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ABSTRACT. We consider the problem of generating and tracking a trajectory between two ar-
bitrary parabolic profiles of a periodic 2D channel flow, which is linearly unstable for high
Reynolds numbers. Also known as the Poisseuille flow, this problem is frequently cited as a
paradigm for transition to turbulence. Our approach consists in generating an exact trajectory
of the nonlinear system that approaches exponentially the objective profile. A boundary control
law guarantees then that the error between the state and the trajectory decays exponentially in
the L

2 norm. The result is first proved for the linearized Stokes equations, then shown to hold
for the nonlinear Navier Stokes system.
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1. Introduction

One of the few situations in which analytic expressions for solutions of the sta-
tionary flow field are available is the channel flow problem. Also known as the
Poiseuille flow, this problem is frequently cited as a paradigm for transition to turbu-
lence. Poiseuille flow requires an imposed external pressure gradient for being created
and sustained [BAT 67]. The magnitude of the pressure gradient determines the value
of the centerline velocity, which parameterizes the whole flow.

It is very well known that this solution goes linearly unstable for Reynolds num-
bers greater than the so-called critical Reynolds number, ReCR ≈ 5772 [SCH 01].
The problem of locally stabilizing the equilibrium has been considered by means of
optimal control [HOG 03], and using the backstepping technique [V´ 05a]. Observers
have been developed as well using dual methods [HOE 05, V´ 05b].

However, all prior works consider a constant pressure gradient and a developed
flow which is already close to the desired solution. The problem of tracking time
varying profiles generated by unsteady pressure gradients has, so far, not been con-
sidered from a control point of view. Stability for channel flow driven by unsteady
pressure gradient has been previously studied [KER 82].

In this paper we consider the problem of moving the state from one Poiseuille equi-
librium to another, following a pre-determined flow trajectory that should be “nice”
in some sense. For example, we may wish to smoothly accelerate fluid at rest up to
a given Reynolds number, probably over the critical value, avoiding transition to tur-
bulence. The means at our disposal are the imposed pressure gradient and boundary
control of the velocity field. We consider velocity actuation at one of the walls.

This is a problem of practical interest which, to the best of our knowledge, has not
been solved or even been considered so far, since all control laws in the literature are
designed for one given Poiseuille flow (fixed Reynolds number).

A possible solution for the problem would be to apply quasi-static deformation
theory; this would require to modify the pressure gradient very slowly, and simulta-
neously gain-schedule a fixed Reynold number boundary controller like [V´ 05a] for
tracking a (slowly) time varying trajectory, which in general would not be an exact
solution of the system. This idea has been already used for moving between equilibria
of a nonlinear parabolic equation [COR 04], or a wave equation [COR 05]. Other
applications include the shallow water problem [COR 02] and the Couette-Taylor
flow [SCH 05]. In this paper, however, we follow an alternative approach, finding
an exact, fast trajectory of the system which is then stabilized by means of boundary
control. The advantage of this approach is that it reaches the objective profile requiring
substantially less time and control effort.

The organization of the paper is as follows. We begin stating the model in Sec-
tion 2. In Section 3, we consider and solve the problem of generating an exact tra-
jectory between two Poiseuille profiles. Then, in Section 4 we present the boundary
control laws and our main results. We follow with Section 5, where we present the
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Figure 1. 2D Channel Flow with an equilibrium profile

mathematical framework required to solve the problem. Sections 6 and 7 are devoted
to the proofs of the main results, in the linear and nonlinear case, respectively.

2. Channel flow model

We consider 2-D incompressible fluid filling a region Ω between two infinite
planes separed from each other a distance L. The exact setting is depicted in Fig.
1, in which an example equilibrium profile is shown. Define Uc as a velocity scale,
where Uc is the maximum centerline velocity, ρ and ν as the density and the kinematic
viscosity of the fluid, respectively, and the Reynolds number, Re, as Re = Uch/ν.
Then, using L, L/Uc and ρνUc/L as length, time and pressure scales respectively, we
can write the nondimensional 2-D Navier-Stokes equations as follows,

ut =
△u
Re

− px − uux − vuy, (1)

vt =
△v
Re

− py − uvx − vvy, (2)

where u is the streamwise velocity, v the wall-normal velocity, and p the pressure,
with boundary conditions

u(t, x, 0) = v(t, x, 0) = 0, (3)

u(t, x, 1) = U(t, x), (4)

v(t, x, 1) = V (t, x). (5)

In (4) and (5), U and V are the actuators located at the upper wall, which can be
actuated independently for each x. Additionally we consider incompressible fluid, so
the velocity field must verify in Ω the divergence-free condition

ux + vy = 0. (6)
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In this nondimensional coordinates, Ω can be defined as

Ω = {(x, y) ∈ R
2 : 0 ≤ y ≤ 1}, (7)

with boundary ∂Ω = ∂Ω0 ∪ ∂Ω1, where

∂Ωi = {(x, y) ∈ R
2 : y = i}. (8)

∂Ω0 will be referred as the uncontrolled boundary and ∂Ω1 as the controlled boundary.

