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Spontaneous parity breaking of graphene in the quantum Hall regime
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We propose that the inversion symmetry of the graphene honeycomb lattice is spontaneously
broken via a magnetic field dependent Peierls distortion. This leads to valley splitting of the n = 0
Landau level but not of the other Landau levels. Compared to quantum Hall valley ferromagnetism
recently discussed in the literature, lattice distortion provides an alternative explanation to all the
currently observed quantum Hall plateaus in graphene.

Recent experiments have revealed peculiar quantum
Hall (QH) effects in graphene, a single atomic layer of
graphite [1, 2]. These measurements are understood as
single electron effects and unusual QH features can be
traced back to the relativistic-like dispersion relation of
electrons in graphene and to their twofold valley degen-
eracy. In particular, the observed plateaus in the Hall
conductivity at filling factor ν = ±2;±6;±10 can be eas-
ily understood in this framework [3]. Following these
pioneering experiments, Zhang et. al. [4] discovered
new QH plateaus at ν = 0;±1;±4, which several au-
thors [5, 6, 7, 8, 9] attribute to valley (and spin) fer-
romagnetism, relying on interactions between electrons.
However, the absence of plateaus at ν = ±3;±5 is in-
triguing in this respect and cast doubts on this interpre-
tation. Alicea and Fisher [9] propose that disorder might
be so strong in current graphene samples as to destroy
exchange interactions and therefore ferromagnetism [5].
If this is indeed the case, one still has to explain the ori-
gin of the extra plateaus. Alicea and Fisher suggest a
valley splitting mechanism relying essentially on on-site
electron repulsion while neglecting exchange interactions
in a dirty graphene sample [9]. Another scenario rely-
ing on electron interactions and leading to an excitonic
valley gap is the so-called “magnetic catalysis” [10]. In
the present paper, we take a different route and assume
from the outset that interactions between electrons do
not play a major role. We explore the possibility that
all the plateaus observed so far could be understood as
integer QH states resulting from single electron effects.
The new input of our model is a magnetic field driven
out-of-plane lattice distortion lifting the valley degener-
acy.

Graphene is a honeycomb lattice of carbon atoms: a
two dimensional triangular Bravais lattice with a basis of
two atoms, usually referred to as A and B. The distance
between nearest neighbor atoms is a = 0.14 nm and the
lattice constant is a

√
3. Experimentally, graphene sheets

of area A ∼ (3 − 10 µm)2 are deposited on SiO2/Si sub-
strate. Applying a gate potential Vg via the substrate
allows one to control the electronic filling of the graphene
bands. The number of induced electronic charges is given
by Nc = VgCg/e where the capacitance per unit area can
be estimated as Cg/A ≈ ǫrǫ0/d ≈ 1.2×10−4 F/m2, where

−e < 0 is the electron charge, ǫr ≈ 4 is the silicon oxide
dielectric constant and the thickness d ∼ 300 nm [1, 2].

In order to study the electronic properties of graphene,
we use a standard nearest neighbor tight-binding model
[11] with hopping amplitude t ≈ 3 eV [12]. It describes
the hopping of electrons between 2pz carbon orbitals.
There is one electron per carbon atom. If we call Np

the number of plaquettes (or unit cells), there are 2Np

electrons in the sample under zero gate potential. The
first Brillouin zone is hexagonal and of its six corners,
only two are inequivalent and usually called K and K ′.
We choose K = 4π/(3

√
3a)ux and K

′ = −K. The result-
ing band structure features the merging of the conduction
and valence band at precisely these two points: graphene
is a two valley (K and K ′) zero-gap semiconductor.
Near these so-called Dirac points, the electrons behave
as charged massless Weyl (or chiral Dirac) fermions with
Fermi velocity vF = 3at/2~ ≈ 106 m/s playing the role
of an effective light velocity in the relativistic-like disper-
sion relation εk = ±~vF |k|. When the gate voltage is
zero, the “big band” (valence plus conduction band) is
half-filled: the Fermi level is right at the Dirac points.

