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Computation of conjugate times in smooth optimal control: the
COTCOT algorithm

Bernard Bonnard, Jean-Baptiste Caillau and Emmanusbir

Abstract— Conjugate point type second order optimality —and to check optimality of the corresponding extremals. This
conditions for extremals associated to smooth Hamiltonians are js done in the regu|ar mu|ti-input case as well as in the Singu-
evaluated by means of a new algorithm. Two kinds of standard |5, single-input exceptional case. The second application is

control problems fit in this setting: the so-called regular ones, ; C
and the minimum time singular single-input affine systems. the attitude control of a spacecraft. A preliminary study of the

Conjugate point theory is recalled in these two cases, and two Euler equations is achieved. The hyperbolic and exceptional
applications are presented: the minimum time control of the singular cases of the single-input system are finally analyzed

Kepler and Euler equations. in §V. For a more detailed presentation of the topic, we refer
I. INTRODUCTION readers to [6], [7].
We consider a smooth Hamiltonian equation Il. REGULAR CONTROL SYSTEMS
t=TH(2) 1) Consider the control of the system

on the cotangent bundle of a smooth manifdld Such an &= f(x,u0), 2(0) = o 3)
equation arises in the optimal control of systems with smooth N T -0

control. Indeed, extremal trajectories are parameterized Ryhere 2 belongs to a smooth manifold/ identified with

Pontryagin maximum principle and satisify the standar®R» and where the cost to minimize is the functional
Hamiltonian equation. In the two cases refjular systems,

and singular_ single-input affine mi_nimL_Jm time _systems, Ol ) :/T £0(, u)dt.
the control is smooth and a Hamiltonian equation of the 0
form (1) i; derived. Mqreover, second order conditions forrhe right hand sidef : R™ x R" — R” is smooth and
(local) qpumahty of a given extremal;, can be checked by takes values iR™. Since the control domain is unbounded,
tcr:Jmputtmg al-set of solutions to the variational system alon&/ery optimal controlu on [0,7] is a singularity of the

€ extremat . _JH endpoint mapping®,,  : L2 ([0,t]) = R"for0 <t <T

0% = dH (2(t))dz. 2) where B, ;(u) = z(t,zo,u) is the solution of (3): the

System (2) is called théacobiequation. This kind of second Fréchet derivative at. of the mapping is not surjective
order conditions are known asnjugate pointonditions [1], (its image has codimension at least one; see assumption
[2], [3]. An implementation of the relevant computations,(A2) hereafter). The resulting trajectory is the projection
including solving (1) and (2) is provided by thefatlab  of an extremal(z, p*, p,u), p° non-positive, solution of the
packagecotcot  [4]. More precisely, on the basis of a user-maximum principle,

provided Hamiltonian, the second members of (1) and (2) OH OH
are evaluated by automatic differentiation [5]. The numerical T = B p= s
integration of the differential equations and the solution of p r
the associated shooting problem are computed by standancld

Netlib codes interfaced wittMatlab. We propose two ap- oH —0
plications of the algorithm in spaceflight dynamics: first to ou

orbit trapsfer, then to attitude pontrol. . where H = p°f°(z,u) + (p, f(z,u)) is the standard Hamil-
To this end, we first recall i§ll and §lll the conjugate (onian constant along the extremal, zero if the final time
point theory, respectively for regular control problems ang free. The Hamiltonian is homogeneous(j#f, p) and we
minimum time singular single-input affine systems. Then, thg,e two cases: theormal case where? is not zero and
minimum time control of the Kepler equation is presented i - malized top® = —1, and theexceptionalcase otherwise,
§IV. The aim is to compute orbit transfers around the Eartpo — 0. Without losing any generality, we may assume that
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z = (z,p), solution of0H/du = 0. This defines the regular In the three other cases, the test is still (6) Bltas to be

