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Multi-scale modeling of follicular ovulation as a reachability

problem

Nki Echenim † Frederique Clément † Michel Sorine †

Abstract

During each ovarian cycle, only a definite number of follicles ovulate, while the others undergo a

degeneration process called atresia. We have designed a multi-scale mathematical model where ovulation

and atresia result from a hormonal controlled selection process. A 2D-conservation law describes the age

and maturity structuration of the follicular cell population. In this paper, we focus on the operating

mode of the control, through the study of the characteristics associated with the conservation law. We

describe in particular the set of microscopic initial conditions leading to the macroscopic phenomenon of

either ovulation or atresia, in the framework of backwards reachable sets theory.

Keywords : biomathematics, conservation laws, method of characteristics, control theory, backwards

reachable sets

1 Introduction

The development of ovarian follicles is a crucial process for reproduction in mammals, as its biological meaning
is to free fertilizable oocyte(s) at the time of ovulation. A better understanding of follicular development is
both a clinical and zootechnical challenge; it is required to improve the control of anovulatory infertility in
women, as well as ovulation rate and ovarian cycle chronology in domestic species.
Within all the developing follicles, very few actually reach the ovulatory size; most of them undergo a
degeneration process, known as atresia [1]. The ovulation rate (number of ovulatory follicles per cycle)
results from an FSH (Follicle Stimulating Hormone)-dependent follicle selection process. FSH acts on the cells
surrounding the oocyte, the granulosa cells, and controls both their commitment towards either proliferation,
differentiation or apoptosis and their ability to secrete hormones such as estradiol. The whole estradiol output
from the ovaries is responsible for exerting a negative feedback on FSH release. Following the subsequent
fall in plasmatic FSH levels, most of the follicles undergo atresia and only the ovulatory ones survive in the
FSH-poor environment.
We have proposed a mathematical model, using both multi-scale modeling and control theory concepts,
to describe the follicle selection process [2]. For each follicle, the cell population dynamics is ruled by a
conservation law with variable coefficients, which describes the changes in age and maturity of the granulosa
cell density. A control term, representing FSH signal, intervenes both in the velocity and loss terms of the
conservation law. Two acting controls are distinguished: a global control resulting from the ovarian feedback
and corresponding to FSH plasmatic levels, and a local control, specific to each follicle, accounting for the
modulation in FSH bioavaibility due to follicular vascularization. Both ovulation triggering and follicular
ovulation depend on the reaching of a target.
In this paper, we aim at using control theory to characterize follicular trajectories and the control laws leading
to ovulation or atresia. The macroscopic phenomenon of follicular ovulation is considered as a reachability
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problem for the microscopic characteristics associated with the conservation law. The problem is enounced
in details and solved in open-loop. Follicles are assumed to ovulate if their state variables, (age, maturity and
cell density) reach a given target set. Backwards reachable sets theory is used to define the initial conditions
compatible with latter ovulation, for a given control panel. In section 2, the conservation laws describing
the model for follicle selection and their characteristics are presented. In section 3, the target corresponding
to follicular ovulation is defined. Reachable sets theory is used to solve the corresponding control problem
and simulation results are discussed. Section 4 is devoted to the discussion and perspectives.

2 Follicle selection model

2.1 Controlled conservation laws for granulosa cells

Following [2], cells are characterized by their positions within or outside the cell cycle and by their sensitivities
to FSH. This leads to distinguish 3 cellular phases within the granulosa cell population. Phases 1 and 2
correspond to the proliferation phases (describing respectively the G1 phase and S to M phases of the cell
cycle), and phase 3 corresponds to the differentiation phase, after cells have exited the cell cycle (see Figure
1).
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Figure 1: Cell flow chart. The cell cycle consists of the cyclic G1-SM-G1 pathway. When it enters G1 from
SM, a mother cell gives birth to two daughter cells. Cell differentiation corresponds to the one-way flow
from G1 into D. Entry into apoptosis arises from the G1 and D phases. The G1 and D phases are under the
control of FSH signal.

More precisely, the position of a cell at time t ∈ [0, T ] (T > 0) is defined by its age and maturity. The cell age
a is a marker of progression within the cell cycle (in phases 1 and 2) and evolves as time t outside the cycle
(in phase 3). The duration of phase 1 is a1 > 0 and the total cycle duration is a2 (so that phase 2 duration
is a2 − a1 > 0). The maturity marker γ is used to sort the cycling and non-cycling cells by comparison to a
threshold γs and to characterize the cell vulnerability towards apoptosis (programmed cell death). Phases
1, 2, 3 correspond respectively to ranges in the values of (a, γ) in the following open sets of the age-maturity
plane: (see Figure 2):

Ω1,k =]ka2, ka2 + a1[×]0, γs[, Ω2,k =]ka2 + a1, (k + 1)a2[×]0, γs[, Ω3,k =]0, (k + 1)a2[×]γs, γmax[

for integers k = 0, 1, . . .. We will also use the notation Qj,k = Ωj,k×]0, T [ for j = 1, 2, 3.
The cell population in a follicle, f , is represented by cell density functions, φk

f,j(a, γ, t), defined on each
cellular phase Qj,k, j = 1, 2, 3, k = 0, 1, . . . as solutions of the following conservation laws [2]:

∂φk
f,j

∂t
+

∂gf(uf )φk
f,j

∂a
+

∂hf (γ, uf)φk
f,j

∂γ
= −λ(γ, U)φk

f,j in Qj,k, j = 1, 2, 3, k = 0, 1, . . . (1)
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Figure 2: Cellular phases on the age-maturity plane. The cell cycle is represented by the pathway Ω1,k,
Ω2,k... and the differentiation phase by Ω3,N .