Adding a weak perpendicular magnetic field B⊥, such
that the flux per plaquette is much smaller than the
flux quantum φ0 = h/e, McClure first obtained the rel-
ativistic Landau levels (LL) of graphene [13], see also
Ref. [14, 15]. Including the Zeeman effect, the LL in the
Dirac equation approximation read

εn,σ = sgn(n)
√

|n|~ωc +
g∗

2
µBBtotσ , (1)

where the “cyclotron energy” is ~ωc =
√

2~vF /lB, the
LL index n is an integer, the spin projection along the
magnetic field axis is σ = ±1, the Bohr magneton is
µB = e~/2m, with m the bare electron mass, and the
effective g-factor is g∗ ≈ 2 close to its bare value [4]. The
magnetic length is defined as usual by lB =

√

~/eB⊥.
If the Zeeman splitting is negligible, each LL has de-
generacy 4Nφ. The total number of flux quanta across
the sample Nφ = B⊥A/φ0 gives the orbital degeneracy.
The factor 4 accounts for spin 1/2 and twofold valley de-
generacy. We call ν = Nc/Nφ = CgVg/eNφ the filling
factor. When the gate voltage is zero, ν = 0 and the
n = 0 (central) Landau level (CLL) is half-filled as a re-
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sult of particle-hole symmetry leading to the remarkable
fact that the number of electrons in the CLL is 2Nφ.

We now consider a spontaneous out-of-plane lattice
distortion that – in presence of a substrate – breaks the
inversion symmetry of the honeycomb lattice and pro-
vides a mechanism for lifting the valley degeneracy. As-
sume that the A (resp. B) sublattice moves away (resp.
towards) the substrate by a distance η [22]. Electrons are
still described by a honeycomb nearest neighbor tight-
binding model, however the two atoms in the basis now
have different on-site energies [23]. The energy on atom
A/B is called ±M following Haldane [14], who calculated
the LL of such a system. Close to the Dirac points, it
reads

εn,σ,α = sgn(n)
√

M2 + 2~v2
F eB⊥|n|

+
g∗

2
µBBtotσ if n 6= 0 (2)

ε0,σ,α = αM +
g∗

2
µBBtotσ if n = 0 , (3)

where α = ±1 is the valley index corresponding to the
Dirac points αK. In terms of the low-energy effective the-
ory, the distortion means that the Weyl fermions sponta-
neously acquire a finite mass. Note that the on-site en-
ergy difference lifts valley degeneracy for the CLL only.
In addition the effect of a nonzero on-site energy M on
each n 6= 0 LL is very weak, of order M2/~v2

F eB⊥ ∼
5.10−4 for a typical magnetic field ∼ 10 T as we will see.
We could therefore set M = 0 in the n 6= 0 LL and use
the approximate Eq. (1) instead of Eq. (2). However,
we shall see below that in order to compute the lattice
distortion it is important to keep Eq. (2).

Such a lattice distortion spontaneously occurs because
it lowers the total energy, in a way similar to Peierls’s
mechanism [16] except for the magnetic field playing an
essential role here and for the crystal being two rather
than one dimensional. Assume that the last partially
filled LL is n = 0 (i.e. the gate voltage Vg is such that
|ν| ≤ 2). We show that in this case it is always favor-
able to slightly distort the lattice provided there is a per-
pendicular magnetic field [24]. The distortion lowers the
electronic energy. This energy lowering comes both from
the CLL, which gives an essential contribution, and also
from all the n < 0 LL, which contribute in a less im-
portant way as we explain below. There are (2 + ν)Nφ

electrons in the CLL. They contribute an energy gain

En=0 = −Nφ(2 − |ν|)M (4)

because when ν < 0, all (2 + ν)Nφ electrons gain each
an energy M and when ν > 0, 2Nφ electrons gain each
an energy M but the remaining νNφ electrons loose each
an energy M . This energy gain depends on the mag-
netic field through Nφ. In addition, the energy gain is
linear in the out-of-plane distortion η because the on-site
energy is proportional to the distortion, as we discuss

below: M = Dη, where D is a proportionality constant,
akin to a deformation potential. The other 2(Np − Nφ)
electrons that fill the n < 0 LLs, also contribute to the
energy lowering. Each of them gains a small energy com-
pared to what an n = 0 electron gains, as discussed in
the preceding paragraph, but as there are many more of
them, about 2(Np−Nφ) ≈ 2Np , we can not neglect their
contribution. In the Dirac equation approximation, we
find

