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Computation of conjugate times in smooth optimal control: the
COTCOT algorithm

Bernard Bonnard, Jean-Baptiste Caillau and Emmanuel Trélat

Abstract— Conjugate point type second order optimality
conditions for extremals associated to smooth Hamiltonians are
evaluated by means of a new algorithm. Two kinds of standard
control problems fit in this setting: the so-called regular ones,
and the minimum time singular single-input affine systems.
Conjugate point theory is recalled in these two cases, and two
applications are presented: the minimum time control of the
Kepler and Euler equations.

I. INTRODUCTION

We consider a smooth Hamiltonian equation

ż = −→
H (z) (1)

on the cotangent bundle of a smooth manifoldM . Such an
equation arises in the optimal control of systems with smooth
control. Indeed, extremal trajectories are parameterized by
Pontryagin maximum principle and satisify the standard
Hamiltonian equation. In the two cases ofregular systems,
and singular single-input affine minimum time systems,
the control is smooth and a Hamiltonian equation of the
form (1) is derived. Moreover, second order conditions for
(local) optimality of a given extremal,z, can be checked by
computing a set of solutions to the variational system along
the extremal:

δż = d
−→
H (z(t))δz. (2)

System (2) is called theJacobiequation. This kind of second
order conditions are known asconjugate pointconditions [1],
[2], [3]. An implementation of the relevant computations,
including solving (1) and (2) is provided by theMatlab
packagecotcot [4]. More precisely, on the basis of a user-
provided Hamiltonian, the second members of (1) and (2)
are evaluated by automatic differentiation [5]. The numerical
integration of the differential equations and the solution of
the associated shooting problem are computed by standard
Netlib codes interfaced withMatlab. We propose two ap-
plications of the algorithm in spaceflight dynamics: first to
orbit transfer, then to attitude control.

To this end, we first recall in§II and §III the conjugate
point theory, respectively for regular control problems and
minimum time singular single-input affine systems. Then, the
minimum time control of the Kepler equation is presented in
§IV. The aim is to compute orbit transfers around the Earth
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and to check optimality of the corresponding extremals. This
is done in the regular multi-input case as well as in the singu-
lar single-input exceptional case. The second application is
the attitude control of a spacecraft. A preliminary study of the
Euler equations is achieved. The hyperbolic and exceptional
singular cases of the single-input system are finally analyzed
in §V. For a more detailed presentation of the topic, we refer
readers to [6], [7].

II. REGULAR CONTROL SYSTEMS

Consider the control of the system

ẋ = f(x, u), x(0) = x0 (3)

where x belongs to a smooth manifoldM identified with
Rn, and where the cost to minimize is the functional

C(x, u) =
∫ T

0

f0(x, u)dt.

The right hand sidef : Rn × Rn → Rn is smooth andu
takes values inRm. Since the control domain is unbounded,
every optimal controlu on [0, T ] is a singularity of the
endpoint mappingEx0,t : L∞m ([0, t]) → Rn for 0 < t ≤ T
where Ex0,t(u) = x(t, x0, u) is the solution of (3): the
Fréchet derivative atu of the mapping is not surjective
(its image has codimension at least one; see assumption
(A2) hereafter). The resulting trajectory is the projection
of an extremal(x, p0, p, u), p0 non-positive, solution of the
maximum principle,

ẋ =
∂H

∂p
, ṗ = −∂H

∂x

and
∂H

∂u
= 0

whereH = p0f0(x, u) + 〈p, f(x, u)〉 is the standard Hamil-
tonian, constant along the extremal, zero if the final time
is free. The Hamiltonian is homogeneous in(p0, p) and we
have two cases: thenormal case wherep0 is not zero and
normalized top0 = −1, and theexceptionalcase otherwise,
p0 = 0. Without losing any generality, we may assume that
the trajectory is one to one on[0, T ]. We make the strong
Legendre assumption,

(A1) The quadratic form∂2H/∂u2 is negative definite along
the reference extremal.

Therefore, using the implicit function theorem, the extremal
control can be locally defined as a smooth functionur of



z = (x, p), solution of∂H/∂u = 0. This defines the regular
Hamiltonian function

Hr(x, p) = H(x, p0, p, ur(x, p))

and the reference extremal is a smooth solution of

ż = −→
H r(z). (4)

Definition 2.1: Let z = (x, p) be the reference extremal
defined on[0, T ]. The variational equation

δż = d
−→
H r(z(t))δz (5)

is called theJacobi equation. A Jacobi fieldis a non trivial
solutionJ of (5). It is said to bevertical at timet if δx(t) =
dΠ(z(t)) · J(t) = 0 whereΠ : (x, p) 7→ x is the standard
projection.

