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Abstract: This article addresses the problem of time-delayestimation in the specific
case of structures with combined feedback/feedforward control. In the case of closed
loop single-input/single-output systems, several methods have been developed in order
to estimate the time-delay. In particular, this parameter may be determined thanks to
a correlation analysis proposed by Zheng and Feng (1990). The purpose of this work
is to generalize the latter approach to the case of feedback/feedforward systems (with
two inputs: the control input and the measured disturbance). This is motivated by an
application to a managed river reach in passive experimental conditions.
Copyright c© 2005 IFAC
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1. INTRODUCTION

The time-delay of a system is a crucial parameter to
know for many applications. So the time-delay esti-
mation has aroused great interest. One can refer, for
instance, to survey papers such as De Souzaet al.
(1988), Ferreira and Fernandes (1997) and Björklund
(2003). In addition, an overview of some recent ad-
vances and open problems about time-delay systems
may be found in (Richard, 2003). However, little at-
tention has been paid so far to the need for estima-
tion of time-delay of systems with complex structure
especially when the system operate under combined
feedback/feedforward control. Indeed, in this case,
correlations between disturbances and inputs must be
taken into account (Söderström, 1999).

Zheng and Feng (1990) developed a time-delay esti-
mation method based on correlation analysis allowing
one to consider a closed-loop structure. So the idea

has been to generalize this method to structures with
combined feedback/feedforward control. This devel-
opment is motivated by an application: the estima-
tion of a time-delay of a managed river reach in pas-
sive experimental conditions (Thomassinet al., 2003;
Thomassinet al., 2004; Thomassin, 2005).

This paper is organized as follows. Section 2 reminds
the time-delay estimation method developed by Zheng
and Feng (1990). Then, in the following section, the
river reach modelling is presented to show the partic-
ular structure of the application and to highlight dif-
ficulties in the identification of the process. Section 4
is devoted to the major contribution of this work, i.e
it contains the generalization of the time-delay esti-
mation method (presented in section 2) to structures
with combined feedback/feedforward control. Finally,
simulation results are presented in section 5 in order
to show the effectiveness of the method.



2. TIME-DELAY ESTIMATION BY
CORRELATION ANALYSIS

The time-delay estimation from correlation analysis
was presented for the first time by Faure and Evans
(1969) in a deterministic case. Then, many time-delay
estimation methods using correlation functions was
developed (Carter, 1987). The first paper presenting
a method based on correlation functions allowing the
identification of a stochastic system with unknown
delay, and correlation between disturbances and input,
was Zheng and Feng (1990).

The authors consider the following model:

A(q−1)y[k] = q−dB(q−1)u[k] + ω[k], (1)

where

A(q−1) = 1 − a1q
−1 − . . . − ana

q−na ,

B(q−1) = b0 + b1q
−1 + . . . + bnb

q−nb ,

with b0 6= 0 and whereq−1 is the shift operator.
The ordersna and nb are known. The sequences
{

u[k]
}N−1

k=0
and

{

y[k]
}N−1

k=0
denote the system input

and observed noisy output. The sequence
{

ω[k]
}N−1

k=0

represents noises and disturbances acting on the sys-
tem (N is the data length). The parameterd > 0 is the
unknown time-delay. It is assumed that the input has
a sufficient persistent excitation order so as to respect
identifiability conditions. All the zeros ofA(q−1) are
outside the closed unit disc (the system is stable).

First, the authors show that if the sequences
{

u[k]
}N−1

k=0

and
{

ω[k]
}N−1

k=0
are not correlated, and

{

u[k]
}N−1

k=0
is

a Moving Average (MA) process of ordernf :

u[k] = F (q−1)r[k], (2)

where:

•
{

r[k]
}N−1

k=0
is a independent identically-distributed

(i.i.d.) random sequence; their probability distri-
bution is a zero-mean Gaussian distribution with
varianceσ2;

• F (q−1) denotes the following polynomial:

F (q−1) = f0 + f1q
−1 + . . . + fnf

q−nf ,

with f0 6= 0 andfnf
6= 0,

then the cross-correlation between the input and the
output satisfies the following equations:

{

cyu[l] = 0, for l < d − nf

cyu[d − nf ] = b0f0fnf
σ2 6= 0.

