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Abstract. This paper deals with the Stackelberg strategy in the case of a closed-loop information
structure. Two players differential games are considered with one leader and one follower. The
Stackelberg controls in this case are hard to obtain since the necessary conditions to be satisfied
by both players cannot be easily defined. The main difficulty is due to the presence of the partial
derivative of the leader’s control with respect to state in the necessary condition for the follower.
We first derive necessary conditions for the Stackelberg equilibrium in the general case of nonlinear
criteria for finite time horizon games. Then, using focal point theory, the necessary conditions are
also shown to be sufficient and lead to cheap control. The set of initial states allowing the existence
of an optimal trajectory is emphasized. An extension to infinite time horizon games is proposed.
The Linear Quadratic case is detailed to illustrate these results.

1. Introduction. The Stackelberg strategy for dynamic games was introduced
in [14, 15, 7]. Such a strategy, named after Heinrich von Stackelberg in recognition
of his pioneering work on static games [20], exhibits an information bias between
players leading to establishing a hierarchy between them. The player who has the
ability to enforce his strategy on the other player(s) and knows the rational reaction
set of his/her opponent is called the leader. The other player(s) is (are) called the
follower(s). We consider here two-players nonzero sum differential games with one
leader and one follower.

The information structure in the game is the set of all available information
for the players to make their decisions. When open-loop information structure is
considered, no measurement of the state of the system is available and the players
are committed to follow a predetermined strategy based on their knowledge of the
initial state, the system’s model and the cost functional to be minimized. For the
closed-loop information structure case (or more precisely the memoryless closed-loop
information structure), each player has access to state measurements and thus can
adapt his strategy in function of the system’s evolution.

The necessary conditions for obtaining a Stackelberg equilibrium with an open-
loop information structure are well known [1, 14, 15, 16, 17]. The obtained controls
in this case are only functions of time. For the closed-loop information structure case,
determining the Stackelberg strategy for dynamic games is much harder and has been
for a long time an open problem. The main difficulty comes from the presence, in
the expression of the rational reaction set of the follower, of the partial derivative of
the leader’s control with respect to the measurement of the state. Moreover, dynamic
programming cannot be used due to the inconsistency of Stackelberg strategy [9].
Several attempts have been proposed in the literature to avoid this difficulty [3].
Among such techniques, two main approaches could be distinguished.
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The first method is based on a team-optimal approach, introduced in [4] for
discrete time games. Differential games are treated in [2]. At the first step, the leader
and the follower are looking for optimizing the leader criterion as a team. With
some weak assumptions, the optimal value of the leader criterion is attained for a
parametrized family of controls for the leader and the follower. At the second step,
the parameters of both controls are choosen such that the control of the follower lies
in the rational reaction set in response to the control of the leader. When the leader
is able to influence the criterion of the follower, with some additional assumptions,
the leader can achieve the infinimum of his/her own criterion [18]. This could be
interpreted as a threat formulated by the leader toward the follower.

The second approach consists of defining the whole rational reaction set of the
follower to a leader control. The resulting optimal control problem turns out to be
nonclassical, not solvable a priori with the standard Pontryagin Minimum Principle.
To solve this kind of nonclassical problem, a variational method is proposed in [12],
assuming that this is a normal optimization problem (the abnormal case is not men-
tioned). Moreover, in [11] it is emphasized that this technique does not lead to a
solution for all initial states, and the difficulty is circumvented by assuming that the
initial state of the system is uniformly distributed over the unit sphere and replacing
the optimization criterion with its mean value over the initial state.

Other techniques are also used to solve the problem of determining the closed-loop
Stackelberg strategy and in [8] a sliding mode approach is proposed.

In this paper, we prove rigorously the necessary conditions for a Stackelberg
equilibrium with closed-loop information structure in the same spirit as in [12] by
considering all cases. In addition, sufficient conditions of the optimization problem
for Linear Quadratic differential games are established using focal times theory. These
necessary and sufficient conditions permit to describe the set of initial states associated
with optimal trajectories. Also, an extension is proposed to associate with every initial
state an optimal trajectory by introducing the Jacobian of the leader’s control in his
own criterion. Note that in [12], although the final result (for Linear Quadratic games
only) is correct, some of arguments thereof used to derive the necessary conditions
are erroneous or not precise.

The outline of the paper is as follows: in Section 2, the Stackelberg strategy is
mathematically formulated. Section 3 gathers the necessary conditions for an equi-
librium for the follower (Section 3.1) and for the leader (Section 3.2). A degenerating
property of the Stackelberg strategy is emphasized in Section 3.5. These necessary
conditions are detailed in the case of Linear Quadratic two players differential games
in Section 3.6. The sufficient conditions are provided for the Linear Quadratic case
in Section 4. All these results lead to the two main results of this paper Theorem
3.19 and Theorem 4.4, which ensure the existence of optimal trajectories. Concluding
remarks make up Section 5.

2. Preliminaries: Stackelberg strategy. Let tf > 0. Consider a two players
differential game defined on the time horizon [0, tf ] with

ẋ(t) = f (t, x(t), u(t, x(t)), v(t, x(t))) , x(0) = x0, (2.1)

where the state vector x(t) is in R
n, f is of class C1, the controls u(t, x(t)) and

v(t, x(t)) of the two players are respectively m1− and m2−vector functions lying in
the sets of admissible controls U and V. Here, U (resp. V) denotes an open subset of
L∞([0, tf ],Rm1) (resp. of L∞([0, tf ],Rm2)) such that, for every couple (u, v) ∈ U ×V,
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the associated trajectory x(·), solution of (2.1), is well defined on [0, tf ]. The two
criteria, defined as real-valued functions on U × V, are

J1(u, v) = g1(x(tf )) +

∫ tf

0

L1

(
t, x(t), u(t, x(t)), v(t, x(t))

)
dt, (2.2)

J2(u, v) = g2(x(tf )) +

∫ tf

0

L2

(
t, x(t), u(t, x(t)), v(t, x(t))

)
dt. (2.3)

The first player, who chooses the control u(t, x(t)), aims to minimize the criterion
J1 and the second player, who chooses the control v(t, x(t)), aims to minimize the
criterion J2. It is assumed in this paper that there exists an information bias in the
game which induces a hierarchy between the two players. Stackelberg strategy is thus
well suited to study such differential game.

Player 1, associated with u announces his strategy first and is called the leader
while Player 2, associated with v is called the follower. The leader knows how the
follower will rationally react to a control u, but the follower does not know the leader’s
rational reaction.

Define the rational reaction set of the follower by

T : U → V
u 7→ Tu = {v | v minimizes J2(u, v̄), v̄ ∈ V} .

(2.4)

Definition 2.1. A Stackelberg equilibrium strategy (u∗, v∗) is defined by the
minimization problem

{

v∗ ∈ Tu∗,
u∗ minimizes max

v∈Tu
J1(u, v).

