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Asymptotic entropy and Green speed for random
walks on groups
Entropie asymptotique et vitesse Green pour des
marches alatoires sur les groupes

Sébastien Blachere Peter Haissinsky Pierre Mathieu

Abstract

We study asymptotic properties of the Green metric associated to random
walks on discrete transient groups. We prove that the rate of escape of the
random walk computed in the Green metric equals its asymptotic entropy.
Two proofs are given. One relies on integral representations of both quanti-
ties with the extended Martin kernel. The other proof (valid only when the
volume growth of the group is superpolynomial) relies on a version of the so
called fundamental inequality (relating the rate of escape, the entropy and
the logarithmic volume growth) extended to random walk with unbounded
support.

Nous tudions certaines proprits asymptotiques de la mtrique Green asso-
cie aux marches alatoires sur les groupes discrets transients. Nous dmontrons
que le taux de fuite de la marche alatoire, calcul pour la mtrique Green, est
gal son entropie asymptotique. Deux dmonstrations sont prsentes. L’une
repose sur la representation intgrale des deux quantits avec le noyau de Mar-
tin tendu. L’autre (valable seulement lorsque la croissance du volume est
superpolynomiale) repose sur l'ingalit dite fondamentale (reliant le taux de
fuite, 'entropie et la croissance logarithmique du volume) tendue aux marches
alatoires support non born.

1 Introduction

Let I' be a discrete transient group. To each finite generating set, can be associated
a Cayley graph of I' on which the natural graph metric is called the word metric.

9Keywords: Green function, Random walks on groups
9AMS 2000 subject classification: 34B27, 60B15



When we study asymptotic properties of a random walk (Z,,) on I', the word metric
may not be adapted. A more natural metric is the Green (or hitting) metric, defined
by

de(z,y) = —InP*[1, < o0],

where 7, is the hitting time of the element y by the random walk started at x.

When we assume the random walk to have finite entropy, our main result (The-
orem B.J) states that the asymptotic entropy h coincides with the rate of escape
computed in the Green metric (called the Green speed):

EG = hm 7dg<€, Zn) .
n—o0 n

We prove this result using an integral representation of A on the Martin boundary
of I' (Lemma B.§) and interpreting the Green speed of the random walk as a limit of
a Martin kernel (Proposition B.3). We also give an alternative proof, for groups with
superpolynomial growth, for which we extend the inequality A < [-v to any random
walk with unbounded support (Proposition B.7) and any left invariant metric on the
group with a finite first moment. Here [ and v denote the rate of escape and the
logarithmic volume growth respectively, both computed in the chosen metric.

The article is organized as follows. In Section B, we give some properties of the
Green metric on transient groups. Section g establishes the link between the entropy
and the finiteness of the first moment for the Green metric and presents the two
proofs of Theorem B.4 We conclude in Section f] by some remarks.

In the forthcoming paper [J] we use the Green metric to study fine geometric
properties of the harmonic measure on boundaries of hyperbolic groups.

2 The Green metric

We will give the definition of the Green metric on transient groups and recall some
of its properties from Blachere & Brofferio [[l] (some proofs are given here for the
sake of completeness).

Let i1 be a probability measure on a discrete group I' whose support generates
the whole group I'. (We will always make that generating hypothesis). We do not
assume that p is neither symmetric nor finitely supported. Let (Xj) be a sequence
of i.i.d. random variables whose common law is p. The process

Zy, = X 1 Xy X,
with Zy = x € I', is an irreducible random walk on I' starting at x with law p. We
denote P* and E”, respectively, the probability and expectation related to a random
walk starting at x. When z = e (the identity of the group), the exponent will be
omitted.



From now, we will always assume the random walk to be transient i.e. it even-
tually never returns to its starting point. This assumption is always satisfied if I" is
not a finite extension of Z or Z? (see Woess [24, Sect. 1.3.B]). On finite extension
of Z or Z?, results depend on the finiteness of the first moment (for the Euclidean
norm) of the canonical projection ¢ of the random walk onto Z or Z?:

Mi() = (@)l ).

zel

When M; (p) < 0o, the random walk is transient if and only if it has a non zero drift
(> ser @(@)u(w) # 0). There are examples of recurrent and transient random walks
with M;(p) = oo. There are even examples of transient symmetric random walks
on Z. For these results and examples, see [2T].