(3)

Consequently, the time-delayd can be estimated from
the estimates of the cross-correlation function between
the output and the input,̂cyu, and the autocorrelation
order of the input,̂nf . This estimation is obtained by
the determination of the lag from which the cross-
correlation function is higher than a threshold. It is
also possible to use an algorithm which detects a
change in the mean such as theCUSUM (cumula-
tive sum) algorithm (Basseville and Nikiforov, 1993).

Once the time-delay is estimated, the model parame-
ters can be estimated by using the least square method
with the shifted input{u[k − d̂]}N−1

k=0
.

Nevertheless, the major contribution presented in
(Zheng and Feng, 1990) is the extension of the pre-
vious propriety to the case of correlation between
the input and the process noise, i.e. the extension to
the closed-loop case. In order to consider this prob-
lem, they assume that the cross-correlation between
{u[k]}N−1

k=0
and{ω[k]}N−1

k=0
verifies the following ex-

pression1 :
{

cωu[l] 6= 0, −m 6 l 6 0,

cωu[l] = 0, l < −m or l > 0,
(4)

wherem > 0 is the cross-correlation order between
ω andu. It means that the control at timek depends
only on the disturbances at timesk, k − 1, . . . , k −
m. Then, if {u[k]}N−1

k=0
is a stationary uncorrelated

random sequence with zero mean and varianceσ2

u and
{ω[k]}N−1

k=0
is a white noise, they show that the co-

efficientsai can be estimated thanks to the following
equations:

cyy[l] =

na
∑

i=1

aicyy[l − i], (5)

for l > nb + d + m, wherem can be estimated from
equation (4) andd can be bounded by a maximal value
dmax. These equations are namedgeneralised Yule-
Walker equations. The demonstration can be found in
the article (Zheng and Feng, 1990).
Once the coefficientsai are estimated, it is possible to
calculate the following expression:

ρ̂yu[l] , cyu[l] −

na
∑

i=1

âicyu[l − i], (6)

which is theoretically equal to:

ρyu[l] =

nb
∑

i=0

bicuu[l − i] + cωu[l], (7)

and, consequently, satisfies the following conditions:






























ρyu[l] = 0, l < −m,

ρyu[l] = cωu[l], −m 6 l 6 0,

ρyu[l] = 0, 0 < l < d,

ρyu[l] = bl−dσ
2

u d 6 l 6 nb + d,

ρyu[l] = 0, l > nb + d.

(8)

The time-delayd can also be obtained by detecting the
first positive lag which verifieŝρyu[l] 6= 0.

Let us reconsider the assumption that the input
{u[k]}N−1

k=0
is a uncorrelated random sequence. If we

assume that{ω[k]}N−1

k=0
is a white noise and that the

cross-correlation function betweenω and u verifies

1 This assumption is rather restrictive. Indeed, it is not checked if
the input is not a white noise. In this case, there will be as well
as possiblecωu[l] 6= 0 for −m 6 l 6 nω , wherenω > 0 is
the autocorrelation order ofω. Nevertheless, the extension to this
assumption is easy to developed.



equation (4), i.e. thatu[k] depends on{ω[k], ω[k −
1], . . . , ω[k − m]}, thenu[k] depends on{u[k], u[k −
1], . . . , u[k − m]} and the assumption about the non-
correlation of{u[k]}N−1

k=0
is false. Moreover, in the

case of closed-loop structure, this assumption is not
realistic: the control at timek depends at least on
that at timek − 1. At best, one can assume that the
autocorrelation function ofu is finite, of ordernf > 0:

