
HAL Id: hal-00086574
https://hal.science/hal-00086574v1

Preprint submitted on 19 Jul 2006 (v1), last revised 5 Feb 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale modeling of follicular ovulation as a
reachability problem

Nki Echenim, Frédérique Clément, Michel Sorine

To cite this version:
Nki Echenim, Frédérique Clément, Michel Sorine. Multi-scale modeling of follicular ovulation as a
reachability problem. 2006. �hal-00086574v1�

https://hal.science/hal-00086574v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

86
57

4,
 v

er
si

on
 1

 -
 1

9 
Ju

l 2
00

6

Multi-scale modeling of follicular ovulation as a reachability

problem

Nki Echenim † Frederique Clément † Michel Sorine †

Abstract During each ovarian cycle, only a definite number of follicles ovulate, while the others undergo
a degeneration process called atresia. We have designed a multi-scale mathematical model where ovulation
and atresia result from a hormonal controlled selection process. A 2D-conservation law describes the age
and maturity structuration of the follicular cell population. In this paper, we focus on the operating mode
of the control, through the study of the characteristics of the conservation law. We describe in particular the
set of microscopic initial conditions leading to the macroscopic phenomenon of either ovulation or atresia,
in the framework of backwards reachable sets theory.

Keywords : biomathematics, conservation laws, method of characteristics, control theory, backwards reach-
able sets.

1 Introduction

The development of ovarian follicles is a crucial process for reproduction in mammals, as its biological meaning
is to free fertilizable oocyte(s) at the time of ovulation. A better understanding of follicular development is
both a clinical and zootechnical challenge; it is required to improve the control of anovulatory infertility in
women, as well as ovulation rate and ovarian cycle chronology in domestic species.
Within all the developing follicles, very few actually reach the ovulatory size; most of them undergo a
degeneration process, known as atresia [1]. The ovulation rate (number of ovulatory follicles per cycle)
results from an FSH (Follicle Stimulating Hormone)-dependent follicle selection process. FSH acts on the cells
surrounding the oocyte, the granulosa cells, and controls both their commitment towards either proliferation,
differentiation or apoptosis and their ability to secrete hormones such as estradiol. The whole estradiol output
from the ovaries is responsible for exerting a negative feedback on FSH release. Following the subsequent
fall in plasmatic FSH levels, most of the follicles undergo atresia and only the ovulatory ones survive in the
FSH-poor environment.
We have proposed a mathematical model, using both multi-scale modeling and control theory concepts,
to describe the follicle selection process [2]. For each follicle, the cell population dynamics is ruled by a
conservation law with variable coefficients which describes the changes in age and maturity of the granulosa
cell density. A control term, representing FSH signal, intervenes both in the velocity and loss terms of the
conservation law. Two acting controls are distinguished: one is a local control, specific to each follicle (micro
scale), and the other is a global control that results from the ovarian feedback (macro scale). Both ovulation
triggering and follicular ovulation depend on the reaching of a target.
In this paper, we aim at using control theory to characterize follicular trajectories and the control laws leading
to ovulation or atresia. The macroscopic phenomenon of follicular ovulation is considered as a reachability
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problem for the microscopic variables of the characteristics system associated with the conservation law.
The problem is enounced in details and solved in open-loop. Follicles are assumed to ovulate if their state
variables, (age, maturity and cell density) reach a given target set. Backwards reachable sets theory is used
to define the initial conditions compatible with latter ovulation, for a given control panel. In section 2,
the conservation laws describing the model for follicle selection and their characteristics are presented. In
section 3, the target corresponding to follicular ovulation is defined. Reachable sets theory is used to solve
the corresponding control problem and simulation results are discussed. Section 4 is devoted to discussion
and perspectives.

2 Follicle selection model

2.1 Conservation laws

For a given follicle, f , the cell density function, φf (a, γ, t), evolves with different velocities according to the
cellular phase. Phases 1 and 2 correspond to the proliferation phases (respectively the G1 phase and the S
to M phases), and phase 3 corresponds to the differentiation phase, after cells have exit the cell cycle (see
Figure 1).

γs
�
�
�
�
�
�
�
�
�
�
�
�

phase 2phase 1

phase 3

a1 a2 (k−1)a2 ka2 (k+1)a2

γ

a0

kΩ Ω
1

Figure 1: Cellular phases on the age-maturity plan. The cell cycle consists of the cyclic phase 1-phase 2-
phase 1 pathway. When it enters phase 1 from phase 2, a mother cell gives birth to two daughter cells. Cell
differentiation corresponds to the flow from phase 1 into phase 3. a2 is the cell cycle length.

The variable t denotes time. The cell age a is a marker of progression within the cell cycle. The maturity
marker γ is used to sort the cycling and non-cycling cells and to characterize the cell vulnerability to
apoptosis.
In each cellular phase, both a global and a local control term, respectively U and uf , act on the velocity and
loss terms of the conservation law.
Let Ωk = {(a, γ) ∈ ]ka2, (k+1)a2[×]0,∞)} and Qk = Ωk×]0, T [ ∀k ∈ N. The domain Ωk in the age-maturity
plan is represented on Figure 1. On each Qk, the generic form of the conservation law for the cell density
φk

f is:

∂φk
f

∂t
+

∂gf (uf )φk
f

∂a
+

∂hf(γ, uf )φk
f

∂γ
= −λ(γ, U)φk

f (1)

The gf and hf functions are respectively the aging and maturation velocities, and λ is the loss term. Their
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dynamics are discontinuous according to:

In phase 1: ∀k ∈ N ∀(a, γ) ∈ [ka2, ka2 + a1[×[0, γs[

gf (uf ) = τgf (g1uf + g2) (2)

hf (γ, uf ) = τhf (−γ2 + (c1γ + c2)(1 − exp(−uf/u)))

λ(γ, U) = Ω(γ)(1 − U) with U ≤ 1

In phase 2: ∀k ∈ N ∀(a, γ) ∈ [ka2 + a1, (k + 1)a2[×[0, γs[

gf (uf ) = 1 (3)

hf (γ, uf ) = 0

λ(γ, U) = 0

In phase 3: ∀k ∈ N ∀(a, γ) ∈ [0,∞) × [γs,∞)

gf (uf ) = 1 (4)

hf (γ, uf ) = τhf (−γ2 + (c1γ + c2)(1 − exp(−uf/u)))

λ(γ, U) = Ω(γ)(1 − U)

Where Ω(γ) = K exp

(

−
(

γ−γs

γ

)2
)

, and all parameters are real positive numbers defined in Table 1.