(2.5)

Within the framework of a closed-loop information structure, the controls issued
from Stackelberg strategy depend on time t and state vector x(t). The main dif-

ficulty is the presence of the partial derivative
∂u∗

∂x
in the necessary conditions for

the follower. Without this dependence, that is, when u∗ is only a function of time
t, (as for a Stackelberg strategy with an open-loop information structure) the nec-
essary conditions are well known (see [1, 14, 15, 16, 17]). To avoid the difficulty of

the presence of the partial derivative
∂u∗

∂x
in the necessary conditions for the follower,

different alternatives have been proposed in the literature and summarized in [3]. The
first approach is to find an equivalent team problem leading to a global minimization
of the leader’s cost and obtaining a particular representation of the leader’s control
[2]. The second approach consists of determining the follower’s rational reaction set
and the necessary conditions for the leader optimizing a dynamical problem over an
infinite dimensional strategy space subject to dynamical constraints (evolution of the
state vector and follower’s rational reaction set). In [12], this problem is dealt using
a variational method. This method does not lead to all solutions. In this paper, an
approach based on the Pontryagin Minimum Principle is provided for deriving rig-
orously the necessary conditions. Then, using the theory of focal points, sufficient
conditions for optimality are obtained.

3. Necessary conditions for a Stackelberg equilibrium. Due to the hier-
archy between the two players, necessary conditions must be established first for the
follower, and then for the leader.
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3.1. For the follower. Equation (2.5) implies that, for a fixed control u∗, the
control v∗ minimizes J2(u

∗, v). It can be reformulated in terms of a classical optimal
control problem as:

ẋ(t) = f(t, x, u∗(t, x(t)), v(t, x(t))), x(0) = x0,

min
v∈V

J2(u
∗, v).

(3.1)

The Hamiltonian H2 associated with problem (3.1) is given by

H2 = p2f + p◦2L2, (3.2)

where p2 is a line vector with the same number of components as the state vector x,
and p◦2 ≥ 0 is a constant scalar. Necessary conditions for the follower are issued from
the Pontryagin Minimum Principle [13] are:

∂H2

∂v
= 0 = p2

∂f

∂v
+ p◦2

∂L2

∂v
, (3.3)

ṗ2 = −
dH2

dx
= −p2

(
∂f

∂x
+
∂f

∂u

∂u∗

∂x

)

− p◦2

(
∂L2

∂x
+
∂L2

∂u

∂u∗

∂x

)

. (3.4)

Note that there is no term
∂v

∂x
in (3.4) due to (3.3). Since the final state x(tf ) is free,

the above differential equations (3.3) and (3.4) are associated with the transversality
condition

p2(tf ) = p◦2
∂g2(x(tf ))

∂x
. (3.5)

Moreover (p2(tf ), p◦2) is necessarily nontrivial. Then from (3.4) and (3.5), it is clear
that p◦2 6= 0. It is possible to normalize the costate vector with p◦2 = 1, since (p2(tf ), p◦2)
is defined up to a multiplicative scalar.

3.2. For the leader. Assuming that Equation (3.3) is solvable, note S a possible
solution

v(t, x) = S(t, x, p2, u
∗). (3.6)

This assumption is a weak and a natural one. The leader, with his top hierarchical
position with respect to the follower, can impose the control of the follower. The
leader knows the reaction of the follower, i.e., he knows the function S. Then the
leader seeks to minimize his own criterion where v is replaced by the function S.

Remark 3.1. If Equation (3.3) has several solutions, then our study can be
applied to each of them (at least according to the Implicit Function Theorem). For
the Linear Quadratic case, there exists a unique (global) solution (see Section 3.6).

Using the notations

L̃1(t, x, p2, u) = L1(t, x, u, S(t, x, p2, u)) (3.7)

and

J̃1(u) =

∫ tf

0

L̃1(t, x(t), p2(t), u(t, x(t)))dt+ g1(x(tf )), (3.8)
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the following problem is considered:

min
u∈U

J̃1(u) (3.9)

under two dynamical constraints:

ẋ = f(t, x(t), u(t, x(t)), S(t, x(t), p2(t), u(t, x(t))))

= f̃(t, x(t), p2(t), u(t, x(t)))

= F1(t, x(t), p2(t), u(t, x(t))), (3.10)

ṗ2 = −p2(t)
∂f

∂x
(t, x(t), u(t, x(t)), S(t, x(t), p2(t), u(t, x(t))))

−
∂L2

∂x
(t, x(t), u(t, x(t)), S(t, x(t), p2(t), u(t, x(t))))

−p2
∂f

∂u
(t, x(t), u(t, x(t)), S(t, x(t), p2(t), u(t, x(t))))

∂u

∂x
(t, x(t))

−
∂L2

∂u
(t, x(t), u(t, x(t)), S(t, x(t), p2(t), u(t, x(t))))

∂u

∂x
(t, x(t))

= F21(t, x(t), p2(t), u(t, x(t))) + F22(t, x(t), p2(t), u(t, x(t)))
∂u

∂x
(t, x(t)),(3.11)

and x(0) = x0, p2(tf ) =
∂g2
∂x

(x(tf )). Denote

L̃2(t, x(t), p2(t), u(t, x(t))) = L2(t, x(t), u(t, x(t)), S(t, x(t), p2(t), u(t, x(t)))),

F1 = f̃ , F21 = −p2
∂f̃

∂x
−
∂L̃2

∂x
, and F22 = −p2

∂f̃

∂u
−
∂L̃2

∂u
.

Proposition 3.2. The necessary conditions for the leader for a closed loop
Stackelberg equilibrium are

0 = λ1
∂F1

∂u
+ λ2

(
∂F21

∂u
+
∂F22

∂u
uy

)T

+ λ◦
∂L̃1

∂u
, (3.12)

0 = λT
2 F22 = λT

2

(

p2
∂f

∂u
+
∂L2

∂u

)

, (3.13)

λ̇1 = −λ1
∂F1

∂x
− λ2

(
∂F21

∂x
+
∂F22

∂x
uy

)T

− λ◦
∂L̃1

∂x
, (3.14)

λ̇2 = −λ1
∂F1

∂p2
− λ2

(
∂F21

∂p2
+
∂F22

∂p2
uy

)T

− λ◦
∂L̃1

∂p2
. (3.15)

where λ1 ∈ R
n and λ2 ∈ R

n are the two line costate vectors respectively associated
with the dynamical constraints (3.10) and (3.11), and λ◦ ≥ 0 a constant scalar.

The occurence of the Jacobian uy =
∂u

∂y
of u(t, y) with respect to the second

variable y in the dynamic (3.11) prevents the use of the classical Pontryagin Mini-
mum Principle. Two different approaches are proposed here to solve this nonclassical
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problem. The first approach is based on an affine formulation of the leader control
and allows to go back to the classical Pontryagin Minimum Principle. The second one
is based on a general variational study which leads to prove a modified version of the
Pontryagin Minimum Principle adapted to the system (3.11).

3.2.1. First proof of Proposition 3.2. This optimization problem associated
with the dynamics (3.10) and (3.11) and with the criterion (3.8) can be reformulated

as the auxiliary problem by noting z =

(
x

pT
2

)

∈ R
2n







ż(t) = F (t, z(t), u(t, h(z(t))), uy(t, h(z(t)))),

min J(u) =

∫ tf

0

L(t, z(t), u(t, h(z(t))), uy(t, h(z(t))))dt+ g(h(z(tf ))),
(3.16)

where uy =
∂u

∂y
is the Jacobian of u with respect to the second variable of u, and

h(z) = h((xT , p2)
T ) = x is a projection. It is important to note that u is not a

function of the whole extended state (xT , p2)
T , but only of a projection of the state.

The next lemma gives an equivalent and more standard formulation for this auxiliary
optimization problem.

