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Abstract

We construct a classifier which attains the rate of convergence log n/n under

sparsity and margin assumptions. An approach close to the one met in approx-

imation theory for the estimation of function is used to obtain this result. The

idea is to develop the Bayes rule in a fundamental system of L2([0, 1]d) made

of indicator of dyadic sets and to assume that coefficients, equal to −1, 0 or 1,

belong to a kind of L1−ball. This assumption can be seen as a sparsity as-

sumption, in the sense that the proportion of coefficients non equal to zero

decreases as ”frequency” grows. Finally, rates of convergence are obtained by

using an usual trade-off between a bias term and a variance term.

1 Introduction

Consider a measurable space (X ,A) and π a probability measure on this space.

Denote by Dn = (Xi, Yi)1≤i≤n n observations of (X, Y ) a random variable with

values in X × {−1, 1} distributed according to π. We want to construct measurable

functions which associate a label y ∈ {−1, 1} to each point x of X , such functions

are called prediction rules. The quality of a prediction rule f is given by the value

R(f) = P(f(X) 6= Y )
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called misclassification error of f . It is well known (e.g. Devroye et al. [1996]) that

there exists an optimal prediction rule which attains the minimum of R over all

measurable functions with values in {−1, 1}. It is called Bayes rule and defined by

f ∗(x) = sign(2η(x) − 1),

where η is the conditional probability function of Y = 1 knowing X defined by

η(x) = P(Y = 1|X = x).

The value

R∗ = R(f ∗) = min
f
R(f)

is known as the Bayes risk. The aim of classification is to construct a prediction

rule, using the observations Dn, which has a risk as close to R∗ as possible. Such a

construction is called a classifier . Performance of a classifier f̂n is measured by the

value

Eπ(f̂n) = Eπ[R(f̂n) −R∗]

called excess risk of f̂n. In this case R(f̂n) = P(f̂n(X) 6= Y |Dn) and Eπ denotes

the expectation w.r.t. Dn when the probability distribution of (Xi, Yi) is π for any

i = 1, . . . , n. We say that a classifier f̂n learns with the convergence rate φ(n), where

(φ(n))n∈N is a decreasing sequence, if an absolute constant C > 0 exists such that

for any integer n, Eπ[R(f̂n) − R∗] ≤ Cφ(n).

We introduce a loss function on the set of all prediction rules:

dπ(f, g) = |R(f) − R(g)|.

This loss is a semi-distance (it is symmetric, satisfies the triangle inequality and

dπ(f, f) = 0). For all classifiers f̂n, it is linked to the excess risk by

Eπ(f̂n) = Eπ[dπ(f̂n, f
∗)],

where the RHS is the risk of f̂n associated to the loss dπ. In classification we can

consider three estimation problems. The first one is estimation of the Bayes rule f ∗,

the second one is estimation of the conditional probability function η and the last

one is estimation of the probability π. Usually, estimation of η involves smoothness
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assumption on the conditional function η. However, global smoothness assumptions

on η are somehow too restrictive for the estimation of f ∗ since the behavior of η

away from the decision boundary {x ∈ X : η(x) = 1/2} may have no effect on the

estimation of f ∗.

In this paper we deal directly with estimation of f ∗. But, in this case, the main

difficulty of the classification problem is the dependence on π of the loss dπ (usually,

we use a loss free from π, which upper bounds dπ to obtain rates of convergence).

Moreover, using the loss dπ, we don’t have the usual bias/variance trade-off, unlike

many other estimation problems. This is due to the fact that we do not have an

approximation theory in classification for the loss dπ. This gap is due to the dif-

ficulty that dπ depends on π, thus, this theory has to be uniform on π. We need

approximation results of the form:

∀π = (PX, η) ∈ P, ∀ǫ > 0, ∃fǫ ∈ Fǫ : dπ(fǫ, f
∗) ≤ ǫ, (1)

where PX is the marginal distribution of π on X , f ∗ = sign(2η−1), P is a set of prob-

ability measures on X ×{−1, 1} and the family of classes of prediction rules (Fǫ)ǫ>0

is decreasing (Fǫ ⊂ Fǫ′ if ǫ′ < ǫ) and Fǫ is less complex than {f ∗ : π ∈ P}, in fact we

expect Fǫ to be parametric. Similar results appear in density estimation literature,

where, for instance, P is replaced by the set of all probability measures with a density

with respect to the Lebegue measure lying in an L1−ball and Fǫ is replaced by the

set of all functions with a finite number (depending on ǫ) of coefficients non equal to

zero in the decomposition in the chosen orthogonal basis. But approximation theory

in density estimation does not depend on the underlying probability measure since

the loss functions used there are generally independent of the underlying statistical

problem. In this paper, we deal directly with the estimation of the Bayes rule and

obtain convergence result w.r.t. the loss dπ by using an approximation approach of

the Bayes rules w.r.t. dπ. Theorems in Section 7 of Devroye et al. [1996] show that

no classifier can learn with a given convergence rate for arbitrary underlying proba-

bility distribution π. Thus, assumption on f ∗ has to be done to obtain convergence

rates. In this paper, assumption on f ∗ is close to the one met in density estimation

when we assume that the underlying density belongs to an L1−ball.

Usually, a model (set of measurable functions with values in {−1, 1}) is considered

and we assume that the Bayes rule belongs to this model. In this case the bias is

3



equal to zero and no bound on the approximation term is considered. In Blanchard

et al. [2003], question on the control of the approximation error for a class of models

in the boosting framework is asked. In this paper, it is assumed that the Bayes rule

belongs to the model and nature of distribution satisfying such condition is explored.

Another related work is Lugosi and Vayatis [2004], where, under general conditions,

it can be guaranteed that the approximation error converges to zero for some specific

models. In the present paper, bias term is not taken equal to zero and convergence

rates for the approximation error are obtained depending on the complexity of the

considered model (cf. Theorem 2).

We consider the classification problem on X = [0, 1]d. All the results can be

generalized to a given compact of R
d. Like in many other works on the classification

problem an upper bound for the loss dπ is used. But, in our case we still work directly

with the estimation of f ∗. For a prediction rule f we have

dπ(f1, f
∗) = E[|2η(X) − 1|1If1(X)6=f∗(X)] ≤ ||f1 − f ∗||L1(P X). (2)

In order to get a distribution-free loss function, we assume that the following as-

sumption holds

(A1) The marginal PX is absolutely continuous w.r.t. the Lebesgue measure λd and

0 < a ≤ dPX(x)/dλd ≤ A < +∞, ∀x ∈ [0, 1]d.

This is a technical assumption used for the control of the PX measure of some

subset of [0, 1]d. In recent years some assumptions have been introduced to measure a

statistical quality of classification problems. The behavior of the regression function

η near the level 1/2 is a key point of the classification’s quality (cf. e.g. Tsybakov

[2004]). In fact, the closest is η to 1/2, the more difficult is the classification problem,

nevertheless when we have η ≡ 1/2 the classification is trivial since all prediction

rules are Bayes rules. Here, we measure the quality of the classification problem

thanks to the following assumption introduced by Massart and Nédélec [2003]:

Strong Margin Assumption (SMA): There exists an absolute constant 0 < h ≤ 1

such that:

P (|2η(X) − 1| > h) = 1.

Under assumptions (A1) and (SMA) we have

ah||f1 − f ∗||L1(λd) ≤ dπ(f1, f
∗) ≤ A||f1 − f ∗||L1(λd).
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Thus, estimation of f ∗ w.r.t. the loss dπ is the same as estimation w.r.t. L1(λd)−norm,

where λd is the Lebesgue measure on [0, 1]d.

The paper is organized as follows. In the next section we propose a representation

for functions with values in {−1, 1} in a fundamental system of L2([0, 1]d). The third

section is devoted to approximation and estimation of Bayes rules having a sparse

representation in this system. In the fourth section we discuss about this approach.

Proofs are given in the last section.