In phase 1, both the aging and maturation velocities are controlled. Phase 2 is an uncontrolled phase cor-
responding to a delay in age (a2 − a1) in the system dynamics. In phase 3, only the maturation velocity is
controlled . Cells are sensitive to death due to apoptosis in phase 1 and phase 3 [2].

The boundary conditions between each domain Qk are defined by (we will justify later the existence of
the trace values used here and the well-posedness of this model):

for k = 0

φ0
f (0, γ, t) = 0

φ0
f (a, 0, t) = 0

for k ∈ N
∗

φk
f (ka2, γ, t) = φk−1

f (ka2, γ, t) for (γ, t) ∈ [γs,∞)×]0, T [

τgf (g1uf + g2)φ
k
f (ka2, γ, t) = 2φk−1

f (ka2, γ, t) for (γ, t) ∈ [0, γs[×]0, T [

φk
f (a, 0, t) = 0

The initial conditions for each follicle f on each domain Qk are given by:

φk
f (a, γ, 0) = φf0(a, γ)|Ωk

We define the cell density in a follicle, φf , as

φf = φk
f on Qk, k ∈ N

The feedback exerted by the ovaries on the secretion of the hormonal control FSH defines a closed-loop
system (cf. Figure 2). The global control U can be interpreted as the plasmatic FSH levels. The local
control uf is a proportion of U , which is individually modulated for each follicle.
Define the maturity operator M as:

M(ϕ)(t) =

∫ γmax

0

∫ amax

0

γϕ(a, γ, t)dadγ (5)
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Main functions and parameters Definition Nominal value
S[M(

∑

f φf )] Global feedback control

Us minimal plasmatic FSH value 0.5
c slope parameter of the sigmoid function 0.1
m abscissa of the inflexion point of the sigmoid function 50
τ delay for FSH to reach the ovaries from the pituitary gland 0.01

bf [M(φf )] Local feedback gain
b1 basal level 0.054
b2 exponential rate 0.3
b3 scaling parameter 27
τf delay for follicular maturity to modify local vascularization 0.01

gf (uf) Aging velocity
τgf time scale parameter 1
g1 origin ordinate in phase 1 0.5
g2 slope parameter in phase 1 0.5

hf(γ, uf ) Maturation velocity
τhf time scale parameter 0.07
c1 slope parameter 11.892
c2 origin ordinate 2.288
u scaling parameter 0.133

Ω(γ) Global feedback gain
K amplification constant 3
γ scaling parameter 0.2
a1 cellular age at the end of phase 1 1
a2 cellular age at the end of phase 2 2
γs maturity threshold for cell cycle exit 3
Ms ovarian threshold for ovulation triggering 75
Ms1 follicular threshold for ovulation ability 40

Table 1: Model functions and parameters

This operator computes the global maturities M(φf ) on the follicular scale, and M(
∑

f

φf ) on the ovarian

scale, which enter into the dynamics of the control terms:

U(t) = S(M(
∑

f

φf )(t − τ)) + U0(t)

= Us +
1 − Us

1 + exp
[

c(M(
∑

f φf )(t − τ) − m)
] + U0(t)

uf = bf (M(φf )(t − τf ))U (6)

where bf (M(φf )) = b1 +
1 − b1

1 + exp(b2(b3 − M(φf )))

S is a decreasing sigmoid function that accounts for the ovarian negative feedback on FSH, U0(t) is a po-
tential exogenous entry, and τ is a delay introduced to take into account the time needed for FSH signal to
reach the ovaries; uf increases (bf is an increasing sigmoid function) with the delayed maturity of follicle f ,
up to its reaching FSH plasmatic values. τf is such as τf ≤ τ .

Ovulation is triggered when estradiol levels reach a threshold value Ms. As estradiol secretion is related to
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Figure 2: Ovarian system: the multi-scale model in closed-loop. The global feedback control U is modulated
on the follicle scale (Fol i), by the follicular maturity, M(φi), to define the local control ufi.

maturity, (see [2]), ovulation time is defined as:

T such as M(
∑

f

φf )(T ) = Ms (7)

The follicles are then sorted according to their individual maturity. The ovulatory follicles are those whose
maturity at time T has overpassed a threshold Ms1 such as Ms1 ≤ Ms. The ovulation rate is computed as:

N = Card{f |M(φf )(T ) ≥ Ms1}

Figure 3 shows the repartition, on the age-maturity domain, of the cell density of an ovulatory and an atretic
follicle at ovulation time. The cell cycle is implemented on a periodic domain, where the age a is reset after
the cells go through mitosis. The granulosa cell repartition in the ovulatory follicle is characterized by a
roughly older age range, and a higher maturity and cell density ranges than in the atretic follicle.

2.2 Wellposedness of the model

We first consider Eq.(1) in open-loop, so that the control terms uf and U are given functions of time. We
can thus express the velocities and loss term as gf (t), hf (γ, t) and λ(γ, t). In this case, we show below that
there exists a unique solution to Eq.(1) on the whole domain.
We use a change of variables to transform Eq.(1) into a conservation equation without a loss term.