{

cuu[l] 6= 0, |l| 6 nf ,

cuu[l] = 0, l < −nf or l > nf .
(9)

Then, by a similar demonstration, by always suppos-
ing that{ω[k]}N−1

k=0
is a white noise and that the cross-

correlation function betweenω andu verifies the rela-
tion (4), we show the following property:

cyy[l] =

na
∑

i=1

aicyy[l − i], (10)

for l > nb+d+max{m, p−d}. These equations make
it possible to estimate the coefficientsai, which allow
one to estimate the statistiĉρyu[l] always defined by
equation (6), which now verifies the conditions:































ρyu[l] = 0, l < −m,

ρyu[l] 6= 0, −m 6 l 6 0,

ρyu[l] = 0, 0 < l < d − nf ,

ρyu[l] 6= 0 d − nf 6 l 6 nb + d + nf ,

ρyu[l] = 0, l > nb + d + nf .

(11)

This statistic allows to estimate the lagd − nf (under
the conditiond − nf > 0) or nb + d + nf . So the
delayd can be estimated (ifnf is nota priori known,
it is possible to estimate it from the autocorrelation
function ofu).

Remark 1 If {ω[k]}N−1

k=0
is not a white noise, it is also

possible to develop a similar theory by assuming that :
{

cωω[l] 6= 0, |l| 6 nω,

cωω[l] = 0, l < −nω or l > nω,
(12)

i.e.{ω[k]}N−1

k=0
is a MA process of ordernω:

ω[k] = Ω(q−1)e[k], (13)

with Ω(q−1) = ω0 + ω1q
−1 + · · · + ωnω

q−nω , and
where{e[k]}N−1

k=0
is a white noise.♦

In conclusion, it is possible to estimate the time-
delay of a single-input/single-output structure from
this method even if the input/output data are corre-
lated. In section 4, we will show that it is possible to
generalize the principle of this method to the case of
a structure having two inputs and an output correlated
by a combined feedback/feedforward control.

3. THE RIVER REACH PROCESS

The application which led us to the generalization of
the latter method is a managed river reach producing
hydroelectric power. As depicted in figure 1, the pro-
cess is composed of a river portion with upstream and

Operator

Barrage

Barrage
Reach

uQi
[k]

uQo
[k]

Qi

Qo

hL[k]

0 L

Fig. 1. A managed river reach

Table 1. Main process variables.

Reference Description
uQi

, uQo
Inflow and outflow rate control

Qi, Qo Real inflow and outflow rate
hL Downstream water level
h∗

L
Water level reference

L Length of the reach

downstream barrages. The downstream levelhL[k] is
the controlled variable. The control variable is the out-
flow rate referenceuQo

[k]. The inflow rate reference
uQi

[k] is considered as a known disturbance. Note that
the inflow and outflow rates are not measured. Table 1
gives the main variables of the process.

The problem is to estimate the time-delay between
the downstream water level and the inflow rate. This
delay depends on the distance between two barrages
(typically, several kilometers) and the flow speed. The
measurements have been made in passive experimen-
tal conditions, i.e. in a normal functioning of the pro-
cess. In this mode, the difficulty is that the outflow rate
referenceuQo

[k] is given by a human operator (man-
ual control mode) who adjusts the outflow rate refer-
ence in order to control the water level (output) and
rejects the disturbances due the inflow rate variations.
Of course, this is a feedforward compensation because
the operator is able to anticipate level variations. The
process has already been modelled in (Thomassinet
al., 2003; Thomassin, 2005). The block diagram of the
managed river reach is summarized in figure 2. The
two control variables,uQi

anduQo
, are correlated, and

uQo
is correlated with the noise output.

If we consider the closed-loop structure, we can show
that the time-delay of the rational transfer between
uQi

[k] andhL[k] is not equal tod. So the direct appli-
cation of Zeng and Feng method is not possible. Con-
sequently, we propose an adaptation of this method in
order to estimate the time-delay in the next section.