Lemma 3.3. The optimal control problem

(P1)







ż(t) = F (t, z(t), u(t, h(z(t))), uy(t, h(z(t)))),

min J1(u) =

∫ tf

0

L(t, z(t), u(t, z(t)), uy(t, h(z)))dt+ g(h(z(tf ))),
(3.17)

is equivalent to the classical optimal control problem

(P2)







ż(t) = F (t, z(t), w1(t), w2(t)),

min J̌1(u) =

∫ tf

0

L(t, z(t), w1(t), w2(t))dt+ g(h(z(tf ))).
(3.18)

Furthermore, the respective optimal controls are related by

u(t, y) = 〈w2(t), (y − h(z(t)))〉 + w1(t). (3.19)

Proof. Let u(t, y) be an optimal control for (P1), associated with the trajectory
z(·). Then using w1(t) = u(t, h(z(t))) and w2(t) = uy(t, h(z(t))), the controls (w1, w2)
generate for (P2) the same trajectory z(·). Therefore, inf J̌1 ≤ inf J1.

On the other hand, if (w1, w2) is an optimal control for (P2), associated with the
trajectory z(·), then the control u(t, y) = w2(t)(y − h(z(t))) + w1(t) generates the
same trajectory z(·), and thus inf J1 ≤ inf J̌1.

Hence, inf J1 = inf J̌1.
Both optimization problems are equivalent, in the sense that if a trajectory is

optimal for one problem, then it is also optimal for the other, and the optimal values
of both criteria coincide. The associated optimal controls are related by (3.19).

Remark 3.4. We choose here an affine representation of u(t, y), but we can
choose another one, like in [12]. This choice allows to reduce the optimal control
research only to the term w1 in (3.19), along the optimal trajectory since w2 does not
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appear anymore in the control. That is, along the optimal trajectory the control is
only a function of time t.

This lemma allows a direct application of the Pontryagin Minimum Principle
with the following Hamiltonian (3.20) to obtain necessary conditions for the leader
(λ ∈ R

2n denotes the line costate vector associated with the state z ∈ R
2n and λ◦ ≥ 0

a constant scalar):

H = λF (t, z, w1, w2) + λ◦L(t, z, w1, w2). (3.20)

The necessary conditions are given by

∂H

∂w1
= 0 = λFu + λ◦Lu, (3.21)

∂H

∂w2
= 0 = λFuy

+ λ◦Luy
, (3.22)

λ̇ = −
dH

dz
= −λ

∂F

∂z
− λ◦

∂L

∂z
. (3.23)

Introducing the additional notations λ = (λ1, λ2) ∈ R
2n. Then

F (t, z, u, uz) =

(
F1(t, x, p2, u)

(F21(t, x, p2, u) + F22(t, x, p2, u)uy)T

)

. (3.24)

The Hamiltonian (3.20) takes the form

H = λ1F1 + λ2(F21 + F22uy)T + λ◦L̃1(t, x, p2, u). (3.25)

The necessary conditions (3.21), (3.22), (3.23) can be rewritten as

∂H

∂u
= 0 = λ1

∂F1

∂u
+ λ2

(
∂F21

∂u
+
∂F22

∂u
uy

)T

+ λ◦
∂L̃1

∂u
, (3.26)

∂H

∂uy

= 0 = λT
2 F22 = λT

2

(

p2
∂f

∂u
+
∂L2

∂u

)

, (3.27)

λ̇1 = −λ1
∂F1

∂x
− λ2

(
∂F21

∂x
+
∂F22

∂x
uy

)T

− λ◦
∂L̃1

∂x
, (3.28)

λ̇2 = −λ1
∂F1

∂p2
− λ2

(
∂F21

∂p2
+
∂F22

∂p2
uy

)T

− λ◦
∂L̃1

∂p2
. (3.29)

This proves Proposition 3.2.

3.3. Second proof of Proposition 3.2. In the necessary condition (3.11) the

term
∂u

∂x
comes out. The optimization problem for the leader is then nonclassical.

Define the extended state Z =





x
pT
2

x◦



 ∈ R
2n+1, where x◦ is the instantaneous cost

associated with the criterion of the leader satisfying

ẋ◦ = L̃1(t, x, p2, u), x◦(0) = 0. (3.30)
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The extended system admits the dynamics

Ż = F̃ (t, Z, u, uT
y ) =





F1(t, x, p2, u)

(F21(t, x, p2, u) + F22(t, x, p2, u)uy)
T

L̃1(t, x, p2, u)



 , (3.31)

where u = u(t, h(Z)) is a function of time t and of the projection h(Z) = x.
Solving this kind of problem requires to define the end-point mapping and singular

controls.
Definition 3.5. The end-point mapping at time tf of system (3.31) with initial

state Z0 is the mapping

EZ0,tf
: U ⊂ L∞([0, tf ] × R

n,Rm1) −→ R
2n+1

u 7−→ Zu(tf )
(3.32)

where Zu is the solution of (3.31), associated to u, starting from Z0. Here U denotes
the open set of controls u ∈ L∞([0, tf ] × R

n,Rm1) such that the solution Zu(·) of
(3.31), associated with u and starting from Z0, is well defined on [0, tf ].

Note that, if F̃ is of class Cp, p ≥ 1, then EZ0,tf
is also of class Cp.

To compute the Fréchet first derivative, consider a fixed control δu on U and note
Z + δZ the trajectory associated with the control u + δu [19, 10]. A Taylor series
development of F̃ leads to

d(Z + δZ)

dt
= F̃

(
t, Z + δZ, u(t, h(Z + δZ)) + δu(t, h(Z + δZ)),

uy(t, h(Z + δZ))T + δuy(t, h(Z + δZ))T
)

(3.33)

Furthermore a Taylor series development of the control u gives

u(t, h(Z + δZ)) = u(t, h(Z) + hZ(Z)δZ + o(δZ))

= u(t, h(Z)) + uy(t, h(Z))hZ(Z)δZ + o(δZ)

By identification in these two Taylor series developments, we have, at the first order,

d(δZ)

dt
= F̃ZδZ + F̃uuyhZδZ + F̃uδu+ F̃uy

uyyhZδZ + F̃uy
δuT

y (3.34)

=
(

F̃Z + F̃uuyhZ + F̃uy
uyyhZ

)

︸ ︷︷ ︸

A

δZ + F̃u
︸︷︷︸

B

δu+ F̃uy
︸︷︷︸

C

δuT
y (3.35)

Using the transition matrix M verifying Ṁ = AM and M(0) = Id (Id denoting the
identity matrix), it follows that

dEZ0,tf
(u) · δu = δZ(tf ) = M(tf )

∫ tf

0

M−1(s)
(

B(s)δu(s) + C(s)δuT
y (s)

)

ds. (3.36)

Definition 3.6. A control u ∈ U is said to be singular on [0, tf ] if the Fréchet
first derivative of the end-point mapping is not surjective.

We next provide a Hamiltonian characterization of singular controls. If u is
singular, then there exists a vector ψ ∈ R

2n+1 ψ 6= 0 such that

ψ · dEZ0,tf
(u)δu = 0, ∀ δu. (3.37)
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Definition 3.7. A singular control is said to be of corank 1 if

codim Im dEX0,tf
(u) = 1.

