Sébastien Blachère 
  
Peter Haïssinsky 
  
Pierre Mathieu 
  
Asymptotic entropy and Green speed for random walks on countable groups

Keywords: Green function, Random walks on groups 0 AMS 2000 subject classification: 34B27, 60B15

come    

Asymptotic entropy and Green speed for random walks on groups

Introduction

Let Γ be an infinite countable group and let (Z n ) be a transient random walk on Γ.

In order to study asymptotic properties of the random walk, we define the Green (or hitting) metric:

d G (x, y) = -ln P x [τ y < ∞] ,
where τ y is the hitting time of the element y by the random walk started at x. Looking at the random walk through the Green metric leads to nice geometrical interpretation of probabilistic quantities describing the long time behaviour of the walk. We illustrate this claim by showing that the rate of escape computed in d G coincides with the asymptotic entropy of the random walk, see Theorem 1.1. As another example of interest in the Green metric, we also explain how the Martin compactification of Γ can be interpreted as the Busemann compactification of Γ equipped with d G . In a forthcoming paper [START_REF] Blachre | Harmonic measures versus quasiconformal measures for hyperbolic groups[END_REF] we use the Green metric to study fine geometric properties of the harmonic measure on boundaries of hyperbolic groups.

Before stating our theorem, let us first recall some definitions. The rate of escape of the random walk computed in the Green metric (in short the Green speed) is defined by the almost sure limit

ℓ G def. = lim n→∞ d G (e, Z n ) n .
The asymptotic entropy of the random walk is defined by

h def. = lim n→∞ -ln µ n (Z n ) n
where µ is the law of the increment of the random walk (i.e. the law of Z 1 ) and µ n is the n-th convolution power of µ (i.e. the law of Z n ). This limit almost surely exists and is finite if the entropy of µ H(µ)

def. = - x∈Γ µ(x) ln µ(x)
is finite. The asymptotic entropy h plays a very important role in the description of the large time behaviour of the random walk as illustrated in Derriennic [START_REF] Derriennic | Sur le théorème ergodique sous-additif[END_REF][START_REF]Quelques applications du théorème ergodique sous-additif[END_REF], Guivarc'h [START_REF] Guivarc | h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire[END_REF], Kaimanovich [START_REF] Kaimanovich | Poisson boundary of discrete groups[END_REF], Kaimanovich & Vershik [START_REF] Kaimanovich | Random walks on discrete groups: boundary and entropy[END_REF], or Vershik [START_REF] Vershik | Dynamic theory of growth in groups: entropy, boundaries, examples[END_REF] among others. For instance it is known that h = 0 if and only if the Poisson boundary of the random walk is trivial.

Our main result is the following Theorem 1.1 For any transient random walk on a countable group such that H(µ) < ∞, the asymptotic entropy h and the Green speed ℓ G are equal.

In part 2 we prove this result using an integral representation of h on the Martin boundary of Γ (Lemma 2.6) and interpreting the Green speed of the random walk as a limit of a Martin kernel (Proposition 2.4). This proof does not use any quantitative bound on the transition probabilities of the random walk and therefore applies to transient random walks on any countable groups even non-finitely generated ones.

In part 3 we consider the case of a finitely generated group Γ and we discuss the connection of Theorem 1.1 with the so-called 'fundamental inequality' h ≤ ℓ • v where ℓ and v denote the rate of escape and the logarithmic volume growth in some left invariant metric on the group with a finite first moment. We first derive a new general version of the fundamental inequality for any random walk (with bounded or unbounded support) and any (geodesic or non-geodesic) left invariant metric on the group with a finite first moment, see Proposition 3.4. Then we use heat kernel estimates to get bounds on the logarithmic volume growth in the Green metric, see Proposition 3.1. Thus we finally obtain another proof of Theorem 1.1, valid for finitely generated groups of superpolynomial volume growth. In the case of groups with polynomial volume growth, h and ℓ G are both zero.

For finitely generated groups, Benjamini & Peres [START_REF] Benjamini | Tree-indexed random walks on groups and first passage percolation[END_REF] gave a different proof of the equality h = ℓ. Even if their proof is written for finitely supported random walks, their method also works for random walks with infinite support (see the proof of Proposition 3.1).

Countable groups 2.1 The Green metric

We will give the definition of the Green metric associated to transient random walks and recall some of its properties from Blachère & Brofferio [START_REF] Blachre | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF].

Let µ be a probability measure on Γ whose support generates the whole group Γ. (We will always make this generating hypothesis). We do not assume that µ is symmetric nor that it is finitely supported. Let (X k ) be a sequence of i.i.d. random variables whose common law is µ. The process

Z k def. = xX 1 X 2 • • • X k , with Z 0 = x ∈ Γ,
is an irreducible random walk on Γ starting at x with law µ. We denote P x and E x , respectively, the probability and expectation related to a random walk starting at x. When x = e (the identity of the group), the exponent will be omitted.

