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Abstract. This paper deals with the weak Stackelberg strategy in the case of a closed-loop
information structure. Two–player differential games are considered with one leader and one follower.
We first derive necessary conditions for the Stackelberg equilibrium in the general case of nonlinear
criteria for finite time horizon games which lead to an expression of the optimal controls along the
associated trajectory. Then, using focal point theory, the necessary conditions are also shown to be
sufficient and lead to cheap control. The set of initial states allowing the existence of an optimal
trajectory is emphasized. The Linear Quadratic case is detailed to illustrate these results.

1. Introduction. A Stackelberg game, named after Heinrich von Stackelberg
in recognition of his pioneering work on static games [42], designates a two–player
noncooperative decision making problem formalized as a hierarchical combination of
two optimization problems. The lower level decision maker, called the follower, selects
a strategy optimizing his/her own objective function, depending on the strategy of the
upper level decision maker, called the leader. The leader may decide his/her strategy,
optimizing his/her objective function, relative to the decisions of both players by
knowing the rational reaction of the follower. Such a problem may be viewed as a
particular bilevel optimization problem [16, 41, 44]. When the rational reaction set is
not reduced to a singleton, the situation is more complex and several formulations
exist and have been introduced by Leitmann [25] (see also [4]) and called weak and
strong Stackelberg strategies by Breton and al. [13] or pessimistic and optimistic ones
in [16, 17]. Note that a mixed formulation has been studied in [3] as well as their
relations [27].

Game theory being a generic multiobjective optimization framework, the field of
applications of Stackelberg strategies is large and includes, for example, economy [5],
social behaviors, marketing [20], network communications [10, 23], military intelli-
gence [33]. The Stackelberg strategy for dynamic games was introduced in [15,35,36].
We consider here two–player nonzero sum differential games with one leader and one
follower.

The information structure in the game is the set of all available information for
the players to make their decisions. The methods used to tackle such a Stackelberg
optimization problem depend on the specific information structure.

When open-loop information structure is considered, no measurement of the state
of the system is available and the players are committed to follow a predetermined
strategy based on their knowledge of the initial state, the system’s model and the
cost functional to be minimized. Necessary conditions for obtaining a Stackelberg
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(emmanuel.trelat@univ-orleans.fr)
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equilibrium with an open-loop information structure are well known [1,19,22,30,35–
38, 43] and are derived from the standard Pontryagin Minimum Principle [24]. The
obtained controls in this case are only functions of time.

The Stackelberg strategy is known to be inconsistent in time [18], and dynamic
programming cannot help to derive the optimal controls. Note however that the
concept of feedback Stackelberg control, not considered in the present paper, is defined
as the limit of controls issued from dynamic programming on infinitesimally small
time subintervals (see [6, 8, 21, 28, 31, 32]). This concept differs from the concept of
closed-loop control under consideration in this paper.

For the closed-loop information structure case (or more precisely the memoryless
closed-loop information structure), each player has access to current state measure-
ments and thus can adapt his strategy in function of the system’s evolution. For
the closed-loop information structure case, determining the Stackelberg strategy for
dynamic games is much harder and has been for a long time an open problem. The
main difficulty comes from the presence, in the expression of the rational reaction set
of the follower, of the partial derivative of the leader’s control with respect to the
measurement of the state. Several attempts have been proposed in the literature to
overcome this difficulty [8]. Among such techniques, two main approaches could be
distinguished.

The first method is dedicated to strong Stackelberg games with a team-optimal
approach introduced in [7,9]. At the first step, the leader and the follower are aiming
at optimizing the leader criterion as a team. With some weak assumptions, the
optimal value of the leader criterion is attained for a parametrized family of controls
for the leader and the follower. At the second step, the parameters of both controls are
chosen such that the control of the follower lies in the rational reaction set in response
to the control of the leader [39]. This could be interpreted as a threat formulated by
the leader towards the follower.

The second approach consists in defining the whole rational reaction set of the
follower to a leader control. The resulting optimal control problem turns out to be
nonclassical, not solvable a priori with the usual Pontryagin Minimum Principle.
To solve this kind of nonclassical problem, a variational method is proposed in [34],
assuming that this is a normal optimization problem (the possible occurence of an
abnormal case is not mentioned). Moreover, in [29] it is emphasized that this technique
does not lead to a solution for all initial states, and the difficulty is bypassed by
assuming that the initial state of the system is uniformly distributed over the unit
sphere and replacing the optimization criterion with its mean value over the initial
state.

In this paper, we derive rigorously necessary conditions for a Stackelberg equi-
librium with closed-loop information structure, along the associated trajectory, in the
same spirit as in [34] by considering all cases. In addition, sufficient conditions of the
optimization problem for Linear Quadratic differential games are established using
focal times theory. Based on these necessary and/or sufficient conditions, we then
characterize all initial states from which there emanates an optimal trajectory. Also,
an extension is proposed to associate with every initial state an optimal trajectory
by introducing the Jacobian of the leader’s control in his own criterion. Note that
in [34], although the final result (for Linear Quadratic games only) is correct, some
of arguments thereof used to derive the necessary conditions are missing.

The outline of the paper is as follows: in Section 2, the weak Stackelberg strategy
is mathematically formulated. Section 3 gathers the necessary conditions for an equi-



3

librium for the follower (Section 3.1) and for the leader (Section 3.2). A degeneration
property of the Stackelberg strategy is emphasized in Section 3.3. These necessary
conditions are detailed in the case of Linear Quadratic two–player differential games
in Section 3.4. The sufficient conditions are provided for the Linear Quadratic case in
Section 4. All these results lead to the two main results of this paper Theorem 3.21
and Theorem 4.5, which ensure the existence of optimal trajectories. Concluding
remarks make up Section 5. The main proofs are gathered in Appendix.

2. Preliminaries: Stackelberg strategy. Let tf > 0. Consider a two–player
differential game defined on the time horizon [0, tf ] with

ẋ(t) = f
(
t, x(t), u|t , v|t

)
, x(0) = x0, (2.1)

where the state vector x(t) is in R
n, f is of class C1 and where u|t and v|t are the

values at time t of the controls of both players u and v, m1− and m2−vector functions
lying in the sets of admissible controls U and V, which will be defined below.

The two criteria, defined as real-valued functions on U × V, are

Ji(u, v) = gi(x(tf )) +

∫ tf

0

Li

(
t, x(t), u|t , v|t

)
dt, i ∈ {1; 2}. (2.2)

The functions L1 and L2 are C1 with respect to x, u and v are continuous with respect
to time t. The first player, who chooses the control u, aims at minimizing the criterion
J1 and the second player, who chooses the control v, aims at minimizing the criterion
J2. It is assumed in this paper that there exists an information bias in the game
which induces a hierarchy between the two players. We therefore have a Stackelberg
differential game. Player 1, called the leader, associated with u announces his strategy
first to Player 2. Player 2, associated with v is called the follower. The leader knows
how the follower will rationally react to a fixed control u. This bias of information
will be used by the leader to minimize his/her own criterion.

Definition 2.1. The rational reaction set or best response set of the follower is
defined by

T : u ∈ U 7−→ Tu ⊂ V (2.3)

where Tu = {v | v minimizes J2(u, v̄), v̄ ∈ V} .
Definition 2.2. A (weak) Stackelberg equilibrium strategy (u∗, v∗) is defined by

the minimization problem

{

v∗ ∈ Tu∗,
u∗ minimizes max

v∈Tu
J1(u, v).

(2.4)

Remark 2.3. We consider here the usual definition of a Stackelberg equilibrium,
called a weak one (see [7,13]). It can be interpreted as the minimization of the leader’s
criterion whenever the worst choice of the follower’s control among the rational re-
action set occurs. It can be viewed as a robust property with respect to the choice
of the follower, which could be crucial in automatic control for robust control such
as H2/H∞-control [26, 45]. An alternative definition is used in [34], called strong
Stackelberg strategy, for which the choice of the follower’s control among the ratio-
nal reaction set is made to minimize, jointly with the leader, the leader’s criterion
(that is a team optimization problem described below). These two definitions coincide
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whenever T is a single-valued map. In the sequel, we do not assume that T is a single-
valued map, and we make a weaker assumption (Assumption 3.4) that is related to
the criterion J1 and the set T .

The structure of the controls has to be formalized to make precise the induced
optimization problems:

• Whenever the controls are only functions of time t, that is u|t = u(t) and
v|t = v(t), the game has an open-loop information structure. Necessary con-
ditions for obtaining an open-loop Stackelberg solution, derived from the
usual Pontryagin Minimum Principle, are well known [1,35–38].

• The case where the controls are functions of time t and of the current value
of the state x(t), u|t = u(t, x(t)) and v|t = v(t, x(t)), is called closed-loop
Stackelberg strategy. This is the case that we consider in the present paper.
The controls are thus designed along the trajectory x(t) associated with the
Stackelberg solution.

• Considering u|t = u(t, x) and v|t = v(t, x), defined for every x ∈ R
n, and not

only along the trajectory x(t) corresponds to the concept of feedback Stackel-
berg solution, in the spirit of the dynamic programming approach [6, 35, 36],
even though dynamic programming does not apply rigorously to such a Stack-
elberg strategy, due to time inconsistency.