In other words, ψ is the unique vector (up to a multiplying scalar) verifying (3.37).
Set ψ(t) = ψM(tf )M−1(t), then

ψ̇ = −ψA = −ψ
(

F̃Z + F̃uuyhZ + F̃uy
uyyhZ

)

. (3.38)

Furthermore the relation (3.37) is verified for every control δu, and thus

∫ tf

0

ψ(t)
(

B(t)δu(t, x) + C(t)δuT
y (t, x)

)

dt = 0. (3.39)

This relation is verified for all controls u functions of t and x. In particular it is also
verified for controls u functions of t only. For this kind of controls, the relation (3.39)
becomes

∫ tf

0

ψ(t)
(

B(t)δu(t)
)

dt = 0. (3.40)

It implies that almost everywhere on [0, tf ]

ψ(t)B(t) = 0. (3.41)

The relation (3.39) can be simplified as

∫ tf

0

ψ(t)
(

C(t)δuT
y (t, x)

)

dt = 0. (3.42)

Hence, almost everywhere on [0, tf ], there holds

ψ(t)C(t) = 0. (3.43)

Remark 3.8. This argument holds because the time is an argument of the controls
u. If the admissible controls are pure feedback controls u(x) and independent of time,
the relations (3.41) and (3.43) do not hold anymore. The condition (3.40) in this
case gives a constraint linking B(t) and C(t).

Let H = ψ F̃ (t, Z, u, uy) be the Hamiltonian associated with this optimization
problem. The last equations can be rewritten as a Hamiltonian characterization of a
singular control almost everywhere on [0, tf ]:

Ż = F̃ (t, Z, u, uy) =
∂H

∂ψ
, (3.44)

ψ̇ = −ψ
(

F̃Z + F̃uuyhZ + F̃uy
uyyhZ

)

= −
dH

dZ
, (3.45)

∂H

∂u
= ψ(t)B(t) = 0, (3.46)

∂H

∂uy

= ψ(t)C(t) = 0. (3.47)

Lemma 3.9. If a control u is optimal for the optimization problem composed of
the dynamical constraints (3.10) and (3.11) and the criterion (3.8), then it is singular
for the extended dynamic (3.31).
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A proof can be found in [5].
Denoting ψ =

(
λ1 λ2 λ◦

)
, one obtains

0 = λ1
∂F1

∂u
+ λ2

(
∂F21

∂u
+
∂F22

∂u
uy

)T

+ λ◦
∂L̃1

∂u
, (3.48)

0 = λT
2 F22 = λT

2

(

p2
∂f

∂u
+
∂L2

∂u

)

, (3.49)

λ̇1 = −λ1
∂F1

∂x
− λ2

(
∂F21

∂x
+
∂F22

∂x
uy

)T

− λ◦
∂L̃1

∂x
, (3.50)

λ̇2 = −λ1
∂F1

∂p2
− λ2

(
∂F21

∂p2
+
∂F22

∂p2
uy

)T

− λ◦
∂L̃1

∂p2
, (3.51)

which are the necessary conditions given by Proposition 3.2 for a closed-loop Stack-
elberg equilibrium.

3.4. Transversality conditions. Some part of the initial and final values of
the extended state z are imposed by the transversality condition for the follower
optimization problem (3.5) and by the initial state x(0) = x0. We can formalize these
conditions by defining two sets M0 and M1

(
x(0)

pT
2 (0)

)

=

(
x0

pT
2 (0)

)

∈M0,

(
x(tf )

pT
2 (tf )

)

=





x(tf )

∂g2
∂x

(h(z(tf )))



 ∈M1,

(3.52)
where

M0 = {x0} × R
n =

{(
x

pT
2

) ∣
∣
∣
∣
∣
F0

(
x

pT
2

)

= x− x0 = 0

}

, (3.53)

and

M1 =

{(
x

pT
2

) ∣
∣
∣
∣
∣
F1

(
x

pT
2

)

=
∂g2
∂x

(h(z(tf ))) − p2 = 0

}

. (3.54)

The tangent manifolds Tz(0)M0 and Tz(tf )M1 are defined by

Tz(0)M0 =
{
(0, α) ∈ R

2n | α ∈ R
n
}
, (3.55)

and

Tz(tf )M1 =

{(

β, β
∂2g2
∂x2

)

| β ∈ R
n

}

. (3.56)

The transversality conditions can be written as (see [19, p. 104])

λ(0) ⊥ Tz0
M0, (3.57)

λ(tf ) − λ◦
∂g1
∂z

(h(z(tf ))) ⊥ Tz(tf )M1, (3.58)
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and lead to

λ2(0) = 0, (3.59)

λ1(tf ) − λ◦
∂g1
∂x

(x(tf )) + λ2(tf )
∂2g2
∂x2

(x(tf )) = 0. (3.60)

3.5. Degenerating property. In this section, under a weak assumption, the
omnipotence of the leader is emphasized leading to a degeneracy of the Stackelberg
strategy. The hierarchical roles of the players seem to disappear. An omnipotent
leader is able to impose his/her control to the other player without taking into account
the rational reaction set of the follower.

Proposition 3.10. Equation (3.13) implies that λ2 ≡ 0 or F22 ≡ 0 (or both).
Under the additional assumption that the m1 ×m1 matrix

∂

∂u

(

p2
∂f

∂u
+
∂L2

∂u

)T

(3.61)

is invertible, there holds

λ2 ≡ 0. (3.62)

Proof. The proof is obtained by contradiction. The term λT
2 F22 in (3.13) is the

product of a column vector (λT
2 ) and a line vector F22 = p2

∂f

∂u
+
∂L2

∂u
, since λ2 is a

line costate vector. The triviality of this term induces that all components of λ2 or
all components of F22 are trivial (or both).

Assume that λ2 6= 0, then F22 = p2
∂f

∂u
+
∂L2

∂u
≡ 0. If furthermore

∂F22

∂u
=

∂

∂u

(

p2
∂f

∂u
+
∂L2

∂u

)

(3.63)

is invertible, then the Implicit Function Theorem applied to the function F22 with
respect to the variable u allows to write locally along the trajectory the control

u = u(t, x, p2). (3.64)

The system in (x, p2) is rewritten as
{

ẋ = F1(t, x, p2, u(t, x, p2))
ṗ2 = F21(t, x, p2, u(t, x, p2)), because F22 = 0.

(3.65)

Since the dynamics and the criterion are independent of uy, we can deduce that any
control uy is extremal for the optimization problem. But the relation (3.12) is a
constraint on uy. Hence

λ2 ≡ 0. (3.66)

�

Remark 3.11. The fact that λ2 ≡ 0 means that the leader does not take into
account the rational reaction set of the follower. It seems to be in contradiction with
the hierarchical position between the leader and the follower. In fact, the leader does
not take into account the reaction of the follower, because he can impose his desired
control to the follower. The leader is omnipotent with respect to the follower. The

condition
∂F22

∂u
invertible formalizes this priveliged position of the leader.
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3.6. Linear Quadratic case. In this section, the obtained results are applied
to the linear quadratic case. Consider a linear dynamic constraint

ẋ = Ax+B1u+B2v (3.67)

and the quadratic criteria

J1(u, v) =
1

2

∫ tf

0

(xTQ1x+ uTR11u+ vTR12v) dt+
1

2
x(tf )TK1fx(tf ), (3.68)

J2(u, v) =
1

2

∫ tf

0

(xTQ2x+ uTR21u+ vTR22v) dt+
1

2
x(tf )TK2fx(tf ), (3.69)

(3.70)

where the matrices Qi, Rij and Kif are symmetric for i, j ∈ {1, 2}, and R22 and R11

are invertible.