En<0 = −γ
Npa

~vF
M2 , (5)

where the numerical factor γ = 31/4/
√

π ≈ 0.74 [25].
This energy gain is quadratic in the distortion, and there-
fore smaller than En=0 at small distortion, and indepen-
dent of the magnetic field. Actually, this term represents
the full electronic energy gain for a lattice distortion un-
der zero magnetic field. In the end, adding En<0 to En=0,
we see that the larger the magnetic field, the larger the
electronic energy gain.

The distortion costs an elastic energy

Eelastic = NpGη2 , (6)

where the out-of-plane distortion is assumed to be small
η ≪ a and G is an elastic constant. As En<0 and Eelastic

are both quadratic in the lattice distortion, we introduce
a renormalized elastic constant G′ = G− γaD2/~vF and
write an effective elastic energy:

Eelastic + En<0 = NpG
′η2 . (7)

The effect of the n < 0 electrons is to reduce the lat-
tice stiffness and therefore to enhance the distortion. We
take it as an experimental fact that there is no sponta-
neous out-of-plane distortion in absence of perpendicular
magnetic field, see also [12], which means that G′ > 0
[26].

We now estimate the two constants D and G. From
the frequency ω0/2πc ∼ 800 cm−1 of the graphite out-of-
plane optical phonon [17], we obtain Ga2 ≈ mcω

2
0a

2/4 ∼
14 eV, where mc is the carbon atom mass [27]. The con-
dition G′ > 0 then implies that Da <

√

Ga~vF /γ ≈
9.8 eV. The experiment [4] suggests that valley split-
ting is larger than Zeeman splitting, which occurs in our
model if Da & 6.3 eV, as we show below. It is quite
difficult to accurately predict the constant D and we will
therefore only provide an order of magnitude estimate.
The mechanism that we think gives the largest contribu-
tion results from the interaction of a single carbon atom
with the SiO2 substrate treated as a dielectric continuum
[28]. The non-retarded Lennard-Jones interaction energy
of an atom at a distance r of a dielectric wall is given by
ELJ(r) ≈ −(ǫr − 1)〈d2〉/(ǫr + 1)48πǫ0r

3, where 〈d2〉 is
the atomic ground state expectation value of the squared
electric dipole moment [18]. The on-site energy change
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resulting from the lattice distortion may be estimated as

±M ≈ ELJ(d0 ± η) − ELJ(d0) ≈ ± ǫr − 1

ǫr + 1

〈d2〉
16πǫ0d4

0

η (8)

where the ± sign refers to sublattice A (+1) or B (−1)
[29], d0 is the average distance between the graphene
sheet and the substrate and we assumed that η ≪ d0.
For a carbon atom

√

〈d2〉 ∼ 4ea0, where a0 is the Bohr
radius, which gives Da ∼ a(ǫr−1)e2a2

0/(ǫr +1)πǫ0d
4
0 ∼ 1

to 14 eV depending on d0 ∼ 0.1 to 0.2 nm. Therefore,
the order of magnitude of the deformation potential Da
is 5 eV. From now on, in order to match the experiment
[4], we take the plausible value Da = 7.8 eV, which gives
G′a2 ≈ 4.2 eV.