As said above, in this paper we consider closed-loop Stackelberg strategies. Note
that, in the linear quadratic case (see Section 3.4), the values of the closed-loop Stack-
elberg controls and of the feedback Stackelberg controls coincide along the associated
trajectory.

Within the framework of a closed-loop information structure, the differential game
given by (2.1) is written as

ẋ(t) = f (t, x(t), u(t, x(t)), v(t, x(t))) , x(0) = x0. (2.5)

Throughout the paper, for the sake of clarity, we use the notation ux =
∂u

∂x
to

denote the Jacobian of u(t, x) with respect to the second variable x. Here, U (resp.
V) denotes an open subset of L∞([0, tf ] × R

n,Rm1) (resp. of L∞([0, tf ] × R
n,Rm2))

such that, for every couple (u, v) ∈ U × V, the associated trajectory x(·), solution of
(2.5), is well defined on [0, tf ]. More precisely

U = {u(·, ·) ∈ L∞([0, tf ]×R
n,Rm1), such that

∂u

∂x
(t, x(t)) = ux(t, x(t)) exists and

u(t, x(t)) as ux(t, x(t)) are continuous in x(t) and piecewise continuous in t}
(2.6)

V = {v(·, ·) ∈ L∞([0, tf ] × R
n,Rm2), such v(t, x(t)) is continuous in x(t) and

piecewise continuous in t}
(2.7)

The main difficulty in a closed-loop Stackelberg strategy is the presence of the par-

tial derivative
∂u∗

∂x
in the necessary conditions for the follower. Different alternatives,

surveyed e.g. in [8], have been proposed in the literature to overcome the difficulty

raised by the presence of the partial derivative
∂u∗

∂x
in the necessary conditions for the

follower. The first approach consists in finding an equivalent team problem leading
to a global minimization of the leader’s cost and obtaining a particular represen-
tation of the leader’s control [7]. The second approach consists in determining the
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follower’s rational reaction set and the necessary conditions for the leader optimizing
a dynamical problem over an infinite dimensional strategy space subject to dynamical
constraints (evolution of the state vector and follower’s rational reaction set). In [34],
this problem is handled using a variational method, which however does not lead to
all solutions. In this paper, based on the Pontryagin Minimum Principle, we derive
necessary conditions for a Stackelberg equilibrium, in the sense discussed formerly.
Our study permits to compute the values of the controls u∗(t, x(t)) and v∗(t, x(t))
along the optimal trajectories. We do not provide an expression of the Stackelberg
controls u∗(t, x) and v∗(t, x) for every x, except in the linear quadratic case (see Sec-
tion 3.4) where our main result can be made more precise and more explicit. Finally,
using the theory of focal points, we provide sufficient conditions for local optimality
(which are global in the linear quadratic case).

3. Necessary conditions for a Stackelberg equilibrium. Due to the hierar-
chy between the two players, necessary conditions are first established for the follower,
and then for the leader.

3.1. For the follower. The best response set of the follower Tu∗ involved in
the definition of Stackelberg equilibrium (2.4) implies that, for a fixed control u∗, the
control v∗ of the follower solves the following optimization problem:

Problem 3.1.

min
v∈V

J2(u
∗, v),

subject to

ẋ(t) = f(t, x(t), u∗(t, x(t)), v(t, x(t))), x(0) = x0. (3.1)

Necessary conditions to solve Problem 3.1 are derived in the next proposition, proved
in Appendix.

Proposition 3.2. Consider a closed-loop Stackelberg pair of controls (u∗, v∗) for
the system (3.1), associated with the trajectory x(·), then there exists an absolutely
continuous mapping p2 : [0, tf ] → R

n, being a non trivial line vector, such that

0 =
∂H2

∂v
(t, x(t), u∗(t, x(t)), v(t, x(t)))

= p2(t)
∂f

∂v
(t, x(t), u∗(t, x(t)), v(t, x(t))) +

∂L2

∂v
(t, x(t), u∗(t, x(t)), v(t, x(t))),(3.2)

ṗ2(t) = −
dH2

dx
(t, x(t), u∗(t, x(t)), v(t, x(t)), p2(t))

= −p2(t)
∂f

∂x
(t, x(t), u∗(t, x(t)), v(t, x(t))) −

∂L2

∂x
(t, x(t), u∗(t, x(t)), v(t, x(t)))

−p2(t)
∂f

∂u
(t, x(t), u∗(t, x(t)), v(t, x(t)))

∂u∗

∂x
(t, x(t))

−
∂L2

∂u
(t, x(t), u∗(t, x(t)), v(t, x(t)))

∂u∗

∂x
(t, x(t)), (3.3)

p2(tf ) =
∂g2(x(tf ))

∂x
, (3.4)

where H2 denotes the Hamiltonian of the follower, H2(t, x, u, v, p2) = p2f(t, x, u, v) +
L2(t, x, u, v). All solutions v of Equations (3.2)-(3.4) are gathered in the set valued
mapping T ′ : U → V. �
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Remark 3.3. Note that condition (3.3) may seem akin to open-loop control since

it does not involve terms in
∂v

∂x
. This dependency comes from condition (3.2) that

implies that the open-loop and closed-loop control for the follower coincide.
The set valued mapping T ′, which is defined by equations (3.2)-(3.4) and satisfies

Tu ⊆ T ′u, will be used in the next subsection to derive necessary conditions for the
leader, under a weak assumption on T , T ′ and the criterion J1, as explained next.

3.2. For the leader. Throughout the paper, we make the following assumption,
needed to derive Proposition 3.6.

Assumption 3.4.

J1(u, v
′) ≤ J1(u, v), ∀v′ ∈ T ′u, v ∈ Tu, u ∈ U∗

nb, (3.5)

where U∗
nb denotes a neighborhood of u∗ in U . �

Remark 3.5. Note that Assumption 3.4 differs from the main assumption of [34],
due to our choice to consider a weak Stackelberg problem instead of a strong one.

Proposition 3.6. Consider a pair of controls (u∗, v∗) associated with Stackelberg
solution. The control u∗ is defined by Equation (2.4), that is

u∗ = arg min
u∈U

max
v∈Tu

J1(u, v). (3.6)

Under Assumption 3.4, there holds

u∗ = arg min
u∈U

max
v∈T ′u

J1(u, v). (3.7)

�

Remark 3.7. Note that, under standard assumptions such as the convexity of
J2 [24, Chap. 5], or the fact that the set Tu∗ be reduced to a singleton (as in the linear
quadratic case, see Section 3.4), or the fact that Tu = T ′u (as assumed in [6, 34]
for example), the necessary conditions for the follower are also sufficient (see [24,
Chap. 5]) and Assumption 3.4 is fullfilled. In the linear quadratic case in particular,
Assumption 3.4 is automatically satisfied.

We also make the following assumption.
Assumption 3.8. Equation (3.2) has a unique solution v belonging to the rational

reaction set Tu∗

v(t, x) = S(t, x(t), p2(t), u
∗(t, x(t))) ∈ Tu∗, (3.8)

with S continuous with respect to t and C1 with respect to x and p2.
Remark 3.9. Note that this assumption is automatically satisfied in the case of

linear quadratic games (see Section 3.4).
Remark 3.10. Assumption 3.8 may be relaxed in the following way, without

affecting our main results. Assume that Equation (3.3) is solvable, but admits several
(local) solutions. Then, assume that f and L2 are C2 with respect to the variable

v, that is
∂H2

∂v
is C1 with respect to v. If the strict Legendre condition holds at

every (local) solution, i.e.
∂2H2

∂v2
is positive definite, then it follows from the Implicit

Function Theorem that, locally, every solution v can be written as (3.8). Then, our
main results apply to every such (local) solution. We stress again that, in the linear
quadratic case (see Section 3.4), there exists a unique global solution.
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The leader, with his top hierarchical position with respect to the follower, can
impose the control of the follower. The leader knows the reaction of the follower,
i.e., he knows the function S. Then the leader seeks to minimize his own crite-
rion where v is replaced by the function S. Using the notations L̃1(t, x, p2, u) =
L1(t, x, u,S(t, x, p2, u)) and

J̃1(u) =

∫ tf

0

L̃1(t, x(t), p2(t), u(t, x(t)))dt+ g1(x(tf )), (3.9)

the following problem is considered:

min
u∈U

J̃1(u) (3.10)

under two dynamical constraints:

ẋ(t) = f(t, x(t), u(t, x(t)),S(t, x(t), p2(t), u(t, x(t)))),

= F1(t, x(t), p2(t), u(t, x(t))), (3.11)

ṗ2(t) = −p2(t)
∂f

∂x
(t, x(t), u(t, x(t)),S(t, x(t), p2(t), u(t, x(t))))

−
∂L2

∂x
(t, x(t), u(t, x(t)),S(t, x(t), p2(t), u(t, x(t))))

−p2
∂f

∂u
(t, x(t), u(t, x(t)),S(t, x(t), p2(t), u(t, x(t))))

∂u

∂x
(t, x(t))

−
∂L2

∂u
(t, x(t), u(t, x(t)),S(t, x(t), p2(t), u(t, x(t))))

∂u

∂x
(t, x(t))

= F21(t, x(t), p2(t), u(t, x(t))) + F22(t, x(t), p2(t), u(t, x(t)))
∂u

∂x
(t, x(t)),(3.12)

and x(0) = x0, p2(tf ) =
∂g2
∂x

(x(tf )). Denote L̃2(t, x, p2, u) = L2(t, x, u,S(t, x, p2, u)),

F21(t, x, p2, u) = −p2
∂F1

∂x
(t, x, p2, u) −

∂L̃2

∂x
(t, x, p2, u) and finally F22(t, x, p2, u) =

−p2
∂F1

∂u
(t, x, p2, u) −

∂L̃2

∂u
(t, x, p2, u).