3.6.1. Necessary conditions for the follower. The Hamiltonian associated
with the follower (dynamic constraint (3.67) and criterion (3.69)) is

H2 = p2(Ax+B1u+B2v) +
1

2
(xTQ2x+ uTR21u+ vTR22v). (3.71)

Applying the relations (3.3), (3.4), we obtain

ṗ2 = −
dH2

dx
= −p2A− xTQ2 − p2B1

∂u∗

∂x
− uTR21

∂u∗

∂x
, (3.72)

p2(tf ) = x(tf )TK2f , (3.73)

∂H2

∂v
= 0 = p2B2 + vTR22. (3.74)

Since R22 is invertible by assumption, the optimal control is

v = −R−1
22 B

T
2 p

T
2 = S(t, x, p2, u). (3.75)

3.6.2. Necessary conditions for the leader. In the case of quadratic criteria,
there holds

F1(t, x, p2, u) = Ax+B1u−B2R
−1
22 B

T
2 p

T
2 , (3.76)

F21(t, x, p2, u) = −p2A− xTQ2, (3.77)

F22(t, x, p2, u) = −p2B1 − uTR21. (3.78)

By injecting the expression of the optimal control of the follower (3.75), the instan-
taneous leader’s criterion can be written as

L̃1(t, x, p2, u) =
1

2

(
xTQ1x+ uTR11u+ p2B2R

−1
22 R12R

−1
22 B

T
2 p2

)
. (3.79)

The necessary conditions (3.12), (3.13), (3.14), (3.15) lead to

∂H

∂u
= 0 = λ1B1 − λ2

(
∂u

∂x

)T

R21 + λ◦uTR11, (3.80)

∂H

∂uy

= 0 = −λT
2

(
p2B1 + uTR21

)
, (3.81)

λ̇1 = −λ1A+ λ2Q2 − λ◦xTQ1, (3.82)

λ̇2 = λ1B2R
−1
22 B

T
2 + λ2

(

A+B1

(
∂u

∂x

))T

− λ◦p2B2R
−1
22 R12R

−1
22 B

T
2 , (3.83)

λ̇◦ = 0, (3.84)
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with the transversality conditions

λ1(tf ) = λ◦x(tf )TK1f − λ2(tf )K2f , (3.85)

λ2(0) = 0. (3.86)

From Proposition 3.10, and assuming that
∂

∂u

(

p2
∂f

∂u
+
∂L2

∂u

)

= R21 is invertible,

we can deduce that λ2 ≡ 0.
Since the vector (λ1, λ2, λ

◦) at t = tf cannot be zero, and according to the transver-
sality condition (3.85), we can take λ◦ = 1.
From (3.80), we deduce with the invertibility of R11, that

u = −R−1
11 B

T
1 λ

T
1 . (3.87)

Moreover, Equation (3.83) becomes, with λ2 ≡ 0,

λ1B2R
−1
22 B

T
2 − p2B2R

−1
22 R12R

−1
22 B

T
2 ≡ 0. (3.88)

Assuming that the rank of B2 is maximal, that is, rank B2 = m2 (the number of the
components of the control v), this relation yields

λ1B2 = p2B2R
−1
22 R12. (3.89)

In this expression the optimal control v, given by (3.75) can be recognized. The
optimal control v verifies also

R12v = −BT
2 λ

T
1 . (3.90)

If R12 is invertible, then the control v admits two expressions:

v = −R−1
12 B

T
2 λ

T
1 = −R−1

22 B
T
2 p

T
2 . (3.91)

We gather the necessary conditions for optimality obtained in the following the-
orem.

Proposition 3.12. For x0 6= 0, if the matrices Qi, Rij and Kif are symmetric,
if R11 > 0, R22 > 0, R12 > 0, and R21 invertible and if rank B2 = m2 (B2 is
of full rank), then the controls issued from a Stackelberg strategy with a closed-loop
information structure are

u = −R−1
11 B

T
1 λ

T
1 , (3.92)

v = −R−1
22 B

T
2 p

T
2 = −R−1

12 B
T
2 λ

T
1 , (3.93)

with

ẋ = Ax+B1u+B2v, x(0) = x0, (3.94)

ṗ2 = −p2A− xTQ2 −
(

p2B1 + uTR21

)∂u

∂x
, p2(tf ) = xT

f K2f , (3.95)

λ̇1 = −λ1A− xTQ1, λ1(tf ) = xT
f K1f , (3.96)

λ1B2 = p2B2R
−1
22 R12. (3.97)

At this step, two cases are considered: p2B1 + uTR21 = 0 and p2B1 + uTR21 6= 0
to derive the necessary conditions. It is shown that the first case is irrelevant under
some additional weak assumptions. The investigation of the second case shows that
it is relevant.
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3.6.3. Case p2B1 + uTR21 = 0.
Lemma 3.13. If the pair (Q1, A) is observable, and at least one of the pairs

(A,B1) and (A,B2) is controllable, then

x(t) = λT
1 (t) = pT

2 (t) = 0, ∀t ∈ [0, tf ]. (3.98)

This means that the only optimal trajectory is the trivial one.
Remark 3.14. Equations (3.98) imply in particular, that x(0) = 0. If x(0) =

x0 6= 0, there does not exist any optimal trajectory starting from x0.
Proof. With the condition

p2B1 + uTR21 = 0, (3.99)

the term
∂u

∂x
does not appear anymore in the necessary conditions (3.94)-(3.97).

Derivating with respect to time the relation (3.99) does not induce necessary con-

ditions for
∂u

∂x
.

However assuming that R21 is invertible, the control u admits two representations

u = −R−1
11 B

T
1 λ

T
1 = −R−1

21 B
T
1 p

T
2 . (3.100)

From this relation and from (3.97), necessary conditions about x(tf ) are developed
by successive derivation with respect to time.

{
λ1B2 − p2B2R

−1
22 R12 = 0,

λ1B1R
−1
11 R21 − p2B1 = 0.

(3.101)

These two relations can be rewritten for every t ∈ [0, tf ] as

(
x λ1 p2

)





0 0
B2 B1R

−1
11 R21

−B2R
−1
22 R12 −B1





︸ ︷︷ ︸

B

= 0. (3.102)

Injecting (3.99) into the dynamics of x, λ1 and p2, we obtain the autonomous
differential system

d

dt





x
λT

1

pT
2





T

=





x
λT

1

pT
2





T 



AT −Q1 −Q2

−B1R
−1
11 B

T
1 −B2R

−1
12 B

T
2 −A 0

0 0 −A





︸ ︷︷ ︸

A

(3.103)

The k-order derivation of (3.102) with respect to time, at time t = tf , gives

[
xT (tf ) xT (tf )K1f xT (tf )K2f

]
AkB = 0, ∀k ∈ N. (3.104)

Assuming that the pair (A,B) is controllable, these conditions imply that x(tf ) =
0. However the autonomous linear system in x, λ1 and p2 with end value conditions
x(tf ) = λT

1 (tf ) = pT
2 (tf ) = 0 imposes, by a backward integration of (3.103)

x(t) = λT
1 (t) = pT

2 (t) = 0, ∀t ∈ [0, tf ]. (3.105)
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The only optimal trajectory in this case is the trivial one. �

Sufficient conditions are derived below to ensure that the pair (A,B) is control-
lable.