The Green function G(z,y) is defined as the expected number of visits at y
for a random walk starting at x:

G(r,y) < B

n=0 n=0

Since the random walk is chosen to be transient, the Green function is finite for
every x and y.
Let 7, be the first hitting time of y by the random walk:

Ty et inf{k >0 : Z, =y}.
When y is never attained, let 7, = co. The hitting probability of y starting at x
8 def. mr
F(z,y) = P, < o0] .

Note that that F'(z,y) > 0 since the support of u generates I', and F and G
are invariant by left diagonal multiplication. In particular, G(y,y) = G(e,e). A
straightforward computation (using the strong Markov property) shows that the
functions F' and G are proportional:

G(z,y) = Gly,y) Fw,y) = Gle,e) F(x,y) (1)
The metric we will use is the Green metric (or Hitting metric, defined in [}):
do(x,y) = — I F(z,y) = InG(e,e) — nG(z,y).

Throughout the article, we will call (with some abuse of notation) metric any
non-negative real function d(-,-) on I' x I' which satisfies the triangular inequality
and such that

d(z,y) =0=d(y,z) =z =1y. (2)



Lemma 2.1 ([[l] Lemma 2.1) The function dg(-,-) is a left invariant metric on
r.

Proof

As F(z,y) < 1, dg(-,-) is always non-negative. The invariance of F(-,-) by left
diagonal multiplication implies the same property for dg(-,-). Also note that since
the random walk is transient we have:

Vo £y, 1> P*[7) < o0] > P*[1, < oo]PY[1, < 0| = F(z,y)F(y,x),

where 7, o inf{k > 1 : Z; =z}. Thus

do(z,y) =da(y, ) =0<= F(z,y) = F(y,z) =l <= v =y.

Finally,
P*[1, < o0] > P?[1, < oo|PY[1, < o0

leads to the triangular inequality: dg(z, z) < dg(x,y) + da(y, 2). O

Exercice 2.2 Prove that if there exist x # y € I' such that dg(z,y) = 0 then ' is
isomorphic to Z. (Hint: first show that #{z € Supp(u)\{e} s.t. dg(e,z) =0} < 1).

Observe that, if u is symmetric (u(z) = p(z™1) for all x € T'), then the Green
function G and dg are also symmetric and therefore di becomes a genuine distance
on I'.

For a given finite generating set, we can consider I' as the vertex set of its asso-
ciated Cayley graph. The corresponding graph distance is called a word distance
and denoted with d,(-,-). Different choices of the generating set lead to different
word distances in the same quasi-isometry class. When g is symmetric and finitely
supported, the two metrics dg(+,-) and d,,(-, ) can be compared:

Lemma 2.3 ([l] Lemma 2.2) When the measure p is symmetric and finitely sup-
ported, there exists a constant C' such that for every (z,vy),

C_ldw(xay)l/Q S d(;(:E,y) S de(x,y) :

These bounds are sharp in the sense that examples exist where the Green function
decreases as exp(—C|xz|) or exp(—C|z|'/?) depending on the direction toward infinity
(for instance Z 1 Z , Revelle 2(]). The two distances d,, and dg are equivalent as
soon as the Green function decreases exponentially with respect to the word distance.
This is the case when I' is non-amenable, as a consequence of Kesten’s estimates

([)):
AC,, > 1st. Ve,y €T and k € N P?[Z, = y] < Craexp(—Chrak) .
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On some amenable groups, the two distances d,, and dg are equivalent. This is
for instance the case for the simple random walk on the Lamplighter group Z Zs
(Brofferio & Woess [fl]).

Throughout the article, the notion of growth of the group I' always refers to

the function V,,(n) o #{x € I st. dy(e,z) < n} for some (equivalently any)
symmetric finite generating set. The group will be said to have

e polynomial growth when V,,(n) = O(n?) for some constant D;

e superpolynomial growth when V,(n)/n? tends to infinity for every D;
e subexponential growth when V,,(n) = o(e“") for every constant C' > 0;
e exponential growth when V,,(n)/e™ tends to infinity for some C' > 0.

