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Feedback stabilization along a path of steady-states for 1-D semilinear
heat and wave equations

Jean-Michel Coron and Emmanuel Trélat

Abstract— We report the problem of feedback stabilization
along a path of steady-states, and of exact boundary controlla-
bility of semilinear one-dimensional heat and wave equations,
investigated in [5], [6]. The main result is that it is possible to
move from any steady-state to any other one by means of a
boundary control, provided that they are in the same connected
component of the set of steady-states. The proof is based on an
effective feedback stabilization procedure which is efficiently
implementable.

I. INTRODUCTION
A. Semilinear one-dimensional heat equations

In this subsection, we report on results proved in [5]. Let
L > 0 fixed and let f : R — R be a function of class C?.
Consider the boundary control system

oy 0%y
o a2 + f(y),
y(ta 0) =0, y(ta L) = u(t)7

where the state is y(¢,-) : [0,L] — R and the control is
u(t) € R.

Concerning the global controllability problem, one of the
main results [8] asserts that if f is globally lipschitzian then
this control system is approximately globally controllable
(see also [14] for exact controllability). When f is superlin-
ear, the situation is still widely open, in particular because
of possible blowing up. Indeed, if yf(y) > 0 as y # 0, then
blow-up phenomena may occur for the Cauchy problem

(D

oy 0%y
y(t,0) =0, y(t,L) =0, 2)

y(0,z) = yo(z).

For instance, if f(y) = %>, then, for numerous initial data,
there exists 7' € (0, +00) such that the unique solution to the
previous Cauchy problem is well defined on [0,7) x [0, L]
and satisfies

li ty )| 7 oo =
tg%”y( s Mo 0,2y = +00,

see for instance [1], [11], [3], [15], [17],
references therein.

A natural question is then the following. Is it possible,
by acting on the boundary of [0, L], to avoid the blow-up

[20], [23] and
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phenomenon? Actually the answer is negative in general (see
[10]): for some nonlinear functions f satisfying

|f ()] ~ [yl log (1 + |y])

with p > 2, and for any time 7' > 0, there exist initial data
which lead to blow-up before time 7', whatever the control
function u is. Notice however that if

F@)l = o (lul10g™2(1+ Jy])) s [y — +o,

then the blow-up (which could occur in the absence of
control) can be avoided by means of boundary control (see
[10]).

In the first case where the blow-up phenomenon cannot be
compensated by means of boundary control, we propose an
alternative solution. The result is that it is possible to move
from any given steady-state to any other one belonging to
the same connected component of the set of steady-states.
More precisely, we define the notion of steady-state.

Definition 1.1: A function y € C?([0, L]) is a steady-state
of the control system (1) if

d2
T ) =0, y(0) =0.
We denote by S the set of steady-states, endowed with the
C? topology.
Introduce the Banach space

vr = {y(t.2), (t.2) € (0.7) x (0.L) |
y € L*(0,T,W**(0, L)) 3)

as |y| — +oo0,

dy
and 5 € L*((0,T) x (OvL))}

endowed with the norm

dy
||Z/HYT = ||y||L2(o,T,W2~2(0,L)) + ot :
L2((0,7)x(0,L))
Notice that Y7 is continuously imbedded in L>((0,7T) x

(0,L)).

The following result is proved in [5].

Theorem 1.2: Let yo and y; be two steady-states be-
longing to a same connected component of S. For every
neighborhood V' of y; in H!-topology, there exists a positive
real number ¢ such that for all ¢ € (0,g0) there exists
a control function u € H'(0,1/¢) such that the solution
y(t,z) in Yy, of

0 9?2
o S8 ),
y(t,0) =0, y(t,L) = u(t), 4)

y(07 I) = yo(’r)7



satisfies y(1/¢,-) € V.

Corollary 1.3: Under the assumptions of Theorem 1.2,
there exist a time T > 0 and a control function u € L?(0,T)
such that the solution y(¢, z) in Y7 of the Cauchy-Dirichlet
problem (4) satisfies y(T,-) = y1 (-).

