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Abstract: In this paper we discuss the problem of estimating conjugate times along

smooth singular or bang-bang extremals. For smooth extremals conjugate times
can be defined in the generic case by using the intrinsic second order derivative

or the exponential mapping. An algorithm is given which was implemented in the
SR-case to compute the caustic [1] or in the recent applied problems [5],[9]. We
investigate briefly the problem of using this algorithm in the bang-bang case by

smoothing the corners of the extremals.

Keywords: Conjugate time, intrinsic second order derivative, exponential

mapping, bang-bang control.

1. INTRODUCTION

Consider a control system

q= f((bu)7 (I(O) = 40 (1)

where f : R®” x R™ — R” is smooth, g9 € R",
and the set of admissible controls ¢ is the set
a essentially bounded functions w : [0,T(u)] —
Q C R™. We consider the time minimal control
problem.

The maximum principle (see [10]) provides nec-
essary conditions for a trajectory to be opti-
mal. Consequently having selected a reference
extremal, i.e a trajectory g(.) associated with a
control u(.) satisfying the necessary conditions of
the maximum principle, it is natural to ask wether
this trajectory is actually optimal or not.

This paper® describes methods to analyze local

optimality first for smooth singular extremals,
i.e. when u(.) is smooth, and then for bang-bang
extremals, i.e when u( ) is piecewise constant. In
the second case, the times ¢ when w(t) is not
smooth are called switching times.

For smooth extremals, the first time when the
so-called second order intrinsic derivative has a
vanishing eigenvalue, called the first conjugate
time, is the time when the reference singular
trajectory loses local optimality when the set of
controls is endowed with the L*-topology, see
Section 2.3. In an equivalent approach, the first
conjugate time is the first time when the so-called
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exponential mapping is not of full rank. This
provides a way to compute numerically conjugate
points, see Section 2.4.

For bang-bang extremals, the loss of local optimal-
ity in the L'-topology, also called conjugate time,
is again related to the vanishing of an eigenvalue of
a quadratic form, obtained by allowing variation
on the switching times. We present in the last
section new ideas to estimate first conjugate time
in this case.

2. CONJUGATE TIME FOR SMOOTH
TRAJECTORIES

2.1 Intrinsic second order derivative

Definition 1. Let T > 0 and gy € R™ fixed. The
end-point mapping at time T of system (1) 1s the
mapping
ET . U — R"
w2, (T)

where x, is the trajectory associated to wu.

If we endow the set of inputs with the L>-
topology, it is well known that the end-point
mapping is C'° and the successive derivatives can
be computed as follows. Take a reference control
u € L>[0,T] and assume that the corresponding
trajectory, denoted in short ¢(t), is defined on the
whole [0,7]. Then the end-point mapping, ET
with ¢(0) = ¢qo is defined on a neighborhood V
of u. Let ¢(t) + £(t) be the trajectory associated
tou+ v € V. Since f is smooth we have:

fla+ €t o) = flg.) + G (@0 + (g

0% f 10%f

+aq8u (q,u)({,v) + § aq2 (q.u)(f,{')
1

0 f
2 w(q,u)(v,’u) +...
Moreover we have:

§+&=fla+&u+tw)
and £ can be written as d1¢ + d2q+ ..., where d1¢

_|_

is linear in v, d2q is quadratic in v, ... and are
given by identification as:
. 0 9]
&qZ—iMﬂn&q+—iMﬂOv (2)
0q Ou
. 0 ?
doq = —f(q,u)52q + —f(q,u)(qu,v)
0q 0q0u
10%f 10%f

‘|‘§aiqz(qau)(51qa5lq) + 3 gz (Vs )
(3)
where §1¢(0) = d2q(0) = 0 if the initial point is
fixed to ¢(0) = go-

Hence d1q and d2q can be computed integrating
linear differential equations along the reference

control trajectory. Then the Fréchet first deriva-
tive of ET at u:

ET v = 6,4(T) (4)

Definition 2. We call singular a control u(t), 0 <
t < T with trajectory defined on [0,T] such that
the end-point mapping is singular at u, that is the
Fréchet derivative of the end-point mapping is not
surjective when evaluated on w.

The singular control is of corank 1 if the there
exists a unique vector % (up to a scalar) such that

(1, ET'(v)) = 0, Vo € L.

Remark 3. If a control w is singular on [0,T] then
it is singular on [0,t] for all ¢ €]0, T'].

Definition 4. Let u be a singular control of corank
1 with response ¢(t) defined on [0,T]. Let N C
L>°[0,T] be the kernel of ET" evaluated at u and
let ¥ € R™{0} be the unique vector (up to a
scalar) such that <¢,E$'(v)> = 0, Yo € L*.
The intrinsic second order derivative associated
to (g, p,u) is the quadratic form defined on N by:

ET":v e N (i, d>EX (v,v))

In practice, the intrinsic second order derivative
can be computed as follows:

E;FH tv € N — (,029(T))

where d2q is the second variation defined by (3).