3. Trajectory generation and control objective

The stationary family of solutions of (1)–(5) is the Poiseuille family of parabolic
profiles, Pδ , which is described by a single parameter δ (the maximum centerline
velocity) in the following way

Pδ = (uδ, vδ, pδ) =

(

4δy(1 − y), 0,− 8δ

Re
x

)

. (9)

Note that the velocity actuation at the wall is zero for Pδ , since both uδ and vδ are
zero at the boundaries. The pressure gradient pδ

x = − 8δ
Re must be externally sustained

for (9) to be a stationary solution [BAT 67].

Our first task is, given δ0 and δ1, generate an unsteady trajectory path Θ(t) =
(u(t), v(t), p(t)), where space dependence is omitted for clarity, connecting Pδ0 to
Pδ1 . We assume δ0 = 0 and δ1 = 1 for simplicity. Other values may be considered
using the same tools.

Consider the trajectory Θq(t) defined as

Θq(t) = (uq(t), vq(t), pq(t))

= (g(t, y), 0, xq(t)), (10)

where q is the chosen external pressure gradient. Then, by substitution we see that
(10) verifies (1)–(5) if

gt =
gyy

Re
− q. (11)

Since P0 ≡ 0, we set Θq(0) = 0, which implies g(0, y) = q(0) = 0. We impose
g(t, 0) = g(t, 1) = 0 so no velocity control effort is needed to steer the trajectory, only
to stabilize it. Given these initial-boundary data, choosing q completely determines g
from (11) and consequently Θq(t), so q(t) parameterizes Θq(t).

Choosing q(t) as

q(t) =
8

Re

(

1 − e−ct
)

, (12)

with c > 0 a design parameter, then q(0) = 0 and limt→∞ q(t) = −8/Re.
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Introducing (12) in (11), we can solve for g analytically. Supposing c 6= π2(2m+
1)2/Re for m ∈ Z, g is then

g = 16
m=∞
∑

m=0

sin ((2m+ 1)πy)

(2m+ 1)3π3

[

1 − e−
π
2(2m+1)2

Re
t

−e−ct − e−
π
2(2m+1)2

Re
t

1 − cRe
π2(2m+1)2

]

. (13)

As time grows, g(t, y) goes exponentially to its steady state

lim
t→∞

g(t, y) = 16
m=∞
∑

m=0

sin ((2m+ 1)πy)

(2m+ 1)3π3

= 4y(1 − y). (14)

It can be proved as well 1 that g(t, y) is analytic on its domain of definition and
verifies

|g(t, y)| ≤ 1, (15)

|gy(t, y)| ≤ 4. (16)

In Figure 2 we represent g, computed numerically from (11), for c = 1, Re = 1.

It follows that Θq(t) is a solution of the trajectory generation problem, since its
components are smooth (in fact analytic) and solve (1)–(5), and additionaly, we have
that Θq(0) = P0 and limt→∞ Θq(t) = P1, so Θq(t) connects the chosen Poiseuille
profiles2.

Using (10), we define the error variables as

(ũ, ṽ, p̃) = (u, v, p) − Θq(t)

= (u− g(t, y), v, p− xq(t)). (17)

The error variables verify the following equations,

ũt =
△ũ
Re

− p̃x − ũũx − ṽũy − g(t, y)ũx

−gy(t, y)ṽ, (18)

ṽt =
△ṽ
Re

− p̃y − ũṽx − ṽṽy − g(t, y)ṽx, (19)

1. Using the maximum principle and other heat equation properties [EVA 98].
2. Reaching P1 only after an infinitely long time, however by construction through rapidly
decaying exponentials, Θ

q closely approaches P1 after a short time, as shown in Fig. 2. In this
sense, we consider Θ

q a fast trajectory.
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Figure 2. Evolution of g(t, y) for c = 1, Re = 1.

and the same boundary conditions and divergence-free condition as before. Our new
control objetive is to stabilize the equilibrium at the origin in (18)–(19) by means of U
and V . Achieving that implies, considering (17), that the trajectory Θq is stabilized.

Linearizing (18)–(19) around Θq, and dropping tildes, we obtain the unsteady
Stokes equations

ut =
△u
Re

− px − g(t, y)ux − gy(t, y)v, (20)

vt =
△v
Re

− py − g(t, y)vx, (21)

with boundary conditions

u(t, x, 0) = v(t, x, 0) = 0, (22)

u(t, x, 1) = U(t, x), (23)

v(t, x, 1) = V (t, x). (24)

We consider first the problem of stabilizing the origin of (20)–(21), and later show
how its solution stabilizes, even though only locally3, the origin of (18)–(19).