From now on, we will always assume the random walk to be transient i.e., with positive probability, it never returns to its starting point. This assumption is always satisfied if Γ is not a finite extension of Z or Z 2 (see Woess [START_REF] Woess | Random walks on infinite graphs and groups[END_REF]Sect. I.3.B]). On a finite extension of Z or Z 2 , there exists a canonical projection ϕ onto an Abelian subgroup ({e}, Z or Z 2 ), see Alexopoulos [START_REF] Mathieu | Random walks on discrete groups of polynomial volume growth[END_REF]. We define the first moment of the canonical projection of the random walk:

M 1 (µ) def. = x∈Γ ϕ(x) µ(x) ,
where ϕ(x) is the norm of ϕ(x). When M 1 (µ) < ∞, the random walk is transient if and only if it has a non-zero drift ( x∈Γ ϕ(x)µ(x) = 0). But there are examples of recurrent and transient random walks with M 1 (µ) = ∞. There are even examples of transient symmetric random walks on Z. For these results and examples, see Spitzer [START_REF] Spitzer | Principles of random walks[END_REF].

The Green function G(x, y) is defined as the expected number of visits at y for a random walk starting at x:

G(x, y) def. = E x ∞ n=0 1I {Zn=y} = ∞ n=0 P x [Z n = y] .
Since the random walk is chosen to be transient, the Green function is finite for every x and y. Let τ y be the first hitting time of y by the random walk:

τ y def. = inf{k ≥ 0 : Z k = y} .
When y is never attained, let τ y = ∞. The hitting probability of y starting at x is F (x, y)

def. = P x [τ y < ∞] .
Note that F (x, y) is positive since the support of µ generates Γ, and that F and G are invariant by left diagonal multiplication. In particular, G(y, y) = G(e, e).

A straightforward computation (using the strong Markov property) shows that the functions F and G are proportional:

G(x, y) = G(y, y)F (x, y) = G(e, e)F (x, y) . (1) 
The metric we will use is the Green metric (or Hitting metric, defined in [START_REF] Blachre | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF]):

d G (x, y) def.
=ln F (x, y) = ln G(e, e)ln G(x, y) .

Throughout the article, we will call (with some abuse of notation) metric any non-negative real function d(•, •) on Γ × Γ which satisfies the triangle inequality, vanishes on the diagonal and satisfies d(x, y) = 0 = d(y, x) =⇒ x = y .

(2)

Lemma 2.1 ([4] Lemma 2.1) The function d G (•, •) is a left invariant metric on Γ. Proof As F (x, y) is bounded by 1, then d G (•, •) is non-negative.
It is also clear that F (x, x) = 1 and therefore d G (x, x) = 0 for any x ∈ Γ. The invariance of F (•, •) by left diagonal multiplication implies the same property for d G (•, •). Also note that since the random walk is transient we have:

∀x = y, 1 > P x [τ ′ x < ∞] ≥ P x [τ y < ∞]P y [τ x < ∞] = F (x, y)F (y, x) ,
where τ ′ x def.

= inf{k ≥ 1 :

Z k = x}. Thus d G (x, y) = d G (y, x) = 0 ⇐⇒ F (x, y) = F (y, x) = 1 ⇐⇒ x = y .
Finally,

P x [τ z < ∞] ≥ P x [τ y < ∞]P y [τ z < ∞]
leads to the triangle inequality:

d G (x, z) ≤ d G (x, y) + d G (y, z).
2 For the Green metric, and if we assume that Γ is not isomorphic to Z, a stronger property than condition (2) actually holds, namely: Lemma 2.2 Let Γ be an infinite countable group and let (Z n ) be a transient random walk on Γ of law µ. We assume that the support of µ generates Γ as a semigroup.

If Γ is not isomorphic to Z, then d G (x, y) = 0 =⇒ x = y (3) 
holds. Moreover, if there exist x and y which contradict (3), then Γ has a generator a such that

Supp(µ) ⊂ {a k , k ≤ 1} and µ(a) > 1/2 .

Proof

We assume that there is some element x = e such that d G (e, x) = 0. We will prove that Γ is isomorphic to Z and then the second part of the lemma. We will proceed in several steps, and we will use repeatedly the following fact:

Fact. If, for an element y ∈ Γ, P[τ y < τ x ] > 0 holds, then d G (y, x) = 0. Let E def. = {z ∈ Supp(µ)\{e} s.t. d G (e, z) = 0}.
Step 1: #E ≤ 1.

Let z 1 , z 2 be two elements from the support Supp(µ) such that d G (e, z 1 ) = d G (e, z 2 ) = 0. Since they belong to the support, it follows that

P[τ z 1 < τ z 2 ] > 0 and P[τ z 2 < τ z 1 ] > 0 . Hence, the Fact implies that d G (z 1 , z 2 ) = d G (z 2 , z 1 ) = 0 and Lemma 2.1 and (2) yield z 1 = z 2 .
Step 2: E = ∅.

We consider the oriented graph with Γ as the vertex set and we put an oriented edge from a to b if a -1 b ∈ Supp(µ). Let y be the last point before x on a loop-free path from e to x. Then P[τ y < τ x ] > 0 and the Fact implies that F (e, y -1 x) = F (y, x) = 1. Since the path is loop free, y -1 x = e, hence y -1 x ∈ E.

