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Semi-global minimal time hybrid robust stabilization of analytic
driftless control-affine systems

Christophe Prieur and Emmanuel Trélat

Abstract— We investigate the problem of semi-global minimal
time robust stabilization of analytic driftless control-affine
systems, by means of a hybrid state feedback law. Our main
result is that, in the absence of singular minimal time solutions,
the solutions of the closed-loop system converge to the origin in
quasi-minimal time (for a given bound on the controller) with
a robustness property with respect to small measurement noise
and external disturbances.

I. INTRODUCTION
Let m and n be two positive integers. Consider on Rn the

driftless control-affine system

ẋ(t) =

m
∑

i=1

ui(t)fi(x(t)), (1)

where f1, . . . , fm are analytic vector fields on Rn, and where
the control function u(·) = (u1(·), . . . , um(·)) satisfies the
constraint

m
∑

i=1

ui(t)
2 ≤ 1. (2)

The system (1), together with the constraint (2), is said to be
globally asymptotically stabilizable, if, for each point x ∈
Rn, there exists a control law satisfying the constraint (2)
such that the solution of (1) associated to this control law
and starting from x tends to 0 as t tends to +∞, and satisfies
a stability property (see [36] e.g. for a precise statement).

This asymptotic stabilization problem has a long history
and has been widely investigated. Note that, due to Brockett’s
condition [10, Theorem 1, (iii)], if m < n then there
does not exist any continuous stabilizing feedback law for
(1). However several control laws have been derived for
such control systems (see for instance [24], [21], [5] and
references therein).

The robust asymptotic stabilization problem is under cur-
rent and active research. Many notions of controllers have
been introduced to treat this problem, such as discontinuous
sampling feedbacks [13], [35], time varying control laws
[15], [14], [25], [26], patchy feedbacks (as in [4]), SRS
feedbacks [34], ..., enjoying different robustness properties
depending on the errors under consideration.

We consider here feedback laws having both discrete and
continuous components, which generate closed-loop systems
with hybrid terms (see for instance [39]). Such feedbacks
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appeared first in [28] to stabilize nonlinear systems having a
priori no discrete state. They consist in defining a switching
strategy between several smooth control laws defined on a
partition of the state space.

It can be now seen as a paradigm for the robust stabiliza-
tion of nonlinear control systems for which we are not able
(because of the topological obstructions), or we do not know
how to compute a continuous or a discontinuous stabilizing
feedback. This strategy appears in [28] and has been used,
among others, in [30], [29], [18], [33]. It requires a precise
statement of the notion of a solution, and of the notion of
asymptotically stable systems, as studied e.g. in [29], [18].

Here we use this strategy together with an optimal objec-
tive, focusing on the robust stabilization property and on
the optimality of the speed of convergence. It requires a
precise study of the minimal time control problem of (1)
under the constraint (2). We use a hybrid strategy to unit
different control laws. This allows to switch between the
components of the hybrid feedback law by guaranteeing a
robustness property with respect to measurement noises and
external disturbances.

More precisely, in a first step, we consider the minimal
time problem for the system (1) with the constraint (2),
of steering a point x0 ∈ Rn to the origin. Note that this
problem is solvable as soon as Hörmander’s condition is
satisfied on the m-tuple of vector fields (f1, . . . , fm). Of
course, in general it is impossible to compute explicitly
the optimal time feedback controllers for this problem.
Moreover, Brockett’s condition implies that such control laws
are not smooth whenever m < n and the vector fields
f1, . . . , fm are independent. This raises the problem of the
regularity of optimal feedback laws. The literature on this
subject is immense. In an analytic setting, the problem of
determining the analytic regularity of the value function for
a given optimal control problem, has been, among others,
investigated by [37]. For systems of the form (1), the minimal
time problem under the constraint (2) is equivalent to the
sub-Riemannian problem associated to the m-tuple of vector
fields (f1, . . . , fm). In this framework, the minimal time
function to x0 is equal to the sub-Riemannian distance to
x0. The analytic regularity of the sub-Riemannian distance
is related to the existence of singular minimizing solutions,
see [1], [2], [40]. More precisely, if there does not exist any
nontrivial singular minimizing solution starting from 0, then
the sub-Riemannian distance to 0 is subanalytic outside 0
(see [19], [20] for a general definition of subanalytic sets).
In particular, this function is analytic outside a stratified
submanifold S of Rn, of codimension greater than or equal



to 1, see [38]. As a consequence, outside this submanifold
it is possible to provide an analytic optimal time feedback
controller for the system (1) with the constraint (2).