Due to the nonclassical term ux, the usual Pontryagin Minimum Principle (see [24])
cannot be applied. However it is possible to adapt its proof and derive a version of the
Pontryagin Minimum Principle adapted to the system (3.11)-(3.12) (see Appendix).
The following proposition is proved in the Appendix.

Proposition 3.11. If the trajectory x(·), associated to the pair (u∗, v∗) of closed-
loop Stackelberg controls, is solution of the Stackelberg problem, then there exist ab-
solutely continuous mappings λ1, λ2 : [0, tf ] → R

n, called costate vectors (written as
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line vectors by convention), and a scalar λ0 ≥ 0, such that

0 = λ2(t)

(
∂F22

∂u
(t, x(t), p2(t), u(t, x(t)))ux +

∂F21

∂u
(t, x(t), p2(t), u(t, x(t)))

)T

+λ1(t)
∂F1

∂u
(t, x(t), p2(t), u(t, x(t))) + λ◦

∂L̃1

∂u
(t, x(t), p2(t), u(t, x(t))), (3.13)

0 = λT
2 (t)F22(t, x(t), p2(t), u(t, x(t))), (3.14)

= λT
2 (t)

(

p2(t)
∂F1

∂u
(t, x(t), p2(t), u(t, x(t))) +

∂L̃2

∂u
(t, x(t), p2(t), u(t, x(t)))

)

,

λ̇1(t) = −λ2(t)

(
∂F21

∂x
(t, x(t), p2(t), u(t, x(t))) +

∂F22

∂x
(t, x(t), p2(t), u(t, x(t)))ux

)T

−λ1(t)
∂F1

∂x
(t, x(t), p2(t), u(t, x(t))) − λ◦

∂L̃1

∂x
(t, x(t), p2(t), u(t, x(t))), (3.15)

λ̇2(t) = −λ2(t)

(
∂F21

∂p2
(t, x(t), p2(t), u(t, x(t))) +

∂F22

∂p2
(t, x(t), p2(t), u(t, x(t)))ux

)T

−λ1(t)
∂F1

∂p2
(t, x(t), p2(t), u(t, x(t))) − λ◦

∂L̃1

∂p2
(t, x(t), p2(t), u(t, x(t))), (3.16)

for almost every t ∈ [0, tf ]. Moreover, the following relations, called transversality
conditions, hold:

λ2(0) = 0, λ1(tf ) − λ◦
∂g1
∂x

(x(tf )) + λ2(tf )
∂2g2
∂x2

(x(tf )) = 0. (3.17)

�

3.3. Degeneration property. Equation (3.14) implies either that λ2 ≡ 0 or

F22 ≡ 0 (or both) along the interval [0, tf ], where F22 = −p2
∂F1

∂u
−
∂L̃2

∂u
. In the

general case, the relation F22 ≡ 0 is not obvious to analyze, however we will see
that, in the linear quadratic case, this relation cannot hold under a weak additional
assumption. In the general case we conjecture that it cannot hold in generic situations.
The next proposition investigates the first case of that alternative, which is, in some
sense, the generic one.

Proposition 3.12. Under the additional assumption that the m1 ×m1 matrix

∂

∂u

(

p2
∂f

∂u
+
∂L2

∂u

)T

(3.18)

is invertible, there holds

λ2 ≡ 0. (3.19)

Remark 3.13. The fact that λ2 ≡ 0 means that the leader does not take into
account the rational reaction set of the follower. It is actually not in contradiction
with the hierarchical position between the leader and the follower; indeed, in this case
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the leader does not take into account the reaction of the follower, because he can
impose his desired control to the follower. The leader is omnipotent with respect to

the follower. The condition
∂F22

∂u
invertible formalizes this privileged position of the

leader.

Proposition 3.12, under a weak assumption, emphasizes the omnipotence of the
leader leading to a degeneration of the Stackelberg strategy. The hierarchical roles
of the players seem to disappear. An omnipotent leader is able to impose his/her
control to the other player without taking into account the rational reaction set of
the follower.

These conditions happen to be more explicit in the linear quadratic case. In the
next paragraph we focus on that case, and analyze more deeply the former necessary
conditions. Our analysis finally leads to a more precise result on the Stackelberg
controls in the linear quadratic case.

3.4. Linear Quadratic case. In this section, we focus on the linear quadratic
case, due to its widespread presence in the literature [14], and reformulate and make
more precise our previous results. Consider a linear dynamic constraint

ẋ = Ax+B1u+B2v (3.20)

and the quadratic criteria

J1(u, v) =

∫ tf

0

1

2
(xTQ1x+ uTR11u+ vTR12v) dt+

1

2
x(tf )TK1fx(tf ), (3.21)

J2(u, v) =

∫ tf

0

1

2
(xTQ2x+ uTR21u+ vTR22v) dt+

1

2
x(tf )TK2fx(tf ), (3.22)

where the matrices Qi, Rij and Kif are symmetric for i, j ∈ {1, 2}, and Qi ≥ 0,
Rii > 0, R12 > 0, and R21 invertible. In what follows, denote Sij = BjR

−1
jj RijR

−1
jj B

T
j

and Si = BiR
−1
ii B

T
i for i, j ∈ {1, 2}.

3.4.1. Necessary conditions for the follower. The Hamiltonian associated
with the follower (dynamic constraint (3.20) and criterion (3.22)) is

H2(t, x, p2, u, v) = p2(Ax+B1u+B2v) +
1

2
(xTQ2x+ uTR21u+ vTR22v). (3.23)

Applying the relations (3.2), (3.3), we obtain

ṗ2(t) = −
dH2

dx
(t, x(t), p2(t), u(t, x(t))), (3.24)

= −p2(t)A− xT (t)Q2 − p2(t)B1
∂u∗

∂x
(t, x(t)) − uT (t, x(t))R21

∂u∗

∂x
(t, x(t)),

p2(tf ) = x(tf )TK2f , (3.25)

∂H2

∂v
= 0 = p2(t)B2 + vT (t, x(t))R22. (3.26)

Since R22 is invertible by assumption, the optimal control is

v(t, x(t)) = −R−1
22 B

T
2 p

T
2 (t) = S(t, x(t), p2(t), u(t, x(t))). (3.27)
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3.4.2. Necessary conditions for the leader. In the case of quadratic criteria,
there holds

F1(t, x, p2, u) = Ax+B1u− S2p
T
2 , (3.28)

F21(t, x, p2, u) = −p2A− xTQ2, (3.29)

F22(t, x, p2, u) = −p2B1 − uTR21. (3.30)

Using the expression of the optimal control of the follower (3.27), the instantaneous
leader’s criterion can be written as L̃1(t, x, p2, u) = 1

2

(
xTQ1x+ uTR11u+ p2S12p2

)
.

The necessary conditions (3.13), (3.14), (3.15), (3.16) lead to

∂H

∂u
= 0 = λ1(t)B1 − λ2(t)

(
∂u

∂x
(t, x(t))

)T

R21 + λ◦uT (t, x(t))R11, (3.31)

∂H

∂uy

= 0 = −λT
2 (t)

(
p2(t)B1 + uT (t, x(t))R21

)
, (3.32)

λ̇1(t) = −λ1(t)A+ λ2(t)Q2 − λ◦xT (t)Q1, (3.33)

λ̇2(t) = λ1(t)S2 + λ2(t)

(

A+B1

(
∂u

∂x
(t, x(t))

))T

− λ◦p2(t)S12. (3.34)

with the transversality conditions

λ1(tf ) = λ◦x(tf )TK1f − λ2(tf )K2f , λ2(0) = 0. (3.35)

From (3.32), as discussed in Section 3.3, either λ2 ≡ 0 or p2(t)B1+u
T (t, x(t))R21 ≡

0 or both along the interval [0, tf ]. Without a priori consideration about p2(t)B1 +

uT (t, x(t))R21, by assuming that
∂

∂u

(

p2
∂f

∂u
+
∂L2

∂u

)

= R21 is invertible and by

Proposition 3.12, we can deduce that λ2 ≡ 0.
We next prove by contradiction that λ0 6= 0. If λ0 were equal to 0, then we

would infer from (3.33)–(3.35) that λ1, like λ2 is identically equal to zero by Cauchy
uniqueness; thus, (λ1, λ2, λ

0) is trivial, and this is a contradiction with the Pontryagin
Minimum Principle. From now on, we normalize the adjoint vector so that λ◦ = 1.