From Steps 1 and 2, we get that E = {a} for some a ∈ Γ.

Step 3: x is a positive power of a.

From the proof of Step 2, we know that any loop-free path from e to x passes throught xa -1 . So F (e, xa -1 ) = 1. The above argument can be iterated to show that x = a n for some positive integer n.

Step 4: Supp(µ) ⊂ {a k , k ≤ 1} and Γ is generated by a (as a group).

Let z ∈ Supp(µ)\{a}. As above we get

P[τ z < τ a ] > 0 =⇒ d G (e, z -1 a) = 0 =⇒ ∃n ≥ 1 s.t. z -1 a = a n
and therefore Supp(µ) ⊂ {a k , k ≤ 1}. As the support generates the group, Γ = {a n : n ∈ Z}.

Step 5: µ(a) > 1/2. From F (e, a) = 1 and Step 4, the random walk must have a positive drift toward the positive powers of a.

2

Observe that, if µ is symmetric (µ(x) = µ(x -1 ) for all x ∈ Γ), then the Green function G(•, •) and the Green metric d G are also symmetric and therefore d G becomes a genuine distance on Γ.

Entropy and Green speed

The measure µ is now supposed to have finite entropy:

H(µ) def. = - x∈Γ µ(x) ln µ(x) < ∞ .
The first moment of µ in the Green metric is, by definition, the expected Green distance between e and Z 1 , which is also the expected Green distance between Z n and Z n+1 for any n and has the following analytic expression:

E[d G (e, Z 1 )] = x∈Γ µ(x) • d G (e, x) .
Lemma 2.3 The finiteness of the entropy H(µ) implies the finiteness of the first moment of µ with respect to the Green metric.

Proof

By construction, the law of

Z 1 = X 1 under P is µ. Since P[τ x < ∞] ≥ P[Z 1 = x] = µ(x) holds, we have x∈Γ µ(x) • d G (e, x) = - x∈Γ µ(x) • ln(P[τ x < ∞]) ≤ - x∈Γ µ(x) • ln(µ(x)) = H(µ) . So that: H(µ) < ∞ =⇒ E[d G (e, X 1 )] < ∞.
2 Let ℓ G be the rate of escape of the random walk Z n in the Green metric d G (e, .):

ℓ G = ℓ G (µ) def. = lim n→∞ d G (e, Z n ) n = lim n→∞ -ln F (e, Z n ) n = lim n→∞ -ln G(e, Z n ) n ,
since the functions F (•, •) and G(•, •) differ only by a multiplicative constant. We call ℓ G the Green speed. Under the hypothesis that µ has finite entropy, by the sub-additive ergodic Theorem (Kingman [START_REF] Kingman | The ergodic theory of subadditive stochastic processes[END_REF], Derriennic [START_REF] Derriennic | Sur le théorème ergodique sous-additif[END_REF]), this limit exists almost surely and in L 1 . The sub-additive ergodic Theorem of Kingman also allows one to define the asymptotic entropy as the almost sure and L 1 limit:

h def. = lim n→∞ -ln µ n (Z n ) n ,
where µ n is the n th convolution power of the measure µ.

Taking expectations, we deduce that h also satisfies

h = lim n H(µ n ) n .
The properties of the asymptotic entropy are studied in great generality in the articles mentioned in the introduction. In particular, it turns out that h can also be interpreted as a Fisher information. We shall use this fact to conclude the proof of our Theorem, see Lemma 2.6.

Martin boundary and proof of Theorem 1.1

The Martin kernel is defined (using ( 1)) for all (x, y) ∈ Γ × Γ by ,y) .

K(x, y) def. = G(x, y) G(e, y) = F (x, y) F (e
The Martin kernel continuously extends in a compactification of Γ called the Martin compactification Γ∪∂ M Γ where ∂ M Γ is the Martin boundary. Let us briefly recall the construction of ∂ M Γ: let Ψ : Γ → C(Γ) be defined by y -→ K(•, y). Here C(Γ) is the space of real valued functions defined on Γ endowed with the topology of pointwise convergence. It turns out that Ψ is injective and thus we may identify Γ with its image. The closure of Ψ(Γ) is compact in C(Γ) and, by definition,

∂ M Γ = Ψ(Γ) \ Ψ(Γ)
is the Martin boundary. In the compact space Γ ∪ ∂ M Γ, for any initial point x, the random walk Z n almost surely converges to some random variable Z ∞ ∈ ∂ M Γ (see for instance Dynkin [START_REF] Dynkin | The boundary theory of Markov processes (discrete case)[END_REF] or Woess [START_REF] Woess | Random walks on infinite graphs and groups[END_REF]).

We note that, by means of the Green metric, one can also consider the Martin compactification as a special example of a Busemann compactification. We recall that the Busemann compactification of a proper metric space (X, d) is obtained through the embedding Φ : X → C(X) defined by y -→ d(•, y)d(e, y). (Here e denotes an arbitrary base point.) In general, C(X) should be endowed with the topology of uniform convergence on compact sets. The Busemann compactification of X is the closure of the image Φ(X) in C(X). We refer to Ballmann, Gromov & Schroeder [START_REF] Ballmann | Manifolds of nonpositive curvature[END_REF] and to Karlsson & Ladrappier [START_REF] Karlsson | On laws of large numbers for random walks[END_REF] and the references therein for further details.