Let φk
f = φ̃k

f exp (l(γ, t)) defined on Qk. Let ∂Qk denote the boundary of the domain Qk.
Let l(γ, t) such as

∂l(γ, t)

∂t
+ hf (γ, t)

∂l(γ, t)

∂γ
= −λ(γ, t) (8)

l(0, t) = l(γ, 0) = 0

We have hf ∈ L∞(Qk) (see paragraph 3.2.1), div(hf ) ∈ L∞(Qk) and λ ∈ L2(Qk). Then there exists,

according to [3], a unique solution l(γ, t) in L2(Qk) and its trace is well-defined in L2(∂Qk). Now φ̃k
f verifies

∂φ̃k
f

∂t
+ div(vf φ̃k

f ) = 0 (9)
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Figure 3: Repartition of the cell density of an ovulatory follicle (left) and an atretic follicle (right). The
horizontal axis represents the cell age, the vertical axis the cell maturity, and the colorbar indicates the cell
density value.

where vf is the velocity vector: vf =

(

gf(t)
hf (γ, t)

)

.

We notice that gf (t) > 0 for a = ka2 and hf (γ, t) > 0 for γ = 0.
We note ∂Ωa

k = {(a, γ) | a = ka2}. The inward boundary for Eq.(9) is ∂Qa
k = ∂Ωa

k∪{(a, γ) | γ = 0}×]0, T [, the

boundary conditions are φ̃k
f |∂Ωa

k
= Γ−

k (γ, t) and φ̃k
f (a, 0, t) = 0 and the initial condition is φ̃k

f |Qk
= φf0|Qk

.

As vf ∈ L∞(Qk)2 and div(vf ) ∈ L∞(Qk), according to [3], there exists a unique solution φ̃k
f ∈ L2(Qk) and

its trace is well-defined in L2(∂Qa
k+1) as soon as Γ−

k ∈ L2(∂Qa
k) and φf0 ∈ L2(Qk).

Finally we can solve the following problem Pk:


















∂φk
f

∂t
+

∂gf (t)φk
f

∂a
+

∂hf (γ,t)φk
f

∂γ
= −λ(γ, t)φk

f

φk
f |δQa

k
= Γ−

k (γ, t)

φk
f (a, 0, t) = 0

φk
f (a, γ, 0) = φf0|Ωk

which allows to compute φk
f on Qk and Γ+

k = φk
f |∂Qa

k+1
.

Now we can successively solve the Pk problems, where:
for k = 0, Γ−

k (γ, t) = 0 ∈ L2(Q0);
for k > 0, Γ−

k (γ, t) ∈ L2(Qk) defined by:

{

Γ−

k (γ, t) = 2
τgf (g1uf+g2)Γ

+
k−1(γ, t) (γ, t) ∈ [0, γs[×]0, T [

Γ−

k (γ, t) = Γ+
k−1(γ, t) (γ, t) ∈ [γs,∞)×]0, T [

It is easy to see that φf defined on the whole domain by φf = φk
f on L2(Qk) ∀k ∈ N is unique.

The closed-loop model can be considered as a succession of open-loop equations solved on the time intervals
[0, τf [, [τf , 2τf [, .... On each time interval [iτf , (i + 1)τf [, ∀i ∈ N, the control terms, which close the loop
(see Eq.(6)), are already defined by the dynamics of the system on the [(i − 1)τf , iτf [ time interval, so that
we deal with an open-loop problem. We can thus build the solution of the closed-loop problem and for the
whole time interval considered, so that the closed-loop problem is also wellposed.
Remark that the stability of this closed-loop control is an open question.
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2.3 Characteristic equations

The model deals with controlled partial differential equations. Up to now, no convincing control strategy
for such equations is available from the literature. To tackle the control problems, we focus on the actions
of the control terms on the characteristics of the conservation laws.
We now deal with the following ordinary differential equations [4]:











ȧc = gf(uf )
γ̇c = hf (γc, uf)
˙φfc = −

(

λ(γc, U) +
∂hf (γc,uf )

∂γc

)

φfc

c = 1 . . . n (10)

where gf , hf and λ are defined in Eqs.(2,3,4).
The local control uf acts on the position of the characteristics on the (ac, γc) spatial domain at a given time,
and U on the loss term λ.

The transfer conditions between the cellular phases are continuous on ac and γc and discontinuous on
φfc. For the transfer between phase 1 and phase 2, the flux continuity condition gives:
- for Ti such as: ∀k ∈ N ac(Ti) = a1 + ka2 0 ≤ γc(Ti) ≤ γs

φfc(T
+
i ) = τgf (g1uf (T−

i ) + g2)φfc(T
−

i ) (11)

For the transfer between phase 2 and phase 1, after mitosis, the flux doubling condition gives:
- for Ti such as: ∀k ∈ N ac(Ti) = ka2 0 ≤ γc(Ti) ≤ γs

τgf (g1uf(T +
i ) + g2)φfc(T

+
i ) = 2φfc(T

−

i ) (12)

Ovulatory follicles are distinguished from the atretic ones by their characteristic curves reaching a given zone
of the (ac, γc, φfc) space at a given time, as we can see on Figure 3. In the next section, we study the control
terms that lead the caracteristics curves into the target for ovulation or for atresia. We study the control
problem in open-loop and for physiological coherence, take the constraint uf ≤ U into account.

3 Backwards reachable sets

3.1 Link with Hamilton-Jacobi-Bellman equations

We assume that a follicle ovulates (resp. undergoes atresia) at time T if:
∀c = 1 . . . n, (ac(T ), γc(T ), φfc(T )) ∈ Mo( resp. ∈ Ma) where Mo represents the target for ovulation and
Ma the target for atresia. We focus here on the backwards problem, and seek the backwards reachable set of
Mo (resp. Ma), i.e. the states from which it is possible to reach Mo (resp. Ma), given admissible controls
U and uf . On a physiological viewpoint, it corresponds to the initial conditions compatible with ovulation
(resp. atresia), subject to correct control laws amongst the set of admissible controls.