2 Classes of Bayes Rules with Sparse Representa-

tion

Theorem 2 of Subsection 3.1 is about the approximation of the Bayes rules when we

assume that f ∗ belongs to a kind of ”L1−ball” for functions with values in {−1, 1}.
The idea is to develop f ∗ in a fundamental system of L2([0, 1]d, PX) (that is a count-

able family of functions such that the set of all finite linear combinations is dense in

L2([0, 1]d, PX)) inherited from the Haar basis and to control the number of coeffi-

cients non equal to zero. In this paper we only consider the case where PX satisfies

(A1). We can extend the study to a more general case by taking another partition

of [0, 1]d adapted to PX .

First we construct such a fundamental system. We consider a sequence of parti-

tions of X = [0, 1]d by setting for any integer j,

I(j)
k

= I
(j)
k1

× . . .× I
(j)
kd
,

where k is the multi-index

k = (k1, . . . , kd) ∈ Id(j) = {0, 1, . . . , 2j − 1}d,

and for any integer j and any k ∈ {1, . . . , 2j − 1},

I
(j)
k =

{
[

k
2j ,

k+1
2j

)

if k = 0, . . . , 2j − 2
[

2j−1
2j , 1

]

if k = 2j − 1
.

We consider the family S =
(

φ
(j)
k

: j ∈ N,k ∈ Id(j)
)

where

φ
(j)
k

= 1I
I

(j)
k

, ∀j ∈ N,k ∈ Id(j),
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where 1IA denotes the indicator of a set A. Set S is a fundamental system of

L2([0, 1]d, PX). This is the class of indicators of the dyadic sets of [0, 1]d.

We consider the class of functions f defined PX − a.s. from [0, 1]d to {−1, 1}
which can be written in this system by

f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
, PX − a.s., where a

(j)
k

∈ {−1, 0, 1},

where, for any point x ∈ [0, 1]d, the right hand side applied in x is a finite sum.

Denote this class by F (d). In what follows, we use the vocabulary appearing in

the wavelet literature. The index ”j” of a
(j)
k

and φ
(j)
k

is called ”level of frequency”.

Since S is not an orthogonal basis of L2([0, 1]d, PX), the expansion of f w.r.t. this

system is not unique. Therefore, to avoid any ambiguity, we define an unique

writing for any mapping f in F (d) by taking a
(j)
k

∈ {−1, 1} with preferences for

low frequencies when it is possible. Roughly speaking, for f ∈ F (d), denoted by

f =
∑+∞

j=0

∑

k∈Id(j) a
(j)
k
φ

(j)
k
, PX − a.s. where a

(j)
k

∈ {−1, 0, 1}, it means that, we

construct A
(j)
k

∈ {−1, 0, 1}, j ∈ N,k ∈ Id(j), such that, if there exists J ∈ N and

k ∈ Id(J) such that for all k′ ∈ Id(J+1) satisfying φ
(J)
k
φ

(J+1)
k′ 6= 0 we have a

(J+1)
k′ = 1,

then we take A
(J)
k′ = 1 and the 2d other coefficients of higher frequency A

(J+1)
k′ = 0

instead of having these 2d coefficients equal to 1, and the same convention holds for

−1. Moreover if we have A
(J0)
k

6= 0 then A
(J)
k′ = 0 for all J > J0 and k′ ∈ Id(J)

satisfying φ
(J0)
k

φ
(J)
k′ 6= 0. We can describe a mapping f ∈ F (d) satisfying this con-

vention by using a tree. Each knot corresponds to a coefficient A
(J)
k

. The root is

A
(0)
0,...,0. If a knot, describing the coefficient A

(J)
k

, equals to 1 or −1 then it has no

branches, otherwise it has 2d branches, corresponding to the 2d coefficients at the

following frequency, describing the coefficients A
(J+1)
k′ for k′ satisfying φ

(J)
k
φ

(J+1)
k′ 6= 0.

At the end all the leaves of the tree equals to 1 or −1, and the depth of a leaf is

the frequency of the coefficient associated. The writing convention says that a knot

can not have all his leaves equal to 1 together (or −1). In this case we write this

mapping by putting a 1 at the knot (or −1). In what follows we say that a function

f ∈ F (d) satisfies the writing convention (W) when f is written in S using the writing

convention describes in this paragraph. Remark that this writing convention is not

an assumption on the function since we can write all f ∈ F using this convention.

Representation of the Bayes rules using Dyadic decision trees has been explored by
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Nowak and Scott [2004].

Is it possible to write every measurable functions from [0, 1]d to {−1, 1} in the

fundamental system S using coefficients with values in {−1, 0, 1}? Since the family

of set (I̊(j)
k

: j ∈ N,k ∈ Id(j)), where Å denotes the interior of A, is a basis of open

subsets of [0, 1]d, this question is equivalent to this one: ”Take A a Borel of [0, 1]d,

is it possible to find an open subset O of [0, 1]d such that the symmetrical difference

between A and O has a Lebesgue measure 0?” Unfortunately, the answer to this last

question is negative. There exists F ⊂ [0, 1]d a Borel, closed, with an empty interior

and a positive Lebesgue measure λd(F ) > 0. For example, in the one dimension

case, the following algorithm yields such a set. Take (lk)k≥1 a sequence of numbers

defined by lk = 1/2 − 1/(k + 1)2 for any integer k. Denote by F0 the interval [0, 1]

and construct a sequence of closed sets (Fk)k≥0 like in the following picture.

F0

F1

F2

F3

l1 l1

l1l2

1 − 2l1

l1(1 − 2l2)

l1l2 l1l2

l1(1 − 2l2)

l1l2

l1l2l3

l1l2(1 − 2l3)

l1l2l3

It is easy to check that F = ∩k≥0Fk is closed, with an empty interior and a

positive Lebesgue measure. For the d-dimensional case, the set F × [0, 1]d−1 satisfies

the required assumptions. Thus, take F such a set and O an open subset of [0, 1]d.

If O ⊆ F then O = ∅ because F̊ = ∅ and λd(F∆O) = λd(F ) > 0. If O 6⊆ F then

O∩F c is an open subset of [0, 1] none empty, so λd(O∆F ) ≥ λd(O∩F c) > 0. Thus,

every measurable functions from [0, 1]d to {−1, 1} can not be written in S using only

coefficients with values in {−1, 0, 1}. Nevertheless, the Lebesgue measure satisfies

the property of regularity, which says that for any Borel B ∈ [0, 1]d and any ǫ > 0,

there exists a compact subset K and an open subset O such that K ⊆ A ⊆ O and
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λd(O − K) ≤ ǫ. Hence, one can easily check that for any measurable function f

from [0, 1]d to {−1, 1} and any ǫ > 0, there exists a function g ∈ F (d) such that

λd({x ∈ [0, 1]d : f(x) 6= g(x)}) ≤ ǫ. Thus, F (d) is dense in L2(λd) intersected with

the set of all measurable functions from [0, 1]d to {−1, 1}. Now, we exhibit some

usual prediction rules which belong to F (d).

Definition 1. Let A be a Borel subset of [0, 1]d. We say that A is almost every-

where open if there exists an open subset O of [0, 1]d such that λd(A∆O) = 0,

where λd is the Lebesgue measure on [0, 1]d and A∆O is the symmetrical difference.

Theorem 1. Let η be a function from [0, 1]d to [0, 1]. We consider

fη(x) =

{

1 if η(x) ≥ 1/2

−1 otherwise.

We assume that {η ≥ 1/2} and {η < 1/2} are almost everywhere open. Thus, there

exists g ∈ F such that for λd-almost every x ∈ [0, 1]d, g = fη, λd − a.s.. For

instance, if λd(∂{η = 1/2}) = 0 and, either η is λd-almost everywhere continuous (it

means that there exists an open subset of [0, 1]d with a Lebesgue measure equals to 1

such that η is continuous on this open subset) or if η is λd−almost everywhere equal

to a continuous function, then fη ∈ F (d).

Now, we define a model for the Bayes rule by taking a subset of F (d). For all

functions w defined on N and with values in R
+, we consider F (d)

w , the model for

Bayes rules, made of all prediction rules f which can be written, using the previous

writing convention (W), by

f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
,

where a
(j)
k

∈ {−1, 0, 1} and

card
{

k ∈ Id(j) : a
(j)
k

6= 0
}

≤ w(j), ∀j ∈ N.