Hamiltonian function restricted to suitable submanifolds of the fiber. In the normal
0 case with free final time, the Hamiltonian is zero akidis
H,(z,p) = H(z,p", p,ur(z,p)) chosen according to
and the reference extremal is a smooth solution of _ * _
X = {po € Txo‘hf | Hr((ﬂo,po) = 0}
z= ﬁr(z)- (4)  The exceptional case is treated similarly with, respectively,
Definition 2.1: Let z = (z,p) be the reference extremal X=8"1cT:M

defined on[0, T]. The variational equation ’

if the final time is fixed, and
62 =dH ,(2(t))5z (5)
X ={pyeS" ' CcT; M| H,(x,po) =0}
is called theJacobi equationA Jacobi fieldis a non trivial )
solution.J of (5). It is said to bevertical at timet if 5z(t) = Otherwise.

dll(z(t)) - J(t) = 0 wherell : (z,p) > x is the standard |, - g|NGULAR SINGLE-INPUT AFFINE SYSTEMS,

projection. _ o - MINIMUM TIME
In order to derive second order optimality conditions, we

make the following additional generic assumptions on the We consider the minimum time control of a single-input
reference extremal. affine system
(A2) The singularity of the endpoint mapping,, . atu is

of codimension one on each nonempty subinterval Qfnere 7, and F;, are smooth vector fields on a manifald

.i‘:Fo—f'uFl

[0, T7. identified withR", andu is valued inR.. Optimal trajectories
Let (x(t, z0,p0), p(t, 0, po)) denote the solution of (4) for are singular, but we cannot apply the previous algorithms to
the initial condition(zo, po). check second order conditions because the strong Legendre
Definition 2.2: For small enough nonnegativewe define condition is not satisfied anymore. Our aim is to apply the
the exponential mappingy theoretical framework of [2] so as to get sufficient conditions,
together with algorithms from [8]. We first introduce some
exp,, ¢ (Po) = (¢, Zo, po)- generic conditions along the reference extremal. Lete

_ The domain of the exponential depends on whether we afgs reference singular trajectory 4 7], and letu be the
in the exceptional case or not, and on whether the final iMgssqciated control. First of all, it is convenient to apply a
is fixed or not. feedback transformation to normalize the controlute= 0.

Definition 2.3: Let z = (z,p) be the reference extremal \ye make indeed the following assumptions.
defined on[0,7]. Under our assumptions, the tinte <

tc < T is called conjugateif the mappingexp, ; is not
an immersion ap. The associated point(¢..) is said to be . |
: . ) : 0,...,n — 2} has codimension one.
conjugateto zy. We denote by, . the first conjugate time. _ i )
The fundamental result relating conjugate points to th&S @ result, this vector subspace is the Pontryagin dot

optimality status of extremals in the regular case is thfPr Positive . The adjointp(t) is unique up to a constant
following [3], [1], [2]. and oriented with the conventiof > 0 of the maximum

Theorem 2.1:Under our assumptions, Iék, p, ) be the Principle.
reference regular extremal defined @ 7). It is locally (A3) Along the reference trajectory, the vector figkif F' -
optimal with respect to all trajectories with same extremities ~ does not belong t8pan{ad® Fy-Fy [k =0,...,n—2}.
in the L>°-topology (¢°-topology if the extremal is normal), This last condition implies that the reference singular ex-
up to the first conjugate timg.. It is not locally minimizing tremal z is a so-callecbrder two extremalsolution of
in the L°°-topology aftert;.. )
In the normal case with fixed final time, leY be the t=H,(2) @)
@-dimgnsional fiberT; M. Then, the exponentigl map.ping on {H, = {Hy, H;} = 0} with
is defined on an open subset &f and, for a givenpy in
X, we denote byL; the transport ofL, = T,,X by the Hs = Ho+usH;
variational equation along the extremal= (z,p) defined ~ {Ho,{Ho, H1}}
by (20, p0). Clearly, L, is a Lagrangian subspace Bf;,, M s = 7 {H,,{Ho, H,}}
spanned by Jacobi fields vertical at- 0, and singularities Here before, the brackets stand for the standard Poisson

of the exponential are detected by checking the rank of trberacket of smooth functions on the cotangent bundle. Our
projection of L, on thez-space. Thereforé, is a conjugate ’

point if and only if last assumption is as follows.