Such backwards reachability problems can be solved in the framework of optimal control theory. Let us
consider the nonlinear continuous dynamics:







ẋ = f(t, x, u)
x ∈ R

n

u ∈ U ⊂ R
m

(13)

For a Lipschitz continuous function f , there is a unique solution to the initial-value problem for any u(t).
Given a target set M ∈ Rn, the backwards reachable set W [τ ] = W (τ, t1,M) from time τ to t1 is the set of
states x ∈ Rn for each of which there exists a control u(t) that steers system (13) from the state x(τ) = x
to x(t1) ∈ M [5].
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Let:
V (τ, x) = min

u
{d2(x(t1),M)|x(τ) = x} (14)

where d2(x, X) = min{(x − z, x − z)|z ∈ X} is the square of the distance function d(x, X) from point x to
set X .
Then the following property is true:

W (τ, t1,M) = {x|V (τ, x) = 0} (15)

The idea is to find among all possible controls the one (or those) that can steer the state x into the target
set M at time t1, thus to minimize the distance function d2(x(t1),M) according to the control u. Each state
such as d2(x(t1),M) = 0 is in the target M at time t1.

Eq.(14) corresponds to an optimal control problem, which can be solved by the “backwards” Hamilton-
Jacobi-Bellman (HJB) equation [6]:

Vt + min
u

{Vx.f(t, x, u)} = 0 (16)

V (t1, x) = d2(x(t1,M)) (17)

where minu{Vx.f(t, x, u)} is the Hamiltonian.
The backwards reachable set of system (13) at time τ can thus be computed by solving Eq.(16) with the
final condition (17), and then finding the zero-level set of the solution V (τ, x) to identify the states that
verify Eq.(15).

3.2 Application to granulosa cells

3.2.1 Solution uniqueness

We represent each follicle by n characteristic curves, with three state variables: an age, a maturity and a
cell density, so that the state dimension is 3 × n. System (13) can be identified with

x = (a1(t), ..., an(t); γ1(t), ..., γn(t); φf1(t), ..., φfn(t))T

and for each cellular phase i = 1, 2, 3, the dynamics fi are:

fi =



































gf(uf )
...

gf(uf )
hf (γ1, uf )

...
hf (γn, uf )

K(γ1, uf , U)φf1

...
K(γn, uf , U)φf1



































(18)

where the gf and hf functions are defined in Eqs.(2,3,4) and K(γc, uf , U) is defined by

∀k ∈ N ∀(ac, γc) ∈ [ka2, ka2 + a1[×[0, γs[ ∪ [0,∞) × [γs,∞)

K(γc, uf , U) = −

(

λ(γc, U) +
∂hf(γc, uf )

∂γc

)

∀k ∈ N ∀(ac, γc) ∈ [ka2 + a1, (k + 1)a2[×[0, γs[

K(γc, uf , U) = ln(2)φfc (19)

(20)
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In phase 1 and phase 3, K(γc, uf , U) verifies ˙φfc = K(γc, uf , U)φfc (see Eq.(10)). It differs from the ex-
pression given in phase 2, as we have regularized the φfc variable, to avoid the jumps (11) and (12) at the
transitions between the cellular phases. The details of the regularization leading to those dynamics are given
in Appendix A.

According to physiological knowledge, we can consider that there exists a maximal age, amax, beyond which
all cells become senescent and die. This assumption introduces the notion of a maximal life time Tmax such
as a(Tmax) = amax (Tmax exists because ȧ > g2 > 0). Hence, there is also a maximal maturity γmax and
a maximal cell density φfmax attainable for t ∈ [0, Tmax]. As all variables are bounded, the norm of the
Jacobian matrix associated to fi also is, so all fi are Lipschitz continuous and there is a unique solution x(t)
per phase.

3.2.2 Hamiltonian in each cellular phase

The HJB equations that characterize the backwards reachable sets are obtained once the Hamiltonians
in each phase have been minimized according to the control terms U and uf . Let us assume that U is
bounded: U ∈ [Umin, Umax]. This assumption is natural as U represents the plasmatic level of FSH. Then the
multiplicative form of uf (Eq.(6)) implies that uf varies in the same interval, so u = {U, uf} ∈ [Umin, Umax]
and that uf ≤ U .
For each cellular phase we solve an equation of the form

Vt + Hfi = 0 (21)

V (t1, x) = d2(x(t1,M))

where M is the target set, Hfi = minu

{

(pT .fi(t, x, u))
}

,
and p = DxV = (pa1

, ..., pan
, pγ1

, ..., pγn
, pφf1

, ..., pφfn
)T .

We first minimize the Hamiltonian as if U and uf were independent, and then study the situations where
the constraints Umin ≤ uf ≤ U ≤ Umax are not respected.

Phase1

In phase 1, the Hamiltonian is:

Hf1 = min
u

{

(pT .f1(t, x, u))
}

pT .f1(t, x, u) = τgfg2

n
∑

c=1

pac + τhf

[

n
∑

c=1

(−γ2
c + (c1γc + c2))pγc

]

−

n
∑

c=1

Ω(γc)φfcpφfc
+ 2τhf

n
∑

c=1

γcφfcpφfc
− τhf c1

n
∑

c=1

φfcpφfc

+ uf (τgfg1

n
∑

c=1

pac) − exp(−uf/u)

[

τhf

n
∑

c=1

(c1γc + c2)pγc
− τhfc1

n
∑

c=1

φfcpφfc

]

+ U(

n
∑

c=1

Ω(γc)φfcpφfc
)

This expression can be split into three type of terms : those that do not depend on any control term, those
that depend on the control U and those that depend on uf .

According to U , the expression to minimize has the form:

C × U

where C = (

n
∑

c=1

Ω(γc)φfcpφfc
) (22)

9



If C > 0 then Hf1 is minimized for U = Umin else for U = Umax.