When the group I' has exponential growth, an interesting property of the metric
dg is a precise estimate of the volume growth of its associated balls. Let us define

Beg(e,n) = {z € T's.t. dg(e,x) < n} and Vg(n) =4 #Bg(e,n).

Proposition 2.4 ([l Proposition 2.3) When the group T' has exponential growth
and the measure p has a finite support, there exist two constants C, and C, such
that for every integer n,

Caexp(n) < Vg(n) < Cyn’exp(n).

The upper bound is also valid when the support is infinite. The n® term in the upper
bound becomes n when I' is non-amenable.

Remark 2.5 Proposition 2.3 in [1] deals with symmetric random walks with finite
support. Nevertheless, its proof also works in the non-symmetric case. The upper
bound is also valid for random walks with infinite support since its proof is based
on the following upper estimate for the transition probability: for any (symmetric
or non-symmetric) random walk on a group of exponential growth, assuming the
support of p generates the whole group (but without any other restriction on its

support),
3C. > 1 st Yo,y €T and k € N P*[Z;, = y] < Ceexp(—C.k'?), (3)
see Varopoulos [23] and Carlen, Kusuoka € Stroock [f].

Remark 2.6 Assume that T is not a finite extension of Z or Z?. Then its growth
fonction V (n) satisfies V(n) > CnP for some D > 3 and therefore the upper bound
on the transition probabilities becomes:

0. > 1 st Yo,y €T and k€N P*[Z, = y] < C.k~P/2. (4)

5



The same argument as in [/ then implies that

D
Va(n) < Cyexp (ﬁ n) ,

for some constant Cy. Observe that since D > 3 we have
Va(n) < Cyexp (3n) .

In both Remarks R.5 and .6, the reason why the hypothesis of symmetry and
finite support can be removed relies on Coulhon [f], Prop. IV.4] (see also [[q]). Indeed
[, Prop. IV.4] allows to extend upper bounds of the n'* convolution power u} of
a finitely supported symmetric measure to another measure ;5 under the following
condition:

Je>0 st Vo, w(z) < cus(z).
For a general measure ;1 whose support generates I', there exists K such that the
support of u® contains any finite symmetric generating set S of I

Hence, taking ps = %, ¢ = (minges po(x)) ™" and py = (1/#8) x ds(x) (the
uniform distribution on §), the measures u; and uy satisfy the above condition.
Finally, up to changes in the constant C., the estimates (f) and () stay valid for p.

Remark 2.7 Let vg be the logarithmic volume growth of the balls for the Green

metric:
VG “ Jim sup —ln(#Bg(e, n) .
n—o0 n

When T has exponential growth, Proposition implies that vg = 1 if u has a
finite support. For measures with infinite support, the upper bound in Proposition
yields the inequality vg < 1. When I' has superpolynomial growth, Remark [2.4
gives vg < D/(D — 2) for any D > 3 and therefore, letting D tend to infinity, we
also have vg < 1.

3 Entropy and Green speed

The measure p is now supposed to have finite entropy:
Z p(x)Inp(r) < oo.
zel

The first moment of p in the Green metric is, by definition, the expected Green
distance between e and Z;, which is also the expected Green distance between Z,
and Z,,, for any n and has the following analytic expression:

Eldg(e, Z1)] Z,LL ~dg(e,x) .

zel



Lemma 3.1 The finiteness of the entropy H(u) implies the finiteness of the first
moment of . with respect to the Green metric. When I" is not a finite extension of
Z or 72, both quantities are simultaneously finite.