3. Local stabilization of the origin of (18)–(19) suffices, since we assume the initial data are
zero, i.e. the velocity field starts at the origin itself.
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4. Main results

Consider the following control laws.

The controller V (t, x) is a dynamic controller, found as the unique solution of the
following forced parabolic equation

Vt =
Vxx

Re
−

∑

0<|n|<M

∫ h

−h

eiγn(ξ−x)

×
[

2i

∫ 1

0

gy(t, η) cosh (γn(1 − η))V (τ, ξ, η)dη

−iuy(t, x, 0) − uy(t, x, 1)

Re

]

dξ, (25)

which we initialize at zero, whereas the control law U is

U =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(t, 1, η)

×u(t, ξ, η)dηdξ (26)

where M = 2h
√

Re
π and γn = πn/h. Kn in (26) is the solution, for each n, of the

following kernel equation4

Knt =
1

Re
(Knyy −Knηη) − λn(t, η)Kn + f(y, η)

−
∫ y

η

f(ξ, η)Kn(t, y, ξ)dξ, (27)

a linear partial integro-differential equation in the region Γ = (t, y, η) ∈ (0,∞) × T ,
where T = {(y, η) ∈ R

2 : 0 ≤ η ≤ y ≤ 1}, with boundary conditions:

Kn(t, y, y) = −Re
(

λ(y)
y

2
+ hn(0)

)

, (28)

Kn(t, y, 0) = Re

[
∫ y

0

hn(σ)Kn(t, y, σ)dσ

−h(y)
]

, (29)

4. See Proposition 6.1 in Section 6 regarding the solvability of (27)–(29).
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and where the functions that appear in (27)–(29) are

λn(t, y) = iγng(t, y), (30)

fn(t, y, η) = −iγn

[

gy(t, y) + 2γn

∫ y

η

gy(t, σ)

× sinh (γn(y − σ)) dσ

]

, (31)

hn(y) =
γn

Re

[

cosh (γn(1 − y))

sinh γn

−cosh (γny))

sinh γn

]

. (32)

We state now our results.

Theorem 4.1 For any Reynolds number, the equilibrium u ≡ v ≡ 0 of Stokes system
(20)–(24) with control laws (25)–(26) is globally exponentially stable in the L2 norm,
i.e., if w = (u, v), there exist numbers C1(Re), C2(Re) > 0 such that for t ≥ 0,

||w(t)|| ≤ C1e
−C2t||w(0)||. (33)

The result above is valid for any initial condition. If we consider the nonlinear
terms, we obtain just local stability.

Theorem 4.2 For any Reynolds number, the equilibrium u ≡ v ≡ 0 of the Navier
Stokes system (18)–(19) with boundary conditions (22)–(24) and control laws (25)–
(26) is locally exponentially stable in the L2 norm, i.e., if w = (u, v), there exist
numbers ǫ(Re), C1(Re), C2(Re) > 0 such that if ||w(0)|| < ǫ, and for t ≥ 0,

||w(t)|| ≤ C1e
−C2t||w(0)||. (34)

From the results of Section 3 and Theorem 4.2, the next result, which solves the
problem, follows.

Theorem 4.3 For any Reynolds number, Θq(t) defined by (10)–(12) is a solution of
system (1)–(5), with imposed pressure gradient (12), and control laws (25)–(32) ex-
pressed in the error variables (17). Moreover, this solution is locally exponentially
stable in the L2 norm. In particular, if the state is initialized close enough to rest, it
closely follows Θq(t) and approaches the steady equilibrium P1 exponentially fast.

REMARK. — Even though the controller (25)–(32) looks rather involved, it is not
hard to compute and implement. One has to solve a finite set of linear PIDE equations
(27)–(29) for computing the Kn’s, which can be done fast and efficiently compared,
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for example, with LQR—where nonlinear time dependent Ricatti equations appear.
See [SMY 04] for a numerical comparison between LQR and backstepping.

REMARK. — This result can be extended in a number of ways. An output feedback
design is possible applying a dual backstepping observer methodology [SMY 05a,
V´ 05b], only requiring boundary measurements of pressure and skin friction. A 3D
channel flow, periodic in two directions, is also tractable, adding some refinements
which include actuation of the spanwise velocity at the wall. Stability in the H1 norm
can be obtained as well. Details will appear in an upcoming publication.

REMARK. — Averaging in x expression (25) it can be deduced that the mean compo-
nent of V is zero, thus the physical constraint of zero net flux is verified.

The next sections are devoted to proving the results, introducing precise definition
of the norms and spaces for the velocity field, explaining the control design method,
and studying the solvability of equation (27)–(29).

5. Mathematical preliminaries

In this section we present the framework that we use to solve the stabilization
problem.