From (3.31), we deduce with the invertibility of R11, that

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t). (3.36)

Moreover, Equation (3.34) becomes, with λ2 ≡ 0 along the interval [0, tf ], λ1(t)S2 −
p2(t)S12 ≡ 0. Assuming that the rank of B2 is maximal, that is, rank B2 = m2 (the
number of the components of the control v), this relation yields

λ1(t)B2 = p2(t)B2R
−1
22 R12. (3.37)

Substitution of v from (3.27) into (3.37) gives R12v(t, x(t)) = −BT
2 λ

T
1 (t). If R12 is

invertible, then the control v admits two expressions:

v(t, x(t)) = −R−1
12 B

T
2 λ

T
1 (t) = −R−1

22 B
T
2 p

T
2 (t). (3.38)

We gather the previous necessary conditions for optimality in the following propo-
sition.

Proposition 3.14. For x0 6= 0, if the matrices Qi, Rij and Kif are symmetric,
if R11 > 0, R22 > 0, R12 > 0, and R21 invertible and if rank B2 = m2 (B2 is
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of full rank), then the controls issued from a Stackelberg strategy with a closed-loop
information structure are

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t), (3.39)

v(t, x(t)) = −R−1
22 B

T
2 p

T
2 (t) = −R−1

12 B
T
2 λ

T
1 (t), (3.40)

with

ẋ(t) = Ax(t) +B1u(t, x(t)) +B2v(t, x(t)), x(0) = x0, (3.41)

ṗ2(t) = −p2(t)A− xT (t)Q2 −
(
p2(t)B1 + uT (t, x(t))R21

) ∂u

∂x
(t, x(t)), (3.42)

λ̇1(t) = −λ1(t)A− xT (t)Q1, λ1(tf ) = xT
f K1f , p2(tf ) = xT

f K2f , (3.43)

λ1(t)B2 = p2(t)B2R
−1
22 R12. (3.44)

Remark 3.15. As it will be justified below by Proposition 3.16, the case x0 = 0
leads only to the trivial solution, which has only few interest. Thus in the sequel of
the paper, x0 is always considered non trivial to avoid the trivial optimal trajectory.

From (3.32), even if λ2 ≡ 0, two cases must be yet considered to precise necessary
conditions: either p2B1 + uTR21 ≡ 0 or p2B1 + uTR21 6≡ 0. We next prove that the
first case is irrelevant under some additional weak assumptions.

3.4.3. Case p2B1 + uTR21 ≡ 0.

Proposition 3.16. If the pair (AT , Q1) and one of the pairs (A,B1) or (A,B2)
satisfy the Kalman condition, then

x(t) ≡ λT
1 (t) ≡ pT

2 (t) ≡ 0, ∀t ∈ [0, tf ]. (3.45)

This means that there exists a unique optimal trajectory, which is trivial. �

The proof of Proposition 3.16 requires the following technical lemma.

Lemma 3.17. Assuming that the pair
(
AT , Q1

)
and one of the pairs (A,B1) or

(A,B2) satisfy the Kalman condition, then the pair (A,B) satisfies also the Kalman
condition, where

A =





AT −Q1 −Q2

−S1 −B2R
−1
12 B

T
2 −A 0

0 0 −A



 ; B =





0 0
B2 B1R

−1
11 R21

−B2R
−1
22 R12 −B1



 .

(3.46)
�

Remark 3.18. This means that the particular case p2B1 + uTR21 ≡ 0 can be
discarded under weak assumptions on the system. The leader should be able to observe
the system (pair (Q1, A) observable) and at least one player should be able to control
the system ((A,B1) or (A,B2) controllable). Once again, it is emphasized that the
roles of the players are not symmetric.

3.4.4. Case p2B1+uTR21 6≡ 0. The relation (3.44) is equivalent to the following
two relations:

λ1(tf )B2 = xT (tf )K1fB2 = p2(tf )B2R
−1
22 R12 = xT (tf )K2fB2R

−1
22 R12, (3.47)
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and

λ̇1(t)B2 = ṗ2(t)B2R
−1
22 R12 (3.48)

= −
(
λ1(t)A+ xT (t)Q1

)
B2 (3.49)

= −
(
p2(t)A+ xT (t)Q2

)
B2R

−1
22 R12

−(p2(t)B1 + uT (t, x(t))R21)

(
∂u

∂x
(t, x(t))

)

B2R
−1
22 R12. (3.50)

Hence along the interval [0, tf ]

(p2(t)B1 + uT (t, x(t))R21)

(
∂u

∂x
(t, x(t))

)

B2 =
(
λ1(t)A+ xT (t)Q1

)
B2R

−1
12 R22

− (p2(t)A+ xT (t)Q2)B2. (3.51)

Therefore, (3.44) is equivalent to







(

BT
2 K1f −R12R

−1
22 B

T
2 K2f

)

x(tf ) = 0,
(

p2(t)B1 + uT (t, x(t))R21

)(∂u

∂x
(t, x(t))

)

B2

≡
(
λ1(t)A+ xT (t)Q1

)
B2R

−1
12 R22 − (p2(t)A+ xT (t)Q2)B2.

(3.52)

Equation (3.51) permits to derive an expression of
∂u

∂x
, since p2B1 + uTR21 6≡ 0

(p2B1 + uTR21)

(
∂u

∂x

)

≡ w2 + w′
2, (3.53)

with

w2 ≡
( (
λ1(t)A+ xT (t)Q1

)
B2R

−1
12 R22−(p2(t)A+xT (t)Q2)B2

)
(BT

2 B2)
−1BT

2 , (3.54)

and (w′
2)

T ∈ Ker
(
BT

2

)
(arbitrary).

The constraint (3.47) translates into a constraint on the set of initial points x0 ∈
R

n from which a solution starts.
Lemma 3.19. The optimal solutions must emanate from initial conditions x0

lying in a subspace of R
n of codimension m2 (at most). �

It should be noted that, given a starting point x0 lying in the subspace of
Lemma 3.19, there exists a unique trajectory starting from x0, but it is achieved by
all controls which satisfy the relation (3.51). An optimal trajectory induces several

possible
∂u

∂x
.

This fact appears in [29] where it is assumed that the initial state is uniformly
distributed over the unit sphere and replacing the optimization criterion with its mean
value over the initial state.

Remark 3.20. In the case of an optimization problem without terminal criteria,
the relation (3.47) does not reduce the set of initial states x0 associated with optimal
trajectories.

We gather all previous results in the following theorem.
Theorem 3.21. Under the following assumptions:
• x0 6= 0,
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• Qi, Rij and Kif are symmetric, with Qi ≥ 0,
• R11 > 0, R22 > 0, R12 > 0 and R21 is invertible,
• the pair (AT , Q1) and one of the pairs (A,B1) or (A,B2) satisfy the Kalman

condition,
• rank B2 = m2 (B2 of full rank),

the optimal trajectory satisfies the necessary conditions

u(t, x(t)) = −R−1
11 B

T
1 K1(t)x(t), v(t, x(t)) = −R−1

12 B
T
2 K1(t)x(t), (3.55)

with

ẋ(t) =
(
A− (B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2 )K1(t)

)
x(t), x(0) = x0, (3.56)

where K1 is the unique solution of the matrix differential equation

K̇1(t) = −K1(t)A−A
TK1(t)−Q1+K1(t)(B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2 )K1(t), K1(tf ) = K1f .

(3.57)

Furthermore
∂u(t, x(t))

∂x
satisfies along the interval [0, tf ]

(p2(t)B1 + uT (t, x(t)R21)
∂u

∂x
(t, x(t))B2

= (λ1(t)A+ xT (t)Q1)B2R
−1
12 R22 − (p2(t)A+ xT (t)Q2)B2, (3.58)

where

ṗ2(t) = −p2(t)A− xT (t)Q2 − (p2(t)B1 + uT (t, x(t))R21)
∂u

∂x
(t, x(t)), (3.59)

p2(tf ) = xT (tf )K2f and (BT
2 K1f −R12R

−1
22 B

T
2 K2f )x(tf ) = 0.

Theorem 3.21 provides rigorous necessary conditions for closed-loop Stackelberg
solutions of generic linear quadratic games. Up to now this problem has remained
open and was only partially solved in particular cases in [34]. It should be stressed
again that the trajectory associated with closed-loop Stackelberg solution is unique,
nevertheless it induces several possible ux, which satisfy Equations (3.58)-(3.59) and
are completely characterized by (3.53). This degree of freedom in the choice of ux,
leading to the same trajectory, requires an additional objective, e.g. arguments related
to the robustness or the sensitivity of the Stackelberg solution.

4. Sufficient conditions. In this section, using elements of focal point theory,
we derive sufficient optimality conditions, first for the leader, and then for the follower
in the case of Linear Quadratic games.

Remark 4.1. Note that we use focal points and not conjugate points, since the
final state x(tf ) is not fixed.