Proposition 3.15. Assuming
• the pair (Q1, A) is observable,
• at least one of the pairs (A,B1) or (A,B2) is controllable,

then the pair (A,B) is controllable.
Proof. The proof uses the controllability Hautus test. The pair (A,B) is control-

lable if and only if the matrix
[
A− αI B

]
(3.106)

is of full rank, for every α ∈ C. The proof consists of showing that all line vectors
(
zT
1 zT

2 zT
3

)
verify

(
zT
1 zT

2 zT
3

) [
A− αI B

]
= 0, (3.107)

are trivial. Developing Equation (3.107), we have

−zT
1 Q1 = zT

2 (A− αIn), (3.108)

−zT
1 Q2 = zT

3 (A− αIn), (3.109)

zT
1 (AT − αIn) = zT

2 (B1R
−1
11 B

T
1 +B2R

−1
12 B

T
2 ), (3.110)

zT
2 B2 = zT

3 B2R
−1
22 R12, (3.111)

zT
2 B1R

−1
11 R21 = zT

3 B1. (3.112)

Multiplying by z1 Equation (3.108) and by z2 Equation (3.110), we obtain

−zT
1 Q1z1 = zT

2 (A− αIn)z1 = zT
2

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
z2 (3.113)

The first term is nonpositive and the last term is nonnegative, hence both are
zero. It follows that

zT
1 Q1 = 0, zT

2 B1 = 0, zT
2 B2 = 0. (3.114)

Plugging these relations in (3.108), (3.112), one gets

zT
1 (AT − αIn) = 0, zT

1 Q1 = 0, (3.115)

zT
2 (A− αIn) = 0, zT

2 B2 = 0, zT
2 B1 = 0, (3.116)

zT
3 (A− αIn) = 0, zT

3 B2 = 0, zT
3 B1 = 0. (3.117)

The relations (3.115) corresponds to the observability Hautus test of the pair
(Q1, A), the relations (3.116) to the controllability Hautus test of the pair (A,B1) or
(A,B2), and the relations (3.117) to the controllability Hautus test of the pair (A,B1)
or (A,B2). The assumptions of controllability and observability lead to z1, z2 and z3
trivial. �

Remark 3.16. This means that the particular case p2B1 + uTR21 = 0 can be
avoided with weak assumptions on the system. The leader should be able to observe
the system (pair (Q1, A) observable) and at least one player should be able to control
the system ((A,B1) or (A,B2) controllable). Once again, it is emphasized that the
roles of the players are not symmetric.

We can then assume that

p2B1 + uTR21 6= 0. (3.118)
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3.6.4. Case p2B1 + uTR21 6= 0. The relation (3.97) is equivalent to both rela-
tions: (3.97) at time t = tf and his derivative with respect to time, that is,

λ1(tf )B2 = xT (tf )K1fB2 = p2(tf )B2R
−1
22 R12 = xT (tf )K2fB2R

−1
22 R12, (3.119)

and

λ̇1B2 = ṗ2B2R
−1
22 R12 (3.120)

=
(
λ1A+ xTQ1

)
B2 (3.121)

=

(

p2A+ xTQ2 + (p2B1 + uTR21)

(
∂u

∂x

))

B2R
−1
22 R12. (3.122)

Hence

(p2B1 + uTR21)

(
∂u

∂x

)

B2 =
(
λ1A+ xTQ1

)
B2R

−1
12 R22 − (p2A+ xTQ2)B2. (3.123)

Therefore, (3.97) is equivalent to






(

BT
2 K1f −R12R

−1
22 B

T
2 K2f

)

x(tf ) = 0,
(

p2B1 + uTR21

)(∂u

∂x

)

B2 =
(
λ1A+ xTQ1

)
B2R

−1
12 R22 − (p2A+ xTQ2)B2.

(3.124)

Equation (3.123) permits to derive an expression of
∂u

∂x
, since p2B1 +uTR21 6= 0

(p2B1 + uTR21)

(
∂u

∂x

)

= w2 + w′
2, (3.125)

with

w2 =
( (
λ1A+ xTQ1

)
B2R

−1
12 R22 − (p2A+ xTQ2)B2

) BT
2

‖B2‖2
, (3.126)

and (w′
2)

T ∈ Ker
(
BT

2

)
(arbitrary).

The constraint (3.119) translates into a constraint on the set of initial points
x0 ∈ R

n from which an solution starts.
Lemma 3.17. The existing solutions are associated with a set of x0 included in

a subset of R
n with a m2-codimension (at worst).

Proof. Here, like in a classical Linear Quadratic problems, it is possible to look for
an optimal solution by assuming that the costate vector λ1(t) is linear with respect
to the state x(t).

λT
1 (t) = K1(t)x(t). (3.127)

The matrix K1(t) ∈ R
n×n verifies

K̇1x+K1

(
Ax−

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1x

)
= −ATK1x−Q1x. (3.128)

This should be true ∀x, hence K1(t) is the solution of the following Riccati differential
equation

{

K̇1 = −K1A−ATK1 −Q1 +K1

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1,

K1(tf ) = K1f .
(3.129)
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The existence of a solution of the optimization problem is assured classically ”a la
Riccati” and by the uniqueness of an optimal trajectory. This is justified a posteriori
in the following by using the theory of focal times.

By reinjecting λT
1 = K1x in (3.91) and (3.100), the state x(t) has the dynamical

constraint
{

ẋ(t) =
(
A−

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t)

)
x(t) = Ãx(t),

x(0) = x0.
(3.130)

Let M(t) be the transition matrix associated with (3.130). Then x(t) = M(t)x0.
Then the constraint (3.119) becomes

(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
M(tf )x0 = 0. (3.131)

This is a m2-codimension (at worst) condition on the initial states x0. �

It should be noted that the optimal trajectory is unique, in this case, but it
is achieved by all controls which verify the relation (3.123). An optimal trajectory

induces several
∂u

∂x
.

This explains the idea in [11] to assume that the initial state is uniformly dis-
tributed over the unit sphere and replacing the optimization criterion with its mean
value over the initial state.

Remark 3.18. In the case of optimization problem without terminal criteria,
the relation (3.119) does not reduce the set of initial state x0 associated with optimal
trajectories.

We gather all previous results in the following theorem.
Theorem 3.19. If
• x0 6= 0,
• Qi, Rij and Kif are symmetric,
• R11 > 0, R22 > 0 and R12 and R21 are invertible,
• the pair (Q1, A) is observable,
• at least one of the pairs (A,B1) and (A,B2) is controllable,
• rank B2 = m2 (B2 of full rank),

then the optimal trajectory verifies the necessary conditions

u(t, x(t)) = −R−1
11 B

T
1 K1(t)x(t), v(t, x(t)) = −R−1

12 B
T
2 K1(t)x(t), (3.132)

with

ẋ(t) =
(
A− (B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2 )K1(t)

)
x(t), x(0) = x0, (3.133)

where

K̇1 = −K1A−ATK1−Q1−K1(B1R
−1
11 B

T
1 +B2R

−1
12 B

T
2 )K1, K1(tf ) = K1f . (3.134)

Futhermore
∂u(t, x(t))

∂x
verifies

(p2B1 + uTR21)
∂u

∂x
B2 = (λ1A+ xTQ1)B2R

−1
12 R22 − (p2A+ xTQ2)B2, (3.135)

where

ṗ2 = −p2A− xTQ2 − (p2B1 + uTR21)
∂u

∂x
, p2(tf ) = xT (tf )K2f , (3.136)
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and

(BT
2 K1f −R12R

−1
22 B

T
2 K2f )x(tf ) = 0. (3.137)

In the next section, the theory of focal times allows to obtain sufficient conditions
for the Stackelberg strategy with a closed-loop information structure.

