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Abstract: We report on some recent results obtained by the authors concerning
robust hybrid stabilization of control systems. In (Prieur and Trélat, 2005a), we
state a result of semi-global minimal time robust stabilization for analytic control
systems with controls entering linearly, by means of a hybrid state feedback law,
under the main assumption of the absence of minimal time singular trajectories. In
(Prieur and Trélat, 2005c), we investigate the Martinet case, which is a model case
in IR3 where singular minimizers appear, and show that such a stabilization result
still holds. Namely, in both cases, we prove that the solutions of the closed-loop
system converge to the origin in quasi minimal time (for a given bound on the
controller) with a robustness property with respect to small measurement noise,
external disturbances and actuator errors.Copyright c© 2006 IFAC
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1. INTRODUCTION

Let m and n be two positive integers. Consider on
IRn the driftless control-affine system

ẋ(t) =
m∑

i=1

ui(t)fi(x(t)), (1)

where f1, . . . , fm are analytic vector fields on
IRn, and where the control function u(·) =
(u1(·), . . . , um(·)) satisfies the constraint

m∑
i=1

ui(t)2 ≤ 1. (2)

The system (1), together with the constraint (2),
is said globally asymptotically stabilizable at the
origin if, for each point x ∈ IRn, there exists a
control law satisfying the constraint (2) such that

the solution of (1) associated to this control law
and starting from x tends to 0 as t tends to +∞.

Brockett’s condition (Brockett, 1983, Theorem
1, (iii)), implies that, if m < n, then there
does not exist any continuous stabilizing feed-
back law for (1). This fact has generated a wide-
ranging research on the asymptotic stabilization
problem, and there exists a huge literature on
this specific problem. Several control laws have
been derived for such control systems (see for in-
stance (Kolmanovsky and McClamroch, 1995; As-
tolfi, 1998) and references therein). The robust
asymptotic stabilization problem is under current
and active research. Many notions of controllers
have been introduced for such issues: discontinu-
ous sampling feedbacks (Clarke et al., 2000; Son-
tag, 1999a), time varying control laws (Coron,
1992; M’Closkey and Murray, 1997; Morin and



Samson, 2003), patchy feedbacks (as in (Ancona
and Bressan, 2002)), ..., enjoying different robust-
ness properties depending on the errors under
consideration.

We consider here feedback laws having both
discrete and continuous components, generating
closed-loop systems with hybrid terms (see for
instance (Bensoussan and Menaldi, 1997; Tav-
ernini, 1987)). To construct such feedbacks, one
has to define a switching strategy between sev-
eral smooth control laws defined on a partition
of the state space. Many results on the stabiliza-
tion problem of nonlinear systems by means of
hybrid controllers have been recently established
(see for instance (Branicky, 1998; Goebel and
Teel, 2005; Goebel et al., 2004; Liberzon, 2003)).
The notion of solution, connected with the robust-
ness problem, is by now well defined in the hybrid
context (see (Goebel and Teel, 2005; Prieur and
Astolfi, 2003) among others).

Our strategy consists in combining a minimal
time controller, which is is smooth on a part
of the state space, and other controllers defined
on the complement of this part. We then define
a switching strategy between all control laws,
yielding a quasi minimal time hybrid controller,
enjoying a robustness property with respect to
small measurement noise, actuator errors and
external disturbances.

The strategy goes in two steps. At first, consider
the minimal time problem for the system (1), (2),
of steering a point x ∈ IRn to the origin. This
problem is solvable as soon as Hörmander’s condi-
tion holds for (f1, . . . , fm), although one is unable
in general to compute explicitly the time optimal
controllers. Hence, the regularity of optimal feed-
back laws is in question. For the system (1), the
minimal time problem under the constraint (2) is
equivalent to the sub-Riemannian problem associ-
ated to the m-tuple of vector fields (f1, . . . , fm);
in these conditions, the minimal time function to
the origin is equal to the sub-Riemannian dis-
tance to the origin). The analytic regularity of the
sub-Riemannian distance appears to be related
to the existence of singular minimizing trajec-
tories (see (Agrachev, 1998)). Namely, if there
does not exist any nontrivial singular minimizing
trajectory starting from the origin, then the sub-
Riemannian distance to the origin is subanalytic
outside the origin. In particular, this function is
analytic outside a stratified submanifold S of IRn,
of codimension greater than or equal to 1 (see
(Tamm, 1981)). As a consequence, outside this
submanifold, it is possible to provide an analytic
time optimal feedback controller for the system
(1) with the constraint (2).

