Asymptotic entropy and Green speed for random walks on groups - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Annals of Probability Année : 2008

Asymptotic entropy and Green speed for random walks on groups

Résumé

We study asymptotic properties of the Green metric associated to transient random walks on countable groups. We prove that the rate of escape of the random walk computed in the Green metric equals its asymptotic entropy. The proof relies on integral representations of both quantities with the extended Martin kernel. In the case of finitely generated groups, where this result is known (Benjamini \& Peres \cite{benjaminiperes}), we give an alternative proof relying on a version of the so-called fundamental inequality (relating the rate of escape, the entropy and the logarithmic volume growth) extended to random walks with unbounded support.
Fichier principal
Vignette du fichier
green3.pdf (246.1 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00086803 , version 1 (19-07-2006)
hal-00086803 , version 2 (17-02-2007)
hal-00086803 , version 3 (05-07-2007)

Identifiants

Citer

Sébastien Blachère, Peter Haïssinsky, Pierre Mathieu. Asymptotic entropy and Green speed for random walks on groups. Annals of Probability, 2008, 36 (3), pp.1134-1152. ⟨10.1214/07-AOP356⟩. ⟨hal-00086803v3⟩
176 Consultations
143 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More