
HAL Id: hal-00086640
https://hal.science/hal-00086640v1

Preprint submitted on 19 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cotcot: short reference manual
Bernard Bonnard, Jean-Baptiste Caillau, Emmanuel Trélat

To cite this version:
Bernard Bonnard, Jean-Baptiste Caillau, Emmanuel Trélat. Cotcot: short reference manual. 2005.
�hal-00086640�

https://hal.science/hal-00086640v1
https://hal.archives-ouvertes.fr

Ecole Nationale Supérieure
d’Electronique, d’Electrotechnique

d’Informatique, d’Hydraulique et de Télécom

Institut de Recherche en Informatique de Toulouse

Cotcot: short reference manual

B. Bonnard, J.-B. Caillau and E. Trélat

Parallel Algorithms and Optimization Team
ENSEEIHT–IRIT (UMR CNRS 5505)

2 rue Camichel, F-31071 Toulouse

www.n7.fr/apo

Technical Report RT/APO/05/1

Cotcot: short reference manual∗

B. Bonnard†, J.-B. Caillau‡ and E. Trélat§

March 2005

Abstract

This reference introduces the Matlab package cotcot designed to compute
extremals in the case of smooth Hamiltonian systems, and to obtain the
associated conjugate points with respect to the index performance of the
underlying optimal control problem.

Keywords. Smooth Hamiltonian systems, optimal control, shooting
method, conjugate points.

Classification AMS. 49-04.

1 Introduction

Consider the minimum time control of the system

ẋ1 = u

ẋ2 = 1− u2 + x2
1

where the extremities are fixed, x(0) = x0, x(T) = x1, and where u is in R. A
standard application of the maximum principle tells us that the so-called regular
minimizing curves [2] are the projection of extremals z = (x, p) such that

ż =
−→
H (z) (1)

where H(z) = p2
1/4p2 + p2(1 + x2

1) is the smooth regular Hamiltonian defined
on the open subset Σ = {p2 6= 0}, and where

−→
H = (∂H/∂p,−∂H/∂x). Since we

have boundary conditions, the extremals we are interested in are BC-extremals.
They are zeros of the shooting mapping defined by

S : (T, p0) 7→ Π(expT (x0, p0))− x1 (2)
∗Work supported in part by the French Space Agency through contract 02/CNES/0257/00-

DPI 500.
†Institut de Mathématiques, Université de Bourgogne, BP 47870, F-21078 Dijon

(Bernard.Bonnard@u-bourgogne.fr).
‡ENSEEIHT-IRIT (UMR CNRS 5505), 2 rue Camichel, F-31071 Toulouse

(caillau@n7.fr).
§Laboratoire d’Analyse Numérique et EDP, Université de Paris-Sud, F-91405 Orsay

(emmanuel.trelat@math.u-psud.fr).

1

Cotcot - Short reference manual 2

with expt(z0) = z(t, z0) the solution of (1) for the initial condition z0, Π :
(x, p) 7→ x the canonical projection, and p0 ∈ Rn defined up to a constant by
homogeneity. Moreover, the (local) optimality of such extremals is checked by
a rank test on the subspaces spanned by the Jacobi fields along the trajectory
[2]. These fields are solutions of the variational equation

δż = d
−→
H (z(t))δz (3)

with suitable initial conditions. The aim of the code cotcot, which stands for
Conditions of Order Two, COnjugate Times, is to provide the numerical tools

1. to integrate smooth Hamiltonian systems such as (1)

2. to solve the associated shooting equation defined by (2)

3. to compute the corresponding Jacobi fields along the extremal

4. to evaluate the resulting conjugate points, if any.

We first review the installation procedure of the software in §2. Then, we
illustrate in §3 the way it works on the previous example. Elementary Mat-
lab code is discussed. The synopsis of the M-files provided are given in the
appendix.

2 Installation

The package is intended for a standard Unix system with

– Matlab (version 6 or higher)

– Adifor (version 2.0 or higher)

– a Fortran compiler known as f77.

The automatic differentiation software Adifor [1] (version 2.0 or higher) is re-
quired. It is downloaded at

www-unix.mcs.anl.gov/autodiff/ADIFOR

The cotcot installation procedure is performed in three steps.

Step 1. Retrieve and uncompress the cotcot archive at the following URL:

www.n7.fr/apo/cotcot.zip

Step 2. From the parent directory cotcot/ simply run the command make so
as to generate the code and compile it. Basically, the Fortran code defining the
Hamiltonian is automatically differentiated twice and the associated MEX-files
for Matlab are generated.