Here, the analytic context is used so as to ensure
stratification properties, which do not hold a pri-

ori if the system is smooth only. These properties
are related to the notion of o-minimal category
(see (van den Dries and Miller, 1996)).

The second step consists in achieving a minimal
time robust stabilization procedure, using a hy-
brid feedback law, by defining a suitable switching
strategy (using an hysteresis) between this mini-
mal time feedback controller and other controllers
defined on a neighborhood of S.

Note that, in (Prieur and Trélat, 2005b), this
program was achieved on the so-called Brockett
system, for which n = 3, m = 2, and, denoting
x = (x1, x2, x3),

f1 =
∂

∂x1
+ x2

∂

∂x3
, f2 =

∂

∂x2
− x1

∂

∂x3
. (3)

In this case, there does not exist any nontrivial
singular trajectory, and the manifold S coincides
with the axis (0x3). A simple explicit hybrid strat-
egy was described. In (Prieur and Trélat, 2005a),
a general result was derived, that requires a count-
able number of components in the definition of the
hysteresis hybrid feedback law.

In (Prieur and Trélat, 2005c), we investigate the
so-called Martinet system in IR3,

ẋ = u1f1(x) + u2f2(x), (4)

where, denoting x = (x1, x2, x3),

f1 =
∂

∂x1
+

x2
2

2
∂

∂x3
, f2 =

∂

∂x2
, (5)

and the control function u = (u1, u2) satisfies the
constraint

u2
1 + u2

2 ≤ 1. (6)

This is a well known case in IR3 for which there
exist singular minimizing trajectories. However,
the previous procedure can be applied, for two
main reasons. First, the minimal time function
can be proved to belong to the log-exp class
(see (van den Dries et al., 1994)), which is a o-
minimal extension of the subanalytic class, and
thus, its singular set S is a stratified submanifold
of codimension greater than or equal to one. This
stratification property allows to define a switching
strategy near the manifold S. Second, the set of
extremities of singular trajectories is small in S,
and invariance properties for the optimal flow thus
still hold in IR3 \ S. This fact is however far to be
general.



2. PRELIMINARIES

2.1 The minimal time problem

Consider the minimal time problem for the system
(1) with the constraint (2). Since Hörmander’s
condition holds for (f1, . . . , fm), any two points of
IRn can be joined by a minimal time trajectory of
(1), (2). Denote by T (x) the minimal time needed
to steer the system (1) with the constraint (2)
from a point x ∈ IRn to the origin 0 of IRn.

For T > 0, let UT denote the (open) subset of
u(·) in L∞([0, T ], IRm) such that the solution of
(1), starting from 0 and associated to a control
u(·) ∈ UT , is well defined on [0, T ]. The mapping

ET : UT −→ IRn

u(·) 7−→ x(T ),

which to a control u(·) associates the end-point
x(T ) of the corresponding solution x(·) of (1)
starting at 0, is called end-point mapping at time
T ; it is a smooth mapping.

A trajectory x(·) of (1), with x(0) = 0, is said
singular on [0, T ] if its associated control u(·) is a
singular point of the end-point mapping ET (i.e.,
if the Fréchet derivative of ET at u(·) is not onto).
In that case, the control u(·) is said to be singular.

2.2 Class of controllers and notion of hybrid
solution

In this section, we recall the general setting for
hybrid systems. Define f : IRn × IRm → IRn be
defined by f(x, u) =

∑m
i=1 uifi(x). The system

(1) writes

ẋ(t) = f(x(t), u(t)). (7)

The controllers under consideration depend on the
continuous state x ∈ IRn and also on a discrete
variable sd ∈ N , where N is a nonempty finite
subset of IN.

A hybrid feedback is a 4-tuple (C,D, k, kd), where

• C and D are subsets of IRn ×N ;
• k : IRn ×N → IRm is a function;
• kd : IRn ×N → N is a function.

The sets C and D are respectively called the con-
trolled continuous evolution set and the controlled
discrete evolution set.