4. Sufficient conditions. In this section, in order to obtain sufficient condi-
tions, the theory of focal times is required (and no conjugate times, because the final
state x(tf ) is free). Sufficient conditions for optimality are first derived for the leader,
and then for the follower in the case of Linear Quadratic games.

4.1. Sufficient conditions for the leader. The optimization problem of the
leader is






ẋ = Ax−B2R
−1
22 B

T
2 p

T
2 +B1u,

ṗT
2 = −AT pT

2 −Q2x− wT
(
p2B1 + uTR21

)T
,

Ĵ1(u) =
1

2

∫ tf

0

(
xTQ1x+ uTR11u+ p2B2R

−1
22 R12R

−1
22 B

T
2 p

T
2

)
dt+

1

2
xT (tf )K1fx(tf ),

(4.1)
with x(0) = x0 and p2(tf ) = xT (tf )K1f . When p2B1 + uTR21 6= 0, the control w is
cheap [5], and p2 can be also be considered as a control. More precisely, y = B2p

T
2 is

considered as a control. Then the problem (4.1) can be rewritten as

{
ẋ = Ax−B2R

−1
22 y +B1u,

Ĵ1(u, y) =
1

2

∫ tf

0

(
xTQ1x+ uTR11u+ yTR−1

22 R12R
−1
22 y

)
dt+

1

2
xT (tf )K1fx(tf ).

(4.2)
Remark 4.1. Note that this Linear Quadratic problem with controls (u, y) can

be linked to the Team optimal approach in [2]. In this reference, the first step in the
research of Stackelberg equilibrium is to obtain the minimum of the criterion of the
leader, by a team cooperation between the leader and the follower. Then the follower
control is modified to achieve the minimum of the criterion of the follower.

The Linear Quadratic problem corresponds to find the optimal control (u, y). A
necessary condition for the existence of an optimal control is R−1

22 R12R
−1
22 ≥ 0. It is

equivalent to R12 ≥ 0, since R22 is positive definite. A sufficient condition for the
existence of an optimal control, when tf is small is R12 > 0 [19]. In the following, it
is assumed that R12 > 0.

To characterize the focal points, by taking

u = −R−1
11 B

T
1 λ

T
1 , y = R22R

−1
12 B

T
2 λ

T
1 , (4.3)

we consider the variational system

{
δẋ = Aδx−

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
δλT

1 ,

δλ̇1 = −λ1A− δxTQ1.
(4.4)

We search the first focal time denoted tc > 0 (see [6]), such that there exists a
solution (δx, δλ1) verifying (x(0) = x0 is fixed)

{
δx(0) = 0,
δλ1(tc) = δxT (tc)K1f .

(4.5)
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This is equivalent to

‖K(t)‖ −→
t→ tc
t < tc

+∞, (4.6)

where K(t) is the solution of the Riccati differential equation
{

K̇ = KA+ATK +Q1 −K
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K,

K(0) = K1f .
(4.7)

The first focal time tc is a finite escape time for the Riccati differential equation
(4.7). The matrix K(t) can be viewed as the matrix K1(t) after a change of time
t ∈ [0, tf ] 7→ (tf − t).

Lemma 4.2. If R11 > 0 and R12 > 0 then tc > 0.
Proof. From Equation (4.1), one gets

x(t) = etAx0 −

∫ t

0

e(t−s)A
(
B2R

−1
22 y(s) −B1u(s)

)
ds. (4.8)

Given tf > 0, for every t ∈ [0, tf ], there exist scalar constants Ck ≥ 0 verifying

‖x(t)‖ ≤ C1‖x0‖ + C2

√
tf

[(∫ tf

0

‖y(s)‖2ds

) 1

2

+

(∫ tf

0

‖u(s)‖2ds

) 1

2

]

. (4.9)

Hence
∥
∥
∥
∥

∫ tf

0

xT (s)Q1x(s)ds

∥
∥
∥
∥
≤ C3‖x0‖

2 + C4t
2
f

(∫ tf

0

‖y(s)‖2ds+

∫ tf

0

‖u(s)‖2ds

)

C5tf + C5t
2
f

∫ tf

0

‖y(s)‖2ds+ C5t
2
f

∫ tf

0

‖u(s)‖2ds (4.10)

In addition, by assuming R11 > 0 and R−1
22 R12R

−1
22 > 0,

∥
∥
∥
∥

∫ tf

0

uT (s)R11u(s)ds

∥
∥
∥
∥
≥ C6

∫ tf

0

‖u(s)‖2ds, (4.11)

∥
∥
∥
∥

∫ tf

0

yT (s)R−1
22 R12R

−1
22 y(s)ds

∥
∥
∥
∥
≥ C6

∫ tf

0

‖y(s)‖2ds. (4.12)

Using these inequalities and (4.2), we can compute a lower bound of the criterion
Ĵ1(u, y)

2Ĵ1(u, y) ≥
(
C6 − (C4 + C5) t

2
f

)
[∫ tf

0

‖u‖2ds+

∫ tf

0

‖y‖2ds

]

(4.13)

+xT (tf )K1fx(tf ) − C3‖x0‖
2 − C5tf . (4.14)

For tf enough small

tf ≤

√

C6

C4 + C5
, (4.15)

the criterion Ĵ1(u, y) is finite bounded, then 0 < tf < tc. �

Remark 4.3. If Q1 ≥ 0, then Equation (4.7) admits a solution on [0,+∞[. There
is no finite escape time for this equation. There is no first focal time (tc → +∞).
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4.2. Sufficient conditions for the follower. The optimization problem for
the follower is

{
ẋ = Ax+B1u(t, x) +B2v, x(0) = x0,

Ĵ2 =
1

2

∫ tf

0

(
xTQ2x+ uTR21u+ vTR22v

)
dt+

1

2
xT (tf )K2fx(tf ).

(4.16)

with

v = −R−1
22 B

T
2 p

T
2 (4.17)

where

ṗ2 = −p2A− xTQ2 −
(
p2B1 + uTR21

) ∂u

∂x
, p2(tf ) = xT (tf )K2f . (4.18)

The variational system along the trajectory x(·) is

δẋ = Aδx+B1
∂u

∂x
δx−B2R

−1
22 B

T
2 p

T
2 , (4.19)

δṗ2 = −δp2A− δxTQ2 −
(
p2B1 + uTR21

) ∂2u

∂x2
δx

−

(

δp2B1 +

(
∂u

∂x
δx

)T

R21

)

∂u

∂x
. (4.20)

with δx(0) = 0 and δp2(tf ) = δxT (tf )K2f . Here u(t, x) is affine with respect to x,

then
∂2u

∂x2
= 0. Equation (4.20) then rewrites

δṗ2 = −δp2A− δxTQ2 −

(

δp2B1 +

(
∂u

∂x
δx

)T

R21

)

∂u

∂x
. (4.21)

A focal time t′c characterizes the existence of a solution (δx, δp2) such that δx(0) =

0 and δp2(t
′
c) = δxT (t′c)K2f . For each choice of the term

∂u

∂x
, there exists a first focal

time t′c.