Proof
By construction, under P, the law of Z; = Xj is u. Since P[1, < oo] > P[Z; = 2] =
(), we have

> ) - dale,x) = =Y p(x) - In(Plr, < 00]) < =) p(x) x)) = H(p).
zel zel’ zel
So that H(u) < oo = Eldg(e, X1)] < oo. For the other implication, we write

H(p) = - > p(e) - In(u(z)) - > p(w) - In(u(z))
)

€l s.t. p(z)<exp(—8dg(e,r)) z€l s.t. p(z)>exp(—8dg (e,x))

< -y > () - n(p(@) + 83 pla) - defe, o).

n=1 z€dBg(n) s.t. p(z)<exp(—8dg(e,x)) zel

where 0Bg(n) = Bg(e,n)\Bg(e,n — 1). In this last inequality, the second term

is the first moment. To prove that the first term is finite, we use the inequality
—alna < 2e7'y/a for a €]0, 1] and the upper bound on the volume from Proposition
P.4 and Remark P.6. We then obtain the upper bound:

e ¢}

213 3 Z Valme ™ < 3 he™ < oo
n=1

n=1 z€dBg(n) s.t. u(z)<exp(—8dg (e, :1:))

We conclude that Eldg(e, X1)] < o0 = H(u) < oo. O
Let {g be the rate of escape of the random walk Z,, in the Green metric dg(e, .):
o dgle, Z, . —InFl(e, Z, =1 I,
EGzég(u)dfl M:hm&:hmﬁ,
n—oo n n— o0 n n— 00 n

since the functions F'(-,-) and G(-,-) differ only by a multiplicative constant. We
call £ the Green speed. Under the hypothesis that p has finite entropy, by the
sub-additive ergodic Theorem (Kingman [[9], Derriennic [{]), this limit exists almost
surely and in L.
Let us also define the asymptotic entropy:
H(p™)

def.
h=h(p) =lim—"—,

where p" is the n'* convolution power of the measure p.
Our main result is the following.

Theorem 3.2 For a transient random walk on a discrete infinite group I', with
finite entropy, the asymptotic entropy h and the Green speed L are equal.



3.1 Proof using the Martin boundary
The Martin kernel is defined (using ([)) for all (z,y) € T' x T by
def. G(z,y) _ Flz,y)

Gle,y)  Fley)

The Martin kernel continuously extends in a compactification of I' called the Martin
compactification 'U0y, " where 0y,I" is the Martin boundary. Let us briefly recall
the construction of dy I let U : ' — C(I") be defined by y — K (-, y). Here C(T")
is the space of real valued functions defined on I' endowed with the topology of
pointwise convergence. It turns out that W is injective and thus we may identify
[' with its image. The closure of W(I'") is compact in C(I') and, by definition,
Oyl = U(I") \ (') is the Martin boundary. In the compact space I' U 0y, for
any initial point z, the random walk Z, almost surely converges to some random
variable Z,, € Oy T (see for instance Dynkin [[L0] or Woess [24]).

We note that, by means of the Green metric, one can also consider the Martin
compactification as a special example of a Busemann compactification. We recall
that the Busemann compactification of a proper metric space (X,d) is obtained
through the embedding ® : X — C'(X) defined by y — d(-,y) —d(e, y). (e is some
base point.) In general, C(X) should be endowed with the topology of uniform
convergence on compact sets. The Busemann compactification of X is the closure
of the image ®(X) in C(X). We refer to [I7 and the references therein for further
details.

If one now chooses for X the group T itself and for the distance d the Green
metric, both constructions of the Martin and Busemann compactifications coincide
as it is straightforward from the relation:

dG('7y> - dg<€,y) = _an<'7y) :

We first prove that the Green speed can be expressed in terms of the extended
Martin kernel. Theorem B.J will then be a direct consequence of the formulas in
Proposition B.d and Lemma B.J. For that purpose we need to define the reversed
law fi:

K(z,y)

Veel, j(x)= plz™?h).
Note that H (1) = H(u).

Proposition 3.3 Let i be a probability measure on I with finite entropy H(u) and
whose support generates I'. Let (Z,) be a random walk on T' of law p (starting at e)
and let Xy be an independent random variable of law fi. Then

(g = EE[-In K(X1, Z4)],

where E refers to integration with respect to the random variable X; and E refers to
integration with respect to the random walk (Z,).