Remark 1: In [5], we give an explicit construction of
the control w in a feedback-type form, and of a Lyapunov
functional. We stress that the procedure is effective and
consists actually in solving a stabilization problem in finite
dimension. Indeed in order to construct u we need to
compute only a finite number of quantities related to an
Hilbertian expansion of the solution. The procedure has been
implemented numerically and has proved to be efficient.

Remark 2: For any T > 0 and u € L?(0,T) there is at
most one solution of (4) in the Banach space Yr.

Remark 3: The corollary provides a (partial) global exact
controllability result. The time needed in our proof is large,
but on the other hand there are indeed cases where the time
T of controllability cannot be taken arbitrarily small. For
instance in the case where f(y) = —y?>, any solution of (4)
starting from 0O satisfies the inequality

L
/ (L — 2)*y(T, x)*dx < 8LT,
0

and hence if yo = 0 a minimal time is needed to reach a
given y; # 0. This result is similar to the one of Bamberger
[13] (see also [12, Lemma 2.1]).

Remark 4: If yo and y; belong to distinct connected
components of S, then it is actually impossible to move
either from yo to y; or from y; to yo, whatever the time
and the control are.

On the other part, in each of the following cases the set
of steady-states S is connected:

o The function F' defined as
Y
F) = [ (s)as
0
satisfies the asymptotic condition

F(y)

—  400.
ly|—+o0

o For any a > 0 the indefinite integral

| 7w

diverges in —oo and in +oo (if it makes sense).
o The function f is odd, i.e. for any y € R

f(=y) = =1 ().
Remark 5: The result of the corollary may be achieved
directly by using repeatedly a local exact controllability
theorem, see [12, Th. 4.4] or [14, Th. 3.3].

B. Semilinear one-dimensional wave equations

In this section, we announce results proved in [6]. As
previously, let L > 0 fixed and f : R — R be a function of

class C2. We are concerned with the exact controllability of
the semilinear wave equation

0?2 0?2
52 = gme T/
X
y(t,0) =0, ya(t, L) = u(t), ®)

y(0,-) = ao(), %:(0,-) = as (),

where the state is (y(t,-),y:(t,+)) : [0,L] — R? and the
control is u(t) € R.

The question we investigate is the following. For 7" > 0
large enough, given initial data (ag, a1) and final data (bg, by)
in a suitable Hilbert space, is it possible to construct a
control u steering the control system (5) from the initial state
(ag,a1) to the target (bg,by) within time 7'? Moreover, is it
possible to achieve this by an explicit and efficient numerical
implementation?

If f is linear, the situation is well-known (see for instance
[19], [22]). In the general semilinear case, the main results
as to the global controllability problem, using a variant of
the Hilbert Uniqueness Method and a fixed point argument,
assert that if f is asymptotically linear (see [24]), and more
generally if f is globally Lipschitzian (see [25]), then the
control system (5) is globally controllable in time 7" > 2, in
the space H(lo)(O,L) x L?(0, L), with controls in L2(0,T).
The situation extends to slightly superlinear functions, or
functions sharing a good sign growth condition, see [2], [18],
[24], [26]. Here, H, (10) (0, L) denotes the Banach space

H{g)(0,L) == {y € H'(0,L) | y(0) = 0}.

When f is highly superlinear the situation is far more
intricate, in particular because of possible blowing up, as
previously for the heat equation. It is proved in [26] that if

f satisfies
—f(s)

liminf m
s—oo slnPs

>0,

for p > 2, then the system (5) is not exactly controllable
in any time 7' > 0. More precisely, for every T > 0, there
exist initial data (ag,a1) € H(lo)(O, L) x L*(0, L) for which
the solution of (5) so that y(0,-) = ag(-) and (0, ) =
a1(+) blows up in time ¢ < T, for all control u € C([0,T7).
Hence there is no hope to get a general result on global
controllability.

Definition 1.4: A function y € C?([0, L]) is a steady-state
of the control system (5) if

d*y

—=3 (@) + fly(2)) =0, y(0) =0.