The class F (d)
w depends on the choice of the function w. If w is too small then the

class F (d)
w is not very rich, that is the subject of the following Proposition 1. If w is

too large then F (d)
w would be too complex for a good estimation of f ∗ ∈ F (d)

w , that is

why we introduce Definition 2 in what follows.
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Proposition 1. Let w be a mapping from N to R
+ such that w(0) ≥ 1. The two

following assertions are equivalent:

(i) F (d)
w 6= {1I[0,1]d}.

(ii)
∑+∞

j=1 2−dj⌊w(j)⌋ ≥ 1.

And if w is too large then the approximation by a parametric model will be

impossible, that is why we give a particular look on the class of function introduced

in the following Definition 2.

Definition 2. Let w be a mapping from N to R
+. If w satisfies

+∞
∑

j=0

⌊w(j)⌋
2dj

< +∞, (3)

then we say that F (d)
w is a L1−ball of prediction rules.

Remark 1. We say that F (d)
w is a ”L1−ball” for a function w satisfying (3), because ,

the sequence (⌊w(j)⌋)j∈N belongs to a L1−ball of N
N, with radius (2dj)j∈N. Moreover,

definition 2 can be link to the definition of a L1−ball for real valued functions, since

we have a kind of base, given by S, and we have a control on coefficients which

increases with the frequency. Control on coefficients, given by (3), is close to the one

for coefficients of a real valued function in L1−ball since it deals with the quality of

approximation of the class F (d)
w by a parametric model.

Remark 2. A L1−ball of prediction rules is made of ”sparse” prediction rules. In

fact, for f ∈ F (d)
w , the repartition of coefficients non equal to zero in the decompo-

sition of f at a given frequency becomes sparse as the frequency grows. That is the

reason why F (d)
w can be called a sparse class of prediction rules. For exemple,

if (⌊w(j)⌋/2dj)j≥1 decreases and (3) holds then number of coefficients non equal to 0

at the frequency j is smaller than j−1 per cent of the maximal number of coefficients

(that is 2dj).

Remark 3. If we assume that PX is known then we can work with any measurable

space X endowed with a Lebesgue measure λ, while assuming that PX << λ. In this

case, we take
(

I(j)
k

: j ∈ N,k ∈ Id(j)
)

, such that for any j ∈ N,
(

I
(j)
k

: k ∈ Id(j)
)

is
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a partition of X adapted to the previous one
(

I
(j−1)
k

: k ∈ Id(j − 1)
)

and satisfying

PX(I
(j)
k

) = 2−jd. All the results below can be obtained in this framework.

Now, examples of functions satisfying (3) are given. Classes F (d)
w associated to

these functions are used in what follows to define statistical models. As an intro-

duction we define the minimal infinite class of prediction rules, by F (d)
0 which is the

class F (d)
w for w = w

(d)
0 where w

(d)
0 (0) = 1 and w

(d)
0 (j) = 2d − 1, for all j ≥ 1. To

understand why this class is important we introduce a notion of local oscillation of a

prediction rule. This concept defines a kind of ”regularity” for functions with values

in {−1, 1}.

Definition 3. Let f be a prediction rule from [0, 1]d to {−1, 1} in F (d). We consider

the writing of f in the fundamental system introduce in Section 3.1 with writing

convention (W):

f =
+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
, PX − a.s..

Let J ∈ N and k ∈ Id(j). We say that I
(J)
k

is a low oscillating block of f when

f has exactly 2d − 1 coefficients, in this block, non equal to zero at each level of

frequencies greater than J + 1. In this case we say that f has a low oscillating

block of frequency J .

Remark that, if f has an oscillating block of frequency J , then f has an oscillating

block of frequency J ′, for all J ′ ≥ J . The function class F (d)
0 is made of all prediction

rules with one oscillate block at level 1 and of the indicator function 1I[0,1]d. If we have

w(j0) < w
(d)
0 (j0) for one j0 ≥ 1 and w(j) = w

(d)
0 (j) for j 6= j0 then the associated

class F (d)
w contains only the indicator function 1I[0,1]d, that is the reason why we say

that F (d)
0 is ”minimal”.

Nevertheless, the following proposition shows that F (d)
0 is a rich class of prediction

rules from a combinatorial point of view. We recall some quantities which measure

a combinatorial richness of a class of prediction rules. For any class F of prediction

rules from X to {−1, 1}, we consider

N(F , (x1, . . . , xm)) = card ({(f(x1), . . . , f(xm)) : f ∈ F})
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where x1, . . . , xm ∈ X and m ∈ N,

S(F , m) = max (N(F , (x1, . . . , xm)) : x1, . . . , xm ∈ X )

and the V C-dimension of F is

V C(F) = min (m ∈ N : S(F , m) 6= 2m) .

Consider xj =
(

2j+1
2j+1 ,

1
2j+1 , . . . ,

1
2j+1

)

, for any j ∈ N. Thus, for any integer m, we

have N(F (d)
0 , (x1, . . . , xm)) = 2m. Hence, the following proposition holds.

Proposition 2. The class of prediction rules F (d)
0 has an infinite V C-dimension.

Thus every class F (d)
w such that w ≥ w

(d)
0 has an infinite V C-dimension (since

w ≤ w′ ⇒ F (d)
w ⊆ F (d)

w′ ), which is the case for the following classes.

Now, we introduce some examples of L1−ball of Bayes rules. We denote by F (d)
K ,

for a K ∈ N
∗, the class F (d)

w of prediction rules where w is equal to the function

w
(d)
K (j) =

{

2dj if j ≤ K,

2dK otherwise.

This class is called the truncated class of level K.

We consider exponential classes. These sets of prediction rules are denoted by

F (d)
α , where 0 < α < 1, and are equal to F (d)

w when w = w
(d)
α and

w(d)
α (j) =

{

2dj if j ≤ N (d)(α)

2dαj otherwise
,

whereN (d)(α) = inf
(

N ∈ N : 2dαN ≥ 2d − 1
)

, that is forN (d)(α) = ⌈log(2d−1)/(dα log 2)⌉.

Remark 4. For the one-dimensional case, an other point of view is to consider

f ∗ ∈ L2([0, 1]) and to develop f ∗ in an orthogonal basis of L2([0, 1]). Namely,

f ∗ =
∑

j∈N

2j−1
∑

k=0

a
(j)
k ψ

(j)
k ,

where a
(j)
k =

∫ 1

0
f ∗(x)ψ

(j)
k (x)dx for any j ∈ N and k = 0, . . . , 2j−1. For the control of

the bias term we assume that the family of coefficients (a
(j)
k , j ∈ N, k = 0, . . . , 2j − 1)
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belongs to a L1−ball. But this point of view leads to analysis and estimation issues.

First problem: Which functions with values in {−1, 1} have wavelet coefficients in

a L1−ball and which wavelet basis is more adapted to our problem (maybe the Haar

basis)? Second problem: Which kind of estimators could be used for the estimation

of these coefficients? As we can see, the main problem is that there is no approxima-

tion theory for functions with values in {−1, 1}. We do not know how to approach,

in L2([0, 1]), measurable functions with values in {−1, 1} by ”parametric” functions

with values in {−1, 1}. Methods developed in this paper may be seen as a first step

in this field. We can generalize this approach to functions with values in Z. Re-

mark that when functions take values in R, that is for the regression problem, usual

approximation theory is used to obtain a control on the bias term.

Remark 5. Other sets of prediction rules are described by the classes F (d)
w where w

is from N to R
+ and satisfies

∑

j≥1

aj
⌊w(j)⌋

2dj
≤ L,

where (aj)j≥1 is an increasing sequence of positive numbers.

3 Rates of Convergence over F (d)
w under (SMA)

3.1 Approximation Result

Let w be a function from N to R
+ and A > 1, we denote by Pw,A the set of all

probability measures π on [0, 1]d × {−1, 1} such that the Bayes rules f ∗, associated

to π, belongs to F (d)
w and the marginal of π on [0, 1]d is absolutely continuous and

one version of its Lebesgue density is upper bounded by A. The following Theorem

can be seen as an approximation Theorem for the Bayes rules w.r.t. the loss dπ

uniformly in π ∈ Pw,A.