In phases 1 and 3, both a global control, U , and a local control, uf , act on the velocities of aging (gf

function, locally controlled in phase 1) and maturation (hf function, locally controlled in phases 1 and 3) as
well as on the loss term (λ apoptosis rate, globally controlled in phases 1 and 3). Phase 2 is uncontrolled and
corresponds to completion of mitosis after a pure delay in age, a2 − a1 (no cell can leave the cycle here). We
have the following expressions for those functions, for k = 0, 1, . . . (all parameters are real positive numbers
defined in Table 1):

gf (γ, uf) = τgf (1 − g1ωs−
(γ)(1 − uf)) in Ωj,k, j = 1, 3 (2)

hf (γ, uf) = τhf (−γ2 + (c1γ + c2)(1 − ωs(γ) exp(−uf/ū))) in Ωj,k, j = 1, 3 (3)

λ(γ, U) = ωλ(γ)(1 − U) in Ωj,k, j = 1, 3 (4)

gf(uf ) = τgf , hf (γ, uf) = λ(γ, U) = 0 in Ω2,k (5)

The ωs−
and ωs+

functions are smooth switches between 0 and 1 in a strip defined for all a, 0 < γs−
< γ < γs+

containing γs (we use the notations |x|+ = max(x, 0) and |x|− = max(−x, 0)):

ωs−
(γ) = exp

(
−
|γ − γs−

|+

|γ − γs|

)
, ωs+

(γ) = exp

(
−
|γ − γs+

|−

|γ − γs|

)
, ωs(γ) = ωs−

(γ) + ωs+
(γ).

The factor ωs−
in (2), switches off the control of gf in phase 3: gf = τgf in Ω3,k, and switches it on for (a, γ)

strictly in phase 1, where gf(uf ) = τgf (1 − g1 + g1uf )) for γ ≤ γs−
.

In the same manner, ωs in (3), switches off the control of hf for γ = γs, so that, in a neighbourhood of γs,
hf > 0 for all t and uf : the boundary γ = γs is inward for Ω3,∞ and outward for each Ω1,k. In particular, a
cell very close to exit the cycle (in phase 1) is committed to go into phase 3. The exiting flux is controlled
by uf inside phase 1 before the cell maturity reaches γs: the sign of hf can be changed by the control only
below γs−

.
In complement to this local control (by uf ) of the exit flux from the cell cycle, a global control is exerted
(by U , U ≤ 1) on the cell vulnerability towards apoptosis, in a zone surrounding γs, through the function

ωλ(γ) = K exp

(
−

(
γ−γs

γ̄

)2
)

in (4).

Each boundary segment of each (rectangular) Ωj,k, j = 1, 3, k = 0, 1, . . . is either inward or outward,
independently on time t or controls uf , U , so that we can consider the following boundary conditions (the
use of the trace values and the wellposedness of this model will be discussed later):

Boundary conditions for φk
f,1, t ∈]0, T [ :

gf(γ, uf )φk
f,1(ka2, γ, t) =

{
2τgfφk−1

f,1 (ka2, γ, t), for k ≥ 1,

0, for k = 0
for γ ∈]0, γs[. (6)

φk
f,1(a, 0, t) = 0, for a ∈]ka2, ka2 + a1[ (7)
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Boundary conditions for φN
f,3, N ≥ 1, t ∈]0, T [ :

φN
f,3(0, γ, t) = 0, for γ ∈]γs, γmax[ (8)

φN
f,3(a, γs, t) =

{
φk

f,1(a, γs, t), for a ∈ [ka2, ka2 + a1[

0, for a ∈ [ka2 + a1, (k + 1)a2[
, for k = 0, . . .N − 1. (9)

Initial conditions:
φk

f,j(a, γ, 0) = φk
f0(a, γ)|Ωj,k

, j = 1, 3. (10)

In (6), the delay a2 − a1 and the doubling of the flux due to mitosis have been explicitly taken into account,
so that it is not necessary anymore to consider phase 2 and φk

f,2 in the model. The cell density of interest in

a follicle, φN
f , is simply:

φN
f = φk

f,1 on Q1,k, k = 0, . . .N − 1, φN
f = φN

f,3 on Q3,N

In practice, we will fix the value of N to a large enough integer, and use the notations φf and amax = Na2.
φf can be computed by solving the series of problems:

1. P1,k : (1), (6), (7), (10) on Q1,k, for k = 0, . . .N − 1. (11)

2. P3,N : (1), (8), (9), (10) on Q3,N , when the P1,k are solved . (12)

It is worth noticing that those problems can be solved in sequence when the traces of the solutions of P1,k

on their outward boundaries (left and upper segments) are well defined. This is a useful property for the
efficiency of computations and the backward reachability technique.
The feedback exerted by the ovaries on the secretion of the hormonal control FSH defines a closed-loop
system (cf. Figure 3). The global control U can be interpreted as FSH plasmatic level. The local control uf

represents intra-follicular bioavailable FSH levels. It is given as a proportion of U .
Define the maturity operator M as:

M(ϕ)(t) =

∫ γmax

0

∫ amax

0

γϕ(a, γ, t)dadγ (13)

The global maturities M(φf ) on the follicular scale, and M(
∑

f

φf ) on the ovarian scale, will be used to

define the two-scale feedback control:

U = Sτ (M(
∑

f

φf )) + U0

uf = bfτf
(M(φf )).U (14)

where S(µ) = Us +
1 − Us

1 + exp (c(µ − m))
, Sτ (µ)(t) = S(µ(t − τ))

bf(µ) = b1 +
1 − b1

1 + exp(b2(b3 − µ))
, bfτf

(µ)(t) = bf(µ(t − τf ))

The decreasing sigmoid function S accounts for the ovarian negative feedback on FSH ; U0(t) is a potential
exogenous entry. The increasing sigmoid function bf makes uf increase with the maturity of follicle f , up to
its reaching FSH plasmatic values. The delay τ is introduced to take into account the time needed for FSH
signal to reach the ovaries; and the local delay τf , that can be neglected in practice (τf ≪ τ) is mainly here
to facilitate the resolution on finite time intervals. The delayed versions of S and bf are denoted Sτ and bfτf

respectively. The parameters are chosen such that U and bf are normalized: 0 < b1, Us < 1, so that:

0 ≤ uf ≤ U ≤ 1 + U0. (15)
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Functions and parameters Definition Nominal value
S[M(

∑
f φf )] Global feedback control

Us minimal plasmatic FSH value 0.5
c slope parameter of the sigmoid function 0.1
m abscissa of the inflexion point of the sigmoid function 50
τ FSH delay from the pituitary gland to the ovaries 0.01

bf [M(φf )] Local feedback gain
b1 basal level 0.054
b2 exponential rate 0.3
b3 scaling parameter 27
τf delay to modify local vascularization 0.01

gf (uf) Aging velocity
τgf time scale parameter 1
g1 control gain in phase 1 0.5

hf (γ, uf) Maturation velocity
τhf time scale parameter 0.07
c1 slope parameter 11.892
c2 origin ordinate 2.288
ū scaling parameter 0.133

ωλ(γ) Global feedback gain
K amplification constant 3
γ̄ scaling parameter 0.2
a1 cellular age at the end of phase 1 1
a2 cellular age at the end of phase 2 2
N maximum number of cell cycles 8
γs maturity threshold for cell cycle exit 3
γs−

maturity threshold for switching off control in phase 1 2.99
γs+

maturity threshold for switching on control in phase 3 3.01
γmax maximum maturity 15
Ms ovarian threshold for ovulation triggering 75
Ms1 follicular threshold for ovulation ability 40

Table 1: Main model functions and parameters

Ovulation is triggered when estradiol levels reach a threshold value Ms. As estradiol secretion is related to
maturity (see [2]), the ovulation time Ts is defined as:

Ts = min{T | M(
∑

f

φf )(T ) = Ms} (16)

The follicles are then sorted according to their individual maturity. The ovulatory follicles are those whose
maturity at time T has overpassed a threshold Ms1 such as Ms1 ≤ Ms. The ovulation rate is computed as:

Ns,s1
= Card{f | M(φf )(Ts) ≥ Ms1} (17)

For instance, Figure 4 shows, on the age-maturity domain, the cell density of either an ovulatory follicle (left
panel) or an atretic one (right panel) at ovulation time. The cell cycle is implemented on a periodic domain,
where the age a is reset after the cells go through mitosis. The granulosa cell repartition in the ovulatory
follicle is characterized by a roughly older age range, and a higher maturity and cell density ranges than in
the atretic follicle.
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Figure 3: Ovarian system: the multi-scale model in closed-loop. The global feedback control U is modulated
on the follicle scale (Fol i), by the follicular maturity, M(φi), to define the local control ufi.

2.2 Wellposedness of the model

We have obtained a compact expression of the model by using a density representation of the cell population
instead of a discrete model with a huge number of cells. Even if reasoning about controlled trajectories of
individual cells will be useful in the sequel, the global numerical simulations are based on this compact form.
It is then useful to discuss the wellposedness of the model in order to check, to some extent, its consistency.
Due to the delays in the feedback control laws, we can consider the uf and U control terms as given functions
of time on each interval of size τf . The velocities and loss term are then given functions gf (γ, t), hf (γ, t) and
λ(γ, t). In this case, we show below that there exists a unique solution to the series of problems (11), (12).
In each domain Q1,k, Q3,N , the velocity field (gf , hf ) and the loss rate λ can be considered, without loss
of expressiveness for the model, as smooth functions. Yet, initial and boundary values may be irregular, so
that we need to check the existence of weak solutions.
As mentioned below, it is sufficient to solve the sequence of P1,k and then P3,N to define φf . Since those
problems have a common structure, we just need to study the solution of P1,k and its traces on the outward
boundary used to define both P1,k+1 and P3,N .

We first use a change of variables to transform (1) into a conservation equation without a loss term. Let

φk
f,1 = ˜φk

f,1 exp (l(γ, t)) defined on Q1,k. Let ∂Q+
1,k and ∂Q−

1,k denote the inward and outward boundaries of
the domain Q1,k, and let l(γ, t) such as

∂l(γ, t)

∂t
+ hf (γ, t)

∂l(γ, t)

∂γ
= −λ(γ, t), l(γ, 0) = 0 (18)

Here, we can assume that hf and λ (extended to all γ ∈ R) are C1 functions, so that, according to standard
theory, there exists a unique generalized solution l of the linear transport equation (18), that is Lipschitz for

all t > 0. Now ˜φk
f,1 verifies

∂ ˜φk
f,1

∂t
+ div(vf

˜φk
f,1) = 0 (19)

where vf is the (smooth) velocity vector: vf =

(
gf (γ, t)
hf (γ, t)

)
.