According to uf , the expression to minimize has the form: M(uf) = −A

[

exp

(

−uf

u

)]

+ Buf with

A = τhf

n
∑

c=1

(c1γc + c2)pγc
− τhf c1

n
∑

c=1

φfcpφfc
(23)

B = τgfg2

n
∑

c=1

pac

The minimization of M(uf) depends on the sign of A and B. Figure 4 shows the variations of M(uf) for
the four possible combinations.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−2

−1.5
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1.5

2

u
f

M
(u

f)

A>0,B>0
A<0,B<0
A<0,B>0
A>0,B<0

Figure 4: Variations of M(uf) according to the sign of A and B (A = ±2 and B = ±2).

The study of the variations of M(uf) results in the following minimization:

. if A > 0 and B ≥ 0 or A ≥ 0 and B > 0 then M(uf) increases so that uf = Umin.

. if A < 0 and B ≤ 0 or A ≤ 0 and B < 0 then M(uf) decreases so that uf = Umax.

. if A < 0 and B > 0, M(uf ) has a global minimum in ufmin ≡ −u ln

[

−Bu

A

]

- if ufmin ∈ [Umin, Umax], then uf = ufmin,

- else if ufmin ≤ Umin then uf = Umin,

- else if ufmin > Umax then uf = Umax.

. if A > 0 and B < 0, M(uf ) has a global maximum in ufmin.

- if ufmin ∈ [Umin, Umax],

then if M(Umin) ≤ M(Umax) then uf = Umin

else if M(Umin) ≥ M(Umax) then uf = Umax

- else if ufmin ≤ Umin then uf = Umax,

- else if ufmin > Umax then uf = Umin.

When U = Umax all constraints are automatically respected.
When U = Umin, and uf > Umin the constraint uf ≤ U is transgressed. Such a case occurs when

C > 0, A < 0 and B ≤ 0 (24)
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and may occur when

C > 0, A < 0 and B > 0 (25)

C > 0, A > 0 and B < 0 (26)

For sake of concision, the results detailing the constrained minimization in those cases are given in Ap-
pendix B.
In case (24)

if B + C > −
A

u
exp

(

−Umin

u

)

then uf = U = Umin

if B + C < −
A

u
exp

(

−Umax

u

)

then uf = U = Umax

if −
A

u
exp

(

−Umax

u

)

≤ B + C ≤ −
A

u
exp

(

−Umin

u

)

then uf = U = −u ln

(

−
(B + C)u

A

)

In cases (25) and (26), we use the following control law:

if B + C > −
A

u
exp

(

−
Umin

u

)

then uf = U = Umin

if

{

B + C ≤ −A
u

exp
(

−Umax

u

)

B < −A
u

exp
(

−Umax

u

) then uf = U = Umax

if

{

B + C ≤ −A
u

exp
(

−Umax

u

)

B ≥ −A
u

exp
(

−Umax

u

) then uf = −u ln

(

−
(B + C)u

A

)

Phase 2

This phase is not controlled so that the expression of its Hamiltonian is found immediately:

Hf2 =

n
∑

c=1

pac + ln(2)

n
∑

c=1

pφfc
φfc

Phase 3

The expression of the Hamiltonian in phase 3 is given by:

Hf3 = min
u

{

(pT .f3(t, x, u))
}

pT .f3(t, x, u) =

n
∑

c=1

pac + τhf

[

n
∑

c=1

(−γ2
c + (c1γc + c2))pγc

]

−
n

∑

c=1

Ω(γc)φfcpφfc
+ 2τhf

n
∑

c=1

γcφfcpφfc
− τhfc1

n
∑

c=1

φfcpφfc

− exp(−uf/u)

[

τhf

n
∑

c=1

(c1γc + c2)pγc
− τhfc1

n
∑

c=1

φfcpφfc

]

+ U(

n
∑

c=1

Ω(γc)φfcpφfc
)

Reminding the definition of C in Eq.(22) and A in Eq.(23), we obtain as control law:
according to U , if C > 0 then Hf3 is minimized for U = Umin else for U = Umax.
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According to uf , the expression of Hf3 is minimized for uf = Umin if A ≥ 0 and for uf = Umax if
A ≤ 0.
When

C > 0 and A < 0 (27)

the constraint uf ≤ U is not respected. The control law has to be amended according to (see Appendix B):

if −
A

u
exp

(

−Umin

u

)

< C then uf = U = Umin

if −
A

u
exp

(

−Umin

u

)

≥ C then uf = U = Umax

This analytical minimization enables to write the expression of the Hamiltonians in each cellular phase.

3.3 Numerical results

3.3.1 Implementation: level set methods

Two main approaches are used to find reachable sets: the Eulerian approach approximates the solution
values on a fixed grid, whereas the Lagrangian approach tracks the trajectories of the dynamics. In case of
backwards reachable sets, Eulerian methods are the most appropriate, as they take into account the presence
of shocks in the HJB equations [7].
Amongst the various Eulerian methods available to compute the exact reachable sets, we used “level set
methods” to solve Eq.(16). They enable to simulate the motion of dynamic surfaces, such as the zero-level
set of HJB equations [8], with a very high accuracy (about a tenth of the spacing between the grid points
[7]).
Such level set algorithms are implemented in the “Toolbox of Level Set Methods” 1, which can be used to
solve, among others, equations of the form:

DtV (x, t) + H(x, DxV ) = 0

with the constraints DtV (x, t) ≥ 0 or V (x, t) ≥ Ṽ (x, t)

The time derivative, DtV , is approximated by a Runge-Kutta scheme, with customizable accuracy. The
spatial derivative, DxV , is approximated with an upwind finite difference scheme. The Hamiltonian, H(x, p),
is approximated with a Lax-Friedrichs scheme:

Ĥ(x, p+, p−) ≡ H(x,
p+ + p−

2
) −

1

2
αT (p+ − p−)

where p+ and p− are respectively the right and left approximations of p, and α is an artificial dissipation
coefficient added to avoid oscillations in the solution.

Although the toolbox is designed for solving initial value problems, it is possible, in case of autonomous
systems, to solve final value problems by multiplying f in system (13) by (−1) [8].