8



Proof
As 1 is supposed to have finite entropy, /¢ is well defined as an almost sure and L*
limit. We will prove that the sequence

Elda(e, Zni1) — da(e, Z,)] = E[-InG(e, Z,11) + InG(e, Z,)] ,

converges to EE[— In K (X, Z..)]. Since its limit in the Cesaro sense is £, it implies
the formula in Proposition B.3.

By definition of the reversed law fi, X7 ! has the same law as X; the first in-
crement of the random walk (Z,,). Note also that X5 --- X, 1 has the same law as
Z, = X;---X,. Since we have assumed that X is independent of the sequence
(Zyn), Zps1 = X1 - Xs -+ X,,41 has the same law as Xfl - Z, and therefore, using the
translation invariance, G(e, Z,41) has the same law as G(X1, Z,). Thus,

E[—InG(e, Zns1) +InGle, Z,)] = EE[—InG(Xy,Z,) +InGle, Z,)]
= ERE[-InK(Xy,Z,)].

By continuity of the Martin kernel up to the Martin boundary, for every x € T,
the sequence K(z, Z,) almost surely converges to K (z, Z,). We need an integrable
bound for —In K (X4, Z,) (uniformly in n) to justify the convergence of the expec-
tation.

To prove that —In K ()21, Z,) cannot go too far in the negatives, we first prove
a maximal inequality for the sequence (K(X7, Z,)) following Dynkin [[[T].

Lemma 3.4 For any a > 0,
. - 1
PP[sup K (X1, Z,) > a] < —.
n a

where P refers to the measure associated to the random variable X, and P refers to
the measure associated to the random walk (Z,).

Proof

We fix an integer R. Let or be the time of the last visit to the ball Bg(e, R) for
the random walk (Z,,). (We will only consider this random time for starting points
within Bg(e, R). Since the random walk is transient, op is well defined and almost
surely finite.) Let us define the sequence (Z,,_x) (k € N). As this sequence exists
(in I') only for k < og, we take the following convention for negative indices:

(k> opt = {Zpy o C )},

so that the sequence (Z,,_k)ren is well defined and takes its values in I'U{x}. Note
that Z,, takes its value in Bg(e, R).



Let us call Fy, the o-algebra generated by (Z,,. .., Zs,—k) and observe that
Tir<ony € Fi s

since {k < ogr} means that none of Z,,,..., Z,,_ equals x. With the convention
that, for any x € T', K(z,x) = 0, we can define, for any z in I', the non-negative
sequence (K (x,Z,,_x)) (k € N). This sequence is adapted to the filtration (F;) and
we will prove, following Dynkin [0, §6,7], that it is a supermartingale with respect
to (Jfk)

Namely, for any positive integer k and any sequence zg, 21, ...,2,_1 in I' U {x}
(with zy € Bg(e, R)), let us check that

k—1
E\K (2, Zopi) [ Lizo, =2

j=0

= (K(x, 20-1) = 0u(2-1)Gle,2)7Y) - E

k—1
H ]I{ZUR—J'ZJ'}] : (5)
j=0

We first compute the left-hand side of ([J) in the case where none of zg, z1, ..., 251
equals . Using first that K(x,*) = 0,

> PlZon =20 s Zop—(p—1) = %1y Zogk = 2] - K (2, 2)

2z €TU{x}
= Z PlZor = 20y -y Zopt = 2] - K(, 21)
zr €l
= ZP[IC S ORy Zogp = 205+ s Lot = 2k) - K(x, 21) ,
zr €l
since none of zy, ..., z; equals %, it means in particular

k
O{ZUR—J‘ = 2;} C{k <ogr}.