If one now chooses as X the group Γ itself and for the distance d the Green metric, both constructions of the Martin and Busemann compactifications coincide as it is straightforward from the relation:

d G (•, y) -d G (e, y) = -ln K(•, y) .
We first prove that the Green speed can be expressed in terms of the extended Martin kernel. Theorem 1.1 will then be a direct consequence of the formulas in Proposition 2.4 and Lemma 2.6. For that purpose we need to define the reversed law μ:

∀x ∈ Γ , μ (x) def. 
= µ(x -1 ) .

Note that H(μ) = H(µ).

Proposition 2.4 Let µ be a probability measure on Γ with finite entropy H(µ) and whose support generates Γ. Let (Z n ) be a random walk on Γ of law µ (starting at e) and let X1 be an independent random variable of law μ. Then

ℓ G = E Ẽ[-ln K( X1 , Z ∞ )] ,
where Ẽ refers to the integration with respect to the random variable X1 and E refers to the integration with respect to the random walk (Z n ).

Proof

As µ is supposed to have finite entropy, ℓ G is well defined as an almost sure and L 1 limit. We will prove that the sequence

E[d G (e, Z n+1 ) -d G (e, Z n )] = E[-ln G(e, Z n+1 ) + ln G(e, Z n )] ,
converges to E Ẽ[ln K( X1 , Z ∞ )]. Since its limit in the Cesaro sense is ℓ G , it implies the formula in Proposition 2.4. By definition of the reversed law μ, X-1

1
has the same law as X 1 the first increment of the random walk (Z n ). Note also that X 2 • • • X n+1 has the same law as

Z n = X 1 • • • X n . Since we have assumed that X1 is independent of the sequence (Z n ), Z n+1 = X 1 • X 2 • • • X n+1
has the same law as X-1 1 • Z n and therefore, using the translation invariance, G(e, Z n+1 ) has the same law as G( X1 , Z n ). Thus

E[-ln G(e, Z n+1 ) + ln G(e, Z n )] = E Ẽ[-ln G( X1 , Z n ) + ln G(e, Z n )] = E Ẽ[-ln K( X1 , Z n )] .
By continuity of the Martin kernel up to the Martin boundary, for every x ∈ Γ, the sequence K(x, Z n ) almost surely converges to K(x, Z ∞ ). We need an integrable bound forln K( X1 , Z n ) (uniformly in n) to justify the convergence of the expectation.

To prove thatln K( X1 , Z n ) cannot go too far in the negative direction, we first prove a maximal inequality for the sequence (K( X1 , Z n )) n following Dynkin [START_REF] Dynkin | The boundary theory of Markov processes (discrete case)[END_REF]. Lemma 2.5 For any a > 0,

P P[sup n K( X1 , Z n ) ≥ a] ≤ 1 a .
where P refers to the measure associated to the random variable X1 and P refers to the measure associated to the random walk (Z n ).

Proof

We fix an integer R. Let σ R be the time of the last visit to the ball B G (e, R)

def.

= {x ∈ Γ s.t. d G (e, x) ≤ R} for the random walk (Z n ). (Since the random walk is transient, σ R is well defined and almost surely finite if the random walk starts within B G (e, R). Otherwise σ R is set to be infinite when B G (e, R) is never reached) Let us define the sequence (Z σ R -k ) (k ∈ N). As this sequence (in Γ) is only defined for k ≤ σ R , we take the following convention for negative indices:

{k > σ R } =⇒ {Z σ R -k def.
= ⋆} , so that the sequence (Z σ R -k ) k∈N is well defined and takes its values in Γ ∪ {⋆}. Note that Z σ R takes its value in B G (e, R).

Let us call F k the σ-algebra generated by (Z σ R , . . . , Z σ R -k ) and observe that

1I {k≤σ R } ∈ F k , since {k ≤ σ R } means that none of Z σ R , . . . , Z σ R -k equals ⋆.
With the convention that, for any x ∈ Γ, K(x, ⋆) = 0, we can define, for any x in Γ, the non-negative sequence (K(x, Z σ R -k )) (k ∈ N). This sequence is adapted to the filtration (F k ) and we will prove, following Dynkin [12, §6,7], that it is a supermartingale with respect to (F k ).