5.1. Periodic function spaces

Since Ω is unbounded, we assume that the velocity field (u, v) and the pressure p
are periodic in x with some period 2h > 0 [TEM 84]. This requires for consistency
that U and V are periodic with the same period; this is already verified by expressions
(25)–(26). In this setting, Ω and its boundary are identified with

Ωh = {(x, y) ∈ Ω : −h ≤ x ≤ h}, (35)

∂Ωhi = {(x, y) ∈ ∂Ωi : −h ≤ x ≤ h}. (36)

LetL2(Ωh) be the usual Lebesgue space of square-integrable functions, endowed with
the scalar product

(φ, ψ)L2(Ωh) =

∫ q

−h

∫ 1

0

φ(x, y)ψ(x, y)dydx. (37)

Define then L2
h(Ω) = L2(Ωh), where now

(φ, ψ)L2
h
(Ω) = (φ|Ωh

, ψ|Ωh
)L2(Ωh). (38)



10 International Scientific and Technical Encyclopaedia.

5.2. Fourier series expansion

Given a function φ we define the sequence of its complex Fourier coefficients
(φn(y))n∈Z as

φn(y) =
1

2h

∫ h

−h

φ(x, y)e
inπ

h
xdx, n ∈ Z. (39)

We will write simply φn in the sequel. It can be shown that if in φ ∈ L2(Ωh), then
(39) is well defined and φn is in the (complex valued) ℓ2 × L2(0, 1) space, i.e.,

∑

n∈Z

∫ 1

0

|φn(y)|2dy <∞. (40)

One can recover φ by writting its Fourier series,

φ(x, y) =
∑

n∈Z

φn(t, y)e−
inπ

h
x. (41)

Equation (41) always yields a L2(Ωh) function, if φn ∈ ℓ2 × L2(0, 1).

One important results is Parseval’s formula,

(φ, ψ)L2(Ωh) = (φn, ψn)ℓ2×L2(0,1) (42)

where the ℓ2 × L2(0, 1) scalar product is

(φn, ψn)ℓ2×L2(0,1) =
∑

n∈Z

∫ 1

0

φn(y)ψ̄n(y)dy, (43)

and where the bar denotes the complex conjugate.

In the sequel we omit the subindexes in the sums when referring to Z, and in
norms and scalar products when the corresponding space (usually L2) is clear from
the context.

Using (42), and given ψ in L2(Ωh), we can compute its norm by computing its
Fourier coefficients ψn. Then,

||ψ||2L2(Ωh) = ||ψ||2ℓ2×L2(0,1) =
∑

||ψn||2L2(0,1), (44)

where

||ψn||2L2(0,1) =

∫ 1

0

|ψn(y)|2dy. (45)

5.3. H1 spaces

We define the space H1
h(Ω) as

H1
h(Ω) = {f |Ωh

∈ H1(Ωh), f |x=−h = f |x=h a.e.}. (46)
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The H1 norm is defined as

||φ||2H1
h
(Ω) = ||φ||2L2

h
(Ω) + ||φy||2L2

h
(Ω) + ||φx||2L2

h
(Ω), (47)

or in terms of the Fourier coefficients

||φ||2H1
h
(Ω) =

∑

[

(1 + 4π2n2)||φn||2L2(0,1)

+||φny||2L2(0,1)

]

. (48)

We state the following lemma:

Lemma 5.1 Suppose that φ ∈ H1
h(Ω) such that φ|∂Ω0 ≡ 0, and ψ ∈ L2

h(Ω). Then:

(φ2, ψ2)L2
h
(Ω) ≤ ||φy||2L2

h
(Ω)||ψ||2L2

h
(Ω). (49)

Proof Using Fourier coefficients:

(φ2, ψ2)L2
h
(Ω) =

∑

(φ2
n, ψ

2
n)L2(0,1)

=
∑

∫ 1

0

φ2
n(y)ψ̄2

n(y)dy. (50)

Now, since φ ∈ H1
h(Ω), then φn ∈ H1(0, 1), and since φ|∂Ω0

≡ 0, this implies that
φn|y=0 ≡ 0. Then

φn(y)2 ≤ ||φny||2L2(0,1), (51)

and taking supremum:
||φn||2L∞

≤ ||φny||2L2(0,1), (52)

so then
∫ 1

0

φ2
n(y)ψ̄2

n(y)dy ≤ ||φn||2L∞

∫ 1

0

|ψn|2(y)dy

≤ ||φny||2L2(0,1)||ψn||2L2(0,1), (53)

therefore

(φ2, ψ2)L2
h
(Ω) ≤

∑

||φny||2L2(0,1)||ψn||2L2(0,1)

≤
(

∑

||φny||2L2(0,1)

)(

∑

||ψn||2L2(0,1)

)