10



Then,
Z PlZor = 205+ s Zop—(k-1) = 2k—1, Zop—k = 2] - K(, 2)

2z €TU{x}

= ZZIP’UR—mZ = 205y Lk = 2] - K(x, 2t)

zr€l m=k
= Z Z PlZy k= Zk‘]:u(zk_lzkfl) (2 z0)PP o = 0] - K () 2)
2zl m=k
= w2t zna) - (2 20) PP o Z Gle, zr)p(zy ' 2n1) - K(z, 1)
zrel
= w2t zn2) - (2 20) PP o Z G2, z1) (2 21)
zrel

=z zne2) oz 20)Plor = 0](G(@, 2k-1) — 0x(2k-1)) -
Using the same kind of computation we get that the right-hand side of ({) equals

]P[O’R =m, Zm = 20y -y me(kfl) = Zkfl] (K(I, Zkfl) — 5m(zk,1)G(e, a:)*l)

m=k—1

= Z P[Zn—(h-1) = zk-1]i(2, 1 262) - - - (27 ' 20) PP o = O]

m=k—1
X (K (2, z5-1) — 6x(21-1)G(e,z) ")
=z l1zm—2) ey 20)PPor = 0] (G(x, 21-1) — da(2-1)) -
So (B) is true as soon as z, ..., 2z, take values in I. Now suppose that z; = * for
some j < k — 1, then
{Zon—j =2} = {Zop—th—1) = *} = {Zop—r = *}.
Since K (z,%) = 0, the left-hand side of (f) is null. To check that the right-hand

side is also null, observe that
k—1

| | Iz, 45=2

Jj=0

Zk_l%*:>E =0,

and
k1 =+=—= K(x,2,.1) =0 and d,(2x_1) =0,
since x € I'. The proof of () is now complete. Since the Green function is non-
negative, we deduce from ([)
k-1

E|K (2, Zops) [ ] ]I{ZUR_J.ZJ_}] < K(z,25-1)

j=0

H Iz, = zj}] :

11



thus proving the supermartingale property of the sequence (K(z, Z,,—x)) (k € N).
We use similar arguments to compute the expectation of the value of the super-
martingale at time k = 0: E[K (z, Z,,)] which turns out not to depend on R.

E[K(z, Z,,)] = Z Z Plogr =m, Z,, = 2] - K(x, 2)

m= OzGBG GR)

— Z Z P*log = 0|P[Z,, = 2| - K(z, 2)

m=0 2€ B (e,R)

= Z P*lor = 0] - G(z, 2)

z€Bg(e,R)

= > Por=0] ZIP”C[ZM = 2]

ZEBg(e R)

= Z ZanR—mZUR: 2]

ZEBg(eR m 0
= 1.

We can now use Doob’s maximal inequality for non-negative supermartingales, see
for instance [, Prop. 5.13], to get that:

Ve el, P[supK(x Zyn—k) > a] <

QIP—‘

So,
~ ~ 1
PP[sup K(X1, Zop—k) > a] < —
k a

and, letting R tend to infinity,

]P’If”[sup K(X’l, Zn) > al

IA
QI'—‘

O

Let us go back to the proof of Proposition B.3: Lemma .4 implies that, for any
b>0, 5 3
PP[supln K (X, Z,) > b <e?,

and therefore EE[sup,, In K (X1, Z,,) Ty (%, 2,)>1) < o0
On the other hand, we have

]P)x[TZn < OO]
]P)e[TZn < OO]

P71, < 00] - P¢[77, < 9]

Kz, Z,) =
(.T, ) Pe[TZn < OO]

>

= P11 < 0] > ji(x),

12



and
E[-In (X)) = H(i) = H(p) < oo.

Writing that
I K(Xy, Z,)| = KXy, Zy) Tz, 70510 — WK (X1, Zo) Tz, 20<1

we conclude that the random variable sup, |In K (X, Z,)| is integrable. We can
therefore apply the dominated convergence theorem to deduce that the sequence
E[-InG(e, Zns1) + InGle, Z,)] converges to

EE[—In K (X1, Zo)] -
O

Lemma 3.5 Let I' be discrete group and p be a probability measure on I' whose
support generates I, with finite entropy H(u). Then

h=EE[—In K(X1, Zs)].

Proof 3
Recall that fi is the law of X;. We have

EE[—In K (X1, Z //a F—ln (x,€))dv(§) dp(x)

where v,(-) is the harmonic measure on the Martin boundary dyI" for a random
walk (of law ) starting at y and v(-) = v.(-). By the Martin boundary convergence
Theorem, see Hunt [[] or Woess [24, Th. 24.10], the Martin kernel K (z,£) is the
Radon-Nikodym derivative of v, by v at . Therefore

EE[- In K(X,, Z //aMr_l <d”$ ))> dv(€) dp(z ™).