For this purpose, let us check that for any positive integer k and any sequence z 0 , z 1 , . . . , z k-1 in Γ ∪ {⋆} (with z 0 ∈ B G (e, R)),

E K(x, Z σ R -k ) k-1 j=0 1I {Z σ R -j =z j } = K(x, z k-1 ) -δ x (z k-1 )G(e, x) -1 • E k-1 j=0 1I {Z σ R -j =z j } . (4)
We first compute the left-hand side of (4) in the case where none of z 0 , z 1 , . . . , z k-1 equals ⋆. Using first that K(x, ⋆) = 0,

z k ∈Γ∪{⋆} P[Z σ R = z 0 , . . . , Z σ R -(k-1) = z k-1 , Z σ R -k = z k ] • K(x, z k ) = z k ∈Γ P[Z σ R = z 0 , . . . , Z σ R -k = z k ] • K(x, z k ) = z k ∈Γ P[k ≤ σ R , Z σ R = z 0 , . . . , Z σ R -k = z k ] • K(x, z k ) ,
since the fact that none of z 0 , . . . , z k equals ⋆ means in particular

k j=0 {Z σ R -j = z j } ⊂ {k ≤ σ R } . Then z k ∈Γ∪{⋆} P[Z σ R = z 0 , . . . , Z σ R -(k-1) = z k-1 , Z σ R -k = z k ] • K(x, z k ) = z k ∈Γ ∞ m=k P[σ R = m, Z m = z 0 , . . . , Z m-k = z k ] • K(x, z k ) = z k ∈Γ ∞ m=k P[Z m-k = z k ]µ(z -1 k z k-1 ) • • • µ(z -1 1 z 0 )P z 0 [σ R = 0] • K(x, z k ) = µ(z -1 k-1 z k-2 ) • • • µ(z -1 1 z 0 )P z 0 [σ R = 0] z k ∈Γ G(e, z k )µ(z -1 k z k-1 ) • K(x, z k ) = µ(z -1 k-1 z k-2 ) • • • µ(z -1 1 z 0 )P z 0 [σ R = 0] z k ∈Γ G(x, z k )µ(z -1 k z k-1 ) = µ(z -1 k-1 z k-2 ) • • • µ(z -1 1 z 0 )P z 0 [σ R = 0] (G(x, z k-1 ) -δ x (z k-1 )) .
Using the same kind of computation we get that the right-hand side of (4) equals

∞ m=k-1 P[σ R = m, Z m = z 0 , . . . , Z m-(k-1) = z k-1 ] K(x, z k-1 ) -δ x (z k-1 )G(e, x) -1 = ∞ m=k-1 P[Z m-(k-1) = z k-1 ]µ(z -1 k-1 z k-2 ) • • • µ(z -1 1 z 0 )P z 0 [σ R = 0] × K(x, z k-1 ) -δ x (z k-1 )G(e, x) -1 = µ(z -1 k-1 z k-2 ) • • • µ(z -1 1 z 0 )P z 0 [σ R = 0] (G(x, z k-1 ) -δ x (z k-1 )) .
So ( 4) is true as soon as z 0 , . . . , z k-1 take values in Γ. Now suppose that z j = ⋆ for some j ≤ k -1, then

{Z σ R -j = z j } =⇒ {Z σ R -(k-1) = ⋆} =⇒ {Z σ R -k = ⋆} .
Since K(x, ⋆) = 0, the left-hand side of ( 4) is zero. To check that the right-hand side is also zero, observe that

z k-1 = ⋆ =⇒ 1I {Z σ R -j =z j } • 1I {Z σ R -(k-1) =z (k-1) } = 0 =⇒ E k-1 j=0 1I {Z σ R -j =z j } = 0 ,
and, as x ∈ Γ,

z k-1 = ⋆ =⇒ K(x, z k-1 ) = 0 and δ x (z k-1 ) = 0 .
The proof of ( 4) is now complete. Since the Green function is positive, we deduce from (4)

E K(x, Z σ R -k ) k-1 j=0 1I {Z σ R -j =z j } ≤ K(x, z k-1 ) • E k-1 j=0 1I {Z σ R -j =z j } ,
thus proving the supermartingale property of the sequence (K(x,

Z σ R -k )) (k ∈ N).
We use similar arguments to compute the expectation of the value of the super-martingale at time k = 0: E[K(x, Z σ R )] which turns out not to depend on R.

E[K(x, Z σ R )] = ∞ m=0 z∈B G (e,R) P[σ R = m, Z m = z] • K(x, z) = ∞ m=0 z∈B G (e,R) P z [σ R = 0] • P[Z m = z] • K(x, z) = z∈B G (e,R) P z [σ R = 0] • G(x, z) = z∈B G (e,R) P z [σ R = 0] ∞ m=0 P x [Z m = z] = z∈B G (e,R) ∞ m=0 P x [σ R = m, Z σ R = z] = P x [σ R < ∞] ≤ 1 .
We can now use Doob's maximal inequality for non-negative supermartingales, see for instance Breiman [6, Prop. 5.13], to get that:

∀x ∈ Γ , P[sup k K(x, Z σ R -k ) ≥ a] ≤ 1 a . So P P[sup k K( X1 , Z σ R -k ) ≥ a] ≤ 1 a
, and, letting R tend to infinity,

P P[sup n K( X1 , Z n ) ≥ a] ≤ 1 a . 2 
Let us go back to the proof of Proposition 2.4: Lemma 2.5 implies that, for any b > 0,