4.1. Preliminary comments, focal times. The optimization problem of the
leader is minu Ĵ1(u) where







Ĵ1(u) =
1

2

∫ tf

0

(
xT (t)Q1x(t) + uT (t, x(t))R11u(t, x(t)) + p2(t)S12p

T
2 (t)

)
dt

+
1

2
xT (tf )K1fx(tf ),

ẋ(t) = Ax(t) − S2p
T
2 (t) +B1u(t, x(t)),

ṗT
2 (t) = −AT pT

2 (t) −Q2x(t) − wT
(
p2(t)B1 + uT (t, x(t))R21

)T
,

(4.1)
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with x(0) = x0 and p2(tf ) = xT (tf )K1f . When p2(t)B1 + uT (t, x(t))R21 6≡ 0, the
control w is cheap (see [11] for the concept of cheap control), since it only appears
in the dynamics of p2, and nowhere else (it does also not appear in the cost); then,
we rather consider p2 as a control. Note that this is a particular case of the so-called
Goh transformation (see [11]). Actually, in what follows we consider ξ = BT

2 p
T
2 as a

control. Then the problem (4.1) can be rewritten as min(u,ξ) Ĵ1(u, ξ) where







ẋ(t) = Ax(t) −B2R
−1
22 ξ(t) +B1u(t, x(t)),

Ĵ1(u, ξ) =
1

2
xT (tf )K1fx(tf )

+
1

2

∫ tf

0

(
xT (t)Q1x(t) + uT (t, x(t))R11u(t, x(t)) + ξT (t)R−1

22 R12R
−1
22 ξ(t)

)
dt.

(4.2)
Remark 4.2. Note that this Linear Quadratic problem with controls (u, ξ) is

related to the Team optimal approach in [7]. In this reference, the first step in the
research of Stackelberg equilibrium is to obtain the minimum of the criterion of the
leader, by a team cooperation between the leader and the follower. Then the follower
control is modified to achieve the minimum of the criterion of the follower.

A necessary condition for the existence of an optimal control of the problem (4.2)
is R−1

22 R12R
−1
22 ≥ 0. It is equivalent to R12 ≥ 0, since R22 is positive definite. When

tf is small, R12 > 0 is a sufficient condition for the existence of an optimal control
(see [24,40]). In the following, it is assumed that R12 > 0.

Under this assumption, the optimal controls u and ξ are given by

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t), ξ(t) = R22R

−1
12 B

T
2 λ

T
1 (t). (4.3)

Recall that, in order to characterize focal points (see e.g. [11]), we consider the
variational system

{
δẋ(t) = Aδx(t) −

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
δλT

1 (t),

δλ̇1(t) = −δλ1(t)A− δxT (t)Q1.
(4.4)

By definition, the first focal time tc > 0 along the trajectory x(t) associated with
the controls (u, ξ) is the first positive time at which there exists a solution (δx, δλ1)
satisfying (recall that x(0) = x0 is fixed)

{
δx(0) = 0,
δλ1(tc) = δxT (tc)K1f .

(4.5)

It is well known that this condition is equivalent to

‖K(t)‖ −→
t→tc; t<tc

+∞, (4.6)

where K(t) is the solution of the Riccati differential equation

{

K̇(t) = K(t)A+ATK(t) +Q1 −K(t)
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K(t),

K(0) = K1f .
(4.7)

The first focal time tc is a finite escape time for the Riccati differential equa-
tion (4.7). Note that K(t) = K1(tf − t), where K1(t) is defined by (3.57).

Lemma 4.3. Rigorously, since the first focal time is defined by an infimum, a
remark is due to comment on its existence. It is well known (see [11, 12]) that, if
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R11 > 0 and R12 > 0 then the first focal time tc is well defined, and tc is either a
positive real number, or is equal to +∞.

Remark 4.4. If Q1 ≥ 0, then Equation (4.7) admits a solution on [0,+∞[.
There is no finite escape time for this equation. Thus the first focal time is infinite
(tc = +∞) [2, Corollary 3.6.7 and Example 3.6.8].

The optimization problem for the follower is min Ĵ2 where






ẋ(t) = Ax(t) +B1u(t, x(t)) +B2v(t, x(t)), x(0) = x0,

Ĵ2 =
1

2
xT (tf )K2fx(tf )

+
1

2

∫ tf

0

(
xT (t)Q2x(t) + uT (t, x(t))R21u(t, x(t)) + vT (t, x(t))R22v(t, x(t))

)
dt

(4.8)
with v(t, x(t)) = −R−1

22 B
T
2 p

T
2 (t) where p2(tf ) = xT (tf )K2f and

ṗ2(t) = −p2(t)A− xT (t)Q2 −
(
p2(t)B1 + uT (t, x(t))R21

) ∂u

∂x
(t, x(t)). (4.9)

The variational system along the trajectory x(·) is

δẋ(t) = Aδx(t) +B1
∂u

∂x
δx− S2p

T
2 (t), (4.10)

δṗ2(t) = −δp2(t)A− δxT (t)Q2 −
(
p2(t)B1 + uT (t, x(t))R21

) ∂2u

∂x2
(t, x(t))δx

−

(

δp2(t)B1 +

(
∂u

∂x
(t, x(t))δx(t)

)T

R21

)

∂u

∂x
(t, x(t)). (4.11)

Here, due to the freedom in the choice of w′
2 to obtain ux by relation (3.53),

we choose u(t, x(t)) affine with respect to x(t), thus
∂2u

∂x2
= 0. Equation (4.11) then

rewrites

δṗ2(t) = −δp2(t)A− δxT (t)Q2 −

(

δp2(t)B1 +

(
∂u

∂x
(t, x(t))δx(t)

)T

R21

)

∂u

∂x
(t, x(t)).

(4.12)
By definition, the first focal time t′c along the trajectory x(t) associated with the

control v is the first time at which there exists a solution (δx, δp2) of (4.10)-(4.11)
such that δx(0) = 0 and δp2(t

′
c) = δxT (t′c)K2f . For each choice of admissible term ux

(that is choice of w′
2) satisfying relation (3.58), there exists a first focal time t′c.

4.2. Sufficient conditions for Stackelberg Strategy. We gather the previous
remarks in the following result.

Theorem 4.5. Under the assumptions of Theorem 3.21, let w′
2 be a function

of time t such that w′
2 ∈

(
BT

2

)⊥
. This choice of w′

2 leads to design the Jacobian ux

satisfying (3.53): (p2B1 + uTR21)ux = w2 + w′
2. Let

T ∗ = min (tc, t
′
c) > 0, (4.13)

where tc is the first focal time of the Riccati differential equation (3.57) and t′c is the
first focal time of the system (4.10)-(4.12), induced by ux, that is by w′

2.
For every tf < T ∗, there exists a unique solution of the Riccati differential equa-

tion (3.57). Denoting x(t, x0) the obtained trajectory, let

H =
{
x0 ∈ R

n
∣
∣
(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
x(tf , x0) = 0

}
. (4.14)
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Then, for every x0 ∈ H, there exists a unique optimal solution of the optimization
problem (4.8) on [0, tf ] associated with w′

2. The optimal controls (u∗, v∗) associated
with this unique optimal trajectory satisfy (p2B1 + uTR21)ux = w2 +w′

2 and further-
more

u(t, x(t)) = −R−1
11 B

T
1 K1(t)x(t), v(t, x(t)) = −R−1

12 B
T
2 K1(t)x(t). (4.15)

In addition, for every x0 /∈ H, there exists no optimal trajectory starting from x0. �

Remark 4.6. Theorem 4.5 is a result of existence of closed-loop Stackelberg
strategies for linear-quadratic differential games, which is new, to the best of our
knowledge.

Remark 4.7. The sufficient conditions for optimality are developed in the Linear
Quadratic case, and are global in that case. It is also, by the same argument, possi-
ble to express similar sufficient conditions in the general case of nonlinear criteria.
However they are not developed here, because their expressions are more technical and
because they lead only to local optimality results [12, chap. 9].

Remark 4.8. The assumption R12 > 0 is required to derive Theorem 4.5. This
assumption is used in a crucial way in order to derive Lemma 4.3 (more precisely,
to derive the inequality (A.59)). It is natural to make such an assumption when
inspecting the minimization criterion Ĵ1(u, ξ) defined by (4.2): indeed, as explained
few lines above (4.2), the problem degenerates into a cheap control problem. In this
sense, ξ = BT

2 p
T
2 may then be considered as a control, and therefore it is clear that

one has to assume that R12 > 0 in order to ensure nice coercivity properties for the
quadratic criterion Ĵ1(u, ξ).

Remark 4.9. From Remark 4.4, the assumption Q1 ≥ 0 ensures that tc = +∞.
A lower bound of T ∗ = min(tc, t

′
c) corresponds to a lower bound of t′c the first focal

time of the non-linear variational system (4.10)-(4.12). It depends implicitly on the
choice of ux, that is the choice of w′

2. The problem of determining a lower bound of
t′c is open.

4.3. Extension: weighting of ux in criteria. The problem is degenerated,

because for each x0 ∈ H, there may exist an infinite choice of terms
∂u∗

∂x
. A way to

yield a unique
∂u∗

∂x
is to include a weight on the term

∂u∗

∂x
in the criterion J1 of the

leader, as in [34]. Then the leader takes into account a restriction on the Jacobian of
its control. The leader is no more omnipotent.

