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Abstract

The problem of semi-global robust stabilization of the Brockett integrator (also called Heisen-
berg system) in minimal time is addressed and solved by means of a hybrid feedback law. It is
shown that the solutions of the closed-loop system converge to the origin in minimal time (for a
given bound on the control) with a robustness property with respect to small measurement noise,
external disturbance and actuator noise.

Keywords: Brockett integrator, optimal control, hybrid feedback, robust stabilization, measure-
ment errors, actuator noise, external disturbances.

1 Introduction

Let M be a n-dimensional manifold. We consider on M a control system of the form

(t) = Zui(t)fi(w(t)), (1)

where f1,..., fm are smooth vector fields on M, and where the control u(-) = (ui(),.-.,um(-))
satisfies the constraint .
D ui(t)? <1 (2)
1=1

Let z( be a point of the manifold M. The system (1), together with the constraint (2), is said to be
globally asymptotically stabilizable at the point z, if, for each point z of M, there exists a control
satisfying the constraint (2) such that the solution of (1) associated to this control and starting from
z tends to xq as t tends to +oo.

This asymptotic stabilization problem has a long history and has been widely investigated. Note
that as soon as m < n the Brockett’s condition [10, Theorem 1, (iii)] is not satisfied by (1), and thus
there does not exist a continuous stabilizing feedback law for (1). However several control laws have
been derived for such a driftless control systems, see e.g. [19, 15, 5] and references therein.

The robust asymptotic stabilization is under actual and very active research. There exists a large
variety of control laws that solve the robust asymptotic stabilization problem, such as discontinuous
sampling feedback [11, 29], time-varying control laws [12, 18, 20, 21], patchy feedbacks (as in [3]), SRS
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feedbacks [28], ..., yielding different robustness properties depending on the errors under consideration
in these papers.

The class of feedback laws under consideration in this paper consists of feedbacks mixing discrete
and continuous components. It gives rise to a closed-loop system with a hybrid term studied e.g. in
[31, 8]. The use of such a class of feedbacks for the stabilization of nonlinear systems (a priori without
discrete state) appeared first in [23]. It allows to design a switching strategy between different smooth
control laws defined on a partition of the state space. This idea of defining the control smoothly part
by part and switch between the different components is very usual in nonlinear control theory see
eg [30, 4]. In this paper we compute an optimal control that is smooth on a part of the state space
and another control law defined on the complement of this part. We use a hybrid term to define
the switching strategy between both control laws, which ensures robustness with respect to (small)
measurement noise, acturator errors and external disturbances.

More precisely the first step of our procedure consists in solving the time-optimal control problem,
for the system (1) submitted to the constraint (2), of steering a point z to the point zo. Of course,
on the one hand this problem is in general very difficult to solve, and on the other hand due to the
Brockett condition such controls are not smooth functions of z whenever m < n. This raises the
problem of the regularity of optimal controls in a closed-loop form. The literature on this subject
is immense. The problem of determining the analytic regularity of the value function for a given
(analytic) optimal control problem, has been, among others, investigated by [30]. For systems of the
form (1), the time-optimal problem under the constraint (2) is equivalent to the sub-Riemannian
problem associated to the vector fields fi,..., f. In this framework, the time-minimal function
to zo is equal to the sub-Riemannian distance to zg, see for instance [7]. The analytic regularity
of the sub-Riemannian distance is related to the existence of singular minimizing trajectories, see
[1, 2, 32]. More precisely, if the vector fields fi,..., f, are analytic and if there does not exist any
nontrivial singular minimizing trajectory starting from xz, then the sub-Riemannian distance to z
is subanalytic outside z( (see [13, 14] for a general definition of subanalytic sets).

In the present article we focus on the so-called Brockett system in R3

&(t) = w1 (t) f1(z(t) + ua(t) f2(=(2)), (3)
where, denoting z = (21, z2, z3),

o} 0 0 0
= — _ = — — R 4
fl 8371 + x2 8.’53’ f2 81’2 Z1 8.’,63’ ( )

and the control satisfies the constraint
w1 (t)? 4+ ug(t)? < 1. (5)

Our aim is twofold, and consists in achieving a robust stabilization process for the system (3)
under the constraint (5). To do this we first solve the corresponding time-optimal control problem and
then define a hybrid feedback law using a suitable switching strategy (more precisely an hysteresis)
between this time-optimal control and another control defined on a neighborhood of the discontinuity
set of the optimal control.