2.2 FEzponential mapping

Theorem 5. (Maximum principle [10]). Consider the

time minimal control problem with boundary con-
ditions: q(0) = qo, ¢(T) = q. If w is optimal
with response q(t) defined on [0,7], then there
exists t — p(t) € R™\{0} absolutely continuous
on [0,T] such that the following conditions hold
a.e. on [0,T:

. OH _ oH
=5 P=-%, ¥
H(q(t). p(t),u(t)) = maxH(q(t),p(t),v) (6)

where H = (p, f(q,u)). Moreover

H(q(t),p(t),u(t)) is constant a.e on [0,T] (7)
and non negative
Definition 6. A solution of (5)-(7) is called an ex-
tremal. The extremal is said normal if H(q,p,u) >
0 and abnormal if H(q,p,u) = 0 along the ex-
tremal.

Remark 7. Let us assume 2 to be open. Then the
maximum condition (6) may be rewritten
OH

— =0
Ou ’



and all extremals are singular.

Let z = (q,p) be a reference extremal associated
to a singular control u. We assume that ¢(.) is
one-to-one and we need generic hypotheses:
Assumptions:

(H1) The system is real analytic.

(Hz) The co-dimension of the singularity is one.
(H3) The strong Legendre condition 8*> H/du® < 0
is satisfied along the reference extremal.

(H4) The reference extremal is normal.

Notations: Using the implicit function theorem
and (Hs), the extremal control can be computed
as a dynamic feedback (q,p) solving OH/Ou =
0. Let us denote ﬂ(q,p) = H(q,p.u(q,p)) the
Hamiltonian function. Then under the previous
assumptions our reference extremal is embedded
into a family of extremals solutions of the Hamil-
tonian differential equation associated to H.

Let ¢(t,q0.t0), p(t qgo,po) denote such an ex-
tremal starting at time ¢t = 0 from ¢, po and
defined on [0, T'(po)[- By homogeneity, we can as-
sume that py belongs to the unit sphere and from
(Hs), H > 0. Hence we can restrict po to P71,
the projective space in R™.

Definition 8. Fix gy and define the exp mapping
by exp,,:

[0,T(po)[ x P*~! — R™
(t s po) ~ exp, (t,po) = q(t. 0. po)

2.8 Conjugate time

The following definition of a conjugate time is
given in [11]:

Definition 9. Having selected a singular extremal
(¢,p,u) of corank 1, a value of the parameter
T such that the quadratic form ET " has a zero
eigenvalue is called a conjugate time along the
reference trajectory. The first conjugate time, if
it exists, is denoted by t1..

It is well known (see [11]) that assumption (Hj)
implies that, if 7" is small enough then all eigen-
values of ET " are positive.

The concept of conjugate time provides conditions
for local optimality. More precisely we have:

Proposition 10. ([11]). Let (g.u) be a reference
trajectory and suppose that assumptions (Hy-Hy)
are satisfied. Then (g,u) is locally optimal on
[0,1.] in the L*°-topology, and is no more optimal
beyond t1..

The crucial result from [11] and [6] is the follow-
ing:

Theorem 11. If assumptions (Hi-Hy) are satis-
fied, the exp mapping is submersive on [0,#1.[ and
is not of full rank at ¢t = #..

This theorem gives a practical way to compute
numerically conjugate times as developed in the
next subsection.

2.4 Algorithm to compute conjugate times

Our aim is to estimate the determinant of the
differential of the exzp mapping along a reference
extremal z = (q,p) satisfying assumptions (Hi-
H,). From the definition of the exp mapping the
differential dexp, (t,po) : R x T,,P"7 1 — R™is
the application

(5t.6po) — (

Moreover, we have

dexp,,

Po

dexp,,

(t,p())(st, (t,pg)(spo) .

3equ0 R
St po) = Fla(),a(=(t)))

and the tangent space to P™ ! at py is given by:
TPOPn71 = {6170 € Rn* <P0»‘$P0> = 0}

Let (¥1,... ,%n—1) be a basis of T},,P" ! and let
us introduce the variational equation associated
to H along the reference extremal z = (g,p):

. OH
dz = E(z(t))(sz . (8)

It follows from Theorem 11 that:

Proposition 12. If assumptions (Hy-Hy) are satis-
fied, the first conjugate time t;1. is the first time
at which the determinant

C(t) = det(dqu(t).... ,6qn-1(t), f(q(t), i (2(t))))

vanishes, where 0z;(t) = (dq¢;(t),dpi(t)) is the
solution of the variational equation (8) with the
initial conditions d¢;(0) = 0 and dp;(0) = o,

1=1.....n—1.

This algorithm can be easily implemented, see [9]
for other details and [5], [1] for applications.

