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Abstract

The minimum time control of the Kepler equation is considered. The typ-
ical application is the transfer of a satellite from an orbit around the Earth
to another one, both orbits being elliptic. We recall the standard model
to represent the system. Its Lie algebraic structure is first analyzed, and
controllability is established for two different single-input subsystems, the
control being oriented by the velocity or by the orthoradial direction. In
both cases, a preliminary analysis of singular and regular extremals is also
given, using the usual concept of order to classify the contacts. Moreover,
the singularity of the multi-input model—which is a particular case of a
subriemannian system with drift—is resolved, and the related nilpotent
model is given. Finally, second order optimality conditions are recalled,
for smooth regular and singular extremals. For both, the algorithms to
compute conjugate points are detailed and applied to check numerically
the time optimality of orbit transfers.
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Extended Abstract

This work is aimed at investigating the control of the Kepler equation

q̈ = −µ q

|q|3 +
F

m
· (1)

Hereabove, q stands for the position in R3, m is the mass of the body
(a satellite, in practice [4]) in the gravitational field (µ is the gravitation
constant of the Earth) and F is the thrust of the engine. We take into
account the variation of the mass due to fuel consumption,

ṁ = −β|F | (2)

where β is a positive constant, and there is a constraint on the thrust:

|F | =
√
F 2 ≤ Fmax. (3)

If c = q ∧ q̇ is the angular momentum, L = −µq/|q| + q̇ ∧ c the Laplace
integral, and H = 1/2 q̇2−µ/|q| the energy, we define the elliptic domain

Σe = {c 6= 0, H < 0}.

Then, to each (c, L) is this domain corresponds a unique oriented ellipse
describing the free motion of (1). In order to have a geometric represen-
tation of the ellipse osculating to a controlled trajectory, it is convenient
to choose equinoctial elements as coordinates in the elliptic domain: the
so-called Gauss equations arise from such a choice once the moving frame
for the thrust is fixed. There are two possibilities: a tangent-normal frame
Ft, Fn, Fc where Ft is oriented by q̇,

Ft =
q̇

|q̇|
∂

∂q̇
Fc =

q ∧ q̇
|q ∧ q̇|

∂

∂q̇

and Fn = Fc ∧ Ft, or a radial-orthoradial frame Fr, For, Fc with

Fr =
q

|q|
∂

∂q̇
For = Fc ∧ Fr.

In both cases, we get a 2D-model by setting the component of the control
on Fc to zero.

The Lie algebraic analysis of the orbit transfer is performed on the 2D-
single-input affine systems ẋ = F0 + uF1 defined by each frame: F1 = Ft
(tangential thrust only) and F1 = For (orthoradial). In the first case, the
2D-elliptic domain is controllable and the analysis consists in studying
singular and regular extremals. Here, any singular extremal is of order
2 (see [1]) and the classification is done according to Legendre-Clebsch
condition: we only have elliptic extremals, locally time maximizing [3].
Regular extremals are classified by the order of their contact with {H1 =
0} (where H1 = 〈p, F1〉 is the Hamiltonian lift of F1, and p the adjoint
state): in the fold case (order 2 contact, see [1]), only elliptic and parabolic
points are allowed, and the control is bang-bang (no Fuller phenomenon).
As for the second case, namely the orthoradial thrust, the 2D-elliptic
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domain is still controllable, but the analysis is more intricate. A first result
is that all exceptional singular extremals are of order 2: they are locally
time minimizing and provide a feedback of the 2D-system. The complete
multi-input equation can be analyzed in both frames as a subriemannian
system with drift,

ẋ = F0 +

m∑
i=1

uiFi, |u| ≤ 1

provided we drop momentarily the mass equation (2). We have smooth
regular extremals, and the problem is to classify the contacts with {Φ = 0}
where Φ = (H1, . . . , Hm) is the switching function (again, the Hi’s are
the Hamiltonian lifts of the corresponding vector fields). The Pontryagin
maximum principle parameterizes the extremals, u = Φ/|Φ| outside the
switch surface, and we make a singularity resolution in dimension m = 2.
In particular, when the distribution spanned by the Fi’s is involutive, it
is possible to connect smooth extremals with the control rotating instan-
teanously of an angle π, and to give the associated nilpotent model.

Finally, the question of the (local) optimality status of the previous
extremals is addressed by means of second order conditions. The concept
of conjugate and, more generally, focal point is recalled, first for smooth
regular extremals: from a computational point of view, if z is such an
extremal, if z(T ) ∈ M⊥1 is the end-point transversality condition, one
has to evaluate along the extremal the dimension of the set of Jacobi
curves solution to the linearized system with linearized end-point condi-
tion, δz(T ) ∈ Tz(T )M

⊥
1 . Numerically, the rank is checked by computing

an appropriate determinant, and the first zero gives the first conjugate
time t1c: before t1c, the trajectory is C 0-locally time minimizing among
all admissible trajectories, whereas after t1c it is not even an L∞-local
minimizer with respect to the control [3, 5]. An example of a such a
computation is detailed for a 3D-transfer around the Earth. The case
of singular extremals of single-input affine systems is also treated. Two
algorithms are proposed, one using the Goh transformation [3], the other
being intrinsic [2]. The second method is used to check the optimality
status of exceptional singular trajectories of the 2D-orbit transfer model.
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