The new criterion of the leader is then

J1(u, v) =
1

2

∫ tf

0

[

xT (t)Q1x(t) + uT (t, x(t))R11u(t, x(t)) + vT (t, x(t))R12v(t, x(t))

+

m1∑

j=1

(
∂uj

∂x
(t, x(t))

)

Rj

(
∂uj

∂x
(t, x(t))

)T ]

dt+
1

2
x(tf )TK1fx(tf ),(4.16)

where uj are the m1 components of the control u, and Rj ∈ R
n×n, (∀j = 1, · · · ,m1)

are symmetric positive definite matrices.

Nothing changes for the follower. However the necessary conditions for the leader
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are modified as follows

∂H

∂u
= 0 = λ1(t)B1 − λ2(t)

(
∂u

∂x
(t, x(t))

)T

R21 + λ◦uT (t, x(t))R11, (4.17)

∂H

∂uy

= 0 =

(

λ2(t)
(
BT

1 p
T
2 (t) +R21u(t, x(t))

)

j
+
∂uj

∂x
(t, x(t))Rj

)

j=1,··· ,m1

.(4.18)

The other necessary conditions (3.15) and (3.16) are the same. Equations (4.17)
and (4.18) are easily solvable, without considering different cases. In this framework,
λ2 cannot be trivial. As in [34], we infer from (4.18) that

∂u∗j
∂x

(t, x(t)) =
((
BT

1 p
T
2 (t) +R21u(t, x(t))

)

j
λ2(t)R

−1
j

)

j=1,··· ,m1

. (4.19)

For the sake of simplicity, we next assume, as in [34], that Rj = R > 0, for every
j = 1, · · · ,m1. Then

∂u∗

∂x
(t, x(t)) =

(
BT

1 p
T
2 (t) +R21u(t, x(t))

)
λ2(t)R

−1. (4.20)

Plugging this expression into (4.17), we get

R11u(t, x(t)) = −BT
1 λ

T
1 (t)+R21B

T
1 p

T
2 (t)λ2(t)R

−1λT
2 (t)+R2

21uλ2(t)R
−1λT

2 (t), (4.21)

or

(
R11 − λ2(t)R

−1λT
2 (t)R2

21

)
u(t, x(t)) = −BT

1 λ
T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT
2 (t).
(4.22)

Remark 4.10. For t = 0, λ2(0) = 0, then R11−λ2(0)R−1λT
2 (0)R2

21 = R11 > 0 is
invertible. For t ≥ 0 small enough, the matrix R11 −λ2(t)R

−1λT
2 (t)R2

21 is invertible.
As long as R11 − λ2(t)R

−1λT
2 (t)R2

21 is invertible, the optimal control is

u(t, x(t)) =
(
R11 − λ2(t)R

−1λT
2 (t)R2

21

)−1 (
−BT

1 λ
T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT
2 (t)

)

(4.23)
The nonlinear optimization problem becomes

ẋ(t) = Ax(t) − S2p
T
2 (t) +B1

(
R11 − λ2(t)R

−1λT
2 (t)R2

21

)−1

×
(
−BT

1 λ
T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT
2 (t)

)
, (4.24)

ṗ2(t) = −p2(t)A− xT (t)Q2 −
∥
∥p2(t)B1 + uT (t, x(t))R21

∥
∥

2
λ2(t)R

−1, (4.25)

λ̇1(t) = −λ1(t)A+ λ2(t)Q2 − xT (t)Q1, (4.26)

λ̇2(t) = λ1(t)S2 + λ2(t)
(
AT +R−1λT

2 (t)
(
p2(t)B1 + uT (t, x(t))R21

)
BT

1

)

−p2(t)S12. (4.27)

with boundary conditions

x(0) = x0, p2(tf ) = xT (tf )K2f , (4.28)

λ2(0) = 0, λ1(tf ) = xT (tf )K1f − λ2(tf )K2f . (4.29)

Remark 4.11. For R = γId, if we let γ tend to +∞, then we recover the
necessary conditions for the strategy of Stackelberg with an open-loop information
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structure. Note that this coincidence is obtained only by taking the limit γ → +∞
without modifying the criterion of the leader.

Remark 4.12. These conditions are necessary conditions. As previously, the the-
ory of focal points leads to sufficient conditions associated with the Stackelberg strategy
with closed-loop information structure including a weight for ux in the criterion of the
leader, namely, given x0 ∈ R

n. For tf less than the global focal time of the system,
there exists only one trajectory starting from x0 solution of (4.24)-(4.29) associated
with the optimal control (u, ux) (4.23), (4.20).

5. Conclusion. In this paper the weak Stackelberg strategy with a closed-loop
information structure is studied. The framework is restricted to two–player differen-
tial games. Necessary conditions for a closed-loop Stackelberg equilibrium are derived
considering all cases. It is shown that the Stackelberg strategy may degenerate when-
ever the leader is omnipotent and can impose his control to the follower. The focal
times theory provides sufficient conditions for the optimization problems of the two
players. The Linear Quadratic case is used to illustrate the obtained necessary and
sufficient conditions. Moreover in this linear quadratic case, the control u(t, x) is
obtained for each state x. An extension is proposed to allow an optimal trajectory
starting from any initial state by including, in the criterion, the Jacobian of his/her
control in the criterion of the leader.

Appendix A. Proof of Theorems.

Preliminaries

We start with preliminaries essentially borrowed from [24,40]. First of all, consider
a usual optimal control problem:

{
minC(u)

under ẋ(t) = f(t, x(t), u(t)),with C(u) =
∫ tf

0
f0(t, x(t), u(t))dt,

(A.1)

where x(t) ∈ R
n and u(t) ∈ R

m. A usual way to derive the Pontryagin Minimum
Principle for such an optimal control problem is to extend the control system with a
new state variable representing the cost, in the following way. Define the extended

state z =

(
x
x0

)

∈ R
n+1, with x0(0) = 0 and f̃ =

(
f
f0

)

. Consider the extended

control system

ż(t) = f̃(t, z(t), u(t)). (A.2)

The associated end-point mapping ez0,tf
at time tf is defined by

ez0,tf
: U −→ R

n+1

v 7−→ zu(tf ),
(A.3)

with zu the trajectory solution of (A.2) associated to the control u, and U is the set
of admissible controls. The crucial remark which is at the basis of the proof of the
Minimum Principle is the following: if a trajectory x(.), associated with a control u on
[0, tf ] is optimal, then the end-point mapping ez0,tf

is not locally surjective at u, then
it follows from an implicit function argument that the first differential of the end-point
mapping at u is not surjective (at least in the case where there is no constraint on the
controls). This fact leads to a Lagrange multipliers type equation which finally leads
to the well known Pontryagin Minimum Principle (see [40] for details).
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In the present paper we are not dealing with such a classic optimal control prob-
lem, however the previous reasoning may be adapted, even though our controls now
depend also on x(t), and we first derive a proof of Proposition 3.2.

Proof of Proposition 3.2.

Define the extended state z =

(
x
x̂

)

∈ R
n+1 (and the projector q(z) = x),

where x̂ is the instantaneous cost associated with the criterion of the follower such
that ˙̂x(t) = L2(t, x(t), u

∗(t, x(t)), v(t, x(t)), x̂(0) = 0, which leads to the dynamic of
the extended state z:

ż(t) = f̂(t, z(t), v(t, x(t))) =

(
f
L2

)

. (A.4)

It is pointed out that the function t 7→ u∗(t, x(t)) is fixed and the control of the
follower v(t, x(t)) is the optimization variable.

Definition A.1. The end-point mapping at time tf of system (A.4) with the

initial state z0 =

(
x0

0

)

is the mapping

ez0,tf
: V −→ R

n+1

v 7−→ zv(tf )
(A.5)

where zv is the solution of (A.4), associated to v, starting from z0, and V is the set
of admissible controls.

To compute the Fréchet first derivative, consider a fixed control δv such that v
and v + δv belong to V and denote z + δz the trajectory associated with the latter
control [24,40]. An expansion to the first order of f̂ leads to

d(z + δz)

dt
= f̂

(
t, z + δz, u∗(t, q(z + δz)), v(t, q(z + δz)) + δv(t, q(z + δz))

)
+ o(δz),

= f̂(t, z, u∗(t, q(z)), v(t, q(z))) + f̂z(t, z, u
∗(t, q(z)), v(t, q(z)))δz

+f̂u(t, z, u∗(t, q(z)), v(t, q(z)))u∗y + o(δz). (A.6)

Furthermore, to the first order,

v(t, q(z + δz)) = v(t, q(z) + qz(z)δz + o(δz)) = v(t, q(z)) + vy(t, q(z))qz(z)δz + o(δz),

u∗(t, q(z + δz)) = u∗(t, q(z)) + u∗y(t, q(z))qz(z)δz + o(δz),

δv(t, q(z + δz)) = δv(t, q(z)) + o(δz).