Theorem 2 (Approximation Theorem). Let F (d)
w be a L1−ball of prediction

rules. We have:

∀ǫ > 0, ∃Jǫ ∈ N : ∀π ∈ Pw,A, ∃fǫ =
∑

k∈Id(Jǫ)

B
(Jǫ)
k

φ
(Jǫ)
k

12



where B
(Jǫ)
k

∈ {−1, 1} and

dπ(f ∗, fǫ) ≤ ǫ,

where f ∗ is the Bayes rule associated to π. For example, Jǫ can be the smallest

integer J satisfying
∑+∞

j=J+1 2−dj⌊w(j)⌋ < ǫ/A.

Remark 6. No assumption on the quality of the classification problem, like an as-

sumption on the margin, is needed to state Theorem 2. Only assumption on the

”number of oscillations” of f ∗ is used. Theorem 2 deals with approximation of func-

tions in the L1−ball F (d)
w by functions with values in {−1, 1} and no estimation issues

are met.

Remark 7. Theorem 2 is the first step to prove an estimation theorem using a

trade-off between a bias term and a variance term. We write

Eπ(f̂n) = Eπ

[

dπ(f̂n, f
∗)
]

≤ Eπ

[

dπ(f̂n, fǫ)
]

+ dπ(fǫ, f
∗).

Since fǫ belongs to a parametric model we expect to have a control of the variance

term, Eπ

[

dπ(f̂n, fǫ)
]

, depending on the dimension of the parametric model which is

linked to the quality of the approximation in the bias term.

Remark 8. Since dπ(f ∗, fǫ) = E
[

|2η(X) − 1|1If∗(X)6=fǫ(X)

]

, the closest to 1/2 η is,

the smallest the bias is. Especially, we have a bias equal to zero when η = 1/2 (in

this case any prediction rule is a Bayes rules). Thus, more difficult the problem of

estimation is (that is for underlying probability measure π = (PX , η) with η close

to 1/2), the smallest the bias is. This behavior does not appear clearly in density

estimation.

3.2 Estimation Result

We consider the following class of estimators indexed by the frequency rank J ∈ N:

f̂ (J)
n =

∑

k∈Id(J)

Â
(J)
k
φ

(J)
k
, (4)

where coefficients are defined by

Â
(J)
k

=











1 if ∃Xi ∈ I
(J)
k

and card

{

i :
Xi ∈ I

(J)
k
,

Yi = 1

}

> card

{

i :
Xi ∈ I

(J)
k
,

Yi = −1

}

−1 otherwise

,

13



To obtain a good control of the variance term, we need to assure a good quality

of the estimation problem. Therefore, estimation results are obtained in Theorem 3

under (SMA) assumption. In recent years we have understood that (SMA) assump-

tion can lead to fast rates but is not enough to assure any rate of convergence (cf.

corolary 1 at the end of section 3.3), thus we have to define a model for η or f ∗, here

we use a L1−ball of prediction rules as a model for f ∗.

Theorem 3 (estimation Theorem). Let F (d)
w be a L1−ball of prediction rules.

Let π be a probability measure on [0, 1]d × {−1, 1} satisfying assumptions (A1) and

(SMA), and such that the Bayes rule, associated to pi, belongs to F (d)
w . The excess

risk of the classifier f̂
(Jǫ)
n satisfies for any positive number ǫ,

Eπ(f̂ (Jǫ)
n ) = Eπ

[

dπ(f̂ (Jǫ)
n , f ∗)

]

≤ (1 + A)ǫ+ exp
(

−na(1 − exp(−h2/2))2−dJǫ
)

,

where Jǫ is the smallest integer satisfying
∑+∞

j=Jǫ+1 2−dj⌊w(j)⌋ < ǫ/A. Parameters

a, A appear in Assumption (A1) and h is used in (SMA).

Remark 9. The upper bound can be split in the bias term: ǫ and the variance

term: Aǫ + exp
(

−na(1 − exp(−h2/2))2−dJǫ
)

. Remark that a bias term appears in

the variance term.

3.3 Optimality

This section is devoted to the optimality, in a minimax sense, of estimation in clas-

sification models such that f ∗ ∈ F (d)
w . Let 0 < h < 1, 0 < a ≤ 1 ≤ A < +∞ and w

a mapping from N to R
+. we denote by Pw,h,a,A the set of all probability measures

π = (PX , η) on [0, 1]d × {−1, 1} such that

1. The marginal PX satisfies (A1).

2. The Assumption (SMA) is satisfied.

3. The Bayes rule f ∗, associated to π, belongs to F (d)
w .

We use the version of Lemma of Assouad in the appendix of Lecué [2006c] to lower

bound the minimax risk on Pw,h,a,A. From Theorem 3 and Theorem 4, we can deduce

the optimality (up to a logarithm term) of the estimator f̂
(Jn)
n where the rank Jn is

obtained by an optimal trade-off between the bias term and the variance term.

14



Theorem 4. Let w be a function from N to R
+ such that

(i) ⌊w(0)⌋ ≥ 1 and ∀j ≥ 1, ⌊w(j)⌋ ≥ 2d − 1

(ii) ∀j ≥ 1, ⌊w(j − 1)⌋ ≥ 2−d⌊w(j)⌋.

We have for all n ∈ N,

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1
(

⌊w (⌊log n/(d log 2)⌋ + 1)⌋ − (2d − 1)
)

,

and if ⌊w(j)⌋ ≥ 2d, ∀j ≥ 1 then inf f̂n
supπ∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1 where C0 =

(h/8) exp
(

−(1 −
√

1 − h2)
)

.

Remark 10. For a function w satisfying assumptions of Theorem 4 and under

(SMA), we can not expect a convergence rate faster than 1/n, which is the usual

lower bound for the classification problem under (SMA).

From the previous Theorem we obtain immediately Theorem 7.1 of Devroye et al.

[1996]. We denote by P1 the class of all probability measures on [0, 1]d×{−1, 1} such

that the marginal distribution PX is λd (the Lebesgue probability distribution on

[0, 1]d) and (SMA) is satisfied with the margin h = 1. The case ”h = 1” is equivalent

to R∗ = 0. That is for a perfect classification problem, where Y is an exact function

of X given by Y = f ∗(X) = η(X).

Corollary 1. For any integer n we have

inf
f̂n

sup
π∈P1

E(f̂n) ≥
1

8e
.

It means that no classifier can achieve a rate of convergence in the classification

models P1, even if these classification problems are all very good (Y is given by

f ∗(X) without any noise and there are no spot of low probability).

3.4 Rates of Convergence for Different Classes of Prediction

Rules

In this section we apply results stated in Theorem 3 and Theorem 4 to different

L1−ball classes F (d)
w introduced at the end of Section 2. We give rates of convergence
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and lower bounds for these models. Using notations introduced in Section 2 and

subsection 3.3, we consider the following models. For w = w
(d)
K denote by P(d)

K the

set P
w

(d)
K

,h,a,A
of probability measures on [0, 1]d × {−1, 1} and P(d)

α for w = w
(d)
α .

Theorem 5. For the truncated class F (d)
K , we have

sup
π∈P

(d)
K

Eπ(f̂ (Jn)
n ) ≤ CK,h,a,A

logn

n
,

where CK,h,a,A > 0 is depending only on K, h, a, A and for the lower bound, there

exists C0,K,h,a,A > 0 depending only on K, h, a, A such that, for all n ∈ N,

inf
f̂n

sup
π∈P

(d)
K

Eπ(f̂n) ≥ C0,K,h,a,An
−1.

For the exponential class F (d)
α where 0 < α < 1, we have for any integer n

sup
π∈P

(d)
α

Eπ(f̂ (Jn)
n ) ≤ C ′

α,h,a,A

(

log n

n

)1−α

,

where C ′
α,h,a,A > 0 and for the lower bound, there exists C ′

0,α,h,a,A > 0 depending only

on α, h, a, A such that, for all n ∈ N,

inf
f̂n

sup
π∈P

(d)
α

Eπ(f̂n) ≥ C ′
0,α,h,a,An

−1+α.

