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Abstract

In order to perform deterministic chinese remaindering of the charac-

teristic or minimal polynomial, precise bounds on the size of their integer

coefficients and ways to refine these bounds on the fly are presented.

1 Hadamard’s bound on the minors

The first bound of the characteristic polynomial coefficient uses Hadamard’s
bound [2, Theorem 16.6] to show that any integer coefficient of the characteristic
polynomial has the order of n bits:

Lemma 1.1. Let A ∈ Z
n×n, with n ≥ 5, whose coefficients are bounded in

absolute value by B > 1. The coefficients of the characteristic polynomial of A
are denoted by cj. Then

log2(|cj |) ≤
n

2

(

log2(n) + log2(B
2) + 0.21163175

)

Proof. cj , the j-th coefficient of the characteristic polynomial, is an alternate
sum of all the (n − j) × (n − j) diagonal minors of A. It is therefore bounded

by H(n, j) =
(

n

j

)
√

(n − j)B2
(n−j)

. First note, that from the symmetry of

the binomial coefficients we only need to explore the ⌊n/2⌋ first ones, since
√

(n − j)B2
(n−j)

>
√

jB2
j

for i < ⌊n/2⌋. Now, the lemma claims that actu-
ally the maximal value must occur within the O(

√
n) first ones. The lemma is

true for j = 0 by Hadamard’s bound. And for j = 1, we have log2 (H(n, j)) <
n
2 (log2(n) + log2(B

2) + 0.21163175) as soon as n > 4, since the difference is de-

creasing in n. Then from Stirling’s formula (n! = (1 + ǫ(n))
√

2πnnn

en ), we have

∀i ≥ 2
(

n

i

)

< 1+ǫ(n)√
2π

√

n
i(n−i)

(

n
i

)i
(

n
n−i

)n−i

. Now first 1
12n

< ǫ(n) < 1
12n+1 .

Therefore for n > 4, log2

(

1+ǫ(n)√
2π

)

≤ −1.296. Then n
i(n−i) is decreasing in i for

i < ⌊n/2⌋ so that its maximum is n
2(n−2) .

Consider now K(n, j) =
(

n
j

)j (

n
n−j

)n−j
√

(n − j)B2
(n−j)

. We have log2(K(n, j)) =

1



n−j

2 log2(B
2) + n

2 log2(n) + n
2 T (n, j), where T (n, j) = log2(

n
n−j

) + j

n
log2(

n−j

j2 ).

Well T (n, j) is maximal for j = −1+
√

1+4en

2e
. We end with the fact that T (n, j)−

2
n
1.296 + 1

n
log2(

n
2(n−2) ) is maximal over Z for n = 15 where it is lower than

0.208935. The latter is lower than 0.21163175.
Well,

[ 1 1 1 1 1
1 1 −1 −1 −1
1 −1 1 −1 −1
1 −1 −1 1 −1
1 −1 −1 −1 1

]

has X5−5X4 +40X2−80X +48 for characteristic polynomial and 80 =
(

5
1

)√
4
4

is greater than Hadamard’s bound 55.9, and less than our bound 80.66661.
Note that this numerical bound improves the one used in [3, lemma 2.1]

since 0.21163175 < 2 + log2(e) ≈ 3.4427.

2 Computing a bound

Lemma 2.1. Let A ∈ Z
n×n, with n ≥ 4, whose coefficients are bounded in

absolute value by B > 1. The coefficients of the characteristic polynomial of A
are denoted by cj. Then

∀j |cj | ≤ max
i=0..

−1+

√
1+4eB2n

2eB2

(

n

i

)

√

(n − i)B2
(n−i)

.

Moreover, the cost of computing the associated bound on the size is

O
(√

n

B

)

.

The proof is similar to that of lemma 1.1, except that we cannot anymore
bound expressions as we go. Indeed say that all values of a function G(n, j) are
below one of the values of a function F (n, j) which happend to be e.g. F (n, 2),
this does not prove that the maximum of G is at j = 2. Proof. Consider

H(n, j) =
(

n

j

)
√

(n − j)B2
(n−j)

= BnG(n, j)B−j , for j = 2..⌊n
2 ⌊. Then using

Stirling’s approximation, we have G(n, j) = 1+ǫ(n)√
2pi

1
(1+ǫ(j))(1+ǫ(n−j))F (n, j). We

now call D(n, j) = 2
n

log(F (n, j)) =
(

log( n
n−j

) + j

n
log(n−j

j2 ) + 1
n

log( n
j(n−j) )

)

.

Differentiating D with respect to j yields that the solution of ln(n−j

j2 ) = 1 +
n−2j

j(n−j) gives an extremum of D(n, j).

Now we multiply back F (n, j) by both B−j and 1
(1+ǫ(j))(1+ǫ(n−j)) and con-

sider then Dt(n, j) = D(n, j) − j

n
log(B2) − 2

n
log((1 + ǫ(j))(1 + ǫ(n − j))).

We approximate the latter with the taylor expansion of ǫ given e.g. in [1]
(ǫ(i) ≈ 1/12/i + 1/288/i2 − 139/51840/i3 . . .) and differentiate again with re-
spect to j and multiply the obtained quotient by i(n− i)n. This yields that the
solution j∗ of ln(n−j

j2 ) = 1 + ln(B2) − n−2j

6j2(n−j)2 (6j2 − 6nj + n) + O( 1
i3

) gives

an extremum of D(n, j) Then, the roots of (6j2 − 6nj + n) are respectively

2



greater than n/2 and strictly lower than 1 (asymptotically close to 1
6 ). Thus

n−2j

6j2(n−j)2 (6j2 − 6nj + n) is always negative and we have ln(n−j∗
j∗2 ) ≥ 1 + ln(B2).

This proves that

j∗ ≤ −1 +
√

1 + 4eB2n

2eB2
.

Now for the complexity, we fist compute log(H(n, 0)) = n
2 log(nB2) and then

log(H(n, i + 1)) = log(H(n, i)) + log(n−i
i+1 ) + n−i−1

2 log(n− i − 1) − n−i
2 log(n−

i) − log(B).
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