Note that the analytic context is used so as to ensure
stratification properties, which do not hold a priori if the
system is smooth only. These properties are related to the
notion of o-minimal category (see [16]).

Then, in a second step, by assuming the Hörmander’s
condition, we have to define a suitable feedback law such
that all solutions go out of a given neighborhood of S within
a small fixed time.

Finally, in order to achieve a minimal time robust stabiliza-
tion procedure, using a hybrid feedback law (more precisely,
a hysteresis), we unit the three feedback law-components.
This part of our work is not new and analogous to [33],
however we can not apply the robustness result of [33]
directly, since, here, we are interested in a quasi-optimal
property.

We thus give an alternative solution to a conjecture of [9,
Conj. 1, p. 101], in which the existence of patchy feedbacks
is conjectured (this is however a different matter).

In a previous paper [31], this program was achieved
explicitly on the so-called Brockett system, for which n = 3,
m = 2, and, denoting x = (x1, x2, x3),

f1 =
∂

∂x1
+ x2

∂

∂x3
, f2 =

∂

∂x2
− x1

∂

∂x3
.

In this case, there does not exist any nontrivial singular
solution, and the manifold S is the axis (0x3).

II. DEFINITIONS AND MAIN RESULT

A. The minimal time problem
Consider the minimal time problem for the system (1) with

the constraint (2).
Definition 2.1: We say that Hörmander’s condition holds

if the Lie algebra spanned by the vector fields f1, . . . , fm,
is equal to Rn at every point x of Rn.

It is well-known that under this condition, any two points
of Rn can be joined by a minimal time solution of (1), (2).

We denote by T (x0) the minimal time needed to steer the
system (1) with the constraint (2) from a point x0 ∈ Rn to
the origin.

Remark 2.1: Obviously, the control function u : Rn →
Rm associated to a minimal time solution of (1), (2), actually
satisfies

∑m

i=1 u
2
i = 1.

For T > 0, let UT denote the (open) subset of u(.) in
L∞([0, T ],Rm) such that the solution of (1), starting from
0 and associated to a control u(·) ∈ UT , is well defined on
[0, T ]. The mapping

ET : UT −→ Rn

u(·) 7−→ x(T ),

which to a control u(·) associates the end-point x(T ) of the
corresponding solution x(·) of (1) starting at 0, is called
end-point mapping at the origin, in time T ; it is a smooth
mapping.

Definition 2.2: A solution x(·) of system (1), so that
x(0) = 0, is said to be singular on [0, T ] if its associated
control u(·) is a singular point of the end-point mapping ET

(i.e. if the Fréchet derivative of ET at u(·) is not onto).
Remark 2.2: If x(·) is singular on [0, T ], then it is singular

on [0, t], for every t ∈ (0, T ).

B. Class of controllers and notion of hybrid solution
Let f : Rn × Rm → Rn be defined by f(x, u) =

∑m

i=1 uifi(x). The system (1) writes

ẋ(t) = f(x(t), u(t)). (3)

The controllers under consideration depend on the con-
tinuous state x ∈ Rn and also on a discrete variable
sd ∈ N , where N is a countable subset of N. According
to the concept of a hybrid system of [17], we introduce the
following definition.

Definition 2.3: A hybrid feedback is a 4-tuple
(C,D, k, kd), where

• C and D are subsets of Rn ×N ;
• k : Rn ×N → Rm is a function;
• kd : Rn ×N → N is a function.

The sets C and D are respectively called the controlled
continuous evolution set and the controlled discrete evolution
set.