In the present proceedings paper, we do not give the proofs, but we explicit our hybrid feedback
law and its construction. First of all, we recall a notion of solution adapted to hybrid controls, and
make precise the notion of stabilization via a hybrid feedback law in minimal time in Section 2.
We then state the main result, namely that there exists a hybrid time-minimal control stabilizing
semi-globally the origin of (3), (5) (see Section 3). The rest of the paper is then devoted to the
contruction of the hybrid feecback. We define our “local” minimal-time control law in Section 4.1,
the “global”one in Section 4.2 and the hybrid feedback law by making the hysteresis between the
both components (see Section 5). For a complete proof of the robust optimal stabilization see [27].



2 Class of controllers and notion of solutions

In this section we introduce the notions of controller and of solutions of differential equations that
will be used throughout the paper.
The controllers under consideration admit the following description (see [31, §])

u = ’U,(.’L', Sd)a S8d = kd(xas,;)a (6)

where sq4 evolves in the finite set {1,2}, kK : R* x {1,2} — R? is continuous in z for each fixed s,
kq: R* x {1,2} — {1,2} is a function, and s is defined, at this stage only formally, as

s, (t) = 1512 s4($)- (7)

The set {1, 2} is endowed with the discrete topology, i.e. every set is an open set. The above controller
is hybrid due to the presence of the discrete dynamics of s4. It gives rise to a non-classical ordinary
differential equation describing the dynamics of the closed-loop system.

Denoting f : R® x R™ — R" the function defining the right hand-side of the differential equation
(3), we can rewrite (3) as

z = f(z,u). (8)

In this paper we are interested in a notion of robustness to small noise. Consider two functions
e and d satisfying the following regularity assumptions:

e('a ')ad(" ) € Lffc(Rn X [Oa —I—oo);Rn),

0 /mn n (9)
e(-,t),d(-,t) € C°(R*,R"), Vt € [0, +00).

We introduce these functions as a measurement noise e and an external noise d, and define the
perturbed system! with u given by (6), i.e.

©(t) = ((t),U( (t) + e(z(t),1), sa(t))) + d(=(t), 1), (10)
sa(t) = ka(z(t) + e(x(t),1), 54 (t)).

The notion of solution of such hybrid perturbed systems has been well-studied in the literature, see
e.g. 8,9, 17, 31, 25, 26]. To be self-contained, let us recall the definition of a solution of (10).

Definition 2.1. Given T > 0, (z9,s0) € R" x {1,2}, and a non-empty set RC strictly contained in
R™ x {1,2}, we say that (X, Sy) is a solution, starting from (xg, sq), of (10) on [0,T) if the following
conditions hold:

1. the map X is absolutely continuous on [0,T);

2. there holds, for almost all t in [0,T),
X(t) = f(X(2),k(X(t) +e(X(2),t), Sa(t)) +d(X(t),1);

3. for allt € [0,T) such that (X(t), S4(t)) is in RC, the mapping Sy is right-continuous at t;

4. for allt € (0,T) such that S (t) exists, one has
Sq(t) = ka(X(t) + e(X(2),1), 54 (2)); (11)

5. there hold X(0) = ¢ and S4(0) = kq(zo + e(zo,0), so).

'we can also consider an actuator noise, see e.g. [16, 23].



In this context, let us define the concept of stabilization of (8) by a hybrid feedback law in minimal
time with a robustness property with respect to measurement noise and external disturbance. The
usual Euclidean norm in R™ is denoted by |- | and we recall that a function of class K is a
function d: [0,+00) — [0,400) which is continuous, strictly increasing, satisfying §(0) = 0 and
lim,, 0 d(e) = +00.

Definition 2.2. Let p: R” — R be a continuous function satisfying
p(z) >0, Yz # 0. (12)

We say that the completeness assumption for p holds if, for all (e,d) satisfying the regularity assump-
tions (9), and so that,

Sup[O,—koo)‘e("Ea )| < P(iv), esssup[0,+oo)|d($a )l < P(iv), Vz € R", (13)
for all (zg, sg) € R™ x{1,2}, there exists a mazimal solution on [0,+00) of (10) starting from (xg, so).

Definition 2.3. We say that the uniform finite time convergence property holds if there ezists a
continuous function p : R" — R satisfying (12), such that the completeness assumption for p holds,
and if there exists a function 6 : [0,4+00) — [0,4+00) of class Koo such that, for all R > 0, there
exists T = T(R) > 0 such that, for all functions e,d satisfying the regularity assumptions (9) and
inequalities (13) for this function p, all xy € R", |zo| < R, and all sg € {1,2}, the mazimal solution
(z,34) of (10) starting from (xg,s¢) satisfies

|z(¢)] < 6(R), Vt =0, (14)

and
z(t) =0, Vt > 7. (15)

We are now able to define the main concept of the paper.

