard’s
bound [7, Theorem 16.6] to show that any integer coefficient of the characteristic
polynomial has the order of n bits:

Lemma 1.1. Let A ∈ Zn×n, with n ≥ 5, whose coefficients are bounded in
absolute value by B > 1. The coefficients of the characteristic polynomial of A
are denoted by cj. Then

log2(|cj |) ≤
n

2

(

log2(n) + log2(B
2) + 0.21163175

)

Proof. cj , the j-th coefficient of the characteristic polynomial, is an alternate
sum of all the (n − j) × (n − j) diagonal minors of A. It is therefore bounded

by H(n, j) =
(

n
j

)√

(n − j)B2
(n−j)

. First note, that from the symmetry of

the binomial coefficients we only need to explore the ⌊n/2⌋ first ones, since
√

(n − j)B2
(n−j)

>
√

jB2
j

for i < ⌊n/2⌋. Now, the lemma claims that actu-
ally the maximal value must occur within the O(

√
n) first ones. The lemma is

true for j = 0 by Hadamard’s bound. And for j = 1, we have log2 (H(n, j)) <
n
2 (log2(n) + log2(B

2) + 0.21163175) as soon as n > 4, since the difference is de-

creasing in n. Then from Stirling’s formula (n! = (1 + ǫ(n))
√

2πnnn

en ), we have

∀i ≥ 2
(

n
i

)

< 1+ǫ(n)√
2π

√

n
i(n−i)

(

n
i

)i
(

n
n−i

)n−i

. Now first 1
12n

< ǫ(n) < 1
12n+1 .

Therefore for n > 4, log2

(

1+ǫ(n)√
2π

)

≤ −1.296. Then n
i(n−i) is decreasing in i for

i < ⌊n/2⌋ so that its maximum is n
2(n−2) .
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Consider now K(n, j) =
(

n
j

)j (

n
n−j

)n−j
√

(n − j)B2
(n−j)

. We have log2(K(n, j)) =
n−j

2 log2(B
2) + n

2 log2(n) + n
2 T (n, j), where T (n, j) = log2(

n
n−j

) + j

n
log2(

n−j

j2 ).

Well T (n, j) is maximal for j = −1+
√

1+4en
2e

. We end with the fact that T (n, j)−
2
n
1.296 + 1

n
log2(

n
2(n−2) ) is maximal over Z for n = 15 where it is lower than

0.208935. The latter is lower than 0.21163175.
Well,

[ 1 1 1 1 1
1 1 −1 −1 −1
1 −1 1 −1 −1
1 −1 −1 1 −1
1 −1 −1 −1 1

]

has X5−5X4 +40X2−80X +48 for characteristic polynomial and 80 =
(

5
1

)√
4
4

is greater than Hadamard’s bound 55.9, and less than our bound 80.66661.
Note that this numerical bound improves the one used in [8, lemma 2.1]

since 0.21163175 < 2 + log2(e) ≈ 3.4427.

1.2 Locating the largest coefficient

Lemma 1.2. Let A ∈ Zn×n, with n ≥ 4, whose coefficients are bounded in
absolute value by B > 1. The coefficients of the characteristic polynomial of A
are denoted by cj. Then

∀j |cj | ≤ max
i=0..

−1+

√
1+4eB2n

2eB2

(

n

i

)

√

(n − i)B2
(n−i)

.

Moreover, the cost of computing the associated bound on the size is

O
(√

n

B

)

.

The proof is similar to that of lemma 1.1, except that we cannot anymore
bound expressions as we go. Indeed say that all values of a function G(n, j) are
below one of the values of a function F (n, j) which happend to be e.g. F (n, 2),
this does not prove that the maximum of G is at j = 2. Proof. Consider

H(n, j) =
(

n
j

)√

(n − j)B2
(n−j)

= BnG(n, j)B−j , for j = 2..⌊n
2 ⌊. Then using

Stirling’s approximation, we have G(n, j) = 1+ǫ(n)√
2pi

1
(1+ǫ(j))(1+ǫ(n−j))F (n, j). We

now call D(n, j) = 2
n

log(F (n, j)) =
(

log( n
n−j

) + j

n
log(n−j

j2 ) + 1
n

log( n
j(n−j) )

)

.

Differentiating D with respect to j yields that the solution of ln(n−j
j2 ) = 1 +

n−2j
j(n−j) gives an extremum of D(n, j).

Now we multiply back F (n, j) by both B−j and 1
(1+ǫ(j))(1+ǫ(n−j)) and con-

sider then Dt(n, j) = D(n, j) − j

n
log(B2) − 2

n
log((1 + ǫ(j))(1 + ǫ(n − j))).

We approximate the latter with the taylor expansion of ǫ given e.g. in [1]
(ǫ(i) ≈ 1/12/i+1/288/i2−139/51840/i3 . . .) and differentiate again with respect
to j. This yields that the solution j∗ of ln(n−j

j2 ) = 1 + ln(B2)− n−2j

6j2(n−j)2 (6j2 −
6nj − n) + O( 1

(i3)(n−i)2 ) gives an extremum of D(n, j) Then, the roots of
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(6j2 − 6nj − n) are respectively greater than n/2 and strictly negative. Thus
n−2j

6j2(n−j)2 (6j2 − 6nj − n) is always negative and we have ln(n−j∗
j∗2 ) ≥ 1 + ln(B2).