We next recall the notion of robustness to small
noise. Consider two functions e and d satisfying
the following regularity assumptions:

e(·, ·), d(·, ·) ∈ L∞loc(IR
n × [0,+∞); IRn),

e(·, t), d(·, t) ∈ C0(IRn, IRn), ∀t ∈ [0,+∞). (8)

We introduce these functions as a measurement
noise e and an external disturbance d. Below,
define the perturbed hybrid system H(e,d). The
notion of solution of such hybrid perturbed sys-
tems has been well studied in the literature (see
e.g. (Bensoussan and Menaldi, 1997; Branicky,
1998; Prieur, 2005; Prieur and Astolfi, 2003; Tav-
ernini, 1987)). Here, we recall the notion of solu-
tion given in (Goebel and Teel, 2005; Goebel et
al., 2004).

Let S =
⋃J−1

j=0 [tj , tj+1]×{j}, where J ∈ IN∪{+∞}
and (x0, s0) ∈ IRn×N . The domain S is said to be
a hybrid time domain. A map (x, sd) : S → IRn ×
N is said to be a solution of H(e,d) with the initial
condition (x0, s0) if

• the map x is continuous on S;
• for every j, 0 ≤ j ≤ J − 1, the map x : t ∈

(tj , tj+1) 7→ x(t, j) is absolutely continuous;
• for every j, 0 ≤ j ≤ J − 1 and almost every

t ≥ 0, (t, j) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ C,

ẋ(t, j) = f(x(t), k(x(t, j)
+e(x(t, j), t), sd(t, j)))
+d(x(t, j), t),

ṡd(t, j) = 0;

• for every (t, j) ∈ S, (t, j + 1) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ D,

x(t, j + 1) = x(t, j),
sd(t, j + 1) = kd(x(t, j) + e(x(t, j), t),

sd(t, j));

• (x(0, 0), sd(0, 0)) = (x0, s0).

In this context, we next recall the concept of stabi-
lization of (7) by a minimal time hybrid feedback
law sharing a robustness property with respect to
measurement noise and external disturbances (see
(Prieur and Trélat, 2005b)). The usual Euclidean
norm in IRn is denoted by | · |. Recall that a
function of class K∞ is a function δ: [0,+∞) →
[0,+∞) which is continuous, increasing, satisfying
δ(0) = 0 and limR→+∞ δ(R) = +∞.

Let ρ : IRn → IR be a continuous function
satisfying

ρ(x) > 0, ∀x 6= 0. (9)

We say that the completeness assumption for ρ
holds if, for all (e, d) satisfying the regularity
assumptions (8), and so that,

sup[0,+∞)|e(x, ·)| ≤ ρ(x),

esssup[0,+∞)|d(x, ·)| ≤ ρ(x), ∀x ∈ IRn, (10)

for every (x0, s0) ∈ IRn × N , there exists a
maximal solution on [0,+∞) of H(e,d) starting
from (x0, s0).



We say that the uniform finite time convergence
property holds if there exists a continuous func-
tion ρ : IRn → IR satisfying (9), such that the
completeness assumption for ρ holds, and if there
exists a function δ : [0,+∞) → [0,+∞) of class
K∞ such that, for every R > 0, there exists
τ = τ(diam(R)) > 0, for all functions e, d satisfy-
ing the regularity assumptions (8) and inequalities
(10) for this function ρ, for every x0 ∈ B(0, R),
and every s0 ∈ N , the maximal solution (x, sd) of
H(e,d) starting from (x0, s0) satisfies

|x(t, j)| ≤ δ(R), ∀t ≥ 0, (t, j) ∈ S,

x(t, j) = 0, ∀t ≥ τ, (t, j) ∈ S.

The point 0 is said to be a semi-global minimal
time hybrid robust stabilizable equilibrium for the
system (7) if, for every ε > 0 and every compact
subset K ⊂ IRn, there exists a hybrid feedback
law (C,D, k, kd) satisfying the constraint

‖k(x, sd)‖ ≤ 1, (11)

where ‖ · ‖ stands for the Euclidian norm in IRm,
such that:

• the uniform finite time convergence property
holds;

• there exists a continuous function ρε,K :
IRn → IR satisfying (9) for ρ = ρε,K , such
that, for every (x0, s0) ∈ K×N , all functions
e, d satisfying the regularity assumptions (8)
and inequalities (10) for ρ = ρε,K , the max-
imal solution of H(e,d) starting from (x0, s0)
reaches 0 within time T (x0)+ε, where T (x0)
denotes the minimal time to steer the sys-
tem (7) from x0 to 0, under the constraint
‖u‖ ≤ 1.