We will make the following change of variables as in Kaimanovich [[4, Sect. 1.7.3.].
As Oy is stable by left multiplication, the change of variables £ —— z71¢ gives
Ve(€) — v(€) and v(€) — v,-1(€). Hence, changing also x into 7!, gives

EE[- In K(X,, Z / /a . ( ol ))) dv, (€) du(z)

[, (28 o
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Observe that dv,(§)/dv(€) is the Radon-Nikodym derivative of the joint law of
(X7, Z) with respect to the product measure pu(-) ® v(-). Therefore () means
that EE[— In K (X, Zs)] is the relative entropy of the joint law of (X7}, Z) with
respect to u(-) @ v(-), which equals the asymptotic entropy h (see Derriennic [f] who
actually takes the latter as the definition of the asymptotic entropy and proves that
both definitions coincide.) O

3.2 Proof using the ”fundamental” inequality

We now present a different proof of Theorem B.J in the case of groups with super-
polynomial growth.

There is a general obvious link between the Green speed and the asymptotic
entropy:

Lemma 3.6 For any random walk with finite entropy H (), we have {g < h.

Proof
The sequence %dg(e, Z,) converges to {g in L. Therefore

(o = lim — D per H (@) In (3507, 1 () < lim — D per M (z) Inp" () .
n—00 n n—00 n
O
Our aim is to prove the other inequality and deduce that h = /.
We rely on the so-called fundamental inequality:
h S EG e (7)

which holds as soon as i has finite entropy. On groups with superpolynomial growth,
Remark .7 gives vg < 1 and therefore inequality ([d) implies that h < g and we
conclude that h = 5. Thus, all that remains to be done in order to complete the
proof of Theorem B.J in the case of groups with superpolynomial growth is justify
([1). This is the content of the next Proposition.

A version of inequality (), when the speed and volume growth are computed
in a word metric, is proved by Guivarc’h [[[J] and is discussed in great details by
Vershik [BJ]. The same proofs as in [[J] or B would apply to any invariant metric
on I', for instance the Green metric, provided p has finite support. The fundamental
inequality is also known to hold for measures with unbounded support and a finite
first moment in a word metric. See for instance [[LI], Lem. 6] or [Lf] but note that
their argument seems to apply only to word metrics and observe that the Green
metric is not a word metric in general: as a matter of fact it need not even be a
geodesic metric. We shall derive the fundamental inequality in the Green metric,
under the mere assumption that the entropy of pu is finite.

We present our result in a general setting (for any invariant metric and group)
since it has its own interest.
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Proposition 3.7 Let i be the law of the increment of a random walk on a discrete
group T', starting at a point e, and let d(-,-) be a left invariant metric. Under the
following hypothesis

o The measure u has finite entropy,

o The measure pu has finite first moment with respect to the metric d,
e The logarithmic volume growth v  Yim SUD,,— 00 W 18 finite,

the asymptotic entropy h, the rate of escape € el lim,, % (limit both in L' and
almost surely) and the logarithmic volume growth v satisfy the following inequality:

h</?-v.

Proof
The proof relies on the idea of Guivarc’h [[3, Prop. C.2]. Fix ¢ > 0 and, for all

integer n, let B? = (e, (¢ +¢)n) (here the balls are defined for the metric d(e, -)).
We split F\BQ into a sequence of annuli: choose K > ¢ + ¢ and define

crK Y Ble, Kn)\B"
Vi>1, " <L B(e,2Kn)\B(e, 2 ' Kn).