= ||φy||2L2
h
(Ω)||ψ||2L2

h
(Ω), (54)

in which we have used that for two sequences an, bn in ℓ1, one has

(an, bn)ℓ2 ≤ ||an||ℓ2 ||bn||ℓ2 ≤ ||an||ℓ1 ||bn||ℓ1 . (55)

This fact follows from the Cauchy-Schwartz inequality and noting that ||·||ℓ2 ≤ ||·||ℓ1 .
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5.4. Spaces for the velocity field

Calling w = (u, v), we define

H0h(Ω) = {w ∈ [L2
h(Ω)]2 : ∇ · w = 0,w|∂Ω0 = 0} (56)

and
H1

0h(Ω) = H0h(Ω) ∩ [H1
h(Ω)]2, (57)

endowed with the scalar product of, respectively, [L2
h(Ω)]2 and [H1

h(Ω)]2. These are
the spaces for the velocity field and where Theorems 4.1 and 4.2 have to be considered.

5.5. Transformations of L2 functions

The following definitions establish facts and notation useful for our solution, based
on the backstepping method [SMY 04]. This method consists in finding an invertible
transformation of the original variables into others whose stability properties are easy
to establish. We study the kind of transformations that appear in the method.

Definition 5.1 Given complex valued functions f ∈ L2(0, 1) and K ∈ L∞(T ), we
define the transformed variable g = (I −K)f , where the operator Kf is defined as

Kf =

∫ y

0

K(y, η)f(η)dη, (58)

i.e. a Volterra operator. We call I −K the direct transformation with kernel K. Now,
if there exists a function L ∈ L∞(T ) such that f = (I + L)g, then we say that the
transformation is invertible, and we call I + L the inverse transformation, and L the
inverse kernel (or the inverse of K).

The following result is immediate from the theory of Volterra integral equations [HOC 73].

Proposition 5.1 For K ∈ L∞(T ), the transformation I − K is always invertible.
Moreover, L is related to K by

L(y, η) = K(y, η) +

∫ y

η

K(y, σ)L(σ, η)dσ

= K(y, η) +

∫ y

η

L(y, σ)K(σ, η)dσ. (59)

The following results also holds:

Proposition 5.2 If f ∈ L2(0, 1) then g = (I − K)f is in L2(0, 1). Similarly, if
g ∈ L2(0, 1) then f = (I + L)g is in L2(0, 1). Moreover,

||g||2 ≤ (1 + ||K||∞)2||f ||2, (60)

||f ||2 ≤ (1 + ||L||∞)2||g||2. (61)
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Proof Immediate from calculating the L2 norm on the transformed variable in Defi-
nition 5.1, and then using Cauchy-Schwartz inequality repeatedly.

Proposition 5.2 allows to define a norm equivalent to the L2 norm,

||f ||2KL2(0,1) = ||(I −K)f ||2L2(0,1) = ||g||2L2(0,1). (62)

For C1(T ) kernels K and L, one has an equivalent version of Proposition 5.1
and Proposition 5.2, allowing to define a KH1(0, 1) norm, which is equivalent to the
H1(0, 1) norm.

5.6. Transformations of the velocity field

We define transformations of functions in H0h(Ω).

Definition 5.2 Suppose we have a finite setA = {a1, . . . , aj} ⊂ Z and K = (Kn(y, η))n∈A

is a family of L∞(T ) kernels. Then, for w = (u, v), w ∈ H0h(Ω), one defines the
transformed variable ω = (α, β) = (I −K)w, through its Fourier components,

ωn =

{

((I −Kn)un, 0) n ∈ A,
wn, otherwise.

(63)

The inverse transformation, w = (I + L)ω, is defined as

w =

{

((I + Ln)αn, L̂nαn) n ∈ A,
ωn, otherwise,

(64)

where the new operator L̂n is defined as:

L̂nf = −πin
h

∫ y

0

(

f(η) +

∫ η

0

L(η, σ)f(σ)dσ

)

dη. (65)

It is straightforward that the inverse is correctly defined. We only need to check
the second component of w in (64) when n ∈ A, which is

L̂nαn = −πin
h

∫ y

0

(

αn(η) +

∫ η

0

L(η, σ)αn(σ)dσ

)

dη, (66)

and then substituting the definition of αn from the direct transformation, and after
some manipulation,

L̂nαn = −πin
h

∫ y

0

(

un(η) −
∫ η

0

[

Kn(η, σ) − Ln(η, σ)

+

∫ η

σ

Ln(η, δ)Kn(δ, σ)dδ

]

× un(δ)dδ

)

dη, (67)
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where the expression in brackets is zero by Proposition 5.1. Then,

L̂nαn = −πin
h

∫ y

0

un(η)dη, (68)

and since the divergence-free condition in Fourier space is πin
hun + vny = 0 and

vn(0) = 0 one gets that

L̂nαn =

∫ y

0

vny(η)dη = vn(y) − vn(0) = vn(y). (69)