4. TIME DELAY ESTIMATION OF A
FEEDBACK/FEEDFORWARD STRUCTURE

The model output is governed by the following rela-
tion:



Operator Barrages and Reach

A(q−1)

A(q−1)

B1(q
−1)

B2(q
−1)

KQi

KhL

∆h∗

L[k] = 0

∆uQi
[k]

∆uQi
[k]

∆uQo
[k]

v[k]

∆hL[k]

+

+

+

+
+

+

−
−

with:

B1(q
−1) =

KiTs

A

B2(q
−1) =

KoTs

A

A(q−1) = 1−q−1

Fig. 2. Block diagram of a managed river reach.

A(q−1)y[k] = B1(q
−1)q−du1[k]

+ B2(q
−1)u2[k] + ω[k], (14)

where

A(q−1) = 1 − a1q
−1 − . . . − ana

q−na ,

B1(q
−1) = b10 + b11q

−1 + . . . + b1nb
q−nb1 , b10 6= 0,

B2(q
−1) = b20 + b21q

−1 + . . . + b2nb
q−nb2 .

The sequences{u1[k]}N−1

k=0
, {u2[k]}N−1

k=0
and{ω[k]}N−1

k=0

are stationary and ergodic. The ordersna, nb1 andnb2

are known. Moreover, the following assumptions are
assumed to be checked:

• A1:
{

ω[k]
}N−1

k=0
is a white noise of varianceσ2

ω ;

• A2:
{

u1[k]
}N−1

k=0
and

{

ω[k]
}N−1

k=0
are uncorre-

lated;
• A3:

{

u1[k]
}N−1

k=0
is a MA process of ordernf :

u1[k] = F (q−1)r1[k], (15)

with F (q−1) = f0 + f1q
−1 + . . . + fnf

q−nf

and where
{

r1[k]
}N−1

k=0
is a uncorrelated random

sequence with zero mean and varianceσ2

r1
;

• A4: the cross-correlation between
{

ω[k]
}N−1

k=0

and
{

u2[k]
}N−1

k=0
is finite:

{

cωu2
[l] 6= 0, −m 6 l 6 0,

cωu2
[l] = 0 l < −m or l > 0;

(16)

• A5: the cross-correlation between
{

u1[k]
}N−1

k=0

et
{

u2[k]
}N−1

k=0
is finite:

{

cu1u2
[l] 6= 0, −p1 6 l 6 p2,

cu1u2
[l] = 0 l < −p1 or l > p2.

(17)

Then it is shown (see Appendix A) that the generalized
Yule-Walker equations are written:

cyy[l] =

na
∑

i=1

aicyy[l − i] +

nb2
∑

i=0

b2icu2y[l − i], (18)

for l > max{nf − d, p2} + d + nb1. They allow to
estimate the coefficientsai andb2i.

These estimates permit also to estimate the following
statistic:

ρ̂yu1
[l] , cyu1

[l] −

na
∑

i=1

âicyu1
[l − i]

−

nb2
∑

i=0

b̂2icu2u1
[l − i], (19)

which is theoretically equal to:

ρyu1
[l] =

nb1
∑

i=0

b1icu1u1
[l − d − i] + cωu1

[l], (20)

=

nb1
∑

i=0

b1icu1u1
[l − d − i], (21)

because
{

u1[k]
}N−1

k=0
and

{

ω[k]
}N−1

k=0
are uncorre-

lated. So this statistic checks the following relations:
{

ρyu1
[l] 6= 0, d − nf 6 l 6 d + nf + nb1,

ρyu1
[l] = 0, l < d − nf or l > d + nf + nb1.

(22)

Finally, the time-delayd can be estimate by detecting
the lagd − nf from whichρyu1

[l] becomes non-null.
If the ordernf is not known, it can be estimate from
the autocorrelation function of{u1[k]}N−1

k=0
.