P P[sup n ln K( X1 , Z n ) ≥ b] ≤ e -b ,
and therefore

E Ẽ[sup n ln K( X1 , Z n ) 1I K( X1 ,Zn)≥1 ] < ∞.
On the other hand, we have

K(x, Z n ) = P x [τ Zn < ∞] P e [τ Zn < ∞] ≥ P x [τ e < ∞] • P e [τ Zn < ∞] P e [τ Zn < ∞] = P e [τ x -1 < ∞] ≥ μ(x) , and Ẽ[-ln μ( X1 )] = H(μ) = H(µ) < ∞ .
Writing that

| ln K( X1 , Z n )| = ln K( X1 , Z n ) 1I K( X1 ,Zn)≥1 -ln K( X1 , Z n ) 1I K( X1 ,Zn)≤1 ≤ ln K( X1 , Z n ) 1I K( X1 ,Zn)≥1 -ln μ( X1 ) ,
we conclude that the random variable sup n | ln K( X1 , Z n )| is integrable. We can therefore apply the dominated convergence theorem to deduce that the sequence

E[-ln G(e, Z n+1 ) + ln G(e, Z n )] converges to E Ẽ[-ln K( X1 , Z ∞ )] . 2 
Lemma 2.6 Let Γ be a countable group and µ be a probability measure on Γ whose support generates Γ, with finite entropy H(µ). Then

h = E Ẽ[-ln K( X1 , Z ∞ )] .

Proof

Recall that μ is the law of X1 . We have

E Ẽ[-ln K( X1 , Z ∞ )] = Γ ∂ M Γ -ln(K(x, ξ)) dν(ξ) dμ(x) ,
where ν y (•) is the harmonic measure on the Martin boundary ∂ M Γ for a random walk (of law µ) starting at y and ν(•) = ν e (•). By the Martin boundary convergence Theorem, see Hunt [START_REF] Hunt | Markoff chains and Martin boundaries[END_REF] or Woess [START_REF] Woess | Random walks on infinite graphs and groups[END_REF]Th. 24.10], the Martin kernel K(x, ξ) is the Radon-Nikodym derivative of ν x by ν at ξ. Therefore

E Ẽ[-ln K( X1 , Z ∞ )] = Γ ∂ M Γ -ln dν x (ξ) dν(ξ) dν(ξ) dµ(x -1
) .

We will make the following changes of variables. As ∂ M Γ is stable by left multiplication, the change of variables ξ -→ x -1 ξ gives ν x (ξ) -→ ν(ξ) and ν(ξ) -→ ν x -1 (ξ). Hence, changing also x into x -1 , gives

E Ẽ[-ln K( X1 , Z ∞ )] = Γ ∂ M Γ -ln dν(ξ) dν x (ξ) dν x (ξ) dµ(x) = Γ ∂ M Γ ln dν x (ξ) dν(ξ) dν x (ξ) dµ(x) . (5) 
Observe that dν x (ξ)/dν(ξ) is the Radon-Nikodym derivative of the joint law of ( X-1

1 , Z ∞ ) with respect to the product measure µ(•) ⊗ ν(•). Therefore [START_REF] Blachre | Harmonic measures versus quasiconformal measures for hyperbolic groups[END_REF] means that E Ẽ[ln K( X1 , Z ∞ )] is the relative entropy of the joint law of ( X-1

1 , Z ∞ ) with respect to µ(•) ⊗ ν(•), which equals the asymptotic entropy h (see Derriennic [START_REF] Entropie | théorèmes limite et marches aléatoires, Probability measures on groups[END_REF] who actually takes the latter as the definition of the asymptotic entropy and proves that both definitions coincide.) 2

Finitely generated groups

We now restrict ourselves to a finitely generated group Γ.

Volume growth in the Green metric

For a given finite generating set S, we define the associated word metric:

d w (x, y) def.
= min{n s.t. x -1 y = g 1 g 2 = #{x ∈ Γ s.t. d w (e, x) ≤ n} for some (equivalently any) symmetric finite generating set. The group will be said to have

• polynomial growth when V w (n) = O(n D ) for some constant D (the largest integer D satisfying this condition is called the degree of the group);

• superpolynomial growth when V w (n)/n D tends to infinity for every D;

• subexponential growth when V w (n) = o(e Cn ) for every constant C > 0;

• exponential growth when V w (n)/e Cn tends to infinity for some C > 0.

We are now interested in the asymptotic behaviour of the volume of the balls for the Green metric. Let us define B G (e, n)

def. = {x ∈ Γ s.t. d G (e, x) ≤ n}, V G (n) def.
= #B G (e, n) and the corresponding logarithmic volume growth:

v G def. = lim sup n→∞ ln(V G (n))
n .

Proposition 3.1 Let us suppose that Γ is not a finite extension of Z or Z 2 . For any random walk on Γ, i. If Γ has superpolynomial growth, then v G ≤ 1;

ii. If Γ has polynomial growth of degree D, then v G ≤ D D-2 .

Proof

Observe that Proposition 2.3 in [START_REF] Blachre | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF] proves (i) when µ has finite support and is symmetric.