3.3.2 Simulation results

The initial problem is a 3 × n dimensional problem, where n is the number of characteristics considered.
This problem is not tractable from a numerical ground. Indeed, for n ≥ 2 and a correct number of grid
points in each dimension (≃ 100) we cope with too many points (1003n), and face memory errors. We

1http://www.cs.ubc.ca/˜mitchell/ToolboxLS/
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thus computed the backwards reachable sets for one characteristic, (a1, γ1, φf1), corresponding to either an
average ovulatory or atretic trajectory. Moreover the constrained optimization analytically performed asks
for a much more refined grid than in the not constrained case, so that the simulation results are obtained
for the latter situation.
In the case of ovulatory follicles, the boundaries of the target set Mo are chosen to coincide with the ranges
of age, maturity, and cell density reached by the characteristics of an ovulatory follicle at ovulation time
(t = 11), (see Figure 3, left).
The target set Mo for ovulation is thus defined as:

Mo = {(a1, γ1, φf1) ∈ [10, 12]× [10, 11]× [4, 6]} (28)

The difference in the age value is due to the “unrolled” domain compared to the periodic domain. It corre-
sponds to the duration of two cell cycles.
Figure 5 illustrates all the trajectories that can reach the target set for ovulation.
The left panel of Figure 5 illustrates the projection, on the age-maturity plan, of the changes in the back-

Figure 5: Evolution in time of the backwards reachable set for ovulatory follicles. The figure on the left gives
the projection of the 3D set on the (a1-γ1) plan, and the figure on the right gives the projection of the 3D
set on the (a1-φf1) plan.

wards reachable set. Time t = 0 (first subplot) is ovulation time, and we can see the square representing
the projection of the target set Mo. At time t = 4, the set area has increased, including all states that
can join the target set in less than 4 time units (2 time units roughly correspond to 1 cell cycle duration).
The backwards reachable set at time t = 11 represents the set of states which need a maximum duration
of 11 time units to reach the target set for ovulation. We chose to stop the simulation at this time as it
contains the initial conditions used for the simulation represented in Figure 3. The “staircase” shape of the
backwards reachable set is due to the dynamics in the cell cycle: the maturity in phase 1 increases with
age, and in phase 2, the maturity remains unchanged as the age increases, which yields the flat part of the
staircase. An instance of the flat part can be seen at time t = 11 between a1 = 7 and a1 = 8.

The right panel of Figure 5 illustrates the projection, on the age-cell density plan, of the temporal changes
in the backwards reachable set. We can also see at time t = 0 the projection of the target set Mo. At
time t = 11 a large part of the age-cell density domain allows to reach the target set. From age a1 = 9, the
cell density variable increases with age to reach the target set. This is in agreement with the cell density
dynamics in phase 3.

The backwards reachable set of Mo nearly contains the whole spatial domain. It is an overapproxima-
tion of the initial states that allow to reach the target set. Indeed, it does not only contain the trajectories of
the characteristics of the ovulatory follicle, but also those starting from initial conditions that do not arise on
a physiological ground. Basing on biological knowledge, we can thus select from the overapproximated set,
the physiologically-meaningful subset: we assume that all cells are initially within the cell cycle, at their first
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generation, so that the subset of admissible initial conditions is defined by {(a1(t0), γ1(t0)) ∈ [0, a2]× [0, γs]}.
This subset is delimited by the white line on Figure 5.

The target set Ma for atresia is defined by the ranges reached by the characteristics of atretic follicles:

Ma = {(a1, γ1, φf1) ∈ [8, 10]× [3, 4] × [2, 4]} (29)

Figure 6 illustrates all the trajectories that fall into the target set for an atretic follicle.
The left panel of Figure 6 illustrates the projection, on the age-maturity plan, of the changes in the back-

Figure 6: Evolution in time of the backwards reachable set for atretic follicles. The figure on the left gives
the projection of the 3D set on the (a1-γ1) plan, the figure on the right gives the projection of the 3D set on
the (a1-φf1) plan.

wards reachable set. Some states in the target set are initially in the cell cycle, thus we can recognize the
“staircase” shape induced by the dynamics within the cell cycle phases. The right panel of Figure 6 illus-
trates the projection, on the age-cell density plan, of the temporal changes in the backwards reachable set.
The set area increases, and at time t = 11, it roughly contains the whole domain.
Once again, the set of initial states leading to atresia is overapproximated, and we can apply the same
constraints as in the ovulatory case on the initial conditions, delimited by the white line on Figure 6.

The initial conditions leading to ovulation or atresia, that respect the physiological constraints, are roughly
superimposed, and contain the whole subset of admissible initial conditions. Thus we cannot distinguish a
priori ovulatory trajectories from atretic ones. This result agrees with physiological knowledge, as there is
no predestination in follicular fate [9].
Although the initial conditions do not enable to determine whether a follicle is ovulatory or atretic, there is a
moment when trajectories leading to ovulation or to atresia diverge. The moment when the separation takes
place corresponds to the physiological time of selection, when a few follicles follow an ovulatory trajectory
whereas the others follow an atretic one.

4 Discussion and perspectives

We have characterized the backwards reachable sets for both ovulatory and atretic follicles. This control
problem has been solved by studying the characteristics of the conservation laws that describe the trajec-
tories of ovarian follicles. The HJB equations representing the backwards reachable sets have been solved
numerically for one characteristic curve, and allow to characterize the set of initial conditions that lead a
characteristic into the target set either for ovulation or atresia.

We have used the backwards reachable sets theory for a problem which is not entirely continuous, as there
are discontinuities at the transitions between each cellular phase. Hence, we studied each phase separately,
assuming that the transitions at the boundaries were continuous. Actually, we deal with a hybrid problem,
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as each cellular phase has its proper dynamics. As far as time dependent HJB equations are concerned,
elements of a theory for hybrid systems are established, especially concerning “reach-avoid” sets [10], but it
is not complete yet, and not directly applicable to our problem. Viability theory also considers reachable
sets for hybrid systems [11], but the algorithms used are not as accurate as level set methods, as they use a
different representation of the reachable sets [7]. Yet the numerical results we have obtained with the level
set methods seem correct as the continuous part of the system is solved with highly accurate algorithms and
the hybrid part is ruled by continuity conditions.