This proves that

j∗ ≤ −1 +
√

1 + 4eB2n

2eB2
.

Then, for n > 19 and B = 1 the derivative is negative at j = 2 and positive
at j = n/2 and thus, j∗ is a maximum. For smaller n, the derivative is always
negative and for larger B, the switch in n is larger than 19.

Now for the complexity, we fist compute log(H(n, 0)) = n
2 log(nB2) and then

log(H(n, i + 1)) = log(H(n, i)) + log(n−i
i+1 ) + n−i−1

2 log(n− i − 1) − n−i
2 log(n−

i) − log(B).

2 Eigenvalue bounds

2.1 Minimal polynomial

For the minimal polynomial the Hadamard bound may also be used, but is too
pessimistic an estimate, in particular when the degree is small. Therefore, one
can use a bound determined by consideration of Gershgörin disks and ovals of
Cassini. This bound is of the form βd where β is a bound on the eigenvalues
and d is the degree of the minimal polynomial.

We can then use the following lemma to bound the coefficients of the minimal
polynomial:

Lemma 2.1. Let B ∈ C
n×n with its spectral radius bounded by β. Let minpolyB(X) =

∑d

k=0 miX
i. Then ∀i ∈ [[0, d]], |mi| ≤ max{

√
dβ; β}d.

Proof. It suffices to note that |mi| ≤
(

d
i

)

βi [10, Theorem IV.§4.1], and then

bound each one of these with either βd when β ≥ d or d
d
2 β

d
2 when β ≤ d.

For matrices of constant size entries, both β and d are O(n). However,
when d and/or β is small relative to n (especially d) this may be a striking
improvement over the Hadamard bound since the length of latter would be of
order n log(n) rather than d log(β).

This is the case e.g. for the Homology matrices in the experiments of [6].
Indeed, for those, AAt, the Wishart matrix of A, has very small minimal poly-
nomial degree and has some other useful properties which limit β (e.g. the
matrix AAt is diagonally dominant).

There remains to compute precise bounds on the eigenvalues.

2.2 Ovals of Cassini for the Wishart matrix

The i-th Gershgörin disk is centered at ai,i and has for a radius the sum of the
absolute values of the other entries on the i-th row. Gershgörin’s theorem is
that all of the eigenvalues are contained in the union of the Gershgörin disks
[2, 11, 9]. One can then go further and consider the ovals of Cassini [3, 4, 12],

3



which may produce sharper bounds. Each Cassini oval has two centers q1, q2

(two diagonal elements) and two radii r1, r2 (e.g. the associated row radii).
Then any point λ of this oval satisfies the following: |λ − q1||λ − q2| ≤ r1r2.
Moreover the eigenvalues lie in the union of the ovals [3, Theorem 1].

While computing the Cassini ovals of A is straightforward, computing those
of AAt, whithout performing the expensive matrix product, is not. We remark
that it is expensive to compute the bound mentioned above while staying strictly
in the black box model, where only matrix-vector products are available [5]. It
seems to require two matrix vector products (with A) to extract each row or
column of B. But, if one has access to the elements of A, a bound for the
spectral radius of B can easily be obtained with very few arbitrary precision
operations:

Algorithm 2.1 OCB [Ovals-of-Cassini-Bound]

Require: a matrix A ∈ C
m×n.

Ensure: β ∈ IR, such that for every eigenvalue λ of AAt, |λ| ≤ β.
{Centers}

1: for all i = 1 to m do

2: qi =
∑

1≤j≤n a2
ij

3: end for

{Radii}
4: Form |A|, the matrix whose entries are the absolute values of those of A.
5: v = |A||A|T [1, 1, . . . , 1]T

6: for all i = 1 to m do

7: ri = vi − |qi|
8: end for

{Gershgörin bound}
9: q = max1≤i≤m |qi|

10: i1 such that ri1 = max
i∈[[1,m]] ri

{Cassini bound}
11: i2 such that ri2 = max

i∈[[1,m]]\{i1} ri

12: β = q +
√

ri1ri2

For a matrix A ∈ Cm×n let Ω = max{m; n; number of nonzero elements
in A}. Then 2Ω bounds the number of field operations for the matrix vector
product, Ax, and for a vector inner product, xT x.

Theorem 2.2. Let A ∈ C
m×n with Ω as described above. Algorithm Ovals-of-

Cassini-Bound correctly computes a bound on the eigenvalues of AAt, using no
more than 7Ω field operations and 3m comparisons.

Proof. For the correctness of the bound we use the fact that the eigenvalues lie
in the union of the ovals of Cassini. Now suppose that q1, q2, r1, r2 are the two
centers and two radii of such an oval. Then any point λ of this oval satisfies the
following: |λ− q1||λ− q2| ≤ r1r2 [3, Theorem 1]. We want to know the maximal
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absolute value of such a λ. First, if |λ − q2| ≤ |λ − q1|, then |λ − q2| ≤
√

r1r2,
as |λ| − |q2| ≤ |λ − q2|, we conclude by |λ| ≤ |q2| +

√
r1r2. Replacing q2 by

q1, the second case is analogous. Therefore β as in the algorithm matches the
requirements. The complexity analysis is straightforward.
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