Step 3. Go into the folder main/, launch Matlab, and try the command main.
Among other printing, you should get Fig. 1 as well as the following final result
(check):

tcs =

3.14159265358980 6.28318530717959 9.42477796076938 12.56637061435917

The computation performed is analyzed in the next section.

Cotcot - Short reference manual 3

0 2 4 6 8 10 12
−20

−10

0

10

20

t

ar
cs

h
de

t(
δ

x)

0 2 4 6 8 10 12
0

5000

10000

15000

t

σ n−
1

Figure 1: Result of the command main.

3 Tutorial example

We go back to the initial example provided in §1 and proceed in five steps.

Defining the Hamiltonian. The only user provided code is the Fortran
subroutine defining the Hamiltonian H of the system (1). The subroutine must
be stored in the file f77/hfun.F, and its signature must be

SUBROUTINE HFUN(T, N, Z, LPAR, PAR, H)

Obviously, the Hamiltonian may be time dependent. Moreover, additional pa-
rameters may be used (see remark 3.3). In our case, the code essentially amounts
to:

X1 = Z(1)
X2 = Z(2)
P1 = Z(3)
P2 = Z(4)

H = P1**2/(4.0D0*P2) + P2*(1.0D0+X1**2)

Note that, for the sake of robustness, dimensions are checked (MEXERRMSGTXT
calls). Go back to the parent directory and run the command make. The Hamil-
tonian equation (1) and the variational system (3) are generated by automatic
differentiation, and compiled to produce MEX-files callable from Matlab.

Remark 3.1. The dimension n must be lower or equal to the half of the constant
N2MAX (maximum value of 2n) defined in include/constants.h. An error dur-
ing the Matlab run is generated otherwise. In this case, just update the value
of the constant properly and generate the code again.

Computing extremals. Go to the matlab/ subfolder and launch Matlab.
The mapping expt is computed by exphvfun. Try

Cotcot - Short reference manual 4

T = 10
x0 = [0 0]’
p0 = [1 1]’
z0 = [x0; p0]
odeopt = rkf45set
z = exphvfun([0 T], z0, odeopt)

Remark 3.2. The underlying algorithm is Netlib Runge-Kutta one-step ODE
integrator RKF45 [3] whose parameters are managed thanks to rkf45get and
rkf45set, and then passed to exphvfun.

Computing BC-extremals. We assume that we are in the normal case [2]
and normalize the adjoint covector by prescribing the Hamiltonian level to H =
1. As a result, the shooting mapping (2) is evaluated according to

S(T, p0) = (Π(expT (x0, p0))− x1,−1 +H(x0, p0)) .

The Hamiltonian is computed by exphvfun. Try

h = hfun(0, z0)

Accordingly, denoting ξ = (T, p0), the shooting function is defined by (see
main/sfun.m):

T = xi(1);
p0 = xi(2:end);

z0 = [x0; p0];
[z, iflag] = exphvfun([0 T], z0, options);
z1 = z(:, end);
s = z1(1:2) - x1;
h = hfun(0, z0);
s = [s; -1+h];

Remark 3.3. Any number of additional parameters can be passed to hfun. All of
them must be real, or real matrices. They are vectorized to form one row vector
which is the PAR argument of the Fortran subroutine HFUN. Furthermore, all
Matlab commands provided in the package (exphvfun, expdhvfun...), accept
such additional parameters that will be passed to the Hamiltonian.
Try

xi = [T; p0]
x1 = [10 0]’
s = sfun(xi, odeopt)

Zeros of the shooting mapping can be computed by any available solver, e.g.
fsolve, or the faster and more robust function hybrd which is a Matlab port
of Netlib HYBRD Newton solver provided with the cotcot package. On our
example, convergence is obtained with the initial guess T = 10 and p0 = (1, 1):

nleopt = hybrdset
xii = [10 1 1]’
xi = hybrd(’sfun’, xii, nleopt, odeopt)
T = xi(1)
p0 = xi(2:end)

Cotcot - Short reference manual 5

Remark 3.4. As for the ODE integrator (see remark 3.2), HYBRD parameters are
managed with hybrdget and hybrdset.