This way, even though the second component of the velocity is apparently lost in
the direct transformation, it can be recovered and the transformation is still invertible.
Using a similar argument as in Proposition 5.2,

||ω||2H0h(Ω) ≤ (1 + ||K||∞)2||w||2H0h(Ω), (70)

||w||2H0h(Ω) ≤ (1 +N2)(1 + ||L||∞)2||ω||2H0h(Ω), (71)

where N = maxn∈A{π n
h}, and

||K||∞ = max
n∈A

{||Kn||∞}, (72)

||L||∞ = max
n∈A

{||Ln||∞}. (73)

This allows the definition of a norm, as in (62), equivalent to the H0h(Ω), that we
call KH0h(Ω). For C1(T ) kernel families one can define as well a KH1

0h(Ω) norm,
equivalent to the regular H1

0h(Ω) norm.
REMARK. — All previous results hold for transformation kernels depending on time,
as long as they are uniformly bounded on the time interval (finite or infinite) consid-
ered (see Proposition 6.1 for such a statement).

6. Proof of theorem 4.1

Equations (20)–(21) in Fourier space are

unt =
△nun

Re
− iγn(pn + g(t, y)un) − gy(t, y)vn (74)

vnt =
△nvn

Re
− pny − iγng(t, y)vn, (75)

where △n = ∂yy − γ2
n has been introduced for simplifying the expressions. The

boundary conditions are

un(t, 0) = vn(t, 0) = 0, (76)

un(t, 1) = Un(t), (77)

vn(t, 1) = Vn(t), (78)



Poiseuille Trajectory Tracking 15

and the divergence-free condition becomes

γnun + vny = 0. (79)

From (74)–(75) an equation for the pressure can be derived,

pnyy − γ2
npn = −2iγngy(t, y)vn, (80)

with boundary conditions obtained from evaluating (75) at the boundaries and using
(77)–(78),

pny(0, t) = −iγn
uny(0, t)

Re
, (81)

pny(1, t) = −iγn
uny(1, t)

Re
− V̇n − γ2

n

Vn

Re
. (82)

Equations for different n are uncoupled due to linearity and spatial invariance,
allowing separate consideration for each mode n. Most modes, which we refer to as
uncontrolled, are naturally stable and thus left without control. A finite set of modes,
called controlled, are unstable and require control.

6.1. Uncontrolled modes

These are n = 0 and large modes that verify |n| ≥M .

6.1.1. n = 0 (mean velocity field)

From (79), v0 ≡ 0. u0 verifies

u0t =
u0yy

Re
, (83)

with u0(0) = u0(1) = 0. The following estimate holds:

d

dt
||u0(t)||2L2(0,1) ≤ e−

2
Re

t||u0(0)||2L2(0,1). (84)

6.1.2. Modes for large |n|
If wn = (un, vn), then, considering no control (Vn = Un = 0):

d

dt
||wn||2 = −2

||wny||2
Re

− 2γ2
n

||wn||2
Re

− (gyun, vn) − (gyvn, un)

− (un, iγnpn) − (iγnpn, un) − (vn, pny) − (pny, vn) . (85)

Consider the pressure terms like those in the last two lines of (85). Using the diver-
gence free condition γnun + vny = 0, and integration by parts,

− (un, iγnpn) = − (vny, pn) = (vn, pny) . (86)
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Therefore, the pressure terms in (85) cancel each other. Then, using Young’s inequal-
ity with the remaining terms,

d

dt
||wn||2 ≤ −2

||wny||2
Re

− 2γ2
n

||wn||2
Re

+ ||gy||L∞
||wn||2. (87)

Since |gy(t, y)| ≤ 4, choosing |γn| ≥
√

2Re, i.e.,

|n| ≥M =
2h

√
Re

π
, (88)

yields
d

dt
||wn||2 ≤ −2

||wny||2
Re

− γ2
n

||wn||2
Re

≤ −2
||wn||2
Re

, (89)

by Poincare’s inequality, therefore achieving L2 exponential stability for large modes
(|n| ≥M ).

6.2. Controlled modes. Construction of control laws

The remaining modes, 0 < |n| < M , are open-loop unstable and must be con-
trolled. We design the control in several steps.