Minimizing Etot = En=0 +En¡0 + Eelastic as a function
of the distortion η, we obtain an on-site energy

M = Dη =
Nφ

Np

2 − |ν|
2

D2

G′
, (9)

and a condensation energy Etot = −(2−|ν|)NφM/2. The
distortion is indeed very small, of order η/a ∼ 2.10−5 ×
B⊥[T] when ν ≈ 0. This gives an n = 0 valley splitting
∆v = 2M ≈ 4.2K × (1 − |ν|/2)B⊥[T], which for ν ≈ 0
is larger than the Zeeman splitting ∆Z = g∗µBBtot ≈
1.5K×Btot[T] [30]. The on site energy M is indeed much
smaller than the cyclotron energy and can therefore be
safely neglected in each n 6= 0 LL: M/~ωc ∼ 5.10−3 ×
√

B⊥[T ] when ν ≈ 0. This means that the LL spectrum
for n 6= 0 is approximately given by Eq. (1) – as in the
case of no lattice distortion – and therefore εn,α ∝

√
B⊥

in agreement with recent spectroscopic observations [19].
Considering LL broadening due to disorder, the pre-

ceding calculation for lattice distortion is modified at
weak magnetic field, when the valley splitting ∆v is
smaller than the LL width ∆imp. For example, for rect-
angular LL – the density of states being 4Nφ/∆imp inside
a LL and zero otherwise – Eq. (4) is changed into

En=0 = − 2Nφ

∆imp

M2 = − 2Nφ

∆imp

D2η2 , (10)

while Eq. (5) remains unchanged since it concerns to-
tally filled LLs. The electronic energy gain is now pro-
portional to η2. Comparing this energy to the renor-
malized elastic energy loss of Eq. (7), we see that a dis-
tortion only occurs if 2NφD2/∆imp > NpG

′, which al-
ways happen at large enough magnetic field. This con-
dition is precisely equivalent to requiring that the val-
ley splitting ∆v = 2M – given by Eq. (9) with ν ≈ 0
– be larger than the LL width ∆imp. This is satisfied
if B⊥ > hG′∆imp/3

√
3ea2D2 ∼ 7 T, where we used

∆imp = 2Γ with Γ ∼ 15 K the measured LL half-width
at half-maximum [4]. Therefore, as soon as B⊥ is larger
than this threshold value, the lattice is distorted and the
valley gap is larger than the LL width, which means that
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Figure 1: Energy ε of the first LL versus magnetic field B.
The degeneracy in units of the flux number Nφ appears on
the levels. The cyclotron ~ωc, valley ∆v and Zeeman ∆Z gaps
are also specified. At large B, the levels are tagged by the LL
n, spin σ and valley α indices: (n, σ, α).

one can use the results obtained in the preceding para-
graph in the case of infinitely narrow LL.

We now discuss the expected plateaus in the Hall con-
ductivity σxy = νe2/h as a function of the filling fac-
tor ν ∝ Vg and the magnetic field. We consider a sys-
tem at low temperature T ≪ ∆imp, where thermal ef-
fects can be neglected, and assume broadened LL with
a width ∆imp ∼ 30 K that we compare to the calcu-
lated gaps: for typical magnetic fields, the cyclotron gap
~ωc ≈ 420K ×

√

B⊥[T] is the largest, then the valley
gap is ∆v ≈ 4.2K × (1 − |ν|/2)B⊥[T] and finally the
Zeeman gap ∆Z ≈ 1.5K × Btot[T] is the smallest, see
Figure 1. When the magnetic field is such that the cy-
clotron gap becomes larger than ∆imp which occurs at
B⊥ ∼ 5.10−3 T, one expects plateaus at ν = ±(4|n|+2).
Then, when the valley gap (corrected by Zeeman split-
ting) ∆v − ∆Z becomes of order ∆imp which occurs at
B⊥ ∼ 11 T for ν ≈ 0 – thanks to our choice of Da – one
expects a ν = 0 plateau. Finally, when the Zeeman gap
reaches ∆imp which occurs at Btot ∼ 20 T, one expects
plateaus at ν = ±1 and ν = 4n (n 6= 0). Because val-
ley degeneracy is not lifted by the lattice distortion when
n 6= 0, plateaus are not expected at ν = ±(2|n| + 1)
(n 6= 0). Experimentally, plateaus at ν = ±2;±6;±10
are observed at magnetic field ∼ 9 T [1, 2] and are at-
tributed to the cyclotron gap, the ν = 0 plateau appears
at 11 T, ν = ±1 and ±4 are observed at B⊥ > 17 T
and the ν = ±3;±5 plateaus are not observed [4]. This
agrees qualitatively with our model and allows one to at-
tribute the ν = 0 plateau to the n = 0 valley gap and the
ν = ±1;±4 plateaus to the Zeeman gap.