Plugging these Taylor series expansions into relation (A.6), we have, at the first order,

d(δz)

dt
= f̂zδz + f̂uu

∗
yqzδz + f̂vδv + f̂vvyqz(z)δz (A.7)

=
(

f̂z + f̂uu
∗
yqz + f̂vvyqz(z)

)

︸ ︷︷ ︸

a(t)

δz + f̂v
︸︷︷︸

b(t)

δv. (A.8)

Using the transition matrix Φ(t) satisfying Φ̇(t) = aΦ(t) and Φ(0) = Id (Id denoting
the identity matrix), it follows that

dez0,tf
(v) · δv = δz(tf ) = Φ(tf )

∫ tf

0

Φ−1(s)b(s)δvds. (A.9)
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If a closed-loop Stackelberg control v∗ ∈ V of the follower is optimal, then the
first derivative of the end-point mapping, dez0,tf

(v∗), is not surjective, and hence

there exists a line vector φ̃ ∈ R
n+1, φ̃ 6= 0 such that

φ̃ · dez0,tf
(v∗)δv = 0, ∀ δv ∈ V. (A.10)

Set φ(t) = φ̃Φ(tf )Φ−1(t), then the relation (A.10) is satisfied for every control δv,

and thus
∫ tf

0
φ(t)b(t)δvdt = 0. It implies that almost everywhere on [0, tf ]

φ(t) b(t) = 0. (A.11)

Furthermore, derivating φ(t) = φ̃Φ(tf )Φ−1(t) with respect to t, we obtain

φ̇(t) = −φ(t)a = −φ(t)
(

f̂z + f̂uu
∗
yqz + f̂vvyqz(z)

)

= −φ(t)
(

f̂z + f̂uu
∗
yqz

)

, (A.12)

the last equality holds due to relation (A.11). Denoting φ(t) =
(
p2(t) p◦2(t)

)
, we

obtain that p◦2 is a constant scalar. Finally the initial condition z0 being fixed and
the final condition z(tf ) being free, the standard transversality condition associated

with the system (A.4) implies that p◦2 6= 0, because φ̃ =
(
p2(tf ) p◦2

)
6= 0. We

normalize the costate vector so that p◦2 = 1, since (p2(tf ), p◦2) is defined up to a multi-
plicative scalar. The transversality condition leads to Equation (3.4) and p2 satisfies
Equation (3.3). In addition relation (A.11) could be reformulated into Equation (3.2).

Proof of Proposition 3.6.

For each u ∈ U , the inclusion Tu ⊆ T ′u implies that

max
v∈Tu

J1(u, v) ≤ max
v′∈T ′u

J1(u, v
′). (A.13)

With Assumption 3.4, in a neighborhood U∗
nb of u∗ ∈ U , we have

max
v∈Tu

J1(u, v) = max
v′∈T ′u

J1(u, v
′),∀u ∈ U∗

nb. (A.14)

Thus u∗, defined by (3.6) is also given by (3.7).
Proof of Proposition 3.11.

As previously, we define the extended state

Z =
(
xT p2 x◦

)T
∈ R

2n+1, (A.15)

where x◦ is the instantaneous cost associated with the criterion of the leader satisfying
ẋ◦(t) = L̃1(t, x, p2, u), x◦(0) = 0.

The extended system is subject to the dynamics

Ż(t) = F̃ (t, Z, u, uT
y ) =





F1(t, x, p2, u)

(F21(t, x, p2, u) + F22(t, x, p2, u)uy)
T

L̃1(t, x, p2, u)



 , (A.16)

where u = u(t, h(Z)) is a function of time t and of the projection h(Z) = x.
The end-point mapping at time tf of system (A.16) with initial state Z0 is the

mapping

EZ0,tf
: U −→ R

2n+1

u 7−→ Zu(tf )
(A.17)
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where Zu is the solution of (A.16), associated to u, starting from Z0. Here U denotes
the open set of controls u ∈ L∞([0, tf ] × R

n,Rm1) such that the solution Zu(·) of
(A.16), associated with u and starting from Z0, is well defined on [0, tf ].

Note that, if F̃ is of class Cp, p ≥ 1, then EZ0,tf
is also of class Cp.

To compute the Fréchet first derivative, we proceed as in [24,40], consider a fixed
control δu on U and note Z + δZ the trajectory associated with the control u + δu.
An expansion to the first order of F̃ leads to

d(Z + δZ)

dt
= F̃

(
t, Z + δZ, u(t, h(Z + δZ)) + δu(t, h(Z + δZ)),

ux(t, h(Z + δZ))T + δux(t, h(Z + δZ))T
)

+ o(δZ). (A.18)

Furthermore an expansion to the first order of the control u gives

u(t, h(Z + δZ)) = u(t, h(Z) + hZ(Z)δZ + o(δZ))

= u(t, h(Z)) + ux(t, h(Z))hZ(Z)δZ + o(δZ)

Therefore, at the first order,

d(δZ)

dt
= F̃ZδZ + F̃uuxhZδZ + F̃uδu+ F̃ux

uxxhZδZ + F̃ux
δuT

x (A.19)

=
(

F̃Z + F̃uuxhZ + F̃ux
uxxhZ

)

︸ ︷︷ ︸

A

δZ + F̃u
︸︷︷︸

B

δu+ F̃ux
︸︷︷︸

C

δuT
x (A.20)

Using the transition matrix M defined by Ṁ(t) = A(t)M(t) and M(0) = Id (Id
denoting the identity matrix), it follows that

dEZ0,tf
(u) · δu = δZ(tf ) = M(tf )

∫ tf

0

M−1(s)
(

B(s)δu(s) +C(s)δuT
y (s)

)

ds. (A.21)

If u is the control of the leader in a closed-loop Stackelberg solution, then there
exists a vector ψ̃ ∈ R

2n+1, ψ̃ 6= 0 such that

ψ̃ · dEZ0,tf
(u)δu = 0, ∀ δu ∈ U . (A.22)

Set ψ(t) = ψ̃M(tf )M−1(t), then

ψ̇(t) = −ψ(t)A(t) = −ψ(t)
(

F̃Z + F̃uuyhZ + F̃uy
uyyhZ

)

. (A.23)

Furthermore the relation (A.22) holds for every control δu, and thus

∫ tf

0

ψ(t)
(

B(t)δu(t, x) + C(t)δuT
y (t, x)

)

dt = 0. (A.24)

This relation is satisfied for all controls u functions of t and x. In particular it is
also satisfied for controls u functions of t only. For such a control, the relation (A.24)

becomes
∫ tf

0
ψ(t)

(

B(t)δu(t)
)

dt = 0. It implies that almost everywhere on [0, tf ],

ψ(t)B(t) = 0. Then, (A.24) leads to
∫ tf

0
ψ(t)

(

C(t)δuT
y (t, x)

)

dt = 0. Hence, almost

everywhere on [0, tf ], there holds ψ(t)C(t) = 0.
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Let H(t, Z, u, uy) = ψ(t) F̃ (t, Z, u, uy) be the Hamiltonian associated with this
optimization problem. The last equations can be rewritten almost everywhere on
[0, tf ] as:

Ż(t) = F̃ (t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t))))

=
∂H

∂ψ
(t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))), (A.25)

ψ̇(t) = −ψ(t)
(

F̃Z(t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t))))

+F̃u(t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t))))uy(t, h(Z(t)))hZ(Z(t))

+F̃uy
(t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t))))uyy(t, h(Z(t)))hZ(Z(t))

)

,(A.26)

= −
dH

dZ
(t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))), (A.27)

∂H

∂u
= ψ(t)B(t) = 0,

∂H

∂uy

= ψ(t)C(t) = 0. (A.28)

Denoting ψ =
(
λ1 λ2 λ◦

)
, one obtains the necessary conditions (3.13)-(3.16)

given by Proposition 3.11 for a closed-loop Stackelberg equilibrium. Finally, some part
of the initial and final values of the extended state Z, defined by (A.15) are imposed
by the transversality condition for the follower optimization problem (3.4) and by the
initial state x(0) = x0. We can formalize these conditions by defining two sets M0

and M1

(
x(0)

pT
2 (0)

)

=

(
x0

pT
2 (0)

)

∈M0,

(
x(tf )

pT
2 (tf )

)

=





x(tf )

∂g2
∂x

(h(Z(tf )))



 ∈M1,

(A.29)
where

M0 = {x0} × R
n =

{(
x

pT
2

) ∣
∣
∣
∣
∣
F0

(
x

pT
2

)

△
= x− x0 = 0

}

, (A.30)

M1 =

{(
x

pT
2

) ∣
∣
∣
∣
∣
F1

(
x

pT
2

)

△
=
∂g2
∂x

(h(Z(tf ))) − p2 = 0

}

. (A.31)

The tangent manifolds TZ(0)M0 and TZ(tf )M1 are defined by

TZ(0)M0 =
{
(0, α) ∈ R

2n | α ∈ R
n
}
, TZ(tf )M1 =

{(

β, β
∂2g2
∂x2

)

| β ∈ R
n

}

.