In both classes, order of Jn is ⌈log
(

an/(2d logn)
)

/(d log 2)⌉, up to a multiplying

constant.

A remarkable point is that the class F (d)
K has an infinite VC-dimension (cf. Section

2). Nevertheless, the rate log n/n is achieved on this model.

4 Discussion

In this section we discuss about representation and estimation of ”simple” prediction

rules in our framework. In considering the classification problem over the square

[0, 1]2, a classifier has to be able to approach, for instance, the ”simple” Bayes rule

f ∗
C which is equal to 1 inside C, where C is a disc of [0, 1]2, and −1 outside C. In our

framework, two questions need to be considered:
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• How is the representation of the simple function f ∗
C in our fundamental system,

using only coefficients with values in {−1, 0, 1} and with the writing convention

(W)?

• Is the estimate f̂
(Jn)
n , where Jn = ⌈log

(

an/(2d log n)
)

/(d log 2)⌉ is the fre-

quency rank appearing in Theorem 5, a good classifier when the underlying

probability measure has f ∗
C for Bayes rule?

At a first glance, our point of view is not the right way to estimate f ∗
C . In this

regular case (the border is an infinite differentiable curve), the direct estimation of

the border is a better approach. The main reason is that a 2-dimensional estima-

tion problem becomes a 1-dimensional problem. Such reduction of dimension makes

estimation easier (in passing, our approach is specifically good in the 1-dimensional

case, since the notion of border does not exist in this case). Nevertheless, our ap-

proach is applicable for the estimation of such functions (cf. Theorem 6). Actually,

direct estimation of the border reduces the dimension but there is a big waste of

observations since observations far from the border are not used for this estimation

point of view. It may explain why our approach is applicable. Denote by

N (A, ǫ, ||.||∞) = min
(

N : ∃x1, . . . , xN ∈ R
2 : A ⊆ ∪N

j=1B∞(xj , ǫ)
)

the ǫ−covering number of a subset A of [0, 1]2, w.r.t. the infinity norm of R
2. For

example, the circle C = {(x, y) ∈ R
2 : (x − 1/2)2 + (y − 1/2)2 = (1/4)2} satisfies

N (C, ǫ, ||.||∞) ≤ (π/4)ǫ−1. For any set A of [0, 1]2, denote by ∂A the border of A.

Theorem 6. Let A be a subset of [0, 1]2 such that N (∂A, ǫ, ||.||∞) ≤ δ(ǫ), for any ǫ >

0, where δ is a decreasing function from R
∗
+ with values in R

+ satisfying ǫ2δ(ǫ) −→ 0

when ǫ tends to zero. Consider the prediction rule fA = 21IA − 1. For any ǫ > 0,

denote by ǫ0 the greatest positive number satisfying δ(ǫ0)ǫ
2
0 ≤ ǫ. There exists a

prediction rule constructed in the fundamental system S at the frequency rank Jǫ0

with coefficients in {−1, 1} denoted by

fǫ0 =
∑

k∈I2(Jǫ0 )

a
(Jǫ0 )

k
φ

(Jǫ0)

k
,

with Jǫ0 = ⌊log(1/ǫ0)/ log 2⌋ such that

||fǫ0 − fA||L1(λ2) ≤ 36ǫ.
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For instance, there exists a function fn, written in the fundamental system S at

the frequency level Jn = ⌊log(4n/(π logn))/ log 2⌋, which approaches the prediction

rule fC with a L1(λ2) error upper bounded by 36(logn)/n. This frequency level is,

up to a multiplying constant, the same one appearing in Theorem 5. In a more

general way, any prediction rule with a border having a finite perimeter (for instance

polygons) is approached by a function written in the fundamental system at the same

frequency rank Jn and the same order of L1(λ2) error (logn)/n. Remark that for

this frequency level Jn, we have to estimate n/ logn coefficients. Estimations of one

of these coefficients a
(Jn)
k

, where k ∈ I2(Jn), depends on the number of observation

in the square I(Jn)
k

associated this coefficient. The probability that no observation

”falls” in I(Jn)
k

is smaller than n−1. Thus, number of coefficients estimated with

no observations is small compare to the order of approach (logn)/n and is taken

into account in the variance term. Now, the problem is about finding a L1−ball of

prediction rules such that for any integer n the approximation function fn belongs

to such a ball. This problem depends on the geometry of the border set ∂A. It arises

naturally since we chose a particular geometry for our partition: dyadic partitions

of the space [0, 1]d, and we have to pay a price for this choice which has been made

independently of the type of functions to estimate. But this choice of geometry in

our case is the same as the one met in density approximation using approximation

theory while choosing a particular wavelet basis. Depending on the type of Bayes

rules we have to estimate, a special partition can be considered. For example our

”dyadic approach” is very well adapted for the estimation of Bayes rules associated

to chessboard (with the value 1 for black square and −1 for white square). This

kind of Bayes rules are very bad estimated by classification procedure estimating

the border since most of these procedure have regularity assumptions which are not

fulfilled in the case of chessboard.

We can extend our approach in several different ways. Consider the dyadic par-

tition of [0, 1]d with frequency Jn. Instead of choosing 1 or −1 for each square of

this partition (like in our approach), we can do a least square regression in each cell

of the partition. Inside a square Sq = I(Jn)
k

, where k ∈ I2(Jn), we can compute the

line minimizing
n
∑

i=1

1I(2f(Xi)−16=Yi,Xi∈Sq),
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where f is taken in the set of all indicators of half spaces of [0, 1]d intersecting Sq. Of

course, depending on the number of observations inside the cell Sq we can consider

bigger classes of functions than the one made of the indicators of half spaces. Our

classifier is close to the histogram estimator in density or regression framework, which

has been extend to smoother procedure. The other way to extend our approach deals

with the problem of the underlying choice of geometry by taking S for fundamental

system. One possible solution is to consider classifiers ”adaptive to the geometry”.

Using an adaptive procedure, for instance aggregation procedure (cf. Lecué [2005]),

we can construct classifiers adaptive to the ”rotation” and ”translation”. Consider

the dyadic partition of [0, 1]2 at the frequency level Jn. We can construct classifiers

using the same procedure as (4) but for partitions obtained by translation of the

dyadic partition by (n1/(2
Jn logn), n2/(2

Jn log n)), where n1, n2 = 0, . . . , ⌈log n⌉. We

can do the same thing by aggregating classifiers obtained by the procedure (4) for

partitions obtained by rotation of center (1/2, 1/2) with angle n3π/(2 logn), where

n3 = 0, . . . , ⌈log n⌉, of the initial dyadic partition. In this heuristic we don’t discuss

about the way to solve problems near the border of [0, 1]2.

5 Proofs

Proof of Theorem 1: Since {η ≥ 1/2} is almost everywhere open there exists an

open subset O of [0, 1]d such that λd({η ≥ 1/2}∆O) = 0. If O is the empty set then

take g = −1, otherwise, for all x ∈ O denote by Ix the biggest subset I(j)
k

for j ∈ N

and k ∈ Id(j) such that x ∈ I(j)
k

and I(j)
k

⊆ O. Remark that Ix exists because O
is open. We can see that for any y ∈ Ix we have Iy = Ix, thus, (Ix : x ∈ O) is a

partition of O. We denote by IO a subset of index (j,k), where j ∈ N,k ∈ Id(j)

such that {Ox : x ∈ O} = {I(j)
k

: (j,k) ∈ IO}. For any (j,k) ∈ IO we take a
(j)
k

= 1.

Take O1 an open subset λd-almost everywhere equal to {η < 1/2}. If O1 is the

empty set then take g = 1. Otherwise, consider the set of index IO1 built in the same

way as previously, and for any (j,k) ∈ IO1 we take a
(j)
k

= −1.

For all (j,k) /∈ IO ∪ IO1 , we take a
(j)
k

= 0. Consider

g =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
.
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It is easy to check that the function g belongs to F (d) and satisfies the writing

convention (W) and that, for λd−almost x ∈ [0, 1]d, g(x) = fη(x).