We next recall the notion of robustness to small noises
(see [36]). Consider two functions e and d satisfying the
following regularity assumptions:

e(·, ·), d(·, ·) ∈ L∞

loc(R
n × [0,+∞); Rn),

e(·, t), d(·, t) ∈ C0(Rn,Rn), ∀t ∈ [0,+∞).
(4)

We introduce these functions as a measurement noise e and
an external disturbance d. Below, we define the perturbed
hybrid system H(e,d). The notion of solution of such hybrid
perturbed systems has been well studied in the literature (see
e.g. [7], [8], [23], [39], [29], [30]). Here, we consider the
notion of solution given in [17], [18].

Definition 2.4: Let S =
⋃J−1

j=0 [tj , tj+1]×{j}, where J ∈
N∪{+∞} and (x0, s0) ∈ Rn ×N . The domain S is said to
be a a hybrid time domain. A map (x, sd) : S → Rn × N
is said to be a solution of H(e,d) with the initial condition
(x0, s0) if

• the map x is continuous on S;
• for every j, 0 ≤ j ≤ J−1, the map x : t ∈ (tj , tj+1) 7→
x(t, j) is absolutely continuous;

• for every j, 0 ≤ j ≤ J − 1 and almost every t ≥ 0,
(t, j) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ C, (5)

and
ẋ(t, j) = f(x(t), k(x(t, j) + e(x(t, j), t), sd(t, j)))

+ d(x(t, j), t),

ṡd(t, j) = 0;
(6)



(where the dot stands for the derivative with respect to
the time variable t)

• for every (t, j) ∈ S, (t, j + 1) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ D, (7)

and
x(t, j + 1) = x(t, j),

sd(t, j + 1) = kd(x(t, j) + e(x(t, j), t), sd(t, j));
(8)

• (x(0, 0), sd(0, 0)) = (x0, s0).
In this context, we next define the concept of stabilization

of (3) by a minimal time hybrid feedback law sharing a
robustness property with respect to measurement noises and
external disturbances. The usual Euclidean norm in Rn is
denoted by | · |. Recall that a function of class K∞ is
a function δ: [0,+∞) → [0,+∞) which is continuous,
increasing, satisfying δ(0) = 0 and limR→+∞ δ(R) = +∞.

Definition 2.5: Let ρ : Rn → R be a continuous function
satisfying

ρ(x) > 0, ∀x 6= 0. (9)

We say that the completeness assumption for ρ holds if, for
all (e, d) satisfying the regularity assumptions (4), and so
that,

sup
[0,+∞)

|e(x, ·)| ≤ ρ(x), ∀x ∈ Rn,

esssup[0,+∞)|d(x, ·)| ≤ ρ(x), ∀x ∈ Rn,
(10)

for every (x0, s0) ∈ Rn×N , there exists a maximal solution
on [0,+∞) of H(e,d) starting from (x0, s0).

Definition 2.6: We say that the uniform finite time con-
vergence property holds if there exists a continuous function
ρ : Rn → R satisfying (9), such that the completeness
assumption for ρ holds, and if there exists a function δ :
[0,+∞) → [0,+∞) of class K∞ such that, for every R > 0,
there exists τ = τ(diam(R)) > 0, for all functions e, d
satisfying the regularity assumptions (4) and inequalities (10)
for this function ρ, for every x0 ∈ B(0, R), and every
s0 ∈ N , the maximal solution (x, sd) of H(e,d) starting from
(x0, s0) satisfies

|x(t, j)| ≤ δ(R), ∀t ≥ 0, (t, j) ∈ S, (11)

and
x(t, j) = 0, ∀t ≥ τ, (t, j) ∈ S. (12)

Definition 2.7: The origin is said to be a semi-global
minimal time hybrid robust stabilizable equilibrium for the
system (3) if, for every ε > 0 and every compact subset
K ⊂ Rn, there exists a hybrid feedback law (C,D, k, kd)
satisfying the constraint

‖k(x, sd)‖ ≤ 1, (13)

where ‖ · ‖ stands for the Euclidian norm in Rm, such that:
• the uniform finite time convergence property holds;
• there exists a continuous function ρε,K : Rn → R

satisfying (9) for ρ = ρε,K , such that, for every
(x0, s0) ∈ K × N , all functions e, d satisfying the
regularity assumptions (4) and inequalities (10) for

ρ = ρε,K , the maximal solution of H(e,d) starting from
(x0, s0) reaches O within time T (x0)+ε, where T (x0)
denotes the minimal time to steer the system (3) from
x0 to 0, under the constraint ‖u‖ ≤ 1.