We have solved a simplified numerical problem dealing with a single characteristic of a follicle, as the
simulation tool needs too huge memory to solve higher dimensional problems. The backwards reachable sets
obtained show that it is possible to find a correct control law to steer a large set of initial conditions into
the target set, and they give information on the maximum necessary duration before reaching the target.
If the simulation of more than one characteristic were possible, as a compromise would be made in the
optimisation procedure between all possible trajectories, they would no longer be independent and we would
expect the backwards reachable sets to be smaller. Indeed, we speculate that physiologically, a larger set
in case of a single growing follicle ensures the ovulation succes, while a smaller set in case of several simul-
taneously growing follicles limits the ovulation rate and underlies in part the selection process. Yet this
assumption needs improvement of the numerical implementation to be tested.

We have studied by now the open-loop problem, for the ovulation of one follicle. This situation is close
to therapeutic situations of ovarian stimulations. Hence, the control laws obtained may be usefull in improv-
ing therapeutic schemes. Yet, the physiological situation si even more complexe, as follicular ovulation can
occur only when ovulation has been triggered by a hormonal signal in response to the dynamics of the whole
follicle population (condition (7)). A great challenge will be to solve the closed-loop multi-scale system, that
takes into account both ovulation triggering and the interactions between follicles.
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A Regularization

A.1 Dynamics of the regularization phases

The variable φfc is not continuous at the transition between each cellular phase, due to the conditions (11)
and (12). We introduce two new phases to regularize φfc, namely phase 1-2 and phase-mit:
- the dynamics in phase 1-2 allow to regularize the jump condition (11) on φfc from phase 1 to phase 2;
- the dynamics in phase-mit allow to regularize the jump condition (12) on φfc from phase 2 to phase 1.
The introduction of these phases alters the spatial domain as represented on Figure 7, where phase 1={(a, γ) ∈
[0, a1[×[0, γs[}, phase 1-2={(a, γ) ∈ [a1, a12[×[0, γs[}, phase 2={(a, γ) ∈ [a12, a2[×[0, γs[},phase-mit={(a, γ) ∈
[a2, amit[×[0, γs[} and phase 3={(a, γ) ∈ [0,∞) × [γs,∞)}

a1 a mita2

Phase 3

Phase 1 Phase 1−2 Phase 2 Phase 1 Phase 1

γ
s

a12

1 cell cycle

Phase−mit

Figure 7: Introduction of two new phases

The dynamics in phase 1, phase 2 and phase 3 remain unchanged as defined in Eqs.(2,3,4).
The dynamics in phase 1-2 and the Hamiltonian Hf1−2 are chosen as:

∀ k ∈ N, ∀c = 1 . . . n

∀ (ac, γc, φfc) ∈ [a1 + kamit, a12 + kamit] × [0, γs] × [0,∞)






dac

dt
= 1

dγc

dt
= 0

dφfc

dt
= k1φfc

(30)

Hf1−2 =

n
∑

c=1

pac
+ k1

n
∑

c=1

pφfc
φfc (31)

Let t1 such as ac(t1) = a1, and t12 such as ac(t12) = a12.
Thanks to this additionnal phase, condition (11) becomes:

φfc(t12) = (g1uf (t1) + g2)φfc(t1)

According to the dynamics (30) in phase 1-2,

φfc(t12) = φfc(t1) exp(k1(t12 − t1)) = φfc(t1) exp(k1(a12 − a1))

so we identify

k1 =
ln(g1uf (t1) + g2)

a12 − a1
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The dynamics in phase-mit and the Hamiltonian Hfmit are chosen as:

∀ k ∈ N, ∀c = 1 . . . n

∀ (ac, γc, φfc) ∈ [a2 + kamit, (k + 1)amit] × [0, γs] × [0,∞)






dac

dt
= 1

dγc

dt
= 0

dφfc

dt
= k2φfc

(32)

Hfmit =

n
∑

c=1

pac
+ k2

n
∑

c=1

pφfc
φfc (33)

Let t2 such as ac(t2) = a2, and tmit such as ac(tmit) = amit.
Thanks to this additionnal phase, condition (12) becomes:

2φfc(t2) = (g1uf(tmit) + g2)φfc(tmit)

According to the dynamics (32) in phase-mit,

φfc(tmit) = φfc(t2) exp(k2(tmit − t2)) = φfc(t2) exp(k1(amit − a2))

So we identify

k2 =
ln( 2

g1uf (tmit)+g2
)

amit − a2

This regularization does not deeply modify the dynamics of the system, as the age variable is only de-
layed. Since the age is basically used as a phase marker, the same dynamics as previously can be obtained
with another numerical calibration of the system.

A.2 Simplification of the regularization phases

We show below that uf(t1) = uf(tmit), which permits to simplify the regularization process and aggregate
the two regularization phases into phase 2.
Both uf (t1) and uf(tmit) depend on the values of A(t1), B(t1), and A(tmit), B(tmit) (see Eq.(23)).
At time t1 corresponding to the end of phase 1,
A(t1) = τhf

∑n
c=1 (c1γc(t1) + c2)pγc

(t1) − τhf c1

∑n
c=1 φfc(t1)pφfc(t1) and B(t1) = τgfg1

∑n
c=1 pac(t1).