Proof of Proposition 1: Assume that F (d)
w 6= {1I[0,1]d}. Take f ∈ F (d)

w −{1I[0,1]d}.
Consider the writing of f in the system S using the convention (W),

f =
∑

j∈N

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
,

where a
(j)
k

∈ {−1, 0, 1} for any j ∈ N,k ∈ Id(j). Consider b
(j)
k

= |a(j)
k
| for any

j ∈ N,k ∈ Id(j). Take f2 =
∑

j∈N

∑

k∈Id(j) b
(j)
k
φ

(j)
k

. Remark that the function

f2 ∈ F (d) does not satisfy the writing convention (W). We have f2 = 1I[0,1]d. For any

j ∈ N we have

card
{

k ∈ Id(j) : b
(j)
k

6= 0
}

= card
{

k ∈ Id(j) : a
(j)
k

6= 0
}

. (5)

Moreover, one coefficient b
(j)
k

6= 0 contributes to fill a cell of Lebesgue measure 2−dj

among the hypercube [0, 1]d. Since the mass total of [0, 1]d is 1, we have

1 =
∑

j∈N

∑

k∈Id(j)

2−djcard
{

k ∈ Id(j) : b
(j)
k

6= 0
}

. (6)

Moreover, f ∈ F (d) thus, for any j ∈ N,

⌊w(j)⌋ ≥ card
{

k ∈ Id(j) : a
(j)
k

6= 0
}

.

We obtain the second assertion of Proposition 1 by using the last inequality and the

both assertions (5) and (6).

Assume that
∑+∞

j=1 2−dj⌊w(j)⌋ ≥ 1. For any integer j 6= 0, denote by I(j) the set

of indexes {(j,k) : k ∈ Id(j)}.
We use the natural order of N

d+1 to order sets of indexes. Take Iw(1) the family

of the first ⌊w(1)⌋ elements of I(1). Denote by Iw(2) the family made of the first

⌊w(1)⌋ elements of I(1) and add, at the end of this family in the correct order, the

first ⌊w(2)⌋ elements (2,k) of I(2) such that φ
(1)
k′ φ

(2)
k

= 0 for any (1,k′) ∈ Iw(1),...,

for the step j, construct the family Iw(j) made of all the elements of Iw(j−1) in the

same order and add at the end of this family the indexes (j,k) in I(j) among the first

⌊w(j)⌋ elements of I(j) such that φ
(J)
k′ φ

(j)
k

= 0 for any (J,k′) ∈ Iw(j − 1). If there

is no more index satisfying this condition then we stop the construction otherwise
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we go on. Denote by I the final family obtained by this construction (I may be

finite or infinite). Then, we enumerate the indexes of I by (j1,k1) ≺ (j2,k2) ≺ · · · .
For the first (j1,k1) ∈ I take a

(j1)
k1

= 1, for the second element (j2,k2) ∈ I take

a
(j2)
k2

= −1,etc. . Consider the function

f =
∑

j∈N

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
.

If the construction stops at a given iteration N then f takes its values in {−1, 1}
and the writing convention (W) is fulfilled since every cells I(j)

k
such that a

(j)
k

6= 0

has a neighboring cell associated to a coefficient non equals to 0 with an opposite

value. Otherwise, for any integer j 6= 0, the number of coefficient a
(j)
k

, for k ∈
Id(j), non equals to 0 is ⌊w(j)⌋ and the total mass of cells I(j)

k
such that a

(j)
k

6= 0

is
∑

j∈N

∑

k∈Id(j) 2−djcard
{

k ∈ Id(j) : a
(j)
k

6= 0
}

which is greater or equal to 1 by

assumption. Thus, all the hypercube is filled by cells associated to coefficients non

equal to 0. So f takes its values in {−1, 1} and the writing convention (W) is

fulfilled since every cells I(j)
k

such that a
(j)
k

6= 0 has a neighboring cell associated to

a coefficient non equals to 0 with an opposite value. Moreover f 6= 1I[0,1]d.

Proof of Theorem 2. Let π = (PX , η) be a probability measure on X ×{−1, 1}
belonging to Pw,A. Denote by f ∗ a Bayes classifier associated to π (for example

f ∗ = sign(2η − 1)) . We have

dπ(f, f ∗) = (1/2)E [|2η(X) − 1||f(X)− f ∗(X)|] ≤ (A/2)||f − f ∗||L1(λd).

Let ǫ > 0. Define by Jǫ the smallest integer satisfying

+∞
∑

j=Jǫ+1

2−dj⌊w(j)⌋ < ǫ

A
.

We write f ∗ in the fundamental system (φ
(j)
k
, j ∈ N,k ∈ Id(j)) using the convention

of writing of section 3.1 but we start at the level of frequency Jǫ:

f ∗ =
∑

k∈Id(Jǫ)

A
(Jǫ)
k

φ
(Jǫ)
k

+
+∞
∑

j=Jǫ+1

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
.

We consider

fǫ =
∑

k∈Id(Jǫ)

B
(Jǫ)
k

φ
(Jǫ)
k

, (7)

21



where

B
(Jǫ)
k

=

{

1 if p
(Jǫ)
k

> 1/2

−1 otherwise
(8)

and

p
(Jǫ)
k

= P(Y = 1|X ∈ I
(Jǫ)
k

) =

∫

I
(Jǫ)
k

η(x)
dPX(x)

PX(I
(Jǫ)
k

)
, (9)

for all k ∈ Id(Jǫ). Note that, if A
(Jǫ)
k

6= 0 then A
(Jǫ)
k

= B
(Jǫ)
k

, moreover f ∗ take its

values in {−1, 1}, thus ,we have

||fǫ − f ∗||L1(λd) =
∑

k∈Id(Jǫ)

A
(Jǫ)
k

6=0

∫

I
(Jǫ)
k

|f ∗(x) − fǫ(x)|dx+
∑

k∈Id(Jǫ)

A
(Jǫ)
k

=0

∫

I
(Jǫ)
k

|f ∗(x) − fǫ(x)|dx

≤ 2−dJǫ+1card
{

k ∈ Id(Jǫ) : A
(Jǫ)
k

= 0
}

≤ 2
+∞
∑

j=Jǫ+1

2−dj⌊w(j)⌋ < 2ǫ/A.

Proof of Theorem 3. Let π = (PX , η) be a probability measure on X ×{−1, 1}
satisfying (A1), (SMA) and such that f ∗ = sign(2η−1), a Bayes classifier associated

to π, belongs to F (d)
w (a L1−ball of Bayes rules).

Let ǫ > 0 and Jǫ the smallest integer satisfying
∑+∞

j=Jǫ+1 2−dj⌊w(j)⌋ < ǫ/A. We

decompose the risk in the bias term and variance term:

E(f̂ (Jǫ)
n ) = E

[

dπ(f̂ (Jǫ)
n , f ∗)

]

≤ E

[

dπ(f̂ (Jǫ)
n , fǫ)

]

+ dπ(fǫ, f
∗),

where f̂
(Jǫ)
n is introduced in (4) and fǫ in (7).

Using the definition of Jǫ and according to the approximation Theorem (Theo-

rem 1), the bias term satisfies:

dπ(fǫ, f
∗) ≤ ǫ.

For the variance term we have (using the notations introduced in (4) and (8)):

E

[

dπ(f̂
(Jǫ)
n , fǫ)

]

=
1

2

∣

∣

∣
E

[

Y (fǫ(X) − f̂ (Jǫ)
n (X))

]∣

∣

∣
≤ 1

2
E

[
∫

[0,1]d
|fǫ(x) − f̂ (Jǫ)

n (x)|dPX(x)

]

=
1

2

∑

k∈Id(Jǫ)

E

[

∫

I
(Jǫ)
k

|B(Jǫ)
k

− Â
(Jǫ)
k

|dPX

]

≤ A

2dJǫ+1

∑

k∈Id(Jǫ)

E[|B(Jǫ)
k

− Â
(Jǫ)
k

|] ≤ A

2dJǫ

∑

k∈Id(Jǫ)

P

(

|B(Jǫ)
k

− Â
(Jǫ)
k

| = 2
)

.
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Let k ∈ Id(Jǫ). For any m ∈ {0, . . . , n}, we introduce the sets

Ω
(m)
k

=
{

Card{i ∈ {1, . . . , n} : Xi ∈ I
(Jǫ)
k

} = m
}

and

Ωk =

{

card

{

i ∈ {1, . . . , n} :
Xi ∈ I

(Jǫ)
k

,

Yi = 1

}

≤ card

{

i ∈ {1, . . . , n} :
Xi ∈ I

(Jǫ)
k

,

Yi = −1

}}

.