The ν = 0 plateau, which occurs around zero gate
voltage, is worth considering from an edge states per-
spective [20]. We assume smooth edges on the sides of
a sample of width W and take infinite mass confinement
as boundary condition, following Ref. [21]. The on-site
energy (the “mass”) is now position dependent in the y
direction perpendicular to the edges: in the bulk, M(y) is
constant and given by Eq. (9); on the edges y ≈ ±W/2, it
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smoothly rises to infinity in order to confine the electrons.
Eq. (2) and (3) show that electronic states with positive
(resp. negative) energy bend upward (resp. downward)
in energy on the edges as M(y) → ∞. As ∆v > ∆z,
the sign of the energy is given by that of the LL index
n except for n = 0 where it is given by the valley in-
dex α. Therefore when the Fermi level lie in the valley
gap, there are no edge states, and the Hall conductiv-
ity σxy = 0, as expected. The absence of edge states is
a consequence of the valley splitting being larger than
the Zeeman splitting, see Ref. [6, 7]. At the same time
the longitudinal conductivity σxx should be exponentially
small (activated) because of the absence of current car-
rying states both in the bulk and on the edges: therefore,
one does not expect a wide zero in the longitudinal re-
sistivity 1/σxx, as for usual QH states, but rather in the
conductivity σxx. Actually, the system should conduct
as a very bad metal, which according to Mott’s criterion
implies σxx ∼ e2/h, just as for graphene under zero mag-
netic field [1, 2]. This point deserves further studies. In
the experiment [4], when a ν = 0 plateau is observed in
σxy at 25 T, the longitudinal resistance features a finite
peak Rxx ∼ 40 kΩ, corresponding to a resistivity of or-
der 1/σxx ∼ 10 kΩ of the same order as that measured
at zero magnetic field 1/σxx ≈ h/4e2 ≈ 6.5 kΩ [1, 2].

In conclusion, we compare the predictions of our model
to that of valley ferromagnetism [5, 6, 7, 8, 9]. First, we
predict that valley degeneracy is not lifted in n 6= 0 LL,
whereas valley ferromagnetism lifts this degeneracy. This
results in the absence of the ν = ±(2|n| + 1) plateaus,
with n 6= 0. Second, the valley gap is proportional to
the perpendicular magnetic field, whereas the n = 0
skyrmion gap relevant for ferromagnetism ∆sky ∼ e2/ǫlB
scales as

√
B⊥ [8, 9]: this should be seen in activa-

tion gaps measurements [4]. In addition, using the co-
incidence method with a tilted magnetic field [4], one
should be able to distinguish the different gaps through
their dependence in the perpendicular or total magnetic
field. The gate voltage dependence of the valley gap
∆v ∝ (1−|ν|/2) could be detected spectroscopically [19].
Third, if lattice distortion indeed occurs it should be di-
rectly seen. It might be detected using synchrotron X-ray
diffraction at grazing incidence or scanning tunneling mi-
croscopy at magnetic fields ∼ 10 T and low temperature.
Fourth, the lattice distortion and its consequences should
vanish if the graphene sheet is placed in a symmetric di-
electric environment. In the end, we provide what we
think is a plausible mechanism for lifting valley degener-
acy. Whether lattice distortion indeed occurs remains to
be checked experimentally.
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F. Piéchon, Ch. Texier and the other participants in the
“graphene journal club” in Orsay for many useful discus-
sions. We also thank the referees for interesting sugges-
tions. Laboratoire de Physique des Solides is UMR 8502
du CNRS et de l’Université Paris-Sud 11 in Orsay.
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