In order to derive second order optimality conditions, we
make the following additional generic assumptions on the
reference extremal.

(A2) The singularity of the endpoint mappingEx0,t at u is
of codimension one on each nonempty subinterval of
[0, T ].

Let (x(t, x0, p0), p(t, x0, p0)) denote the solution of (4) for
the initial condition(x0, p0).

Definition 2.2: For small enough nonnegativet, we define
the exponential mappingby

expx0,t(p0) = x(t, x0, p0).
The domain of the exponential depends on whether we are

in the exceptional case or not, and on whether the final time
is fixed or not.

Definition 2.3: Let z = (x, p) be the reference extremal
defined on[0, T ]. Under our assumptions, the time0 <
tc ≤ T is called conjugateif the mappingexpx0,tc

is not
an immersion atp0. The associated pointx(tc) is said to be
conjugateto x0. We denote byt1c the first conjugate time.

The fundamental result relating conjugate points to the
optimality status of extremals in the regular case is the
following [3], [1], [2].

Theorem 2.1:Under our assumptions, let(x, p, u) be the
reference regular extremal defined on[0, T ]. It is locally
optimal with respect to all trajectories with same extremities
in theL∞-topology (C 0-topology if the extremal is normal),
up to the first conjugate timet1c. It is not locally minimizing
in the L∞-topology aftert1c.

In the normal case with fixed final time, letX be the
n-dimensional fiberT ∗x0

M . Then, the exponential mapping
is defined on an open subset ofX and, for a givenp0 in
X, we denote byLt the transport ofL0 = Tp0X by the
variational equation along the extremalz = (x, p) defined
by (x0, p0). Clearly,Lt is a Lagrangian subspace ofT ∗x(t)M
spanned by Jacobi fields vertical att = 0, and singularities
of the exponential are detected by checking the rank of the
projection ofLt on thex-space. Therefore,tc is a conjugate
point if and only if

rank dΠ(z(tc)) · Ltc
< dim X. (6)

In the three other cases, the test is still (6) butX has to be
restricted to suitable submanifolds of the fiber. In the normal
case with free final time, the Hamiltonian is zero andX is
chosen according to

X = {p0 ∈ T ∗x0
M | Hr(x0, p0) = 0}.

The exceptional case is treated similarly with, respectively,

X = Sn−1 ⊂ T ∗x0
M

if the final time is fixed, and

X = {p0 ∈ Sn−1 ⊂ T ∗x0
M | Hr(x0, p0) = 0}

otherwise.

III. SINGULAR SINGLE-INPUT AFFINE SYSTEMS,
MINIMUM TIME

We consider the minimum time control of a single-input
affine system

ẋ = F0 + uF1

whereF0 andF1 are smooth vector fields on a manifoldM
identified withRn, andu is valued inR. Optimal trajectories
are singular, but we cannot apply the previous algorithms to
check second order conditions because the strong Legendre
condition is not satisfied anymore. Our aim is to apply the
theoretical framework of [2] so as to get sufficient conditions,
together with algorithms from [8]. We first introduce some
generic conditions along the reference extremal. Letx be
the reference singular trajectory on[0, T ], and letu be the
associated control. First of all, it is convenient to apply a
feedback transformation to normalize the control tou ≡ 0.
We make indeed the following assumptions.

(A1) The reference trajectory is smooth and injective.
(A2) For every t ∈ [0, T ], Span{adkF0 · F1(x(t)) | k =

0, . . . , n− 2} has codimension one.

As a result, this vector subspace is the Pontryagin coneK(t)
for positive t. The adjointp(t) is unique up to a constant
and oriented with the conventionH ≥ 0 of the maximum
principle.

(A3) Along the reference trajectory, the vector fieldad2F1·F0

does not belong toSpan{adkF0 ·F1 | k = 0, . . . , n−2}.
This last condition implies that the reference singular ex-
tremalz is a so-calledorder two extremal, solution of

ż = −→
H s(z) (7)

on {H1 = {H0,H1} = 0} with

Hs = H0 + usH1

us = −{H0, {H0,H1}}
{H1, {H0,H1}}

·

Here before, the brackets stand for the standard Poisson
bracket of smooth functions on the cotangent bundle. Our
last assumption is as follows.