5. SIMULATION EXAMPLE

The aim of this section is to illustrate the previous
theory with a numerical example2 .

Let us consider the following model:

y[k] − 1, 5 y[k − 1] + 0, 7 y[k − 2]

= u1[k − 14] + 0, 5 u1[k − 15]

+ u2[k] − 0, 2 u2[k − 1] + ω[k]. (23)

The inputu1 is described as:

u1[k] = 1, 2 r[k] + 4, 3 r[k − 1] + 0, 5 r[k − 2]

+ 0, 2 r[k − 3] + 1, 5 r[k − 4] + 0, 3 r[k − 5]

+ 0, 8 r[k − 6] + 1, 1 r[k − 7] + 0, 4 r[k − 8]

+ 2, 3 r[k − 9], (24)

wherer[k] is a pseudorandom binary signal of magni-
tude 1. The autocorrelation order,nf = 9, is assumed
to be known. The disturbanceω[k] is a zero-mean
white noise with variance 1. The time-delay isd = 14.

2 This example is is close to one of those in (Zheng and Feng,
1990).



Its range is limited bydmax = 20. The sample size is
N = 8000. At last, the second input is obtained by:

u2[k] = u1[k]+ω[k]+1, 3 ω[k−1]−0, 22 ω[k−2]

− 0, 832 ω[k − 3] − 0, 269 ω[k − 4]. (25)

We have intentionally chosen a second order model
for the river reach, and not an integrator as indicated
in figure 2, so as to demonstrate the applicability of
our approach in a more general case.

Figure 3 displays the estimate ofρyu1
for one run. It

can be seen that̂d − nf = 5 andd̂ + nf + nb1 = 24,
i.e. d̂ = 14. This confirms the result obtained in equa-
tion (22). The time-delay and parameter estimates for
one run are presented in table 2. We observe that the
estimates of the coefficientsai andb1i are acceptable.
However, we noted that the method does not always
lead to good results concerning the estimation of the
coefficientsb2i. So this point has to be studied further.

0 5 10 15 20 25 30

−5

0

5

10

15

20

25

30

35

ρ̂
y
u
1

lag ld̂ − nf d̂ − nf + nb1

Fig. 3. Estimate ofρyu1
for one run.

Table 2. Parameter estimates for one run.

Parameter True value Estimate
d 14 14
a1 1, 5 1, 4415
a2 −0, 7 −0, 65826
b10 1 0, 98871
b11 0, 5 0, 45709
b20 1 1, 2537
b21 −0, 2 −0, 1362

The histogram of the time-delay estimates resulting
from 100 Monte Carlo runs and obtained with the
CUSUM algorithm is shown on figure 4. It may be
seen that 80% of the estimates correspond to the true
time-delay. Concerning the 10% of detections made at
d̂ = 19, they can be reduced by a better tuning of the
CUSUM design parameters.

6. CONCLUSION

In this paper, a time-delay estimation method in
the specific case of structures with combined feed-
back/feedforward control is presented. It is based on
a correlation method developed by Zheng and Feng
(1990) in the case of closed-loop structure. Its advan-
tages can be summarized as follows:

12 13 14 15 16 17 18 19 20
0

20

40

60

80

d̂

in
%

Fig. 4. Estimates ofd for 100 Monte Carlo runs.

• no knowledge about the controllers is needed;
• other parameters of the model may be jointly

estimated with the time-delay.

This development has been motivated by an appli-
cation: the estimation of a time-delay of a managed
river reach in passive experimental conditions. The
theoretical development has been confirmed with a
simulation example. As a future work, it would be
interesting to study the robustness of the proposed
approach in the model coefficients identification. Fi-
nally, the development of a recursive version of the
algorithm will be considered.