Non homogeneous boundary conditions on ∂Q+
1,k, similar to (6), (7) complete (19). To solve such a problem,

with L∞ or L1 boundary and initial values, extensions to the classical Kruzkov entropy solutions ([3]) to

6
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Figure 4: Cell density of an ovulatory follicle (left) and an atretic follicle (right). The horizontal axis
represents the cell age, the vertical axis the cell maturity, and the colorbar indicates the cell density value
(number of cells per elementary age × maturity volume). a2 is the cell cycle duration (2 age units).

boundary value problems have been proposed (see e.g. [4] and [5] where renormalized entropy solutions are
defined for this type of problem). An additional problem faced here consists in defining the trace of the
solution on the outward boundary ∂Q−

1,k, in order to solve the next problems P1,k+1. It is not clear whether

this trace can be defined here for such weak solutions. As vf ∈ (L∞(Q1,k))2 and div(vf ) ∈ L∞(Q1,k), an

alternative is to use the results of [6], to define a unique solution φ̃k
f ∈ L2(Q1,k) with well defined trace in

L2(∂Q−
1,k) as soon as the boundary data are in L2(∂Q+

1,k). A drawback of this alternative is that, in our
case, it is not known whether those solutions coincide with classical weak solutions.

2.3 Characteristic equations

The model deals with controlled partial differential equations. Up to now, no convincing control strategy
for such velocity controlled conservation laws with integro-differential control terms is available from the
literature. To tackle the control problems, we focus on the actions of the control terms on the characteristics
of the conservation laws. As the solution of the conservation laws is L2, we can derive the characteristic
equations.
We now deal with the following ordinary differential equations [7]:





ȧc = gf(γc, uf )
γ̇c = hf (γc, uf)

˙φfc = −
(
λ(γc, U) +

∂hf (γc,uf )
∂γc

)
φfc

c = 1 . . . n (20)

where gf , hf and λ are defined in (2),(3),(4),(5) and n is the number of characteristics.
The local control uf acts on the position of the characteristics on the (ac, γc) spatial domain at a given time,
and U on the loss term λ.

The transfer conditions between the cellular phases are continuous on ac and γc and discontinuous on φfc.
From phase 1 to phase 2 (crossing the right boundary of some Ω1,k), the flux continuity condition reads:
- for Tk such as: ac(Tk) = a1 + ka2, 0 ≤ γc(Ti) ≤ γs, for some k ∈ N,

φfc(T
+
k ) =

(
1 − g1ωs−

(γ)(1 − uf (T−
k ))

)
φfc(T

−
k ) (21)

From phase 2 to phase 1 (crossing the left boundary of some Ω1,k), after mitosis, the flux doubling condition
reads:

7



- for Tk such as: ac(Tk) = ka2, 0 ≤ γc(Ti) ≤ γs for some k ∈ N,
(
1 − g1ωs−

(γ)(1 − uf (T +
k ))

)
φfc(T

+
k ) = 2φfc(T

−
k ) (22)

Ovulatory follicles are distinguished from the atretic ones by their characteristic curves reaching a well
defined zone of the (ac, γc, φfc) space at a given time, as we can see on Figure 4. In the next section, we
study to which extent characteristics curves can reach the target sets when subject to appropriate open-loop
control laws.

3 Backwards reachable sets

3.1 Link with Hamilton-Jacobi-Bellman equations

We assume that a follicle ovulates (respectively undergoes atresia) at time T if:
∀c = 1 . . . n, (ac(T ), γc(T ), φfc(T )) ∈ Mo( resp. ∈ Ma) where Mo and Ma are the targets for respectively
ovulation and atresia.
We focus here on the backwards problem, and we first introduce the elements of its solution, the solvability
tube [8] (or the backward reachable set [9]) associated with Mo (resp. Ma), i.e. the states from which it is
possible to reach Mo (resp. Ma), given admissible controls U and uf . From a physiological viewpoint, it
corresponds to the initial conditions compatible with ovulation (resp. atresia) and subject to correct control
laws amongst the set of admissible controls.

We recall briefly how such backwards reachability problems can be solved in the framework of optimal
control theory. Let us consider the following nonlinear continuous controlled dynamics, where f is a Lipschitz
continuous function, so that there is a unique continuous solution for any measurable u(t):





ẋ = f(t, x, u), t ≥ τ
x(τ) ∈ R

n

u ∈ U ⊂ R
m

(23)

Given a closed target set M ∈ Rn and two times τ and t1, the solvability set W (τ, t1,M) is the set of states
x ∈ Rn such that there exist control functions u with values in the compact set U that steer system (23) from
the state x(τ) = x to x(t1) ∈ M [8]. W (τ, t1,M) can be computed by solving the following optimization
problem where d2(x, X) = min{||x − z||2 | z ∈ X} is the square of the distance d(x, X) from point x to set
X :

min
u∈U

{d2(x(t1),M)|x(τ) = x} (24)

The solution of this optimal control problem can be found by solving the following backward Hamilton-
Jacobi-Bellman (HJB) equations, where Hf (DxV, x) = min

u∈U
{(DxV )T .f(t, x, u)} is the Hamiltonian [10]:

Vt + Hf (DxV, x) = 0, t ≤ t1, V (t1, x) = d2(x(t1),M) (25)

Then the following property is true [8]:

W (τ, t1,M) = {x|V (τ, x) ≤ 0} (26)

The solvability tube is then the set-valued function of the starting time t for given t1 and M:

W [t1,M] : t → W [t1,M](t) = W (t, t1,M), τ ≤ t ≤ t1. (27)

Any initial time t is thus associated with a delay of exactly (t1 − t) to reach the target.
In contrast, the backward reachable set is the set of states from which it is possible to reach the target in at
most (t1 − t) [9]:

G(t ; t1,M) =
⋃

t≤s≤t1

W (t, s,M), t ≤ t1. (28)

8



This set can also be characterized in the same manner as in expression (26). It is the zero sublevel set of
the V function solution of the HJB equation:

Vt + min(0, Hf (DxV, x)) = 0, t ≤ t1, V (t1, x) = d2(x(t1),M) (29)

G(t ; t1,M) = {x ∈ Rn |V (t, x) ≤ 0} (30)

In the next section, we use the numerical methods based on equations (29), (30) to compute the G set [11, 12].
This choice is convenient since it seems easier to compute the G set than the W set-valued function, but it
amounts to deal with desynchronized final times. Indeed, in the W [t1,M] tube, every states considered at
the same starting time reach the M target at the same final time t1, whereas in G(t ; t1,M) states reaching
the M target at different final times (provided that they are not later than t1) are fused. To ensure that
every states reaching the target remain inside until t1, the control function has to be extended.

3.2 Application to granulosa cells

3.2.1 The follicle as a controlled dynamical system

We represent each follicle by n cells following characteristic curves of (1) defined by three state variables:
age, maturity and cell density as in (20). The model of the follicle is then of the form (23) with 3n state
variables:

x(t) = (a1(t), ..., an(t); γ1(t), ..., γn(t); φf1(t), ..., φfn(t))T

and for each cellular phase i = 1, 2, 3, the dynamics is defined by the following fi:

fi =




gf (γ1, uf )
...

gf (γn, uf )
hf (γ1, uf )

...
hf (γn, uf )

K(γ1, uf , U)φf1

...
K(γn, uf , U)φfn




(31)

where gf and hf are defined in (2), (3), (5) and K(γc, uf , U) is defined by

Phases 1 and 3: ∀k, N ∈ N, ∀(ac, γc) ∈ Ω1,k ∪ Ω3,N

K(γc, uf , U) = −

(
λ(γc, U) +

∂hf(γc, uf)

∂γc

)
(32)

Phase 2: ∀k ∈ N, ∀(ac, γc) ∈ Ω2,k

K(γc, uf , U) = ln(2)δ(ac)φfc, with

∫ (k+1)a2

ka2+a1

δ(a)da = 1 (33)

The expression of K(γc, uf , U) in phase 2 results from the regularization by a smooth positive function δ(a)
of the mitosis at the transition (22) between phases 2 and 1, that will be used in the numerical treatment
of the equations where the transmission boundaries are included in the computational domain. The precise
choice for δ(a) does not matter since its only role is to guarantee that the density of cells entering phase 2
at time ka1 has doubled at time ka1 + a2. Since a2 − a1 = 1, the simplest choice is δ(a)=1 so that we have
δ(ac)=1, resulting in K(γc, uf , U) = ln(2)φfc.
According to physiological knowledge, we can consider that there exists a maximal age, amax, beyond which
all cells become senescent and die. This assumption introduces the notion of a maximal life time Tmax such
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that a(Tmax) = amax (Tmax exists because ȧ > g2 > 0). Hence, there is also a maximal maturity γmax and
a maximal cell density φfmax attainable for t ∈ [0, Tmax]. The fi are Lipschitz continuous, so that there is
a unique solution x within each phase.

We now state some properties of this controlled system and the corresponding reachable targets in the
age-maturity plane. We first describe the control action on the orientation of the velocity field:

In the interior of phases 1 & 3: ∀uf ∈ U ,

gh ≥ g1τgf ≡ 0.5τgf (34)




hf (γ, uf ) ≥ 0, for uf ≥ u∗
f and 0 ≤ γ ≤ γ+(1/ū)

hf (γ, uf ) ≤ 0, for uf ≤ u∗
f and 0 ≤ γ ≤ γ+(1/ū)

hf (γ, uf ) ≤ 0, for all uf and γ+(U/ū) ≤ γ ≤ γmax

(35)

In the interior of phase 2: ∀uf ∈ U ,

gh = 1, hf = 0. (36)

with:

u∗
f (γ) =





ū ln

(
c1γ + c2

c1γ + c2 − γ2

)
for 0 ≤ γ ≤ γ+(1/ū)

1 for γ+(1/ū) ≤ γ ≤ γmax

(37)

γ±(ν) =
c1(ν) ±

√
c1(ν)2 + 4c2(ν)

2
, with ci(ν) = ci(1 − exp(−ν)), i = 1, 2. (38)

We just sketch the proof (easy but tedious) of these properties. We can first remark that, in the interior of
phases 1 and 3 excluding the strip defined by γs±

, the ωs±
functions can only take as values 0 or 1. In this

interior subset hf (γ, uf) is defined as

hf (γ, uf ) = τhf (−γ2 + (c1γ + c2)(1 − ωs(γ) exp(−uf/ū)))

= τhf (γ+(uf/ū) − γ)(γ − γ−(uf/ū))

It is easy to check that hf has the sign of (γ+(uf/ū) − γ). Besides, γ+ is an increasing function of uf , since

γ′
+(ν) =

c1γ+(ν) + c2√
c1(ν)2 + 4c2(ν)

exp(−ν)

Hence 0 ≤ γ+(uf/ū) ≤ γ+(umax/ū) ≡ γ+(1/ū), so that we can solve hf (γ∗, uf) = 0 and define u∗
f(γ) such

that γ+(u∗
f (γ)/ū) = γ for 0 ≤ γ ≤ γ+(1/ū). Finally, as exp

(
−

1

ū

)
is very small,

γ+(1/ū) ≈ (1 − exp(−1/ū))
c1 +

√
c2
1 + 4c2

2
< γmax

This yields property (35). The remaining properties (34) and (36) are obvious.