4.3. Sufficient conditions for Stackelberg Strategy. The sufficient condi-
tions ensuring the existence of an optimal trajectory are summed up in the following
theorem.

Theorem 4.4. Assume that
• x0 6= 0,
• Qi, Rij and Kif are symmetric,
• R11 > 0, R22 > 0, R12 > 0, and R21 invertible,
• the pair (Q1, A) is observable,
• at least one of the pairs (A,B1) and (A,B2) is controllable,
• rank B2 = m2 (B2 is of full rank).

Let w′
2 a function of time t such that w′

2 ∈
(
BT

2

)⊥
, and let

T ∗ = min (tc, t
′
c) > 0. (4.22)

For every tf < T ∗, there exists a unique solution of the Riccati differential equation
(3.129). Denoting x(t, x0) the solution of Equation (3.130), let

H =
{
x0 ∈ R

n
∣
∣
(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
x(tf , x0) = 0

}
. (4.23)
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Then, for every x0 ∈ H, there exists a unique optimal solution of the optimization
problem on [0, tf ] associated with w′

2. The optimal controls (u, v) associated with verify
(3.125) and furthermore

u(t, x(t)) = −R−1
11 B

T
1 K1(t)x(t), v(t, x(t)) = −R−1

12 B
T
2 K1(t)x(t). (4.24)

In addition, for every x0 /∈ H, there does not exist any optimal trajectory starting
from x0.

Remark 4.5. Theorem 4.4 provides a new result of existence of closed-loop
Stackelberg strategies for linear-quadratic differential games.

Remark 4.6. The sufficient conditions for optimality are developed in the Linear
Quadratic case. The optimality results are here global. It is also, by the same argu-
ment, possible to express similar sufficient conditions in the general case of nonlinear
criteria. However they are not developed here, because their expressions are more
technical and because they lead only to local optimality results [6, chap. 9].

4.4. Extension: weighting of
∂u

∂x
in criteria. The problem is degenerated,

because for each x0 ∈ H, there can exist an infinite choice of terms
∂u∗

∂x
. A way to

yield a unique
∂u∗

∂x
is to include a weighting on the term

∂u∗

∂x
in the criterion J1 of

the leader. Then the leader takes into account a restriction on the Jacobian of its
control. The leader is no more omnipotent.

The new criteria of the leader is then

J1(u, v) =
1

2

∫ tf

0



xTQ1x+ uTR11u+ vTR12v +

m1∑

j=1

(
∂uj

∂x

)

Rj

(
∂uj

∂x

)T



 dt

+
1

2
x(tf )TK1fx(tf ), (4.25)

where uj are the m1 components of the control u, and Rj ∈ R
n×n, (∀j = 1, · · · ,m1)

are symmetric positive definite matrices.
There is no change for the follower. However the necessary conditions for the

leader are modified as follows

∂H

∂u
= 0 = λ1B1 − λ2

(
∂u

∂x

)T

R21 + λ◦uTR11, (4.26)

∂H

∂uy

= 0 =

(

λ2

(
BT

1 p
T
2 +R21u

)

j
+
∂uj

∂x
Rj

)

j=1,··· ,m1

. (4.27)

The other necessary conditions (3.14) and (3.15) are unchanged. Equations (4.26)
and (4.26) are easily solvable, without considering different cases. In this framework,
λ2 is not trivial anymore. One gets a nonlinear optimization problem on boundary
values. The computation leads to the result of [12]. More precisely from (4.27), we
obtain

∂u∗j
∂x

=
((
BT

1 p
T
2 +R21u

)

j
λ2R

−1
j

)

j=1,··· ,m1

. (4.28)

In order to simplify like in [12], it is assumed that Rj = R > 0, ∀j = 1, · · · ,m1.
Then

∂u

∂x
=
(
BT

1 p
T
2 +R21u

)
λ2R

−1. (4.29)
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By reinjecting this expression in the equation (4.26),

R11u = −BT
1 λ

T
1 +R21B

T
1 p

T
2 λ2R

−1λT
2 +R2

21uλ2R
−1λT

2 , (4.30)

or

(
R11 − λ2R

−1λT
2 R

2
21

)
u = −BT

1 λ
T
1 +R21B

T
1 p

T
2 λ2R

−1λT
2 . (4.31)

Remark 4.7. For t = 0, λ2(0) = 0, then R11 − λ2R
−1λT

2 R
2
21 = R11 > 0 is

invertible. For t ≥ 0 small enough, the matrix R11 −λ2(t)R
−1λT

2 (t)R2
21 is invertible.

As long as R11 − λ2(t)R
−1λT

2 (t)R2
21 is invertible, the optimal control verifies

u =
(
R11 − λ2R

−1λT
2 R

2
21

)−1 (
−BT

1 λ
T
1 +R21B

T
1 p

T
2 λ2R

−1λT
2

)
(4.32)

The nonlinear optimization problem becomes

ẋ = Ax−B2R
−1
22 B2p

T
2

+B1

(
R11 − λ2R

−1λT
2 R

2
21

)−1 (
−BT

1 λ
T
1 +R21B

T
1 p

T
2 λ2R

−1λT
2

)
, (4.33)

ṗ2 = −p2A− xTQ2 −
∥
∥p2B1 + uTR21

∥
∥

2
λ2R

−1, (4.34)

λ̇1 = −λ1A+ λ2Q2 − xTQ1, (4.35)

λ̇2 = λ1B2R
−1
22 B

T
2 + λ2

(
AT +R−1λT

2

(
p2B1 + uTR21

)
BT

1

)

−p2B2R
−1
22 R12R

−1
22 B

T
2 . (4.36)

with boundary conditions

x(0) = x0, (4.37)

p2(tf ) = xT (tf )K2f , (4.38)

λ1(tf ) = xT (tf )K1f − λ2(tf )K2f , (4.39)

λ2(0) = 0. (4.40)

Remark 4.8. If R = γI and γ → +∞, we obtain at the limit
∂u

∂x
= 0 and we

recognize the necessary conditions for the strategy of Stackelberg with an open-loop
information structure. Note that to obtain this result, only an infinite weighting on
∂u

∂x
is needed in the criterion of the leader.

These conditions are necessary conditions. Like previously, the theory of focal
points leads to sufficient conditions associated with the Stackelberg strategy with

closed-loop information structure including a weighting for
∂u

∂x
in the criterion of the

leader, namely, given x0 ∈ R
n. For tf less than the global focal time of the system,

there exists only one trajectory starting from x0 solution of (4.33)-(4.40) associated

with the optimal control

(

u,
∂u

∂x

)

(4.32), (4.29).

5. Conclusion. In this paper the Stackelberg strategy with a closed-loop infor-
mation structure is studied. The framework is restricted to two players differential
games. Necessary conditions for obtaining a closed-loop Stackelberg equilibrium are
derived considering all cases. It is shown that the Stackelberg strategy could degen-
erate if the leader is omnipotent and can impose his control to the follower. The focal
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times theory provides sufficient conditions for the optimization problems of the two
players. The Linear Quadratic case is used to illustrate the obtained necessary and
sufficient conditions. An extension is proposed to allow an optimal trajectory starting
from any initial state by including, in the criterion, the Jacobian of his/her control in
the criterion of the leader.
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