Definition 2.4. The origin is said to be a semi-global minimal time robust stable equilibrium for
the system (8) if, for all € > 0 and all compact subset K C R", there exists a hybrid feedback law
(u,kq) : R* x {1,2} — R™ x {1,2} satisfying the constraint

lu(z, sa)ll <1, (16)
where || - || stands for the Euclidian norm in R™, such that:
e the uniform finite time convergence property holds;

e there exists a continuous function p. x : R® — R satisfying (12) for p = pe i, such that, for all
functions e,d satisfying the regularity assumptions (9) and inequalities (13) for p = pe i, all
zg € K, the mazimal solution of (10) starting from xy reaches the origin within time T (z¢) +¢,
where T'(zo) denotes the minimal time to steer the system (8) from xq to the origin, under the
constraint ||u|| < 1.

3 Main result

Theorem 1. There exists a hybrid feedback law (u, k), u: R® x {1,2} — R? and kg : R® x {1,2} —
{1,2}, such that the origin is a semi-global minimal-time robust stable equilibrium for the system (3),
under the constraint (5).



Remark 3.1 In Section 5 we give an explicit expression of the hybrid feedback law (u, kq). O

Remark 3.2 We can state a dual result for the stabilization to the origin of the Brockett integrator
with minimal energy when fixing the final time. <

Intuitively, the strategy is as follows. For z € R", let T'(z) denote the minimal time needed to
steer the system (3) from z to the origin, under the constraint (5). The corresponding minimal time
feedback law, called local controller, happens to be continuous (even analytic) on R" \ {z; = z2 = 0}.
It is therefore necessary to use another controller, called global controller, in a neigborhood {2 of the
line {z; = z2 = 0}. More precisely,  will be constructed so as to be cylindric around this line,
and conic near the origin (see Fig. 3 further). In this neighborhood we have to define an adequate
switching strategy. Notice that € is arbitrarily thin, and thus the time € needed for the traversing
of Q is arbitrarily small, uniformly with respect to the initial condition. Therefore, starting from an
initial point z, the time needed to join the origin, using this hybrid strategy, is equal to T'(x) + «.

The rest of the paper is organized as follows. We define the local controller in Section 4.1 and the
global one in Section 4.2. The switching strategy between these feedbacks by means of a hysteresis
is explained in Section 5. For a complete proof of our main result see [27].

4 The components of the hysteresis

4.1 The local controller

In this section we define and compute the local controller and we give some properties of the
Carathéodory solutions of (8) with such a control law.

Consider the Brockett system (3). It is a standard fact that the minimum time problem for the
system (3), with the constraint u? + u3 < 1, is equivalent to the sub-Riemannian problem in R3
associated to the vector fields f; and fo (see for instance [7]), and moreover the minimal time 7T'(x)
needed to steer the origin to a point z € R? is equal to the sub-Riemannian distance of z to the
origin. Using this fact, the function 7" may be computed explicitly, and we recall the following result

of [6] (see also [27] for a computation)

Proposition 4.1. Let us consider the minimum time problem for the system (3) under the constraint
u? +u3 = 1. The minimal time T(z) needed to steer the origin to a point T = (z1,z9,73) € R is

given by
0 /
T(x1,$21$3) = 56%4-.’17%—{—2'.’1}3', (17)
\/9 + sin? 6 — sin 6 cos §

where 0 = 6(z1,x2,x3) is the unique solution in [0, 7] of

0 — sinf cos 0
W(ﬁ + z3) = 2|x3). (18)

Moreover the function T is continuous on R3, and is analytic outside the line ©1 = x5 = 0.

A level set {(z1,z2,23) | T(x1,%2,23) = r}, where r > 0, is drawn on Fig. 1. In the language
of sub-Riemannian geometry it represents the sub-Riemannian sphere centered at the origin, with
radius 7, in the Heisenberg case. Observe that it is axial symmetric, with respect to the axis (0z3).

On Fig. 2 are drawn intersections of different level sets of T" with a plane containing the axis
(0z3).

We can give an explicit expression of the optimal controller (local controller), as follows (see [27])



Figure 1: Level set {(z1,z2,z3) | T(z1,%2,23) = r}.

Figure 2: Intersection of different level sets with a vertical plane.

Proposition 4.2. The time-minimal controller w; = (u;1,up) steering a point x = (1, xo,x3) € R?
such that 3 + x3 # 0 to the origin writes

1 T (1( 2|23 )) . . (_1< 2|z >>
up(r) = —= | —==——=cos -5 + s1gn(x3) T2 SIn -5 s
1( ) 2( 37%4‘15'% g .’E%—{-.’Bg g( ) g .'13%4—:8%
1 To (1( 2|23 )) . . (1< 2|z ))
Uplr) = —= | ——==——=cos -5 — Ss1gn(x3) 1 sIn —_ s

where the function g, defined by

(19)

6 —sinfcos 0
sin’ @

9(0) = , 0 €]0,7[, ¢(0) =0,

is a monotone increasing diffeomorphism of [0,n[ onto R .