C. Main result
Theorem 2.1: Assume that Hörmander’s condition holds.

If there exists no nontrivial singular minimal time solution
of (1), (2), starting from 0, then the origin is a semi-global
minimal time hybrid robust stabilizable equilibrium for the
system (1), under the constraint (2).

Remark 2.3: The problem of global robust minimal time
stabilization (i.e. K = Rn in Definition 2.7) cannot be
achieved a priori because measurement noises may then
accumulate and slow down the solution reaching 0 (compare
with [9]).

Remark 2.4: The assumption of the absence of nontrivial
singular minimizing solutions is classical in optimal control
theory. Notice the following facts.

• If m ≥ n, then there exists no singular solution.
• Denote by Fm the set of m-uples of linearly indepen-

dent vector fields (f1, . . . , fm), endowed with the C∞

Whitney topology. If m ≥ 3, there exists an open dense
subset of Fm, such that any control system of the form
(1), associated to a m-tuple of this subset, admits no
nontrivial singular minimizing solution (see [11], [12],
see also [2] for the existence of a dense set only).

• If there exist singular minimizing solutions, then the
conclusion on subanalyticity of the function T may
fail, and we cannot a priori prove that the set S of
singularities of T is a stratifiable manifold, which is
the crucial fact in order to define a hybrid strategy.

III. SKETCH OF PROOF

Due to the space limitation, we only sketch the proof (for
a complete proof, see [32]).

In Subsection III-A, we study the minimal time control
problem with the Hörmander’s condition and we define an
optimal control law kopt, which is smooth on Rn except on
the so-called cut locus set. Thus, outside of any given Ω
neighborhood of this cut locus, we have a natural robustness
property.

In Subsection III-B, we define the components of the
hysteresis. First, using the minimal time function, the optimal
controller is defined, outside a singular set which is a
stratified submanifold of codimension greater than or equal to
one. Then, the second component of the hysteresis is defined;
it consists of a set of controllers, defined in a neighborhood
of the singular set.

The main part of the proof, not described here, actually
consists in uniting these controllers using an adapted hystere-
sis strategy, and describing the properties of the closed-loop
system with this hybrid feedback law.
A. The optimal controller

We first interpret the minimal time control problem for
the system (1) with the constraint (2) as a sub-Riemannian
problem.



1) Sub-Riemannian distance: Recall that the sub-
Riemannian distance (also called Carnot-Carathéodory dis-
tance) is defined as follows in Rn (see [6]). Let m an integer
such that 1 ≤ m ≤ n, and f1, . . . , fm be smooth vector fields
on Rn. For all x ∈ Rn and v ∈ Rn, set

g(x, v) := inf

{

m
∑

i=1

u2
i | u1, . . . , um ∈ R,

m
∑

i=1

uifi(x) = v

}

.

Then g(x, ·) is a positive definite quadratic form on the
subspace spanned by f1(x), . . . , fm(x). Outside this sub-
space we set g(x, v) = +∞. The form g is called sub-
Riemannian metric associated to the m-tuple of vector fields
(f1, . . . , fm). Let AC([0, 1],Rn) denote the set of absolutely
continuous paths in Rn defined on [0, 1]. Define the length
of γ ∈ AC([0, 1],Rn) as l(γ) =

∫ 1

0

√

g(γ(t), γ̇(t))dt.
Note that the length of a path does not depend on its
parametrization.

Recall that Hörmander’s condition holds if the Lie algebra
spanned by the vector fields f1, . . . , fm, is equal to Rn at
every point x. It is well-known that under this condition any
two points of Rn can be joined by an absolutely continuous
path with finite length.

Definition 3.1: The sub-Riemannian distance associated
to the m-tuple of vector fields (f1, . . . , fm), between two
points x0, x1, is defined by

dSR(x0, x1) = inf
{

l(γ) | γ ∈ AC([0, 1],Rn),

γ(0) = x0, γ(1) = x1

}

.

A path γ ∈ AC([0, 1],Rn) is said to be minimizing if it
realizes the sub-Riemannian distance between its extremities.