Computing Jacobi fields. First define the initial value of the Jacobi field,
for instance according to

[dummy, dp0] = gram(p0)
dz0 = [0; 0; dp0]

so that δp(0) belongs to the tangent space Tp(0)Sn−1 (Gram-Schmidt orthonor-
malization, help gram) because of the normalization of the initial covector
(equivalent to prescribing |p(0)| since we are in the normal case, see [2]). Since
we must integrate the variational system along the previous extremal, the stan-
dard trick is to integrate both systems, Hamiltonian and variational, with the
relevant initial conditions. Therefore, we extend the system and left-concatenate
the extremal to the Jacobi field:

z0 = [x0; p0]
dz0 = [z0 dz0]

The sibling of exphvfun for the (extended) variational system is expdhvfun.
Try

dz = expdhvfun([0 T], dz0, odeopt)
z1 = dz(:, 3)
dz1 = dz(:, 4)

More generally, a full basis of Jacobi fields is computed exactly the same way
by providing a matrix instead of a single vector. At each point, the image of
the upper half matrix is the subspace whose rank must be tested for conjugate
points. The command expdhvfun then returns the concatenation of these ma-
trices (each of them been extended by the extremal, concatenated to the left)
at each point of the time array t (standard vectorized input/output).

Computing conjugate points. The conjugate point test consists in checking
a rank condition. To this end, a singular value decomposition is performed, see
function main/draw.m. For minimum time problems, in the regular case it is
equivalent to find a zero of the determinant of the projections of Jacobi fields
on the x-space with the dynamics [2]. Here the test is e.g., at the final point,

dx = dz1(1:2, :)
hv = hvfun(T, z1)
det([dx hv(1:2, :)])

where hvfun computes
−→
H . The function dfun evaluates this determinant at an

arbitrary time t for given initial conditions (see main/dfun.m). Hence, conjugate
points are computed by finding its roots. As before, we use the hybrd solver
and finally get (with an initial guess of 3.0 for tc):

tci = 3.0 % initialization
tc = hybrd(’dfun’, tci, nleopt, 0, dz0, odeopt)

Indeed, the first conjugate time of our system is tc,1 = π. The code main/main.m
computes several conjugate points in this way.

Cotcot - Short reference manual 6

4 Credits

The authors are grateful to Adifor and Netlib people for making their codes
available.

www-unix.mcs.anl.gov/autodiff/ADIFOR
netlib.enseeiht.fr

A Synopsis

The following M-files are provided with the package:

– hfun.m

– hvfun.m

– exphvfun.m

– expdhvfun.m

– hybrd.m

– hybrdset.m

– hybrdget.m

– hybrd.m

– rkf45set.m

– rkf45get.m

Cotcot - Short reference manual 7

hfun
function h = hfun(t, z, varargin)
% hfun -- Hamiltonian.
%
% Usage
% h = hfun(t, z, p1, ...)
%
% Inputs
% t real, time
% z real vector, state and costate
% p1 any, optional argument
% ...
%
% Outputs
% h real, Hamiltonian at time t
%
% Description
% Computes the Hamiltonian.
%

Cotcot - Short reference manual 8

hvfun
function hv = hvfun(t, z, varargin)
% hvfun -- Vector field associated to H.
%
% Usage
% hv = hvfun(t, z, p1, ...)
%
% Inputs
% t real, time
% z real vector, state and costate
% p1 any, optional argument
% ...
%
% Outputs
% hv real matrix, vector H at time t
%
% Description
% Computes the Hamiltonian vector field associated to H.
%

Cotcot - Short reference manual 9

exphvfun
function [exphv, iflag] = exphvfun(t, z0, options, varargin)
% exphvfun -- Exponential of hv
%
% Usage
% [exphv, iflag] = exphvfun(t, z0, options, p1, ...)
%
% Inputs
% t real, time
% z0 real vector, initial flow
% options struct vector, options
% p1 any, optional arguments passed to hvfun
% ...
%
% Outputs
% exphv real matrix, flow at time t
% iflag integer, ODE solver output (should be 2)
%
% Description
% Computes the exponential of the Hamiltonian vector field hv
% defined by h.
%
% See also
% expdhvfun, rkf45set, rkf45get
%

Cotcot - Short reference manual 10

expdhvfun
function [expdhv, iflag] = expdhvfun(t, dz0, options, varargin)
% exphvfun -- Exponential of dhv/dz
%
% Usage
% [expdhv, iflag] = expdhvfun(t, dz0, options, p1, ...)
%
% Inputs
% t real, time
% dz0 real matrix, initial flow
% options struct vector, options
% p1 any, optional arguments passed to dhvfun
% ...
%
% Outputs
% expdhv real matrix, flow at time t
% iflag integer, ODE solver output (should be 2)
%
% Description
% Computes the exponential of the variational system associated to hv.
%
% See also
% exphvfun, rkf45set, rkf45get
%