(A4) If n = 2, Fy and F; are independent along the
rank dII(z(t.)) - Ly, < dim X. (6) reference trajectory. I > 3, Fy does not belong to

(A1) The reference trajectory is smooth and injective.
(A2) For everyt € [0,T], Span{ad*Fy - Fy(z(t)) | k =



TABLE |
BOUNDARY CONDITIONS.

Span{ad”F, - Fy(z(t)) | k= 0,...,n — 3} along the
reference trajectory.
The extremal is eitheexceptionaland contained in the level

Variable Initial cond.  Final cond.

set{H = 0}, or normal In the latter case, the classification P 11.625 Mm ___ 42.165 Mm

is done according to the definition hereafter. ex 0.75 0

_ Definition 3.1: A norma_l e_xtr_emal is said to beyperbolic f;; 8.0612 8

if {Hy,{Ho, H,}} <0, elliptic if {H;,{Ho,H1}} > 0. hy 0 0
We recall the following result from [2]. ! m rad 103 rad
Theorem 3.1:Under our assumptions, €&, p, u) be the

reference singular extremal defined ®Bn77]. In the excep- TABLE I

tional and hyperbolicrésp. elliptic) case, it is locally time PHYSICAL CONSTANTS.

minimizing (resp.maximizing) with respect to all trajectories
with same extremities in th&-topology up to the first

Variable  Value

) . ; X Lo e w 5165.8620912 Mm3-h—2
conjugate timet.. It is not locally time minimizing in the 8 1.4%¢ — 2 Mm—1.h
Le°-topology aftert;.. m0 1500 kg
Let us now define conjugate times, in the normal case first. Finax 3N
If the extremal is hyperbolic (or elliptic), let us define
X = {poeS" ' CT;M|H(xg,po) = and F,, = F. A F.. The boundary conditions define the
{Ho, Hy Y0, po) = 0} initial and the terminal orbits, as well as positions on these.
See Table | where they are given in terms exfuinoctial
and letLy = RF;(z0) ®T,, X, which is of dimensiom—2.  elementd6].
Then, a conjugate time. is defined as a point such that Conjugate points for this problem can be computed by the
algorithm of §ll.
rank {dIl(z(tc)) - Li., F1(z(tc))} <n—1. Indeed, any optimal control is smooth outside isolated

points calledlI-singularitieswhere an instantaneous rotation
of angle pi occurs [6]. The norm of the control is thus
X = {ppes'c Ty M | Ho(zo,p0) = (almost everywhere) maximum and the equation of the mass
Hi (20, po) = {Ho, Hy }z0,po) = 0} is solved bym(t) = mo — BFmaxt. As a result, though
non-autonomous, the system is a particular case sifita
and letLy = RF(xo) ® Ty, X, which is now of dimension Riemanniarsystem for which the previous algorithm holds.
n — 3. A conjugate timet. is defined as a point where Indeed, any smooth optimal control defines a singularity
of the endpoint mapping where controls are taken on the
rank {dII(z(t.)) - L, Fi(z(t.)), Fo(z(t.))} <n—1. sphere of radius,.: Although the system is affine in the

IV. KEPLER EQUATION FOR ORBIT TRANSFER command, controls can easily be reparameterized in order
that the Legendre-Clebsh condition be satisfied. Test (6) is
used in the normal case with free final time, and the rank is

Analogously, in the exceptional case, let

We consider the minimum time control of the Kepler

equation tested by a singular value decomposition of the 1 = 5

j= —q% + = Jacobi fields computed bgotcot . An equivalent test is to
T m

_ N . . ~ look for zeros of the determinant of the projection of Jacobi
whereg is the position of the satellite measured in a fixedie|ds with the dynamics along the trajectory:

frame I, J, K whose origin is the Earth center= |¢|, and

u the gravitation constant. The free motion whéfe= 0 is det(dII(z(tc)) - Le,, (tc)) = 0.

the Kepler equation. The thrust is boundfll} < Fiuax, and  The physical constants for numerical computation are sum-

the mass variation is described by marized in Table Il, and the result of the computation is
= —B|F| @8) shown in Fig. 1.