6.2.1. Pressure shaping

Solving (80)–(82),

pn = −2i

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη

+2i
cosh (γny)

sinh γn

∫ 1

0

gy(t, η) cosh (γn(1 − η)) vn(t, η)dη

+i
cosh (γn(1 − y))

sinh γn

uny(0, t)

Re
− cosh (γny))

sinh γn

(

i
uny(1, t)

Re
+
V̇n

γn

+γn
Vn

Re

)

. (90)

Note that Vn appears in (90), allowing to “shape” it. We design Vn to enforce in
(90) a strict-feedback structure [KRS 95] in y. This structural property is a sort of
“spatial causality”, which requires that in the expression for, say, ft(y), no value of
f(s) for s > y appears. It is a technical requirement in the backstepping method
for parabolic equations [SMY 04, SMY 05b], which we use next. Seeking the strict-
feedback structure in (90), we choose Vn as

V̇n

γn
= −γn

Vn

Re
+ i

uny(0, t) − uny(1, t)

Re
− 2i

∫ 1

0

gy(t, η) cosh (γn(1 − η))

×vn(t, η)dη. (91)
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Introducing (91) into (90), and (90) into (74)–(75), yields

unt =
unyy

Re
− γ2

nun

Re
+ iγng(t, y)un + gy(t, y)vn

+2γn

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη

+γn
cosh (γn(1 − y)) − cosh (γny))

Re sinh γn
uny(0), (92)

vnt =
vnyy

Re
− γ2

nvn

Re
+ ig(t, y)vn

−2iγn

∫ y

0

g(t, η) cosh (γn(y − η)) vn(t, η)dη

+iγn
sinh (γn(1 − y)) + sinh (γny))

Re sinh γn
uny(0). (93)

6.2.2. Control of velocity field

Our objective is now to control (92)–(93) by means of Un. By (79), vn can be
computed from un. Then, only (92) has to be considered. Using (79) to express (92)
as an autonomous equation in un,

unt =
△nun

Re
+ λn(t, y)un +

∫ y

0

fn(t, y, η)un(t, η)dη

+hn(y)uny(0, t), (94)

with boundary conditions

un(t, 0) = 0, (95)

un(t, 1) = Un(t), (96)

where λn, fn and hn were defined in (30)–(32). This is a boundary control prob-
lem for a parabolic PIDE with time-dependent coefficients, solvable by backstep-
ping [SMY 05b] thanks to the strict-feedback structure. Following [SMY 05b] we
map un, for each mode 0 < |n| < M , into the family of heat equations:

αnt =
1

Re

(

−γ2
nαn + αnyy

)

(97)

αn(k, 0) = αn(k, 1) = 0 , (98)

where

αn = (I −Kn)un (99)

un = (I + Ln)αn, (100)
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are respectively the direct and inverse transformation. The kernel Kn is found to
verify equations (27)–(29), and Ln verifies a similar equation, or can be derived from
Kn using Proposition 5.1. For (27)–(29), the following result holds.

Proposition 6.1 There exists a bounded solution Kn of (27)–(29) defined in Γ, C1 in
space and Cω in time.

Proof We sketch a proof following [SMY 04, COL 77, SMY 05b], where similar
(though simpler) equations were studied.

Mirroring [SMY 04], we transform (27)–(29) to an integral-differential equation.
Analyticity5 and uniform boundedness in time and smoothness in space of the coef-
ficients allows to construct a solution K∗

n defined for t ∈ J∗ ⊂ (0,∞), where J∗

is open and finite6, by using a domination method [COL 77]. Since the dominating
function is independent of J∗, all such K∗

n are uniformly bounded in t, and a classical
argument [RUD 86] shows these K∗

n to be C1 in space and Cω in time.

Consider now a collection J i of open finite intervals, such that
⋃

J i ⊆ (0,∞)
and ordered such that J i ∩ J i+1 6= ∅. Following the previous paragraph, we con-
struct solutions Ki

n defined for t ∈ J i. Now, it is possible to show that in any open
time interval (27)–(29) only admits one analytic solution. Therefore, in J i ∩ J i+1,
Ki

n ≡ Ki+1
n . This allows gluing together the solutions Ki

n to obtain a solution Kn

defined in the whole Γ, which by construction is C1 in space and Cω in time. Uniform
boundedness in t of the family Ki

n implies the boundedness of the glued solution Kn.

The control law is, from (99), (98) and (96)

Un =

∫ 1

0

Kn(t, 1, η)un(t, k, η)dη, (101)

Stability properties of the closed loop system follow from (97)–(98) and (99)–
(100). We obtain

d

dt
||un||2KnL2(0,1) ≤ e−

2
Re

t||un(0)||2KnL2(0,1). (102)

5. This requirement, which we verify, cannot be easily dropped [KAN 90].
6. In fact one must consider t a complex variable defined in a region that contains the positive
real axis, e.g. a semi-infinite strip. We skip the details.
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6.3. Stability for the whole system

If we call A = {n ∈ Z : 0 < |n| < M}, and K = Kn(t, y, η)n∈A, and apply the
control laws (101)–(91) in physical space, which yield (26)–(25), then we can prove
stability in the KH0h(Ω) norm.

||w||2KH0h(Ω) =
∑

n/∈A

||wn||2L2(0,1)2 +
∑

n∈A

||un||2KnL2(0,1)

≤ e−
2

Re
t

[

∑

n/∈A

||wn(0)||2L2(0,1)2 +
∑

n∈A

||un(0)||2KnL2(0,1)

]

≤ e−
2

Re
t||w(0)||2KH0h(Ω), (103)

and by norm equivalency, this proves Theorem 4.1.