Remark 3.1: If Hörmander’s condition holds, then any
two points can be joined by a minimizing path, and the topol-
ogy defined by the sub-Riemannian distance dSR coincides
with the usual topology of Rn.

2) Optimal control formulation: Since the length of a
path does not depend on its parametrization, if a path x(·) :
[0, T ] → Rn is parametrized by its arc-length, then there
holds almost everywhere on [0, T ]

ẋ(t) =

m
∑

i=1

ui(t)fi(x(t)),

m
∑

i=1

ui(t)
2 = 1,

and the length of x(·) is equal to T . Therefore, the sub-
Riemannian problem is equivalent to the minimal time
problem for the system (1) with the (non convex) constraint
∑m

i=1 u
2
i = 1. Obviously, it is also equivalent to the minimal

time problem for the system (1) with the (convex) constraint
(2). We sum up the situation in the following result.

Lemma 3.1: The minimal time problem for the sys-
tem (1) with the constraint (2) is equivalent to the sub-
Riemannian problem associated to the m-tuple of vec-
tor fields (f1, . . . , fm). Moreover, the minimal time T (x)
needed to steer the system (1) with the constraint (2) from 0
to a point x ∈ Rn is equal to the sub-Riemannian distance
dSR(0, x) of x to 0.

In particular, minimal time solutions of (1), (2), are exactly
minimizing paths of the previous sub-Riemannian problem.

This equivalence permits to work in the framework of sub-
Riemannian geometry.

Singular solutions (resp. singular controls) are defined in
the same way as previously (see Definition 2.2).

3) Computation of minimizing solutions: Let x ∈ Rn.
The sub-Riemannian problem of determining a minimiz-
ing solution steering 0 to x can be easily seen (up to
reparametrization, and using the Cauchy-Schwarz inequality)
to be equivalent to the optimal control problem of finding a
control u(·) ∈ U such that the solution of the control system
(1) steers 0 to x in time 1, and minimizes the cost function

C(u(·)) =

∫ 1

0

m
∑

i=1

ui(t)
2 dt. (14)

If a control u(·) associated to a solution x(·) so that x(0) = 0
is optimal, then there exists a nontrivial Lagrange multiplier
(ψ,ψ0) ∈ Rn × R such that

ψ.dE1(u(·)) = −ψ0dC(u(·)), (15)

where dE1(u(·)) (resp. dC(u(·))) denotes the Fréchet deriva-
tive of E1 (resp. C) at the point u(·). Moreover, according
to Pontryagin’s maximum principle (see [27]), the solution
x(·) is the projection of an extremal, that is a quadruple
(x(·), p(·), p0, u(·)), solution of the constrained Hamiltonian
system

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)),

ṗ(t) = −
∂H

∂x
(x(t), p(t), p0, u(t)),

∂H

∂u
(x(t), p(t), p0, u(t)) = 0,

almost everywhere on [0, 1], where

H(x, p, p0, u) = 〈p,
m

∑

i=1

uifi(x)〉 + p0
m

∑

i=1

u2
i

is the Hamiltonian of the optimal control problem, p(·)
(called adjoint vector) is an absolutely continuous mapping
on [0, 1] such that p(t) ∈ Rn, and p0 is a real nonpositive
constant. Moreover, there holds (p(1), p0) = (ψ,ψ0), up to
a multiplying scalar. If p0 < 0 then the extremal is said to
be normal, and in this case it is normalized to p0 = −1/2.
If p0 = 0 then the extremal is said to be abnormal.

Remark 3.2: Any singular solution is the projection of an
abnormal extremal, and conversely.

Using the previous normalization, controls associated to
normal extremals can be computed as

ui(t) = 〈p(t), fi(x(t)〉, i = 1, . . . ,m.

Hence, normal extremals are solutions of the Hamiltonian
system

ẋ(t) =
∂H1

∂p
(x(t), p(t)), ṗ(t) = −

∂H1

∂x
(x(t), p(t)), (16)

where
H1(x, p) =

1

2

m
∑

i=1

〈p, fi(x)〉
2.



4) The cut locus:
Definition 3.2: A point x ∈ Rn is not a cut point if there

exists a minimizing solution joining 0 to x, which is the strict
restriction of a minimizing solution starting from 0. The cut
locus, denoted by L, is the set of all cut points.