(A4) If n = 2, F0 and F1 are independent along the
reference trajectory. Ifn ≥ 3, F0 does not belong to



Span{adkF0 · F1(x(t)) | k = 0, . . . , n − 3} along the
reference trajectory.

The extremal is eitherexceptionaland contained in the level
set{H = 0}, or normal. In the latter case, the classification
is done according to the definition hereafter.

Definition 3.1: A normal extremal is said to behyperbolic
if {H1, {H0,H1}} < 0, elliptic if {H1, {H0,H1}} > 0.

We recall the following result from [2].
Theorem 3.1:Under our assumptions, let(x, p, u) be the

reference singular extremal defined on[0, T ]. In the excep-
tional and hyperbolic (resp.elliptic) case, it is locally time
minimizing (resp.maximizing) with respect to all trajectories
with same extremities in theC 0-topology up to the first
conjugate timet1c. It is not locally time minimizing in the
L∞-topology aftert1c.

Let us now define conjugate times, in the normal case first.
If the extremal is hyperbolic (or elliptic), let us define

X = {p0 ∈ Sn−1 ⊂ T ∗x0
M | H1(x0, p0) =

{H0,H1}(x0, p0) = 0}

and letL0 = RF1(x0)⊕Tp0X, which is of dimensionn−2.
Then, a conjugate timetc is defined as a point such that

rank {dΠ(z(tc)) · Ltc
, F1(x(tc))} < n− 1.

Analogously, in the exceptional case, let

X = {p0 ∈ Sn−1 ⊂ T ∗x0
M | H0(x0, p0) =

H1(x0, p0) = {H0,H1}(x0, p0) = 0}

and letL0 = RF1(x0)⊕ Tp0X, which is now of dimension
n− 3. A conjugate timetc is defined as a point where

rank {dΠ(z(tc)) · Ltc
, F1(x(tc)), F0(x(tc))} < n− 1.

IV. KEPLER EQUATION FOR ORBIT TRANSFER

We consider the minimum time control of the Kepler
equation

q̈ = −q
µ

r3
+

F

m

whereq is the position of the satellite measured in a fixed
frameI, J , K whose origin is the Earth center,r = |q|, and
µ the gravitation constant. The free motion whereF = 0 is
the Kepler equation. The thrust is bounded,|F | ≤ Fmax, and
the mass variation is described by

ṁ = −β|F | (8)

where β is a positive constant. Written in the 3D radial-
orthoradial frame, the dynamics becomes

ẋ = F0 +
1
m

(urFr + uorFor + ucFc)

with

Fr =
q

|q|
∂

∂q̇

Fc =
q ∧ q̇

|q ∧ q̇|
∂

∂q̇

TABLE I

BOUNDARY CONDITIONS.

Variable Initial cond. Final cond.
P 11.625 Mm 42.165 Mm
ex 0.75 0
ey 0 0
hx 0.0612 0
hy 0 0
l π rad 103 rad

TABLE II

PHYSICAL CONSTANTS.

Variable Value
µ 5165.8620912 Mm3·h−2

β 1.42e− 2 Mm−1·h
m0 1500 kg
Fmax 3 N

and For = Fc ∧ Fr. The boundary conditions define the
initial and the terminal orbits, as well as positions on these.
See Table I where they are given in terms ofequinoctial
elements[6].

Conjugate points for this problem can be computed by the
algorithm of§II.

Indeed, any optimal control is smooth outside isolated
points calledΠ-singularitieswhere an instantaneous rotation
of angle pi occurs [6]. The norm of the control is thus
(almost everywhere) maximum and the equation of the mass
is solved bym(t) = m0 − βFmaxt. As a result, though
non-autonomous, the system is a particular case of asub-
Riemanniansystem for which the previous algorithm holds.
Indeed, any smooth optimal control defines a singularity
of the endpoint mapping where controls are taken on the
sphere of radiusFmax: Although the system is affine in the
command, controls can easily be reparameterized in order
that the Legendre-Clebsh condition be satisfied. Test (6) is
used in the normal case with free final time, and the rank is
tested by a singular value decomposition of then − 1 = 5
Jacobi fields computed bycotcot . An equivalent test is to
look for zeros of the determinant of the projection of Jacobi
fields with the dynamics along the trajectory:

det(dΠ(z(tc)) · Ltc
, ẋ(tc)) = 0.