2.3 The subanalytic class and the log-exp class

In this section, we recall the definition of a suban-
alytic function, then the one of a log-exp function
(see (van den Dries et al., 1994)), and some prop-
erties that are used in a crucial way in the proof
of the following main results.

Let M be a real analytic finite dimensional mani-
fold. A subset A of M is said to be semi-analytic
if and only if, for every x ∈ M , there exists
a neighborhood U of x in M and 2pq analytic
functions gij , hij (1 ≤ i ≤ p and 1 ≤ j ≤ q), such
that

A ∩ U =
p⋃

i=1

{y ∈ U | gij(y) = 0 and

hij(y) > 0, j = 1 . . . q}.

Let SEM(M) denote the set of semi-analytic sub-
sets of M . The image of a semi-analytic subset by

a proper analytic mapping is not in general semi-
analytic, and thus this class has to be enlarged.

A subset A of M is said to be subanalytic if
and only if, for every x ∈ M , there exist a
neighborhood U of x in M and 2p couples (Φδ

i , A
δ
i )

(1 ≤ i ≤ p and δ = 1, 2), where Aδ
i ∈ SEM(M δ

i ),
and where the mappings Φδ

i : M δ
i → M are

proper analytic, for real analytic manifolds M δ
i ,

such that

A ∩ U =
p⋃

i=1

(Φ1
i (A

1
i )\Φ2

i (A
2
i )).

Let SUB(M) denote the set of subanalytic subsets
of M .

The subanalytic class is closed by union, intersec-
tion, complementary, inverse image by an analytic
mapping, image by a proper analytic mapping.
In brief, the subanalytic class is o-minimal (see
(van den Dries and Miller, 1996)). Moreover sub-
analytic sets are stratifiable in the following sense.
A stratum of a differentiable manifold M is a
locally closed sub-manifold of M . A locally finite
partition S of M is a stratification of M if any
S ∈ S is a stratum such that, for every T ∈ S,

T ∩ ∂S 6= ∅ ⇒ T ⊂ ∂S and dim T < dim S.

Finally, a mapping between two analytic mani-
folds M and N is said to be subanalytic if its graph
is a subanalytic subset of M ×N .

The log-exp class, defined in (van den Dries et
al., 1994), is an extension of the subanalytic
class with functions log and exp, that shares the
same properties than the one of subanalytic sets
(namely, it is a o-minimal class). More precisely,
a log-exp function is defined by a finite composi-
tion of subanalytic functions, of exponentials and
logarithms; if g1, . . . , gm, are log-exp functions in
IRn, and if F is a log-exp function in IRm, then the
composition F ◦ (g1, . . . , gm) is a log-exp function
in IRn. A log-exp set is defined by a finite number
of equalities and inequalities using log-exp func-
tions.

Let M be an analytic manifold, and F be a
subanalytic (resp., log-exp) function on M . The
analytic singular support of F is defined as the
complement of the set of points x in M such
that the restriction of F to some neighborhood
of x is analytic. The following property is of great
interest.

Proposition 2.1. (van den Dries et al., 1994;
Tamm, 1981) The analytic singular support of F
is subanalytic (resp., log-exp); thus, in particular,
it is stratifiable. If F is moreover locally bounded
on M , then it is moreover of codimension greater
than or equal to one.



3. THE MAIN RESULTS

3.1 In the absence of singular minimizers

The following theorem is the main result of
(Prieur and Trélat, 2005a).

Theorem 3.1. Assume that Hörmander’s condi-
tion holds. If there exists no nontrivial minimal
time singular trajectory of (1), (2), starting from
0, then the origin is a semi-global minimal time
hybrid robust stabilizable equilibrium for the sys-
tem (1), under the constraint (2).

3.2 In the presence of singular minimizers

In (Prieur and Trélat, 2005c), we prove the fol-
lowing result.

Theorem 3.2. The origin is a semi-globally mini-
mal time robustly stabilizable equilibrium for the
system (4) with the constraint (6).