Cotcot - Short reference manual 11

hybrd
function [x, y, iflag, nfev] = hybrd(nlefun, x0, options, varargin)
% hybrd -- Hybrid Powell method.
%
% Usage
% [x, y, iflag, nfev] = hybrd(nlefun, x0, options, p1, ...)
%
% Inputs
% nlefun string, function y = nlefun(x, p1, ...)
% x0 real vector, initial guess
% options struct vector, options
% p1 any, optional argument passed to nlefun
% ...
%
% Outputs
% x real vector, zero
% y real vector, value of nlefun at x
% iflag integer, hybrd solver output (should be 1)
%
% Description
% Matlab interface of Fortran hybrd. Function nlefun must return
% a column vector.
%
% See also
% hybrdset, hybrdget
%

Cotcot - Short reference manual 12

hybrdget
function value = hybrdget(options, name)
% hybrdget -- Gets hybrd options.
%
% Usage
% value = hybrdget(options, name)
%
% Inputs
% options struct, options
% name string, option name
%
% Outputs
% value any, option value
%
% Description
% Options are:
% xTol - Relative tolerance between iterates [1e-8]
% MaxFev - Max number of function evaluations [800 x (n+1)]
% ml - Number of banded Jacobian subdiagonals [n-1]
% mu - Number of banded Jacobian superdiagonals [n-1]
% EpsFcn - Used for FD step length computation [0]
% diag - Used for scaling if mode = 2 [[1 ... 1]’]
% mode - Automatic scaling if 1, manual if 2 [1]
% factor - Used for initial step bound [1e2]
%
% See also
% hybrd, hybrdset
%

Cotcot - Short reference manual 13

hybrdset
function options = hybrdset(varargin)
% hybrdset -- Sets hybrd options.
%
% Usage
% options = hybrdset(name1, value1, ...)
%
% Inputs
% name1 string, option name
% value1 any, option value
% ...
%
% Outputs
% options struct, options
%
% Description
% Options are:
% xTol - Relative tolerance between iterates [1e-8]
% MaxFev - Max number of function evaluations [800 x (n+1)]
% ml - Number of banded Jacobian subdiagonals [n-1]
% mu - Number of banded Jacobian superdiagonals [n-1]
% EpsFcn - Used for FD step length computation [0]
% diag - Used for scaling if mode = 2 [[1 ... 1]’]
% mode - Automatic scaling if 1, manual if 2 [1]
% factor - Used for initial step bound [1e2]
%
% See also
% hybrd, hybrdget
%

Cotcot - Short reference manual 14

rkf45get
function value = rkf45get(options, name)
% rkf45get -- Gets rkf45 options.
%
% Usage
% value = rkf45get(options, name)
%
% Inputs
% options struct, options
% name string, option name
%
% Outputs
% value any, option value
%
% Description
% Options are:
% AbsTol - Absolute error tolerance [1e-14]
% RelTol - Relative error tolerance [1e-8]
%
% See also
% rkf45, rkf45set
%

Cotcot - Short reference manual 15

rkf45set
function options = rkf45set(varargin)
% rkf45set -- Sets rkf45 options.
%
% Usage
% options = rkf45set(name1, value1, ...)
%
% Inputs
% name1 string, option name
% value1 any, option value
% ...
%
% Outputs
% options struct, options
%
% Description
% Options are:
% AbsTol - Absolute error tolerance [1e-14]
% RelTol - Relative error tolerance [1e-8]
%
% See also
% rkf45, rkf45get
%

References

[1] C. Bischof, A. Carle, P. Kladem, and A. Mauer. Adifor 2.0: Automatic
Differentiation of Fortran 77 Programs. IEEE Computational Science and
Engineering, 3(3):18–32, 1996.

[2] B. Bonnard, J.-B. Caillau, and E. Trélat. Second order optimality conditions
and applications in optimal control. in preparation, 2005.

[3] L. F. Shampine, H. A. Watts, and S. Davenport. Solving non–stiff ordinary
differential equations—the state of the art. Technical Report sand75-0182,
Sandia Laboratories, Albuquerque, New Mexico, 1975.

	Introduction
	Installation
	Tutorial example
	Credits
	Synopsis