Such results imply the following properties of the reachable targets:

1. As gh > 0, the ages of cells in the reachable targets set have to be larger than those of the cells in
their initial conditions. Hence, the reachable targets are on the right of the cell initial positions in the
age-maturity plane.

2. For a given global control U and maturities 0 ≤ γ ≤ γ+(U/ū), property (35) shows that it is possible,
using a local feedback uf around the feedback u∗

f , to either increase, decrease or maintain the maturity.
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In particular, if a target maturity is reached and U remains large enough, the cells remains inside the
target. For such targets M, G(t ; t1,M) = W (t ; t1,M). It is also possible to reach a target and then
leave it, e.g. if U is lowered. This set-equality depends then strongly on the control strategies and
positions of the targets with respect to γ+(1/ū).

3. As U ≤ 1, maturities γ+(1/ū) ≤ γ ≤ γmax are not reachable.

Subsequently, we assume that:

the target ages are large enough (e.g. > a1 + a2) (39)

the target maturities are below γ+(1/ū) (40)

so that it is not impossible to reach them (but success is not guaranteed, the density conditions needing also
to be met).

3.2.2 The Hamiltonian in each cellular phase

The HamiltonJacobi-Bellman (HJB) equations associated with the backwards reachable sets are solved once
a target has been defined and the Hamiltonians in each phase have been minimized according to the control
terms. We do not use here the feedforward term: U0 = 0. Hence both the global and local FSH signals
operate as best-case feedback controls subject to the explicit constraints (rewriting (15)) 0 ≤ uf ≤ U ≤ 1.
We note u = (uf , U)T the control and U the set of admissible controls. Such constraints take into account
the following physiological knowledge:
(i) the level of FSH in the antral1 fluid is at much as high as FSH plasmatic levels, which implies uf ≤ U ;
(ii) there is a basal secretion (i.e. not subject to ovarian feedback) of FSH by the pituitary gland, which
implies U ≥ 0;
(iii) the balance between the secretion rate (or exogenous administration rate) and the clearance rate ensure
the saturation of FSH plasmatic levels, which implies U ≤ 1.
Two coupled biological questions underlie this reachability problem: (1) which patterns of exogenous FSH
administration can be applied to target either ovulation or atresia and (2) how follicular vascularization
should develop to remain compatible with those patterns. The answer to such questions might help improving
the current FSH treatments, which suffer from several drawbacks such as ovarian overstimulation syndrome.

To reach a given target M from its current location in phase Ωi,k
2, a cell (or the lineage of its daughter

cells) has to reach some intermediate or final target in the closure of the Ωi,k domain.
For instance, in the case of the ovulatory target M = Mo (Mo ⊂ Ω3,N) W [t1,Mo] following the solvability
tube backward from Phase 3 leads to the boundary between Ω3,k and Ω1,k (k ≤ N); the intersection of this
boundary with the solvability tube defines a new target set Mo,1,k, in Ω1,k.
Such intersections depend smoothly upon the width of the thin strip 0 < γs−

< γ < γs+
containing these

boundaries where the control has little effects. In the following, we suppose that γs−
= γ = γs+

so that ωs−

and ωs+
are replaced by perfect switch functions.

In each cellular phase i, in order to compute the backward reachable set G(t1 − t ; t1,Mi), i.e. the set of
states from which it is possible to reach the target Mi in less than a given time t, we have to solve an HJB
equation of the form (29) and use the definition (30):

Vt + min(0, Hfi(DxV, x)) = 0, t ≤ t1, V (t1, x) = d2(x(t1),Mi) (41)

G(t ; t1,M) = {x ∈ Rn |V (t, x) ≤ 0} (42)

where Hfi(p, x) = min
u∈U

(pT .fi(x, u)), with p = DxV = (pa1
, ..., pan

, pγ1
, ..., pγn

, pφf1
, ..., pφfn

)T .

1ovarian follicles are spheroidal structures hollowed by a cavity called the antrum
2where i stand for the phase index and k for the number of cell generation elapsed since initial time
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If the targets fulfil the conditions (39) and (40) discussed above, we can conclude that:
i) Starting from cell ages ”younger” than the target ages, for all u ∈ U , the cells get closer in age to target:
For all i, pai

.gf (γi, uf ) ≤ 0, as pai
≤ 0 and gf > 0.

ii) For the particular choice U = 1 and uf = u∗
f , we have hf (γi, uf ) = 0, so that:

For all i, pγi
.hf (γi, u

∗
f) = 0.

In particular, pT .fi(x, u∗
f )) ≤ 0, so that Hfi(p, x) ≤ 0. We have thus shown that in our case, solving equation

(41) amounts to solve the following simpler HJB equation to compute G:

Vt + Hfi(DxV, x) = 0, t ≤ t1, V (t1, x) = d2(x(t1),Mi) (43)

G(t ; t1,M) = {x ∈ Rn |V (t, x) ≤ 0} (44)

We now compute the Hamiltonian Hfi(p, x) in each phase.