In other words, a cut point is a point at which a minimizing
solution ceases to be optimal.

The following result on the cut locus is crucial (see [32]
for a proof).

Proposition 3.2: Assume that the m vector fields
f1, . . . , fm are analytic, and that there exists no singular
minimizing solution starting from 0. Then, the set of points
where the sub-Riemannian distance to 0 is not analytic is
equal to the cut locus, that is, Sing dSR(0, ·) = L.

Proposition 3.2 provides the key argument of the proof.
Indeed, on the one part, in the absence of nontrivial minimiz-
ing solutions, the mapping dSR(0, ·) is subanalytic outside
0, and in particular its singular set S := Sing(dSR(0, ·)) is a
subanalytic manifold of codimension greater than or equal to
one. Outside this singular set, this feedback law is analytic
and defines our feedback law kopt.

B. Components of the hysteresis, and hybrid strategy
The function T (·), which coincides with the function

dSR(0, ·), is subanalytic outside 0, and hence, its singular set
S (i.e., the analytic singular support of T (·)) is a stratified
submanifold of Rn, of codimension greater than or equal to
1. The objective is then to construct neighborhoods of S\{0}
in Rn whose complements share invariance properties for the
optimal flow.

1) The optimal controller: Outside the singular set S, the
function T (·) is analytic, and the minimal time controllers
steering a point x ∈ Rn \S to 0 are given by the closed-loop
formula

ui(x) = −
1

2
〈∇(T (x)2), fi(x)〉, i = 1, . . . ,m. (17)

The smoothness of this optimal controller outside the sub-
manifold S ensures a robustness property of the stability out-
side S. The following lemma, yieldings invariance properties
of the optimal flow, is proved in [32].

Lemma 3.3: For every neighborhood Ω of S \{x̄} in Rn,
there exists a neighborhood Ω′ of S \ {x̄} in Rn, satisfying

Ω′ ( clos(Ω′) ( Ω, (18)

such that every trajectory of the closed-loop system (1) with
the optimal controller, joins a point x ∈ Rn \Ω to x̄, and is
contained in Rn \ Ω′.

A switching strategy must be defined in order to connect
the optimal controller to other controllers, defined next,
which have to be continuous in the neighborhood Ω′ of the
submanifold S. The switching strategy is achieved by adding
a dynamical discrete variable sd and using a hybrid feedback
law.

Robustness properties of the system in closed-loop with
the optimal controller are investigated in [32].

2) The second component of the hysteresis: The second
component of the hysteresis consists of a set of controllers,
defined in a neighborhood of S. Since S is a stratified
submanifold of Rn of codimension greater than or equal to
one, there exists a partition (Mi)i∈N of S, where Mi is a
stratum, i.e., a locally closed submanifold of Rn.

C. End of the proof
To conclude the proof, we unit have the optimal controller

together with the second component of the hysteresis defined
previously, using an hysteresis. Note that, it is proved in [33]
that this class of feedbacks has natural generic robustness
properties with respect to measurement, actuator noise and
external disturbances. It is also the case of our hybrid
feedback. However, since, in our context, we are interested
in a quasi-optimal property, we cannot apply [33] directly.
This procedure is similar to the one of [29], where an infinite
number of state-feedbacks are united.

In [32], a family of three nested patchy vector fields
is required to prove the main result. Some of the patches
define the dynamics of the discrete component of the hybrid
controller, and the others are used for technical reasons to
handle the measurement noises. The precise definition of this
hysteresis procedure, so as the description of the properties
of the closed-loop system with this hybrid feedback law,
actually represent the main part of the proof of the main
result (see [32] for details).

Note that this program was achieved in an explicit way
in [31]; in particular, in this reference, the hybrid feedback
law is completely explicit, and defined in a very simple
way. The result of [32], whose proof is sketched here, is
rather an existence result, though we explain how to derive
an hysteresis feedback law, in function of the Lie bracket
configuration of the system. The main result, Theorem 2.1,
however points out the main assumption under which it is
possible to achieve the stabilization process, namely, the
absence of singular minimal time solutions of the control
system (1), under the constraint (2).
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