We denote by S the set of steady-states, endowed with the
C? topology.
Let us also introduce the Banach space

Yr := C%([0,T], H'(0, L) n C'([0,T], L*(0, L)).  (6)

Theorem 1.5: Let yg and y; be two steady-states belong-
ing to a same connected component of S. For every ¢ > 0,
there exists 1 > 0 so that, for every e € (0, 1], there exists



a control u € H?(0,1/¢) such that the solution y in Y . of
the Cauchy-Dirichlet problem

32 32
52 = a0 W),
X
y(t,0) = 0, yu(t, L) = u(t), @)
y(O,a:) = yo(ﬂf), yt(07x) = Oa

satisfies

ly(1/e,-) =91l 0,2y + 19 (1/E)l L2 (0.2) < 6.

Remark 6: In [6], we provide an explicit construction
of the control u in a feedback form, and of a Lyapunov
functional. The procedure consists actually in solving a
stabilization problem in finite dimension. Indeed in order to
construct u, one only needs to compute a finite number of
quantities related to a Riesz expansion of the solution.

Coupling Theorem 1.5 with a local controllability result
yields the following corollary.

Corollary 1.6: Let yy and y; be two steady-states belong-
ing to a same connected component of S. There exist a time
T > 0 and a control function v € L?(0,7T) such that the
solution y(¢,x) in Y7 of the Cauchy-Dirichlet problem (7)
satisfies y(T, ) = y1(-), ye(T,-) = 0.

Remark 7: The idea of stabilizing a finite dimensional
part of the system is similar to the procedure achieved
in the case of the heat equation. For the wave equation,
it is however more challenging because of conservation
properties. Moreover, one has to deal with a Riesz expansion
of the solution, instead of an expansion on a Hilbertian basis
of eigenfunctions.

II. THE IDEA OF THE PROOF
A. In finite dimension

The method is stemming from classical Lyapunov stability
theory together with quasi-static deformation theory. For the
sake of simplicity we explain it in finite dimension. Let us
consider in R™ a general control system of the form

9(t) = g(y(t), u(t)), ®

where ¢ : R® x R™ — R" is of class C*, u(t) € U,
and U denotes the set of measurable essentially bounded
admissible controls. Let yg,y; € R™ be two equilibrium
points of system (8), that is

g(ymu’b) = Oa 1= 07 17

for some ug, u; € R™. We assume that (yo, ug) and (y1,u1)
belong to the same connected component of the zero set of
g in R™ x R™. Our aim is to steer the system from yq to
y1 in some (large) time 7" > 0. The method splits into four
steps:

First step. Construct a C*-path (g(7), (7)), with 7 € [0, 1],
connecting (yo, ug) to (y1,u1) and such that

Vr e [0,1] g(g(r),u(r)) = 0.

Of course this path is not in general solution of system
(8), but if € > 0 is small enough then the C''-path (3¢, u*)

— R™xR™
(y=(t),u*(t)) = (y(et), u(et))

is “almost” a solution of system (8). Indeed

[0,1/¢€]

t —

155 = 9(y°, w*)| = O(e) as € — 0.

Second step. This quasi-static trajectory is not in general
stable, and thus has to be stabilized. To this aim, introduce
the following change of variable:

z(t)

y(t) =y (1),
v(t) =u

() — u(t),

where ¢t € [0,1/¢]. In the new variables z,v, the control
system writes, at least if ||z(¢)|| + ||v(¢)|| is small enough,

£(t) = A(et)z(t) + Blet)o(t) + O(|z()]1* + v (®)[I* + ),

where ¢ € [0,1/¢], and where

A(r) = g—g@mw,
and
B(r) = 2 (5(r). ),

with 7 = et € [0, 1]. Therefore we have to stabilize near the
origin a slowly-varying in time linear control system; we
refer to [16] for this classical theory.