The covariables pxc
verify:

dpxc

dt
= −

∂Hf

∂xc

, (34)

where Hf is the Hamiltonian, and xc is ac, γc or φfc [6].
At the end of phase 1-2 at time t12 given Eqs.(34) and (31):























pac
(t12) = pac

(t1)
pγc

(t12) = pγc
(t1)

pφfc
(t12) = 1

(g1uf (t1)+g2)
pφfc

(t1)

γc(t12) = γc(t1)
φfc(t12) = (g1uf(t1) + g2)φfc(t1)

(35)
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Until the end of phase 2, at time t2, all the variable values remain unchanged to those at time t12.
At the end of phase-mit, at time tmit:























pac
(tmit) = pac

(t2)
pγc

(tmit) = pγc
(t2)

pφfc
(tmit) =

(g1uf (tmit)+g2)
2 pφfc

(t2)
γc(tmit) = γc(t2)
φfc(tmit) = 2

(g1uf (t2)+g2)
φfc(t2)

(36)

Thus, at the end of phase-mit, before entering once again phase 1:

A(tmit) = τhf

n
∑

c=1

(c1γc(tmit) + c2)pγc
(tmit) − τhfc1

n
∑

c=1

φfc(tmit)pφfc
(tmit)

= τhf

n
∑

c=1

(c1γc(t1) + c2)pγc
(t1)

−τhfc1

n
∑

c=1

2

(g1uf(tmit) + g2)
(g1uf (t1) + g2)φfc(t1)

(g1uf (tmit) + g2)

2

1

(g1uf(t1) + g2)
pφfc

(t1)

= A(t1)

and B(tmit) = τgfg1

n
∑

c=1

pac(tmit) = B(t1)

We have shown that A(tmit) = A(t1) and B(tmit) = B(t1). Thus, the control applied at time tmit is the
same as the control applied at time t1.
It is worth noticing that whatever the control applied at time t1 is, the value of the variable φfc at time tmit

is φfc(tmit) = 2φfc(t1) (see Eqs (35 and 36)). This allows to remove the regularization phases and utilize
phase 2 to introduce linear dynamics for φfc, as in Eq (19), and to operate the regularization and obtain at
mitosis φfc(t2) = 2φfc(t1).

B Optimization with constraints

To take the constraints Umin ≤ uf ≤ U ≤ Umax into account, we add Lagrangian multipliers to the
Hamiltonian Hf1 in the cases (24,25,26), and to the Hamiltonian Hf3 in the case (27).
In phase 1 we obtain the new Hamiltonian:

H1 = T1 − A exp
(

−
uf

u

)

+ Buf + CU + ν1(uf − U) + ν2(Umin − uf ) + ν3(U − Umax)

where T1 contains all terms that do not depend on the control terms.

We use the theorem of Kuhn-Tucker:























∂H1

∂U
= 0

∂H1

∂uf
= 0

uf = U and ν1 > 0
uf = Umin and ν2 > 0
U = Umax and ν3 > 0
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and solve one of the following systems:

ν1 and ν2 are active (ν1 > 0, ν2 > 0)


















C − ν1 = 0
A
u

exp
(

−uf

u

)

+ B + ν1 − ν2 = 0

U = uf

uf = Umin

ν1 and ν3 are active (ν1 > 0, ν3 > 0)


















C − ν1 + ν3 = 0
A
u

exp
(

−uf

u

)

+ B + ν1 = 0

U = uf

uf = Umax

only ν1 is active (ν1 > 0)










C − ν1 = 0
A
u

exp
(

−uf

u

)

+ B + ν1 = 0

U = uf

In case (24) C > 0, A < 0 and B < 0

• when ν1 and ν2 are active we have














ν1 = C > 0
ν2 = C + B + A

u
exp

(

−Umin

u

)

uf = Umin

U = Umin

so that ν2 > 0 ⇐⇒ B + C > −A
u

exp
(

−Umin
u

)

• when ν1 and ν3 are active we have














ν3 = −C + ν1

ν1 = −B − A
u

exp
(

−Umax

u

)

> 0
uf = Umax

U = Umax

so that ν3 > 0 ⇐⇒ B + C < −A
u

exp
(

−Umax
u

)

• when only ν1 is active we have










ν1 = C > 0

uf = −u ln
(

− (B+C)u
A

)

U = uf

We can verify that for −A
u

exp
(

−Umax

u

)

≤ B + C ≤ −A
u

exp
(

−Umin

u

)

we have Umin ≤ uf = U ≤ Umax

In cases (25) and (26), either C > 0, A < 0 and B > 0 or C > 0, A > 0 and B < 0

• when ν1 and ν2 are active we have














ν1 = C > 0

ν2 = C + B + A
u

exp
(

−Umin

u

)

uf = Umin

U = Umin

so that ν2 > 0 ⇐⇒ B + C > −A
u

exp
(

−Umin
u

)

• when ν1 and ν3 are active we have














ν3 = −C + ν1

ν1 = −B − A
u

exp
(

−Umax

u

)

uf = Umax

U = Umax

so that







ν1 > 0 ⇐⇒ −B − A
u

exp
(

−Umax

u

)

> 0

ν1 > 0 ⇐⇒ B < −A
u

exp
(

−Umax

u

)

ν1 > 0 =⇒ ν3 > 0

• when only ν1 is active we have










ν1 = C > 0

uf = −u ln
(

− (B+C)u
A

)

U = uf
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In case (27) the new Hamiltonian in phase 3 is

H3 = T3 − A exp
(

−
uf

u

)

+ CU + ν1(uf − U) + ν2(uf − Umin) + ν3(U − Umax)

where T3 contains all terms that do not depend on the control terms and C > 0 and A < 0.

• when ν1 and ν2 are active we have


















ν1 = C > 0

ν2 = C + A
u

exp
(

−uf

u

)

uf = Umin

U = Umin

so that ν2 > 0 ⇐⇒ C > −A
u

exp
(

−Umin
u

)

• when ν1 and ν3 are active we have















ν3 = −C + ν1 > 0

ν1 = −A
u

exp
(

−Umax

u

)

> 0
uf = Umax

U = Umax

• The situation where only ν1 is active would occur when

{

C ≤ −A
u

exp
(

−Umin
u

)

−A
u

exp
(

−Umax

u

)

≤ 0

which never occurs as A < 0.

20