Appendix A. PROOF OF EQUATIONS (18)

Multiplying equation (14) byy[k − l] and taking the
mathematical expectation of the two equality terms
leads to:

cyy[l] =

na
∑

i=1

aicyy[l − i] +

nb1
∑

i=0

b1icu1y[l − d − i]

+

nb2
∑

i=0

b2icu1y[l − i] + cωy[l]. (A.1)

The aim is to show that:
nb1
∑

i=0

b1icu1y[l − d − i] + cωy[l] = 0, (A.2)

for l > max{nf − d, p2} + d + nb1.

From equation (14), the outputy[k]:

y[k] =
B1(q

−1)

A(q−1)
q−du1[k] +

B2(q
−1)

A(q−1)
u2[k]

+
1

A(q−1)
ω[k], (A.3)

can be rewritten in the infinite series form (sum of
discrete convolutions):

y[k] =

∞
∑

i=0

g1[i]u1[k − d − i] +

∞
∑

i=0

g2[i]u2[k − i]

+

∞
∑

i=0

h[i]ω[k − i]. (A.4)

� Consider the term
∑nb1

i=0
b1icu1y[l − d − i] of equa-

tion (A.2). From equation (A.4), we obtain:



cu1y[l] =
∞
∑

i=0

g1[i]cu1u1
[l+d+i]+

∞
∑

i=0

g2[i]cu1u2
[l+i]

+

∞
∑

i=0

h[i]cu1ω[l + i]. (A.5)

As
{

u1[k]
}N−1

k=0
is a MA process of ordernf , then:

{

cu1u1
6= 0, |l| 6 nf ,

cu1u1
= 0, l < −nf or l > nf ,

(A.6)

and so we have:


















∞
∑

i=0

g1[i]cu1u1
[l + d + i] 6= 0, l 6 nf − d,

∞
∑

i=0

g1[i]cu1u1
[l + d + i] = 0, l > nf − d.

Moreover, since the cross-correlation function be-
tween

{

u1[k]
}N−1

k=0
and

{

u2[k]
}N−1

k=0
is finite (equa-

tion (17)), we get:


















∞
∑

i=0

g2[i]cu1u2
[l + i] 6= 0, l 6 p2,

∞
∑

i=0

g2[i]cu1u2
[l + i] = 0, l > p2.

(A.7)

At least, as we have assumed that
{

u1[k]
}N−1

k=0
and

{

ω[k]
}N−1

k=0
are uncorrelated, we obtain:
∞
∑

i=0

h[i]cu1ω[l + i] = 0, ∀l. (A.8)

Using this three results and equation (A.5) gives:

cu1y[l] = 0, for l > max{nf − d, p2}. (A.9)

Consequently, we have:
nb1
∑

i=0

b1icu1y[l − d − i] = 0, (A.10)

for l > nb + d + max{nf − d, p2}.

� Next consider the termcωy[l] in (A.2). Using equa-
tion (A.4), we get :

cωy[l] =

∞
∑

i=0

g1[i]cωu1
[l+d+i]+

∞
∑

i=0

g2[i]cωu2
[l+i]

+

∞
∑

i=0

h[i]cωω[l + i]. (A.11)

As
{

u1[k]
}N−1

k=0
and

{

ω[k]
}N−1

k=0
are uncorrelated,

then:
∞
∑

i=0

g1[i]cωu1
[l + d + i] = 0, ∀l. (A.12)

Moreover, from (16) we obtain:


















∞
∑

i=0

g2[i]cωu2
[l + i] 6= 0, l 6 0,

∞
∑

i=0

g2[i]cωu2
[l + i] = 0, l > 0.

(A.13)

At last, as{ω[k]}N−1

k=0
is a white noise, then:



















∞
∑

i=0

h[i]cωω[l + i] 6= 0, l 6 0,

∞
∑

i=0

h[i]cωω[l + i] = 0, l > 0.

(A.14)

Consequently, we get:

cωy[l] = 0, for l > 0. (A.15)

Finally, it follows from (A.10) and (A.15) that the
result (A.2) holds, and so the generalized Yule-Walker
equations are completely proved.
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