Third step. Under mild controllability assumptions, namely

vr €1[0,1] rank (B(1), A(T)B(7),..., A(t)"'B(r)) =n
(Kalman condition) it is actually possible to stabilize
the system by pole shifting and to construct a quadratic
Lyapunov function. Notice that this does not work in general
if the system is not slowly-varying. So if € is small enough
then using this Lyapunov function we infer that y(1/¢)
belongs to some prescribed neighborhood of the target y;.
At this stage, a stabilization result is achieved.

Fourth step. If the system (8) is locally controllable near the
point y;, we conclude that it is possible to steer the system
in finite time from the point y(1/¢) to the desired target
y1. Usually such a local controllability result is achieved by
using an implicit function argument, after proving that the
linearized system is controllable.

Remark 8: The use of quasi-static deformation for the
controllability of a nonlinear partial differential control sys-
tem has already been used in [4]. But note that in [4]
the quasi-static trajectory (y,u°) was stable so it was not
necessary to perform steps 2 and 3.



B. Application to the heat equation

Let yo and y; in the same connected component of S. We
construct in S a C*! path (g(7,-),a(r)), 0 < 7 < 1, joining
Yo to y1. For each ¢ = 0,1 set

a; = y;(0).
Then y;(-) = y*i(-),7 = 0, 1, where the maximal solution of
d*y
L f) =0, 5(0) = 0,4/(0) =,

is denoted by y*(-). Now set
y(ra) =y (z) and a(r) = g(r, L),

where 7 € [0,1] and x € [0, L]. By construction we have

5(0.) = 50(), 5(1,) = () and 5(0) = (1) =0,
and thus (3(r,-),@(7)) is a C! path in S connecting yq to
Y1-

We then reduce the problem as follows.

Let € > 0. For every t € [0,1/¢] and every z € [0, L], set

z(t,x) = y(t, ) — y(et, x),
_ 9)
v(t) = u(t) — alet).

Then z satisfies the initial-boundary problem

1
=4 P22 [ (=9 g+ s2)ds i,
0

z(t,0) =0, z(t, L) = v(t),
2(0,2) = 0.
(10)
To reduce the problem to a Dirichlet-type problem, set

wlt,z) = 2(t,x) — %v(t), (11)

and suppose that the control v is derivable. This leads to

wy = e+ [ @+ FI @0~ 7o (et ),
w(t,0) =w(t,L) =0,

w(0,z) = —%v(O),
(12)
where

T(E,t,ﬂf) = —€Yr
2 (13
—l—(w—l—%v) /0 (1—s)f (y—i—s(w—i—%v)) ds.

The aim is then to prove that there exist € small enough and
a pair (v, w) solution of (12) such that w(1/e,-) belongs to
some arbitrary neighborhood of 0 in H}-topology. To achieve
this the proof consists in constructing an appropriate control
function and a Lyapunov functional which stabilizes system
(12) to O (see [5]).

The proof requires a precise spectral analysis of the
problem. We introduce the one-parameter family of linear
operators

A(T) = A+ f'(g(r,)Id, T €[0,1], (14)

defined on H?(0,L) N H(0,L). Let (e;(7,-));j>1 be an
Hilbertian basis of L?(0, L) of eigenfunctions of A(7), such
that for each j > 1 and each 7 € [0, 1],

ej(r,-) € Hy(0,L)n C*([0, L)),

and let (\;(7));>1 denote the corresponding eigenvalues.
From the minimax principle, these eigenfunctions and eigen-
values are C' functions of 7. Moreover for each 7 € [0, 1]

—00 < o < A1) < - < A (1),
and

—
n—-+oo

An(T) —00.
From the continuity of the eigenvalues on [0, 1], we can
define n as the maximal number of eigenvalues taking at
least a nonnegative value as 7 € [0, 1], i.e. there exists 7 > 0
such that

Vi e [0,1/e] Vk>mn M(et) <—n<0. (15)

The integer n can be arbitrarily large. For example if f(y) =
y® and if y}(0) — +oo then n — +o0.
We also set, for any 7 € [0, 1] and « € [0, L],

a(t,z) = %f’(y(r, x)) and b(z) = —

RS

In these notations system (12) leads to
wy(t, ) = A(et)w(t, ) + alet, o (t) +b(-)v'(t) + (e, t, ).
(16)

Any solution w(t,-) € H(0, L) of (16) can be expanded as
series in the eigenfunctions e; (e, -), convergent in Hg (0, L),

wlt) = 3 wy(t)es et ).