3.3 The idea of the proof

3.3.1. Regularity of the minimal time function
First, to derive Theorem 3.1, the following cru-
cial remark is due. Under the assumption of the
absence of nontrivial singular minimizing trajec-
tory, the minimal time function T (x) to steer the
system (1) from x to 0, under the constraint (2),
is subanalytic. The corresponding minimal time
feedback controller is continuous (even analytic)
on IRn \ S, where S is the set of points of IRn at
which T is not analytic. Since T is subanalytic, S
is a stratified submanifold of IRn, of codimension
greater than or equal to one.

To derive Theorem 3.2, we note the following
fact. It has been proved in (Bonnard et al., 1999)
(see also (Agrachev et al., 1997; Bonnard and
Trélat, 2001)) that the minimal time function
T (x) to steer the system (4) from x to 0, under
the constraint (6), belongs to the log-exp class,
and thus, is stratifiable. Note that it has been
proved in (Agrachev et al., 1997) that T is not
subanalytic.

3.3.2. The optimal controller Outside the sin-
gular set S, the function T (·) is analytic, and the
minimal time controllers steering a point x ∈ IRn\
S to 0 are given by the closed-loop formula
ui(x) = − 1

2 〈∇(T (x)2), fi(x)〉, i = 1, . . . ,m.

In the Martinet case, we get the more explicit
expression

u1(x) = −1
2

(
∂T

∂x1
+

x2
2

2
∂T

∂x3

)
,

u2(x) = −1
2

∂T

∂x2
.

The smoothness of this optimal controller outside
the submanifold S ensures a robustness property
of the stability outside S. In the first case, T
is subanalytic, and in the second, T is log-exp.
In both cases, the singular set S is a stratified
submanifold, of codimension greater than or equal
to one. In a neighborhood of S, it is therefore
necessary to use other controllers, and to define
an adequate switching strategy. Notice that this
neighborhood can be chosen arbitrarily thin, and
thus, the time ε needed for its traversing is arbi-
trarily small. Therefore, starting from an initial
point x0, the time needed to join 0, using this
hybrid strategy, is equal to T (x0)+ε. The switch-
ing strategy is achieved by adding a dynamical
discrete variable sd and using a hybrid feedback
law.

3.3.3. The hybrid strategy The main fact con-
sists in constructing neighborhoods of S whose
complements share invariance properties for the
optimal flow (see (Prieur and Trélat, 2005a) for
a general result on the cut locus, and see (Prieur
and Trélat, 2005c) for the specific Martinet case).

The second component of the hysteresis then con-
sists of a set of controllers, defined in a neighbor-
hood Ω of S, such that every solution starting
from Ω leaves Ω in small time. This is possi-
ble using Hörmander’s condition (see (Prieur and
Trélat, 2005a) for details).

Then, a hybrid feedback law is constructed, using
an hysteresis. This is the most technical part.

3.3.4. Further comments The crucial fact used
in the proof relies on stratification properties of
the minimal time function. This holds whenever
the minimal time function belongs to the suban-
alytic class, or to the log-exp class. More gener-
ally, this holds in a o-minimal class. For general
analytic control systems of the form (1), (2), in
the absence of singular minimizing trajectory, the
minimal time function to a point can be proved to
be subanalytic outside this point. In the Martinet
case, the minimal time function is not subanalytic,
due to the presence of a singular minimizing tra-
jectory, however, it belongs to the log-exp class,
which is also o-minimal, and hence, is still strati-
fiable.

This situation extends to the so-called Martinet
integrable case (see (Bonnard et al., 1999)). In a
neighborhood of 0, a model of this latter case is
given by the two vector fields

f1 = g1(x2)
(

∂

∂x1
+

x2
2

2
∂

∂x3

)
, f2 = g2(x2)

∂

∂x2
,

where g1 and g2 are germs of analytic functions
at 0 such that gi(0) = 1. It is proved in (Bonnard
et al., 1999) that the minimal time function still



belongs to the log-exp class in this case. This is
however no longer true whenever the functions g1,
g2 also depend on x1 and x3. In this case, it is
conjectured in (Bonnard and Trélat, 2001) that
the minimal time function does not belong to the
log-exp class. In this latter case, a larger class is
due for describing the regularity of the minimal
time function, but it is not clear if it is possible to
find an adapted o-minimal class.
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