Now this local controller has been defined, we investigate the robustness properties of the system
in closed-loop with this controller.

Given e,d : R" x [0,+00) — R", the perturbed closed-loop system under consideration in this
section is of the form



o(t) = f(2(t), w(z(t) + e(z(t),t))) + d(z(t),1). (20)
For all M > 0 and r > 0, we introduce the subset of R
Qumyr = {(z1,22,23) € R?, 2% + 22 < min(r, M |z3])} (21)

and let us denote its complementary in R® by I’ um,r- Near the origin, €5/, is a cone, otherwise it is
a cylinder around the axis (0z3), see Fig. 3.

I

)

Figure 3: Shape of Q7.

The following lemma is clear from Fig. 2.

Lemma 4.3. There exist My > 0 and ro > 0 such that, for all M and r satisfying 0 < M < My and
0 <7 <y, the subset 'y, is invariant by the feedback optimal control u;.

A robust version of Lemma 4.3 can be stated for all noise vanishing at the discontinuous set of
the local controller. More precisely all properties needed to state our main result are summarized in
the following lemma.

Lemma 4.4. There exist a continuous function p; : R — R satisfying

pi(§) >0, VE#0, (22)
and 6;: [0,+00) — [0,4+00) a continuous function of class K such that, for all 0 < M < My, all
0<r<mry, aled:R" x[0,+00) = R" satisfying the regularity assumptions (9) and

SUPRZ()'e(m’ )| < pl(x% + l’%), esssupR20|d(ac, )| < pl(CC% + 33%), (23)

for all z in R™, and all zy € Tar,, there exists a unique Carathéodory solution X of (20) starting
from o, mazimally defined on [0,+00), and satisfying X (t) € Tar,r, for all t > 0.

Moreover, for all R > 0, there exists T = T(R) > 0 such that, for all o in R® with |zo| < R and
all mazimal solution X of (20) starting from xy, one has

[ X(t)| < &(R), VE>0, (24)
X(5)] =0, > T, (25)

and
lu(X @) <1, V> 0. (26)



4.2 The global controller

In this section we define the second component of the hysteresis, called global controller and denoted
ug. Moreover we give some basic properties of the Carathéodory solutions of the closed-loop system
(8) with such a control law u,.

Let us consider the following control law:

ugi(z) = 1
27
ug2(z) = 0 (27)
The closed—loop system considered in this section is of the form
& = f(x(t),ug(z(t) + e(z(?), 1)) + d(z(2), 1) - (28)

Consider the constants My > 0 and r¢ > 0 given by Lemma 4.3.
The following result, whose proof is obvious using (27), states that, for all M > 0, the trajectories
of the system (28) enter the region I'js, in finite time, while remaining bounded up to this time.

Lemma 4.5. There erists a continuous function py,: R* — R satisfying
pg(z) >0, Ve #0, (29)
such that, for all initial condition, the perturbed system (28), where e and d are two arbitrary func-
tions satisfying the regularity assumptions (9) and equations (13) with p = pg, admits a unique
Carathéodory solution, defined for all t > 0.
Moreover there exists a function 6 of class Koo such that, for all R >0, all 0 < M < My and

all 0 < r < 1y, there exists a time Tg = Ty(M,r,R) such that all Carathéodory solution X of (28)
starting from xg, with |zo| < R, satisfies

X(1)] < 84(R), V¢ < T, (30)

X(t) € Ty, VE > Ty, (31)
and

lug(X(@))I] <1, V£ >0. (32)

5 Definition of the hybrid controller

In this section we define the hybrid controller by using a hysteresis to join the controllers defined in
Sections 4.1 and 4.2.
For all i € {1,...,6}, let M; and r; be such that

0< Mg < Ms < My < M3 < My <M <My,

(33)
O<rg<rs<ryg<ry3<rg<ri<ry.

For the sake of simplicity, in what follows we set I'; := T'ay, », and Q; := Quy, -, for all i € {1,...,6}.
The hybrid controller (u, kq) is defined using the following hysteresis between vu; and u4 on I's and
PQI
u:{1,2} xR* — R
(Sd’x) = ul(m) if Sd = 15 (34)
ug(z) if sq=2,
and
kg :R* x {1,2} — {1,2}
(z,84) — 1 if €Ty,
Sd if ze€Tl; \ Iy,
2 if z¢T5U{0}.
This hybrid controller is such that such that the origin is a global minimal-time robust stable
equilibrium for the system (3), under the constraint (5) as claimed in Theorem 1.

(35)
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