In particular, we get, for i =1...n,

wi(t) = \i(et)w; (t) + a;(et)v(t) + bi(et)v'(t) + 71 (e, t),

(17)
where
ril (57 t) = <7’1(5, t, ')7 ei(€t7 ’)>L2(O,L)a
ai(et) = {a(et, "), ei(et, ")) r20,1) » (18)
bi(et) = (b(-), ei(et, ")) r2(0,1)-

The n equations (17) form a differential system controlled
by v, v’. Set
(19)
and consider v(t) as a state and «(¢) as a control. Then the
former finite dimensional system may be rewritten as

v =a,

w) = \Mwy + ayv 4+ bia + 11,
(20)

/ 1
W, = ApWp, + apv + bpa +7,,.



If we introduce the matrix notations

o(t) 0
xo-| L mey - Tl(f’t) ,
wa (1) rie.)
0 0 - 0
me=| 7Y
a(®) 0 e ()
1
Bi(r) = blfT) ;
ba(r)

then equations (20) yield the finite dimensional linear control
system

Xi1(t) = A1 (et) X1(t) + Bi(et)a(t) + Ri(e,t).  (21)

We then move, by means of an appropriate feedback
control, the n first eigenvalues of the operator A, without
moving the others, in order to make all eigenvalues negative.

It is easy to check that, for each 7 € [0,1] the pair
(A1(7), B1(7)) satisfies the Kalman condition, i.e.

rank (B1(7), A1 (7)B1(7), ... LA (1) By (1)) =n.
(22)
Thus, for each 7 € [0, 1] there exist scalars ko(7), ..., kn(7)

such that, if we denote
Ki(7) = (ko(T), ..., k(7))

then the matrix A;(7) + Bi(7)K;(7) admits —1 as an
eigenvalue with order n + 1.

The remainder of the proof consists in proving, using Lya-
punov functions, that the feedback control function «(t) =
K, (et) X, (t) stabilizes the complete infinite dimensional
system along the path of steady-states (see [5] for details).

C. Application to the wave equation

The procedure is similar.

Let € > 0, and let y denote the solution of (7) in Yy,
associated to a control u € H?(0,1/¢). We set, for all t €
[0,1/¢] and x € [0, L],

Z(t7$) = y(t7$) - ;U(et,x), (23)
u

up(t) := u(t) — a(et).
Then,

1
Ztt = Zgx + f/(g)z + 22/ (1 - S)f//(g + SZ)dS - 523777’3
0

2(t,0) =0, z,(t, L) = uq(t),

2(0,z) =0, 2(0,2) = —ey-(0, ).
(24)

Notice that, if the nonlinearity f and the residual term
r were equal to zero, then, as explained previously, setting
u1(t) = —az(t, L), the energy function

— th )2 + 2, (¢, x)?
' /0<<t,>+ (t2)%)dt

would be exponentially decreasing. This suggests to seek the
control function () in the form

uy (t) = —az(t, L) +o(t),
where oo > 0 has to be chosen in a convenient way. Set

x(x— L)

w(t, z) = z(t,x) — 7 v(t). (25)

This leads to the system
—L
x(z )v”

+ <yf’(ﬂ) + 2) v (et ),

Wit = Weg + f/(g)w -

L
w(t,0) =0, wy(t,L) = —aw(t, L),

z(x— L)
TU(O),

we(0,2) = —y-(0,2) — x(mT—v (0),

where 7 (e, t, z) is a remainder term. The aim is to prove that,
given a neighborhood V of (0,0,0,0) in RxR x H(lo) (0,L)x
L?(0, L), for £ > 0 small enough, there exists a pair (v,w)
solution of (26), satisfying v(0) = v'(0) = 0, such that

(v(1/e),v'(1/e),w(1/e,-),wi(1/e,-)) € V.