(A.32)
The transversality conditions can be written as (see [40, p. 104])

λ(0) ⊥ TZ0
M0, λ(tf ) − λ◦

∂g1
∂Z

(h(Z(tf ))) ⊥ TZ(tf )M1, (A.33)

and lead to Equations (3.17).
Proof of Proposition 3.12.

The proof goes by contradiction. The term λT
2 F22 in (3.14) is the product of a

column vector (λT
2 ) and a line vector F22 = p2

∂f

∂u
+
∂L2

∂u
, since λ2 is a line costate
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vector. The triviality of this term induces that all components of λ2 or all components
of F22 are trivial (or both).

Assume that λ2 6≡ 0, then F22 = p2
∂f

∂u
+
∂L2

∂u
≡ 0. If furthermore

∂F22

∂u
=

∂

∂u

(

p2
∂f

∂u
+
∂L2

∂u

)

is invertible, then the Implicit Function Theorem applied to the

function F22 with respect to the variable u permits to write locally along the trajectory
the control u = u(t, x, p2).

The system in (x, p2) is rewritten as

{
ẋ(t) = F1(t, x, p2, u(t, x, p2))
ṗ2(t) = F21(t, x, p2, u(t, x, p2)), because F22 = 0.

(A.34)

Since the dynamics and the criterion do not depend on uy, we can deduce that
any control uy is extremal for the optimization problem. But the relation (3.13) is a
constraint on uy. The relation (3.19) follows. �

Proof of Lemma 3.17.

The proof uses the controllability Hautus test. The pair (A,B) satisfies the
Kalman condition if and only if the matrix

[
A− αI B

]
is of full rank, for ev-

ery α ∈ C. The proof consists in showing that all line vectors
(
zT
1 zT

2 zT
3

)
satisfy

(
zT
1 zT

2 zT
3

) [
A− αI B

]
= 0, (A.35)

are trivial. Developing Equation (A.35), we have

−zT
1 Q1 = zT

2 (A− αIn), (A.36)

−zT
1 Q2 = zT

3 (A− αIn), (A.37)

zT
1 (AT − αIn) = zT

2 (S1 +B2R
−1
12 B

T
2 ), (A.38)

zT
2 B2 = zT

3 B2R
−1
22 R12, (A.39)

zT
2 B1R

−1
11 R21 = zT

3 B1. (A.40)

Multiplying Equation (A.36) by z1 and Equation (A.38) by z2, we obtain

−zT
1 Q1z1 = zT

2 (A− αIn)z1 = zT
2

(
S1 +B2R

−1
12 B

T
2

)
z2 (A.41)

The first term is nonpositive (Q1 ≥ 0) and the last term is nonnegative, hence
both are zero. It follows that zT

1 Q1 = 0, zT
2 B1 = 0 and zT

2 B2 = 0. Plugging these
relations into (A.36), (A.40), one gets

zT
1 (AT − αIn) = 0, zT

1 Q1 = 0, (A.42)

zT
2 (A− αIn) = 0, zT

2 B2 = 0, zT
2 B1 = 0, (A.43)

zT
3 (A− αIn) = 0, zT

3 B2 = 0, zT
3 B1 = 0. (A.44)

The relations (A.42) correspond to the observability Hautus test of the pair
(Q1, A), the relations (A.43) and (A.44) to the controllability Hautus test of the
pair (A,B1) or (A,B2). The assumptions of controllability and observability lead to
z1, z2 and z3 trivial. �

Proof of Proposition 3.16.
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With the condition

p2B1 + uTR21 ≡ 0, (A.45)

the term
∂u

∂x
does not appear anymore in the necessary conditions (3.41)-(3.44).

Derivating with respect to time the relation (A.45) does not induce necessary condi-

tions for
∂u

∂x
.

However assuming that R21 is invertible, the control u admits two representations

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t) = −R−1

21 B
T
1 p

T
2 (t). (A.46)

From this relation and from (3.44), necessary conditions about x(tf ) are developed
by successive derivations with respect to time,

{
λ1(t)B2 − p2(t)B2R

−1
22 R12 = 0,

λ1(t)B1R
−1
11 R21 − p2(t)B1 = 0.

(A.47)

These two relations can be rewritten for every t ∈ [0, tf ] as

(
x(t) λ1(t) p2(t)

)
B = 0. (A.48)

Plugging (A.45) into the dynamics of x, λ1 and p2, we obtain the autonomous
differential system

d

dt

(
xT (t) λ1(t) p2(t)

)
=
(
xT (t) λ1(t) p2(t)

)
A (A.49)

The k-order derivation of (A.48) with respect to time, at time t = tf , gives

[
xT (tf ) xT (tf )K1f xT (tf )K2f

]
AkB = 0, ∀k ∈ N. (A.50)

The assumptions of Lemma 3.17 are checked. It leads to the controllability of the
pair (A,B), which implies that x(tf ) = 0. Furthermore the autonomous linear system
in x, λ1 and p2 with end value conditions x(tf ) = λT

1 (tf ) = pT
2 (tf ) = 0 imposes, by a

backward integration of (A.49)

x(t) ≡ λT
1 (t) ≡ pT

2 (t) ≡ 0, ∀t ∈ [0, tf ]. (A.51)

The unique optimal trajectory in this case is the trivial one. �

Proof of Lemma 3.19.

Similarly as in the classic linear quadratic problem, we seek a solution in the form
λT

1 (t) = K1(t)x(t). Then, the matrix K1(t) ∈ R
n×n must satisfy

K̇1(t)x(t)+K1(t)
(
Ax(t) −

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t)x(t)

)
= −ATK1(t)x(t)−Q1x(t).

(A.52)
This relation should hold for every x, which leads to define K1(t) as the solution of
the following Riccati differential equation

{

K̇1(t) = −K1(t)A−ATK1(t) −Q1 +K1(t)
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t),

K1(tf ) = K1f .
(A.53)



25

The existence of a solution of the optimization problem is ensured in a standard way
”a la Riccati” and by the uniqueness of an optimal trajectory. This is justified a
posteriori in the following by using the theory of focal times.

Plugging λT
1 (t) = K1(t)x(t) into (3.38) and (A.46), the state x(t) has the dynam-

ical constraint
{

ẋ(t) =
(
A−

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t)

)
x(t) = Ãx(t),

x(0) = x0.
(A.54)

Let M(t) be the transition matrix associated with (A.54). Then x(t) = M(t)x0.
Then the constraint (3.47) becomes

(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
M(tf )x0 = 0. (A.55)

This is a m2-codimension (at most) condition on the initial states x0. �

Proof of Lemma 4.3.

From Equation (4.1), one gets x(t) = etAx0−
∫ t

0
e(t−s)A

(
B2R

−1
22 ξ(s) −B1u(s)

)
ds.

There exist scalar constants Ck ≥ 0 such that for a given tf > 0, for every t ∈ [0, tf ]

‖x(t)‖ ≤ C1‖x0‖ + C2

√
tf

[(∫ tf

0

‖ξ(s)‖2ds

) 1

2

+

(∫ tf

0

‖u(s)‖2ds

) 1

2

]

. (A.56)

Hence

∥
∥
∥
∥

∫ tf

0

xT (s)Q1x(s)ds

∥
∥
∥
∥
≤ C3‖x0‖

2 + C4t
2
f

(∫ tf

0

‖ξ(s)‖2ds+

∫ tf

0

‖u(s)‖2ds

)

+ C5tf + C5t
2
f

∫ tf

0

‖ξ(s)‖2ds+ C5t
2
f

∫ tf

0

‖u(s)‖2ds (A.57)

In addition, assuming R11 > 0 and R−1
22 R12R

−1
22 > 0,

∥
∥
∥
∥

∫ tf

0

uT (s)R11u(s)ds

∥
∥
∥
∥
≥ C6

∫ tf

0

‖u(s)‖2ds, (A.58)

∥
∥
∥
∥

∫ tf

0

ξT (s)R−1
22 R12R

−1
22 ξ(s)ds

∥
∥
∥
∥
≥ C6

∫ tf

0

‖ξ(s)‖2ds. (A.59)

Using these inequalities and (4.2), we can compute a lower bound of the criterion
Ĵ1(u, ξ)

2Ĵ1(u, ξ) ≥
(
C6 − (C4 + C5) t

2
f

)
[∫ tf

0

‖u‖2ds+

∫ tf

0

‖ξ‖2ds

]

+xT (tf )K1fx(tf ) − C3‖x0‖
2 − C5tf . (A.60)

For tf > 0 small enough, tf ≤

√
C6

C4 + C5
, the criterion Ĵ1(u, ξ) is finite, then 0 <

tf < tc. �
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[10] T. Başar and R. Srikant, A stackelberg network game with a large number of followers,
Journal of Optimization Theory and Applications, 115 (2002), pp. 479–490.

[11] B. Bonnard and M. Chyba, The role of singular trajectories in control theory, Math. & Appl.
40, Springer Verlag, 2003.

[12] B. Bonnard, L. Faubourg, and E. Trélat, Mécanique céleste et contrôle de systèmes spati-
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