Phases 1 & 3

We first compute pT .fi(x, u), for i = 1, 3.

pT .fi(x, u) =

n∑

c=1

pac
gf(uf ) +

n∑

c=1

pγc
hf (γc, uf ) +

n∑

c=1

pφfc
φfcK(γc, uf , U)

which can be rewritten as follows:

pT .fi(x, u) = H0(p, x) − A(p, x) exp(−uf/ū) + B(p)uf + C(p, x)U

with (using equations (2), (3) and (32))

H0(p, x) = τgf (1 − g1)

n∑

c=1

pac
+ τhf

n∑

c=1

pγc
(−γ2

c + c1γc + c2) +

n∑

c=1

pφfc
φfcK0(γc),

where K0(γ) = −(ωλ(γ) + τhf (−2γ + c1)),

A(p, x) = τhf

n∑

c=1

(
pγc

(c1γc + c2) − c1pφfc
φfc

)
,

B(p) = τgfg1

n∑

c=1

pac
, C(p, x) =

n∑

c=1

pφfc
φfcωλ(γc).

Now we minimize this expression with respect to u ∈ U .

Hfi(p, x) = min
u∈U

(pT .fi(x, u)) = H0(p, x) + min
0≤uf≤U≤1

(B(p)uf − A(p, x) exp(−uf/ū) + C(p, x)U).

It is equivalent to minimize first over U with uf ≤ U ≤ 1 and then over uf with 0 ≤ uf ≤ 1 (we drop the
arguments x, p for simplicity):

Hfi = H0 + min
0≤uf≤1

(
min

uf≤U≤1
(Buf − A exp(−uf/ū) + CU)

)

When C ≥ 0, we have Hfi = H0 + min
0≤uf≤1

((B + C)uf − A exp(−uf/ū)).

When C < 0, we have Hfi = H0 + C + min
0≤uf≤1

(Buf − A exp(−uf/ū)).

We have then to solve min
0≤uf≤1

(
B̃uf − A exp(−uf/ū)

)
with B̃ = B + |C|+.

When A ≥ 0 (resp. A < 0), B̃uf − A exp(−uf/ū) is a concave (resp. convex) function of uf and the
minimizing control is now easy to compute, leading to the following feedback law:

When A(p, x) ≥ 0: uf = 0 if − A(p, x) ≤ B̃(p, x) − A(p, x) exp(−1/ū), else uf = 1 (45)

When A(p, x) < 0: uf = −ū ln(−
B̃(p, x)ū

A(p, x)
) if

B̃(p, x)ū

|A(p, x)|
≥ exp(−1/ū), else uf = 1 (46)
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Phase 2

This phase is not controlled so that the expression of the Hamiltonian is straightforward using (33):

Hf2 = τgf

n∑

c=1

pac
+ ln(2)

n∑

c=1

pφfc
δ(ac)φfc

This analytical minimization enables to write the expression of the Hamiltonian in each cellular phase.

3.3 Numerical results

3.3.1 Implementation: level set methods

Two main approaches are used to find reachable sets: the Eulerian approach approximates the solution
values on a fixed grid, whereas the Lagrangian approach tracks the trajectories of the dynamics. In case of
backwards reachable sets, Eulerian methods are the most appropriate, as they enable to correctly compute
the solution beyond shocks [13].
Amongst the various Eulerian methods available to compute the exact reachable sets, we used “level set
methods” to solve Eq.(25). They enable to simulate the motion of dynamic surfaces, such as the zero-level
set of HJB equations [12], with a very high accuracy (about a tenth of the spacing between the grid points
[13]).
Such level set algorithms are implemented in the “Toolbox of Level Set Methods” 3, which can be used to
solve, among others, equations of the form:

DtV (x, t) + H(x, DxV ) = 0

with the constraints DtV (x, t) ≥ 0 or V (x, t) ≥ Ṽ (x, t)

The time derivative, DtV , is approximated by a Runge-Kutta scheme, with customizable accuracy. The
spatial derivative, DxV , is approximated with an upwind finite difference scheme. The Hamiltonian, H(x, p),
is approximated with a Lax-Friedrichs scheme:

Ĥ(x, p+, p−) ≡ H(x,
p+ + p−

2
) −

1

2
αT (p+ − p−)

where p+ and p− are respectively the right and left approximations of p, and α is an artificial dissipation
coefficient added to avoid oscillations in the solution.

Although the toolbox is designed for solving initial value problems, it is possible, in case of autonomous
systems, to solve final value problems by reversing the time in system (23) [12].

3.3.2 Simulation results

The initial problem is a 3 × n dimensional problem, where n is the number of characteristics considered.
This problem is not tractable from a numerical ground. Indeed, for n ≥ 2 and a correct number of grid
points in each dimension (≃ 100) we cope with too many points (1003n), and face the dimensionality limits
of the algorithms. We thus computed the backwards reachable sets for one characteristic, (a1, γ1, φf1),
corresponding to an ovulatory or atretic trajectory. It is a simplified case where all granulosa cells in a
follicle are assumed to be synchronized in age and maturity.
In the case of ovulatory follicles, the boundaries of the target set Mo are chosen to coincide with the ranges
of age, maturity, and cell density reached by the characteristics of an ovulatory follicle at ovulation time,
(see Figure 4, left).
The target set Mo for ovulation is thus defined as:

Mo = {(a1, γ1, φf1) ∈ [10, 12]× [10, 11]× [4, 6]} (47)
3http://www.cs.ubc.ca/˜mitchell/ToolboxLS/
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Figure 5 illustrates the trajectories compatible with ovulation.
The left panel illustrates the projection, on the age-maturity plane, of the changes in the backwards reachable
set. Time t = 0 (first subplot) is ovulation time, and we can see the rectangle {[10, 12]× [10, 11]} representing
the projection of the target set Mo (the age range is slightly different from that of Figure 4 due to difference
in the dimensioning of the unrolled domain compared to the periodic domain). At time t = 4, the set area
has increased, including all states that can join the target set in less than 4 time units (2 time units roughly
correspond to 1 cell cycle duration). The backwards reachable set at time t = 11 represents the set of states
that can reach the target set for ovulation in at most 11 time units. We chose to stop the simulation at this
time as it contains the initial conditions used for the simulation represented in Figure 4. The “staircase”
shape of the backwards reachable set is due to the dynamics in the cell cycle. The maturity increases with
age in phase 1, while its remains unchanged in phase 2, yielding to the flat part of the staircase. An instance
of the flat part can be seen at time t = 11 between a1 = 7 and a1 = 8.
The right panel illustrates the projection, on the age-cell density plane, of the changes in the backwards
reachable set. We can again see the projection of the target set Mo at time t = 0, as the rectangle
{[10, 11] × [4, 6]}. At time t = 11, a large part of the age-cell density domain is compatible with reaching
the target set. From age a1 = 9 onward, the cell density variable increases with age to reach the target set.
This is in agreement with the cell density dynamics in phase 3.

The backwards reachable set of Mo nearly contains the whole spatial domain. It is an overapproximation of
the initial states that allow to reach the target set. Indeed, it does not only contain the trajectories of the
characteristics of the ovulatory follicle, but also those starting from initial conditions that do not arise on a
physiological ground. Basing on biological knowledge, we can thus select from the overapproximated set, the
physiologically-meaningful subset: we assume that all cells are initially within the cell cycle, at their first
generation, so that the subset of admissible initial conditions is defined by {(a1(t0), γ1(t0)) ∈ [0, a2]× [0, γs]}.
This subset is below the dashed segment on the left panel of Figure 5.

Figure 5: Solvability tubes for ovulatory follicles. The left panel shows the projection of the 3D set on the
(a1-γ1) plane, and the right one on the (a1-φf1) plane.

The target set Ma for atresia is defined by the ranges reached by the characteristics of atretic follicles:

Ma = {(a1, γ1, φf1) ∈ [8, 10]× [3, 4] × [2, 4]} (48)

Figure 6 illustrates all the trajectories that fall into the target set for an atretic follicle. The left panel
illustrates the projection, on the age-maturity plane, of the changes in the backwards reachable set. Some
states in the target set are initially in the cell cycle, leading to the “staircase” pattern described below. The
right panel illustrates the projection, on the age-cell density plane, of the temporal changes in the backwards
reachable set. The set area increases, and at time t = 11, it roughly contains the whole domain. Once again,
the set of initial states leading to atresia is overapproximated, and we can apply the same constraints as in
the ovulatory case on the initial conditions, that are again below the dashed segment on Figure 6.
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Figure 6: Solvability tubes for atretic follicles. The left panel shows the projection of the 3D set on the
(a1-γ1) plane, and the right one on the (a1-φf1) plane.

The initial conditions leading to ovulation or atresia, subject to physiological constraints, are roughly su-
perimposed, and contain the whole subset of admissible initial conditions. Thus we cannot distinguish a
priori ovulatory trajectories from atretic ones. This result agrees with physiological knowledge, as there is
no predestination in follicular fate [14].
Although the initial conditions do not enable to determine whether a follicle is ovulatory or atretic, there
is a moment when trajectories leading to either ovulation or atresia diverge. Such a moment corresponds
to the physiological time of selection, when the trajectories of the few ovulatory follicles separate from the
atretic ones.

4 Discussion and perspectives

We have characterized the backwards reachable sets for both ovulatory and atretic follicles. This control
problem has been solved by studying the characteristics of the conservation laws describing the dynamics of
the structured granulosa cell populations in ovarian follicles. The HJB equations representing the backwards
reachable sets have been solved numerically for one characteristic curve, and allow to characterize the set of
initial conditions that lead a characteristic into the target set either for ovulation or atresia.

We have used the backwards reachable sets theory for a problem that is not entirely continuous, as there
are discontinuities at the transitions between each cellular phase. Hence, we studied each phase separately,
assuming that the transitions at the boundaries were continuous. Actually, we deal with a hybrid problem,
as each cellular phase has its proper dynamics. As far as time dependent HJB equations are concerned,
elements of a theory for hybrid systems are established, especially concerning “reach-avoid” sets [15], but it
is not complete yet, and not directly applicable to our problem. Viability theory also considers reachable
sets for hybrid systems [16], but the algorithms used are not as accurate as level set methods, since they use
a different representation of reachable sets [13]. Yet the numerical results we have obtained with the level
set methods seem correct since the continuous part of the system is solved with highly accurate algorithms
and the hybrid part is handled via continuity conditions and substantiated by the trace results obtained on
the conservation laws.

We have solved a simplified numerical problem dealing with a single characteristic of a follicle, as the
simulation tool needs too huge memory to solve higher dimensional problems. The backwards reachable sets
obtained show that it is possible to find a correct control law to steer a large set of initial conditions into
the target set, and they give information upon the maximum duration needed to reach the target.
If the simulation of more than one characteristic were possible, we expect that the backwards reachable sets
would be smaller. We even speculate that, from a physiological viewpoint, a larger set in case of a single
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growing follicle ensures the ovulation success, while a smaller set in case of several simultaneously growing
follicles limits the ovulation rate and underlies the selection process in part. Yet this assumption needs
improvement of the numerical implementation to be tested.

We have studied by now the open-loop problem, for the ovulation of one follicle. This situation is close to
therapeutic situations of ovarian stimulations, so that the designed control laws may be useful in improving
therapeutic schemes. Yet, to understand ovulation control in depth, we will have to tackle multi-scale,
closed-loop reachability problems of selection, which is the matter of future work.
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