We have

P(Â
(Jǫ)
k

= −1) = P(Ω
(0)c
k

∩ Ωk) + P(Ω
(0)
k

)

and

P(Ω
(0)c
k

∩ Ωk) =

n
∑

m=1

P(Ω
(m)
k

∩ Ωk) =

n
∑

m=1

P(Ωk|Ω(m)
k

)P(Ω
(m)
k

).

Moreover, denote by Z1, . . . , Zn some variables i.i.d. with a Bernoulli with pa-

rameter p
(Jǫ)
k

for common probability distribution (p
(Jǫ)
k

is introduced in (9) and is

equal to P(Y = 1|X ∈ I
(Jǫ)
k

)), we have for any m = 1, . . . , n,

P(Ωk|Ω(m)
k

) = P

(

1

m

m
∑

i=1

Zi ≤
1

2

)

.

Concentration inequality of Hoeffding leads to

P

(

1

m

m
∑

i=1

Zi ≥ p
(Jǫ)
k

+ t

)

≤ exp(−2mt2) and P

(

1

m

m
∑

i=1

Zi ≤ p
(Jǫ)
k

− t

)

≤ exp(−2mt2),

(10)

for all t > 0 and m = 1, . . . , n.

Denote by a
(Jǫ)
k

the probability P

(

X ∈ I
(Jǫ)
k

)

. If p
(Jǫ)
k

> 1/2, applying second

inequality of (10) leads to

P

(

|B(Jǫ)
k

− Â
(Jǫ)
k

| = 2
)

= P(Â
(Jǫ)
k

= −1)

≤
n
∑

m=1

P

[

1

m

m
∑

j=1

Zj ≤ p
(Jǫ)
k

− (p
(Jǫ)
k

− 1/2)

](

n

m

)

(a
(Jǫ)
k

)m(1 − a
(Jǫ)
k

)n−m

+ P(Ω
(0)
k

)

≤
n
∑

m=0

exp
(

−2m(p
(Jǫ)
k

− 1/2)2
)

(

n

m

)

(a
(Jǫ)
k

)m(1 − a
(Jǫ)
k

)n−m

=
(

1 − a
(Jǫ)
k

(1 − exp(−2(p
(Jǫ)
k

− 1/2)2))
)n

≤ exp
(

−na(1 − exp(−2(p
(Jǫ)
k

− 1/2)2))2−dJǫ

)

.
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If p
(Jǫ)
k

< 1/2 then similar arguments used in the previous case and first inequality

of (10) lead to

P

(

|B(Jǫ)
k

− Â
(Jǫ)
k

| = 2
)

= P(Â
(Jǫ)
k

= 1)

≤ exp
(

−na(1 − exp(−2(p
(Jǫ)
k

− 1/2)2))2−dJǫ

)

.

If p
(Jǫ)
k

= 1/2, we use P

(

|B(Jǫ)
k

− Â
(Jǫ)
k

| = 2
)

≤ 1. Like in the proof of Theorem 2,

we use the writing

f ∗ =
∑

k∈Id(Jǫ)

A
(Jǫ)
k

φ
(Jǫ)
k

+
+∞
∑

j=Jǫ+1

∑

k∈Id(j)

a
(j)
k
φ

(j)
k
.

Since PX(η = 1/2) = 0, if A
(Jǫ)
k

6= 0 then p
(Jǫ)
k

6= 1/2. Thus, the variance term

satisfies:

E

[

dπ(f̂n, f
∗
ǫ )
]

≤ A

2dJǫ











∑

k∈Id(Jǫ)

A
(Jǫ)
k

6=0

P

(

|B(Jǫ)
k

− Â
(Jǫ)
k

| = 2
)

+
∑

k∈Id(Jǫ)

A
(Jǫ)
k

=0

P

(

|B(Jǫ)
k

− Â
(Jǫ)
k

| = 2
)











≤ A

2dJǫ

∑

k∈Id(Jǫ)

A
(Jǫ)
k

6=0

exp
(

−na(1 − exp(−2(p
(Jǫ)
k

− 1/2)2))2−dJǫ

)

+ Aǫ.

If A
(Jǫ)
k

6= 0 then η > 1/2 or η < 1/2 over the whole set I
(Jǫ)
k

, so

∣

∣

∣

∣

1

2
− p

(Jǫ)
k

∣

∣

∣

∣

=

∫

I
(Jǫ)
k

∣

∣

∣

∣

η(x) − 1

2

∣

∣

∣

∣

dPX(x)

PX(I
(Jǫ)
k

)
.

Moreover π satisfies P (|2η(X) − 1| ≥ h) = 1, so

∣

∣

∣

∣

1

2
− p

(Jǫ)
k

∣

∣

∣

∣

≥ h

2
.

We have shown that for all ǫ > 0,

E(f̂n) = E

[

dπ(f̂n, f
∗)
]

≤ (1 + A)ǫ+ exp
(

−na(1 − exp(−2(h/2)2))2−dJǫ
)

,
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where Jǫ is the smallest integer satisfying
∑+∞

j=Jǫ+1 2−dj⌊w(j)⌋ < ǫ/A.

Proof of Theorem 4. For all q ∈ N we consider Gq a net of [0, 1]d defined by:

Gq =

{(

2k1 + 1

2q+1
, . . . ,

2kd + 1

2q+1

)

: (k1, . . . , kd) ∈ {0, . . . , 2q − 1}d

}

and the function ηq from [0, 1]d to Gq such that ηq(x) is the closest point of Gq

from x (in the case of ex aequo, we choose the smallest point for the usual order

on R
d). Associated to this grid, the partition X ′(q)

1 , . . . ,X ′(q)

2dq of [0, 1]d is defined

by x, y ∈ X ′(q)
i iff ηq(x) = ηq(y) and we use a special indexation for this partition:

denote by x′
(q)
k1,...,kd

=
(

2k1+1
2q+1 , . . . ,

2kd+1
2q+1

)

and we say that x′
(q)
k1,...,kd

≺ x′
(q)
k′

1,...,k′
d

if

ηq−1(x
′(q)
k1,...,kd

) ≺ ηq−1(x
′(q)
k′

1,...,k′
d
)

or

ηq−1(x
′(q)
k1,...,kd

) = ηq−1(x
′(q)
k′

1,...,k′
d
) and (k1, . . . , kd) < (k′1, . . . , k

′
d),

for the usual order on N
d. Thus, the partition (X ′(q)

j : j = 1, . . . , 2dq) has an increasing

indexation according to the order of (x′
(q)
k1,...,kd

) for the order defined above. This

order take care of the previous partition by splitting blocks in the right given order

and inside a block of a partition we take the natural order of N
d. We introduce an

other parameter m ∈ {1, . . . , 2qd} and we define for all i = 1, . . . , m, X (q)
i = X ′(q)

i and

X (q)
0 = [0, 1]d−∪m

i=1X (q)
i . Parameters q and m will be chosen later. We consider W ∈

[0, m−1], chosen later, and define the function fX from [0, 1]d to R by fX = W/λd(X1)

(where λd is the Lebesgue measure on [0, 1]d) on X1, . . . ,Xm and (1 −mW )/λd(X0)

on X0. We denote by PX the probability distribution on [0, 1]d with the density fX

w.r.t. the Lebesgue measure. For all σ = (σ1, . . . , σm) ∈ Ω = {−1, 1}m we consider

ησ defined for any x ∈ [0, 1]d by

ησ(x) =

{

1+σjh

2
if x ∈ Xj, j = 1, . . . , m,

1 if x ∈ X0.

We have a set of probability measures {πσ : σ ∈ Ω} on [0, 1]d × {−1, 1} indexed by

the hypercube Ω where PX is the marginal on [0, 1]d of πσ and ησ its conditional

probability function of Y = 1 given X. We denote by f ∗
σ the Bayes rule associated

to πσ, we have f ∗
σ(x) = σj if x ∈ Xj for j = 1, . . . , m and 1 if x ∈ X0, for any σ ∈ Ω.