Define the conditional entropy
w(x) . plx
Hn|A)° Z (A Ay
ca

The entropy of u™ can then be written as

~—

7;

H(p") = p"(B2) - H(u"| BY) + p™(C2") - ( memt)
+Zu (€ - | €F) + L (8)

where

(e 9]

H., S (B2) - In(u"(BL)) — p"(C2F) - In(u™(C2K)) Z (€Y (" (CF)) -
(9)

We will repeatedly use the fact that the entropy of any probability measure
supported by a finite set is maximal for the uniform measure and then equals the

logarithm of the volume. First observe that

H(u"| BY) < (#B2) < ((+€)-v-n+o(n),
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and thus the first term in (§) satisfies

an .H n Bn
(B - H (| BY)

n n

<(t+2)-v.

For the second term in (§), we get that
H( | C2F) < (#C) < K v -n -+ ofn)

On the other hand, ¢ is also the limit in probability of d(e, Z,)/n, hence Ye > 0,
lim,, u*(B?) = 1. Therefore lim,, u™(C*) = 0 and the second term in (§) satisfies

n(onKY L H (| CvE
o C) - H (e
n n

=0.

For the third term in (§), as before, we have
H(p" | ") <In(#C") < 2K -v-n+o(n),
and, by the definition of C/"*,

d(e, Z,)
n 'I’L,K — d N
HCH) = B[ Mg o | < [m K{Zneci"’“}} ' 1o

So,

de, Z,)) ﬂ{zneC?,K}]

i=1

_ (_ Yo (%)) E [d(e, Z0) - Tiatezyokny] -

IA
R
=¥
_I_
S
A/~
S
~—
S~
&=

]‘ - n n n
=) H )
=1

Asd(e, Z,) <> p_ d(e, Xy),

IA
R
=¥

+

S
//~
S
~—
S~

1 = n n n
=S owner ) H | )
i=1

x> E[de, X;) - Tisy_, age x> Kn))

j=1

= (204 0(1))E [d(e, X1) - TLisr dge,x)>kn}] >
since Xq,..., X, are i.i.d., so that the random variables

def.
}/} = d(e,X]) . H{EZ:I d(e,X)>Kn} >
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have the same distribution.
By the strong law of large numbers, the sequence = > d(e, X;;) almost surely
converges to E[d(e, X1)] = m < oo. As a consequence, for any K > m, we have

d(e, X1) - Tgsor_ dge,x,)>Kn) =0, (11)

Moreover, as
d(e, X1) - Tgsr_ diexi)>kny < d(e, X1),

which is integrable, the limit in ([[I) occurs also in L!. Then,

. 1 = n, K n,K
lim — ey CH (e Yy = 0.
1ynZM(CZ ) - H(p"|C"7) =0

i=1
We are left with H/. As lim,, 4"(B") = 1 and lim,, u"(C™%) = 0,
lim —p"(B2) - In("(BL) — 1" (C25) - In(ya" (€2K)) = 0.

For the last term in (), note that ([[0) gives

n.K ]_ n m
nemEy < > Eld(e, Xi)] € o
wHGTT) < 21K & (e, Xi)] < 2i—1[¢

1

Together with the inequality —aln(a) < 2e~'y/a seen in Lemma B.1], we get

_Z CnK (CnK <2€—1Z / CnK

So lim,, H), /n = 0.
Finally, taking the limit n — oo, we deduce from (B) that h < (£+¢) - v for any
g,s0 h</{-v. O

4 Remarks

Remark 4.1 The proof of Theorem using the Martin boundary relies on the
translation invariance of I' but the hypothesis that the graph is a Cayley graph of a
discrete group seems too strong. It would be interesting to extend this proof to the
case of space homogeneous Markov chains (see [LJ]).

Remark 4.2 The difference between the two proofs of Theorem [5.3 is the case of
groups with polynomial growth. In that case the logarithmic volume growth for the
word metric is null. Then, Lemma B.G and Proposition [3.] imply that h = 0 = (g if
the random walk has a finite first moment for the word metric. Is there an example
of a random walk on a discrete group with polynomial growth, with finite entropy but
infinite first moment for the word metric, and non-zero asymptotic entropy?

17



Remark 4.3 Theorem [3.3 shows that the obvious inequality in the proof of Lemma
B.6 is indeed an equality. Therefore, the correct order for

— Dper M (@) In (3577, 1 ()

n

1s given by the single term for k = n.
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