The physical constants for numerical computation are sum-
marized in Table II, and the result of the computation is
shown in Fig. 1.

We end the section with the single-input case where the
thrust is oriented alongFor. In the exceptional case, the
control is the singular feedbackue = −D0/D1 with

D0 = F ′
or ∧ [F0, F

′
or] ∧ [F0, [F0, F

′
or]] ∧ F0

= 2(v ∧ q)(|v|2 +
µ

r
)

D1 = F ′
or ∧ [F0, F

′
or] ∧ [For, [F0, F

′
or]] ∧ F0

= −2r2q · v.

Since the system is of dimension4, according to§III we
only have one Jacobi field to compute. The physical values
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Fig. 1. A 3 Newton transfer. The minimum time is about12 days,
corresponding to15 revolutions around the Earth, approximatively. On the
top, the optimal trajectory (with projections in the equatorial plane and a
perpendicular plane to illustrate how the inclination is corrected) is extended
until roughly 3.5 times the minimum time. Bottom left, the determinant,
bottom right, the smallest singular value of the Jacobi fields associated to
the extremal. Two conjugate times are detected and the optimality is lost
about 3 times the minimum time.
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Fig. 2. An exceptional trajectory. The initial cumulated longitudel0 is in
]0, π[, l0 = 3π/8, and the satellite spirals up so that|q| → ∞, leaving
rapidly the elliptic domain. The associated determinant remains negative,
ensuringC 0-local optimality of the whole trajectory.

for the computation are those of Table II. We setuc andβ to
zero to have a 2D-constant mass model, and we change the
initial longitude not to start from the pericenter (see Fig. 2).

V. EULER EQUATION FOR ATTITUDE CONTROL

Recall that Euler equations are

Ω̇1 = a1Ω2Ω3 + b1u

Ω̇2 = a2Ω1Ω3 + b2u

Ω̇3 = a3Ω1Ω2 + b3u

where

a1 =
I2 − I3

I1
, a2 =

I3 − I1

I2
, a3 =

I1 − I2

I3
·

We apply the intrinsic algorithm of computation of conjugate
times presented in§III with the dataI1 = 3, I2 = 2, I3 =
1, b1 = 2, b2 = 1, b3 = 1. The test is achieved with
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Fig. 3. Numerical results for Euler equations.

the initial valuesΩ1 = 0.05, Ω2 = 0.05, Ω3 = 1.
The associated trajectory is hyperbolic, and we get a first
conjugate timet1c ' 1.37, that corresponds to the vanishing
of the norm of the unique Jacobi field computed bycotcot
(see Fig. 3).

The complete system of attitude control of a rigid body
consists in adding to Euler system the equations

Ṙ = S(Ω)R

where

S(Ω) =

 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 .

The matrixR(t) is a rotation matrix inR3, represented by an
element ofR9. To compute conjugate times, an alternative
to §III algorithm is to perform an integral transformation,
namely theGoh transformation(see [2]), in order that the
reduced system is regular in the sense of§II. The vector field
f1 being constant, one just has to change coordinates linearly.
More precisely, assumingb3 6= 0, we achieve the integral
transformation by considering as a new controlv = x3, and
we define the new coordinates

x = Ω1 −
b1

b3
Ω3, y = Ω2 −

b2

b3
Ω3.

The reduced system has the form

Ṙ = S(x, y, v)R
ẋ = f1(x, y, v)
ẏ = f2(x, y, v)

wheref1 andf2 are quadratic. For the numerical simulations,
the initial data on the state (that is an element ofR11) are
R(0) = I, x(0) = 0.05, y(0) = 0.05. If we choose the
initial adjoint vectorp0 = (1 1 1 1 1 1 1 1 1 1 1) we are in the
hyperbolic case. Observe that, except at a conjugate time, the
rank is equal to4. Figure 4 represents the second, third and
last singular values, and the first conjugate time corresponds
to the vanishing of the fourth one. We gett1c ' 285.729.

If we choose the initial adjoint vectorp0 as before
but change the third component according top0,3 =
0.99355412876393, we are in the exceptional case of§III.
Observe that, except at a conjugate time, the rank is equal to
3. Figure 5 represents the second and third singular values,
and the first conjugate time corresponds to the vanishing of
the third one. We gett1c ' 108.1318.
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Fig. 4. Numerical results on attitude control, hyperbolic case.
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