25



Now we give conditions on q,m and W such that for all σ in Ω, πσ belongs to

Pw,h,a,A. If we take

W = 2−dq, (11)

then PX << λ and ∀x ∈ [0, 1]d, a ≤ dPX/dλ(x) ≤ A. We have clearly |2η(x)−1| ≥ h

for any x ∈ [0, 1]d. We can see that f ∗
σ ∈ F (d)

w for all σ ∈ {−1, 1}m iff

⌊w(q + 1)⌋ ≥ inf(x ∈ 2d
N : x ≥ m)

⌊w(q)⌋ ≥
{

2d − 1 if m < 2d

inf(x ∈ 2d
N : x ≥ 2−dm) otherwise

. . .

⌊w(1)⌋ ≥
{

2d − 1 if m < 2dq

inf(x ∈ 2d
N : x ≥ 2−dqm) otherwise

⌊w(0)⌋ ≥ 1

.

Since we have ⌊w(j)⌋ ≥ 2d − 1 for all j ≥ 1 and ⌊w(0)⌋ = 1, and ⌊w(j − 1)⌋ ≥
⌊w(j)⌋/2d, then f ∗

σ ∈ F (d)
w for all σ ∈ Ω iff

⌊w(q + 1)⌋ ≥ inf(x ∈ 2d
N : x ≥ m). (12)

Take q,m and W such that (11) and (12) are fulfilled then, {πσ : σ ∈ Ω} is a

subset of Pw,h,a,A. Let σ ∈ Ω and f̂n be a classifier, we have

Eπσ

[

R(f̂n) − R∗
]

= (1/2)Eπσ

[

|2ησ(X) − 1||f̂n(X) − f ∗
σ(X)|

]

≥ (h/2)Eπσ

[

|f̂n(X) − f ∗
σ(X)|

]

≥ (h/2)Eπσ

[

m
∑

i=1

∫

Xi

|f̂n(x) − f ∗
σ(x)|dPX(x) +

∫

X0

|f̂n(x) − f ∗
σ(x)|dPX(x)

]

≥ (Wh/2)

m
∑

i=1

Eπσ

[
∫

Xi

|f̂n(x) − σi|
dx

λ(X1)

]

≥ (Wh/2)Eπσ

[

m
∑

i=1

∣

∣

∣

∣

σi −
∫

Xi

f̂n(x)
dx

λ(X1)

∣

∣

∣

∣

]

.

We deduce that

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ (Wh/2) inf
σ̂n∈[−1,1]m

sup
σ∈{−1,1}m

Eπσ

[

m
∑

i=1

|σi − σ̂i|
]

.
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Now, we control the Hellinger distance between two neighbouring probability

measures. Let ρ be the Hamming distance on Ω. Let σ, σ′ in Ω such that ρ(σ, σ′) = 1.

We have

H2(π⊗n
σ , π⊗n

σ′ ) = 2

(

1 −
(

1 − H2(πσ, πσ′)

2

)n)

,

and a straightforward calculus leads to H2(πσ, πσ′) = 2W
(

1 −
√

1 − h2
)

. Take

W = 1/n, (13)

thus, for any integer n, we haveH2(π⊗n
σ , π⊗n

σ′ ) ≤ β < 2 where β = 2
(

1 − exp(1 −
√

1 − h2)
)

.

The Assouad’s Lemma (cf. Lecué [2006c]) yields inf σ̂n∈[−1,1]m supσ∈{−1,1}m Eπσ
[
∑m

i=1 |σi − σ̂i|] ≥
m
4

(

1 − β
2

)2
. We conclude that

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥Wh
m

8

(

1 − β

2

)2

.

According to (11), (12) and (13) we takeW = 2−dq = 1/n, q = ⌊log n/(d log 2)⌋ , m =

⌊w (⌊log n/(d log 2)⌋ + 1)⌋ − (2d − 1). For these values we have

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1
(

⌊w (⌊log n/(d log 2)⌋ + 1)⌋ − (2d − 1)
)

.

where C0 = (h/8) exp
(

−(1 −
√

1 − h2)
)

.

Proof of Corollary 1: It suffices to apply Theorem 4 to the function w defined

by w(j) = 2dj for any integer j and a = A = 1 for PX = λd.

Proof of Theorem 5:

1. If we assume that Jǫ ≥ K then
∑+∞

j=Jǫ+1 2−dj⌊w(d)
K (j)⌋ = (2dK)/(2dJǫ(2d − 1)).

We take

Jǫ =

⌈

log
(

(A2dK)/(ǫ(2d − 1))
)

d log 2

⌉

and ǫn the unique solution of (1 + A)ǫn = exp(−nCǫn), where C = a(1 −
e−h2/2)(2d − 1)[A2d(K+1)]−1. Thus, ǫn ≤ (log n)/(Cn). For Jn = Jǫn

, we have

E
(

f̂ (Jn)
n

)

≤ CK,d,h,a,A
log n

n
,

for any integer n such that log n ≥ 2d(K+1)(2d − 1)−1 and Jn ≥ K, where

CK,d,h,a,A = 2(1 +A)/C.
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If we have ⌊log n/(d log 2)⌋ ≥ 2 then ⌊w (⌊log n/(d log 2)⌋ + 1)⌋ − (2d − 1) ≥
2d, so we obtain the lower bound with the constant C0,K = 2dC0 and if

⌊logn/(d log 2)⌋ ≥ K the constant can be C0,K = C0(2
dK − (2d − 1)).

2. If we have Jǫ ≥ N (d)(α), then
∑+∞

j=Jǫ+1 2−dj⌊w(d)
α (j)⌋ ≤ (2d(1−α)Jǫ(2d(1−α)−1))−1.

We take

Jǫ =

⌈

log(A/(ǫ(2d(1−α) − 1)))

d(1 − α) log 2

⌉

.

Denote by ǫn the unique solution of (1 +A)ǫn = exp(−nCǫ1/(1−α)
n ) where C =

a(1 − e−h2/2)2−d(A−1(2d(1−α) − 1))1/(1−α). We have ǫn ≤ (logn/(nC))1−α. For

Jn = Jǫn
, we have

E
(

f̂ (Jn)
n

)

≤ 2(1 + A)A

2d(1−α) − 1

[

2d

a(1 − e−h2/2)

]1−α(
log n

n

)1−α

.

For the lower bound we have for any integer n,

inf
f̂n

sup
π∈P

(d)
α

Eπ(f̂n) ≥ C0 max
(

1, n−1
(

2dnα − (2d − 1)
))

.

Proof of Theorem 6: Let ǫ > 0. Denote by ǫ0 the greatest positive number

satisfying δ(ǫ0)ǫ
2
0 ≤ ǫ. Consider N(ǫ0) = N (∂A, ǫ0, ||.||∞) and x1, . . . , xN(ǫ0) ∈ R

2

such that ∂A ⊂ ∪N(ǫ0)
j=1 B∞(xj , ǫ0). Since 2−Jǫ0 ≥ ǫ0, only nine dyadic sets of frequency

Jǫ0 can be used to cover a ball of radius ǫ0 for the infinity norm of R
2. Thus, we

only need 9N(ǫ0) dyadic sets of frequency Jǫ0 to cover ∂A. Consider the partition

of [0, 1]2 by dyadic sets of frequency Jǫ0. Except on the 9N(ǫ0) dyadic sets used to

cover the border ∂A, the prediction rule fA is constant, equal to 1 or −1, on the

other dyadic sets. Thus, by taking fǫ0 =
∑2Jǫ0−1

k1,k2=0 a
(Jǫ0 )

k1,k2
φ

(Jǫ0)

k1,k2
, where a

(Jǫ0 )

k1,k2
is equal

to one value of fA in the dyadic set I(Jǫ0 )

k1,k2
, we have

||fǫ0 − fA||L1(λ2) ≤ 9N(ǫ0)2
−2Jǫ0 ≤ 36δ(ǫ0)ǫ

2
0 ≤ 36ǫ.
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