We recall a classical result (e.g. see Woess [START_REF] Woess | Random walks on infinite graphs and groups[END_REF]): let µ be a symmetric measure with finite support and let Γ having at least polynomial growth of degree D (D ≥ 3), then ∃C e > 1 s.t. ∀x, y ∈ Γ and k

∈ N P x [Z k = y] ≤ C e k -D/2 . (6) 
The above estimate remains valid even without the symmetry and the finite support hypotheses. Indeed Coulhon's result [7, Prop. IV.4] (see also Coulhon & Saloff-Coste [START_REF] Coulhon | Marches aléatoires non symétriques sur les groupes unimodulaires[END_REF]) allows one to extend upper bounds of the n th convolution power of a symmetric probability measure µ 1 to the n th convolution power of another probability measure µ 2 under the following condition:

∃c > 0 s.t. ∀x, µ 1 (x) ≤ cµ 2 (x) . (7) 
For a general probability measure µ whose support generates Γ, there exists K such that the support of µ K contains any finite symmetric generating set S of Γ. Hence, choosing µ 2 = µ K , c = (min x∈S µ 2 (x)) -1 and µ 1 = (1/#S) × δ S (x), the uniform distribution on S, we see that the measures µ 1 and µ 2 satisfy condition [START_REF] Coulhon | Ultracontractivity and Nash type inequalities[END_REF]. Therefore the estimate (6) remains valid for µ, with a possible different constant C e .

The same argument as in [START_REF] Blachre | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF] shows that (6) implies 

V G (n) ≤ Cexp D D -2 • n , for some constant C. Thus v G ≤ D D-2 .

The "fundamental" inequality

We now present a different proof of Theorem 1.1 in the case of finitely generated groups. The interest of this proof comes from an extended version of the "fundamental" inequality relating the asymptotic entropy, the logarithmic volume growth and the rate of escape. There is a general obvious link between the Green speed and the asymptotic entropy:

• The measure µ has finite entropy,

• The measure µ has finite first moment with respect to the metric d,

• The logarithmic volume growth v The entropy of µ n can then be written as

H(µ n ) = µ n (B n ε ) • H(µ n | B n ε ) + µ n (C n,K ε ) • H(µ n | C n,K ε ) + ∞ i=1 µ n (C n,K i ) • H(µ n | C n,K i ) + H ′ n , (9) 
where

H ′ n def. = -µ n (B n ε ) • ln(µ n (B n ε )) -µ n (C n,K ε ) • ln(µ n (C n,K ε )) - ∞ i=1 µ n (C n,K i ) • ln(µ n (C n,K i )) .
(10) We will repeatedly use the fact that the entropy of any probability measure supported by a finite set is maximal for the uniform measure and then equals the logarithm of the volume. For the second term in (9), we get that

H(µ n | C n,K ε ) ≤ ln(#C n,K ε ) ≤ K • v • n + o(n) .
On the other hand, ℓ is also the limit in probability of d(e, Z n )/n, hence ∀ε > 0, lim n µ n (B n ε ) = 1. Therefore lim n µ n (C n,K ε ) = 0 and second term in [START_REF] Derriennic | Sur le théorème ergodique sous-additif[END_REF] satisfies

lim n µ n (C n,K ε ) • H(µ n | C n,K ε ) n = 0 .
For the third term in [START_REF] Derriennic | Sur le théorème ergodique sous-additif[END_REF], as before, we have

H(µ n | C n,K i ) ≤ ln(#C n,K i ) ≤ 2 i K • v • n + o(n) ,
and, by the definition of C n,K i , -→ 0 .

µ n (C n,K i ) = E 1I {Zn∈C n,K i } ≤ E d(e, Z n ) 2 i-1 Kn • 1I {Zn∈C n,K i } . (11) So, 1 n 
(12)

2 i

 2 in L 1 and almost surely) and the logarithmic volume growth v satisfy the following inequality:h ≤ ℓ • v .ProofThe proof relies on the idea of Guivarc'h [15, Prop. C.2]. Fix ε > 0 and, for all integer n, let B n ε def.= B(e, (ℓ + ε)n) (here the balls are defined for the metric d(e, •)). We split n ε into a sequence of annuli: choose K > ℓ + ε and define C Kn)\B(e, 2 i-1 Kn) .

  First observe thatH(µ n | B n ε ) ≤ ln(#B n ε ) ≤ (ℓ + ε) • v • n + o(n), and thus the first term in (9) satisfieslim n µ n (B n ε ) • H(µ n | B n ε ) n ≤ (ℓ + ε) • v .

E

  e, Z n ) • 1I {d(e,Zn)>Kn} .As d(e, Zn ) ≤ n k=1 d(e, X k ), d(e, X j ) • 1I { n k=1 d(e,X k )>Kn} = (2v + o(1))E d(e, X 1 ) • 1I { n k=1 d(e,X k )>Kn} , since X 1 , . . . , X n are i.i.d., so that the random variables Y j def. = d(e, X j ) • 1I { n k=1 d(e,X k )>Kn} , have the same distribution.By the strong law of large numbers, the sequence 1 n n k=1 d(e, X k ) almost surely converges to E[d(e, X 1 )] def. = m < ∞. As a consequence, for any K > m, we have d(e, X 1 ) • 1I { n k=1 d(e,X k )>Kn} a.s.