7. Proof of theorem 4.2

We now consider the full Navier-Stokes equation. Let us call the nonlinear term
N = (Nu, Nv), where

Nu = −uux − vuy, (104)

Nv = −uvx − vvy. (105)

One has that

(w,N) = (u,Nu) + (v,Nv)

= (u, uux) + (v, uvx) + (u, vuy) + (v, vvy)

≤ 1

c

[

||ux||2 + ||uy||2 + ||vx||2 + ||vy||2
]

+
c

4

[(

u2, u2
)

+ 2
(

v2, u2
)

+
(

v2, v2
)]

, (106)

for any c > 0, where we applied Young’s Inequality. By Lemma 5.1, and using norm
equivalences, one then has

(w,N)H0h(Ω) ≤ c1||w||2KH1h(Ω) +
C1

c1
||w||2KH0h(Ω)||w||2KH1h(Ω), (107)

for c1 positive to be chosen, and some C1 > 0. The bound above is valid not only for
(w,N) but for any partial sum of (wn,Nn), by the same argument.

The application of pressure shaping and backstepping transformation to the non-
linear system results in a new term in the target system, which appears as

αnt =
1

Re

(

−γ2
nαn − αnyy

)

+Nα
n , (108)
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where the definition of Nα
n is

Nα
n = (I −Kn)Nu

n + (I −Kn)Np
n. (109)

The term Np
n is due to pressure shaping and is defined as

Np
n =

2

γn

∑

j∈Z

[

cosh (γny)

sinh γn

∫ 1

0

Nq
nj cosh (γn(1 − η)) dη

+

∫ y

0

Nq
nj sinh (γn(y − η)) dη

]

, (110)

where
Nq

nj = γjγn−jujun−j + γn−jujyvn−j . (111)

Then, for n ∈ A,

(αn, N
α
n ) ≤ C2 [(|αn|, |Nu

n |) + (|αn|, |Np
n|)]

≤ C2||αn||
∑

j∈Z

{[||γj |||ujun−j ||

+||ujyvn−j ||] [1 + C3|γn−j |]} , (112)

where C2 = 1 + ||K||∞ and C3 = sinh(γ1)+cosh2(γM )
sinh(γ1)γ1

. Bounding the previous expres-
sion further, one gets

(αn, N
α
n ) ≤ C2

2
||αn||

∑

j∈Z

{

|γj |2||uj ||2 + ||ujy||2

[

1 + C2
3 |γn−j |2

] [

||u(n−j)||2 + ||v(n−j)||2
]}

≤ C4||αn|| ||w||2KH1h(Ω), (113)

for some positiveC4. Calculate now the KL2 norm of the controlled Navier-Stokes
equation. As before:

||w||2KL2
0h

(Ω) =
∑

n/∈A

||wn|| +
∑

n∈A

||un||2KnL2(0,1). (114)

Calculate now the derivatives for all this terms.

d

dt

∑

n/∈A

||wn||2 ≤
∑

n/∈A

[−2

Re
||wny||2 −

γ2
n

Re
||wn||2 + (wn,Nn)

]

, (115)

and for n ∈ A, since ||un||KnL2(0,1) = ||αn||L2(0,1),

d

dt
||αn|| ≤

−2

Re
||αny|| +

−2γ2
n

Re
||αn|| + (αn, N

α
n ). (116)
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Then, summing (116) for n ∈ A, adding (115), and applying norm equivalences,
we get for some C0 > 0

d

dt
||w||2KH0h(Ω) ≤ −C0||w||2KH1h(Ω) +

∑

n/∈A

(wn,Nn)

+
∑

n∈A

(αn, N
α
n )L2(0,1)

≤ ||w||2KH1h(Ω)

(

C4||w||KH0h(Ω)

+c1 +
C1

c1
||w||2KH0h(Ω) − C0

)

. (117)

Choose c1 = C0/2, and suppose ||w||KH0h(Ω) < ǫ. Then

d

dt
||w||2KH0h(Ω) ≤

(

2C1

C0
ǫ2 + C4ǫ−

C0

2

)

||w||2KH1h(Ω), (118)

and choosing ǫ such that 2C1/C0ǫ
2 + C4ǫ <

C0

4 ,

d

dt
||w||2KH0h(Ω) ≤ −C0

4
||w||2KH1h(Ω)

≤ −C5||w||2KH0h(Ω), (119)

by applying an equivalent version of Poincare’s inequality, whereC5 > 0. This proves
local exponential stability in the KH0h(Ω) norm and therefore in the H0h(Ω) norm.
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