As previously, a precise spectral analysis of the system is
due. Set

1
H .= {(&) € H' x L*((0,L),C) | w'(0) = 0}. 27
Introduce the one-parameter family of linear operators
~ 0 1
Alr) = (A(T) o) !
where A(7) := A+ f/(§(r,-))Id, 7 € [0, 1], on the domain

D(A(7)) == { (“’;) € H | w'e H?*((0,L),C),
w* € H((0, L), C),

(26)

w(0,z) = —

(28)

(29)
w?(0) =0, wi(L) = —an(L)},

The following nontrivial lemma is crucial (see [6] for
details and for a proof). B

Lemma 2.1: For every 7 € [0,1], the operator A(7) has
a compact resolvent in H, and thus its spectrum consists
of isolated eigenvalues (Ag(7))ger, where I = Z or I =
Z\{0}. There exists a Riesz basis (ex (7, -))rer of H, having
a dual Riesz basis (fx(7,"))ker, such that:

o er(r,-) € D(A(7)), and |lex(, )|z = 1, for every
k €I and every 7 € [0, 1];



o for every integer k € I, the functions 7 +— e(7,-) and
7+ fr(7,-) are of class C* on [0, 1];

o cach eigenvalue \;(7) is geometrically simple;

o there exists an integer ng > 0 so that, for every
integer k satisfying |k| > ng, each eigenvalue A\ (7)
is algebraically simple, and satisfies

1 a—-1 km 1

_QLma+1+zL+o<kO, (30)
as |k| — +o0, uniformly for 7 € [0, 1]; N

o if |k| > ng, then e (7, ) is an eigenfunction of A(7), as-
sociated to the (algebraically simple) eigenvalue A (7),
and fi(7,-) is an eigenfunction of A(7)*, associated to
the (algebraically simple) eigenvalue A (7);

o for every integer k > ng and every 7 € [0, 1],

Ak (T)

)\k(’r) :)\_k(T),
6k(T7 ) = e—k(Tv ')7 and fk(Tv ) = f—k(Tv ');

« for every integer k so that |k| < ng, there holds

A(T)ek(7—7 ) € Span{ep(T7 ) | |p| < n0}7

and

A(r)* fulr,) € Span{fy(r,-) | Ipl < no}.

Remark 9: To prove this lemma, we first prove the ex-
istence of a Riesz basis of H, consisting of generalized
eigenfunctions (€x (7, -))rer of A(7), associated to the eigen-
values (Ag(7))ker. However, if |k| < ng, then the function
T +— éx(7,+) may fail to be of class C!, since the corre-
sponding eigenvalue Ap(7) is not necessarily algebraically
simple. The proof then consists in modifying the generalized
eigenfunctions éx(7,-), for |k| < ng, so as to obtain new
vectors e (7, ), |k| < ng, that are C'* functions of 7, but are
not necessarily generalized eigenfunctions of A(7).

Let us show how to isolate the finite dimensional unstable
part of the system.
Let o > 1 so that
1 1 a—1
2L a+1
Using (30), only a finite number of eigenvalues may have
a nonnegative real part as 7 € [0, 1]. More precisely, there
exists an integer n so that

vre[0,1], VkeZ, (|k|]>n) = (Re(Xx(1)) < —-1).

€)Y
Every solution can then be expanded as series in the Riesz
basis (e;(et,-));jer. convergent in H. As previously, we
then move, by means of an appropriate feedback control,
the 2n + 1 eigenvalues Ao(7),..., A, (7), whose real part
may be nonnegative, without moving the others, so that
all eigenvalues then have a negative real part. We obtain
a differential system in R2"*! controlled by v,v’,v”. As
for the heat equation, we have then to check that Kalman’s
condition holds, which allows one to derive a feedback
control stabilizing the finite dimensional system. The rest
of the proof consists in showing that this control actually
stabilizes the complete system (see [6]).

< -1
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