  • • • g n with g i ∈ S} .This distance is the geodesic graph distance of the Cayley graph of Γ defined by S. Different choices of the generating set lead to different word distances in the same quasi-isometry class. When µ is symmetric and finitely supported, the two metrics d G (•, •) and d w (•, •) can be compared (see[START_REF] Blachre | Internal diffusion limited aggregation on discrete groups having exponential growth[END_REF] Lemma 2.2]). These two metrics are equivalent for any non-amenable group and also for some amenable groups, e.g. the Lamplighter group Z ≀ Z 2 .Throughout the article, the notion of growth of the group Γ always refers to the function V w (n)

	def.

  For groups with superpolynomial growth, letting D going to infinity gives v G ≤ 1. 2 Remark 3.2 If the measure µ has a finite support, then it is already known that v G ≥ 1 [4, Prop. 2.3]. From Lemma 3.3 and Proposition 3.4, we will also get that v G ≥ 1 when µ has finite entropy and h > 0, but µ may have an infinite support. It implies that v G = 1 for groups with superpolynomial growth and measures of finite entropy such that h > 0.

 Lemma 3.3For any random walk with finite entropy H(µ), we have ℓ G ≤ h.

Proof

The sequence 1 n d G (e, Z n ) converges to ℓ G in L 1 . Therefore

2 Our aim is to prove the other inequality and deduce that h = ℓ G .

Groups with polynomial volume growth. For groups with polynomial growth, Lemma 3.3 gives the (trivial) equality since any random walk has a zero asymptotic entropy. Indeed, these groups have a trivial Poisson boundary (Dynkin & Malyutov [START_REF] Dynkin | Random walks on groups with a finite number of generators[END_REF]) which is equivalent to h = 0 for measures with finite entropy, Derriennic [START_REF]Quelques applications du théorème ergodique sous-additif[END_REF] and Kaimanovich & Vershik [START_REF] Kaimanovich | Random walks on discrete groups: boundary and entropy[END_REF], see also Kaimanovich [17,Th. 1.6.7].

Groups with superpolynomial volume growth. We rely on the so-called fundamental inequality:

which holds when µ has finite entropy. For groups with superpolynomial growth, Proposition 3.1 gives v G ≤ 1 and therefore inequality [START_REF] Coulhon | Marches aléatoires non symétriques sur les groupes unimodulaires[END_REF] implies that h ≤ ℓ G and we conclude that h = ℓ G . Thus all that remains to be done in order to complete the proof of Theorem 1.1 in the case of groups with superpolynomial growth is justify [START_REF] Coulhon | Marches aléatoires non symétriques sur les groupes unimodulaires[END_REF]. This is the content of the next Proposition.

A version of inequality [START_REF] Coulhon | Marches aléatoires non symétriques sur les groupes unimodulaires[END_REF], when the speed and volume growth are computed in a word metric, is proved by Guivarc'h [START_REF] Guivarc | h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire[END_REF] and is discussed in great details by Vershik [START_REF] Vershik | Dynamic theory of growth in groups: entropy, boundaries, examples[END_REF]. The same proofs as in [START_REF] Guivarc | h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire[END_REF] or [START_REF] Vershik | Dynamic theory of growth in groups: entropy, boundaries, examples[END_REF] would apply to any invariant metric on Γ, for instance the Green metric, provided µ has finite support. The fundamental inequality is also known to hold for measures with unbounded support and a finite first moment in a word metric. See for instance Erschler [START_REF] Erschler | On drift and entropy growth for random walks on groups[END_REF]Lem. 6] or Karlsson & Ledrappier [START_REF]Linear drift and entropy for random walks[END_REF] but note that their argument seems to apply only to word metrics and observe that the Green metric is not a word metric in general: as a matter of fact it need not even be a geodesic metric. We shall derive the fundamental inequality in the Green metric, under the mere assumption that the entropy of µ is finite.

We present our result in a general setting (for any invariant metric and group) since it has its own interest. Proposition 3.4 Let µ be the law of the increment of a random walk on a countable group Γ, starting at a point e, and let d(•, •) be a left invariant metric. Under the following hypothesis Moreover, as d(e, X 1 ) • 1I { n k=1 d(e,X k )>Kn} ≤ d(e, X 1 ) , which is integrable, the limit in [START_REF] Dynkin | The boundary theory of Markov processes (discrete case)[END_REF] occurs also in L 1 . Then

We are left with

For the last term in [START_REF]Quelques applications du théorème ergodique sous-additif[END_REF], note that [START_REF] Entropie | théorèmes limite et marches aléatoires, Probability measures on groups[END_REF] gives

Together with the inequality -a ln(a) ≤ 2e -1 √ a, we get

So lim n H ′ n /n = 0. Finally, taking the limit n → ∞, we deduce from (9) that h ≤ (ℓ + ε) • v for any ε, so h ≤ ℓ • v.

2 We conclude by a last remark. Remark 3.5 The proof of Theorem 1.1 using the Martin boundary relies on the translation invariance of Γ, but the hypothesis that the graph is a Cayley graph of a countable group seems too strong. It would be interesting to extend this proof to the case of space homogeneous Markov chains (see Kaimanovich & Woess [19]).
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