We end the section with the single-input case where the
where 3 is a positive constant. Written in the 3D radial-thrust is oriented along,,. In the exceptional case, the

orthoradial frame, the dynamics becomes control is the singular feedback. = —Dy/D; with
1 — / / /
T = FO + *(UrFr + UorFor + U(:Fc) DO For A [F07 FOT] /\N[FO’ [FO’ For“ A FO
| " = 20Aq) (P’ +5)
with , LT ,
¢ 0 Dy = Fo N [Fo, Fo ] A [For, [Fo, Fo ]l A Fo
F. = == = —2r%g .
la| ¢ 1
qNGg O Since the system is of dimensioh according toglll we

lg A d a4 only have one Jacobi field to compute. The physical values
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Fig. 3. Numerical results for Euler equations.

the initial values2; = 0.05, Q> = 0.05, Q3 = 1.
The associated trajectory is hyperbolic, and we get a first
conjugate time;. ~ 1.37, that corresponds to the vanishing
of the norm of the unique Jacobi field computeddmycot
(see Fig. 3).

The complete system of attitude control of a rigid body
consists in adding to Euler system the equations

R=S(Q)R

Fig. 1. A 3 Newton transfer. The minimum time is abouf days,
corresponding td 5 revolutions around the Earth, approximatively. On the
top, the optimal trajectory (with projections in the equatorial plane and a
perpendicular plane to illustrate how the inclination is corrected) is extendtwhere
until roughly 3.5 times the minimum time. Bottom left, the determinant, 0 Q e}
bottom right, the smallest singular value of the Jacobi fields associated to 3 2
the extremal. Two conjugate times are detected and the optimality is lost S (Q) = -3 0 Q
about 3 times the minimum time. Qy -0 0

— The matrixR(t) is a rotation matrix ifR?, represented by an
N ) element ofR°. To compute conjugate times, an alternative
\ to §lll algorithm is to perform an integral transformation,
\ namely theGoh transformation(see [2]), in order that the
) reduced system is regular in the sensélbfThe vector field

/1 being constant, one just has to change coordinates linearly.
More precisely, assumings # 0, we achieve the integral
transformation by considering as a new contret z3, and
we define the new coordinates

. K //

a0 20 o 20 40 60 80

Fig. 2. An exceptional trajectory. The initial cumulated longitudés in
10, [, lo = 3w/8, and the satellite spirals up so that — oo, leaving
rapidly the elliptic domain. The associated determinant remains negative,
ensuring%©-local optimality of the whole trajectory. The reduced system has the form

R = S(z,y,v)R
T = fl(xvy7v)
y = fg(a?,y,v)

b b
$=Q1—£st yzﬁz—iﬁa-

for the computation are those of Table Il. We gsgtand 3 to
zero to have a 2D-constant mass model, and we change the
initial longitude not to start from the pericenter (see Fig. 2).
wheref; and f, are quadratic. For the numerical simulations,
the initial data on the state (that is an elementRdf') are
V. EULER EQUATION FOR ATTITUDE CONTROL R0} = 1, 2(0) = 0.05, y(0) = 0.05. If we choose the

Recall that Euler equations are initial adjoint vectorpp = (1111111111 1) we are in the

hyperbolic case. Observe that, except at a conjugate time, the

91 = allalls +biu rank is equal tot. Figure 4 represents the second, third and
Qo = a1 Q3 +bau last singular values, and the first conjugate time corresponds
Qs = a3V Qs + bsu to the vanishing of the fourth one. We ggt ~ 285.729.
If we choose the initial adjoint vectop, as before
where but change the third component according s =
4 = I -1 a4y — Is -1 a5 = L —1p 0.99355412876393, we are in the exceptional case §ifl.
L’ L, ’ I3 Observe that, except at a conjugate time, the rank is equal to

We apply the intrinsic algorithm of computation of conjugate?- Figure 5 represents the second and third singular values,
times presented iflll with the datal, = 3, I, = 2, I; = @and the first conjugate time corresponds to the vanishing of

1, by = 2, by = 1, by = 1. The test is achieved with the third one. We get;. ~ 108.1318.
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Fig. 4. Numerical results on attitude control, hyperbolic case.
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