3. CONJUGATE TIME FOR BANG-BANG
EXTREMALS

Theorem 11 relates the computation of conjugate
times to a property of the extremal flow. If the
reference extremal is not smooth we cannot in
general differentiate the end-point mapping in the
L'-topology but conjugate times for this topology



can be still computed using the extremal flow, see
for instance the theory of envelopes of [12] for
broken extremals. In this section we investigate
the problem of estimating conjugate times for
broken extremals. We consider the time minimal
problem for a single input affine control system.

q=X(q) +uY(q),

According to the maximum principle it is known
that optimal controls are concatenations of bang-

lul <1 (9)

bang arcs, i.e. arcs associated to controls u = £1,
and singular arcs. In the following we only focus
on bang-bang extremals.

3.1 Second order condition for local optimality

We first recall a necessary condition for a reference
bang-bang trajectory to be optimal, see [2,3].

Theorem 13. Let (q(.),p(.)), be a bang-bang ex-
tremal trajectory of system (9) on [0,T] and let
u(t) be the corresponding control with k switching
times 0 < 71 < ... < 7 < T. Denote by v the
value of w in (0,71). Assume that p(.) is uniquely
defined (up to a positive scalar) and let py = p(0).
Define:

ho=f+vg

b = eriod(fva) o (r2=r)ad(f=vg)

oe(rgfril)ad(f*(*l)iug)(f —(=1)ivg)
i=1...k
Consider the quadratic form
Q)= > aiajlpo,hihil(e(0))),  (10)
0<i<j<k

defined on the space

{a = (ao ar) € R¥1 such that
k

Zal =0, > ashi(a(0) =0}
=0

If ¢ is optimal on [0, T] in the L!-topology then Q
is nonnegative.

Moreover if the switching point is normal [8] (i.e. if
it satisfies the so-called strong Legendre condition
in the bang-bang case) and if the quadratic form Q
is positive definite, then the trajectory is optimal.

This result gives a practical algorithm to evaluate
the conjugate times by testing the quadratic form.

There are numerous reasons to believe that a com-
mon algorithin exists to evaluate the conjugate
times for both singular and bang-bang extremals.
Next we present an attempt to provide such an
algorithm by smoothing the bang-bang extremals.

3.2 A tentatwve algorithm to compute conjugate
times for bang-bang extremals by smoothing the
corners

This section is heuristic and is based on the
behaviours of the extremals in the Earth re-entry

problem, see [5].

3.2.1. SR-systems with drift Let X,Y1,Yy be
vector fields on R™ and consider a time minimal
problem for a system of the form:

§d=X(q) +u1Y1 +u2Ys (11)

where u; = cos i, us = siny and the associated
convexified problem: 3 +u3 < 1. The hamiltonian
is H = (p,u1Y7 + u2Y3) and maximizing H over
u? +u3 = 1 yields outside the switching surfarce

X (p,Y1> = (p,Y2> =0:
o v
\/<p,Y;2> _z><pﬂY2> (12)
Uy = <

Such extremals are called of order 0 and they
correspond to smooth singular trajectories of the
associated end-point mapping. Singular trajecto-
ries associated to the end-point mapping where w4
and wuo are indepedent are extremals of the con-
vexified problem if v} +u3 < 1 and are solutions of:
(p, Y1) = (p,Ys) = 0. Differentiating the switching
function ® = ($1,P2), ®; = (p.Y;) one gets :

(p,[Y1,X]) +u1(p,[Y1,Y2]) = 0,
(p,[Y2, X]) + uz(p,[Y2, Y1]) = 0.

The existence of a switching surface or such tra-
jectories is governing the behaviors of the smooth
extremals of the original system and allows the
concatenation of smooth extremals to build bang-
bang extremals. The classification is complicated
and is an open problem in singularity theory.

In particular all the singularities corresponding to
single-input system:

= X(q1) +u1Y(q1) (13)

can be embeded in the above case. Indeed we have:

Lemma 1. Consider the time optimal control
problem for a system of the form:

g =X(q1) +u1Y1(q1)
G2 = u2Y2(q1.92)

with ¢ = (q1,¢2) € R™1"2, Then the extremals
of the problem with free condition on g2 are the
extremals of the system ¢ = X(q1) + v1Y1(q1).
Hence they are concatenations of smooth singular
extremals with w3 = cosp = £1.

Of course we cannot a priori use our algorithm
to evaluate conjugate point because we are not in



the smooth case moreover cos p is singular at £1
and the associated singularity is of codimension
at least nq.

3.2.2. smoothing the corners  Consider a system
of the form ¢ = X(q) + u1Y1(q), |u1 < 1. To esti-
mate conjugate times along bang-bang extremals
the idea is to regularize the extremals by adding
an extra term:

Ge = X(ge) + cos peY1(ge) + e sin peYa(e)
(14)

where the control p € R. For ¢ = 0, we get
the original system and Y3 is conditioning the
regularizing process. We restrict ourselves to ex-
tremals of order 0, where cospe and sinpu, are
given, according to Eq. 12, by:

cos f1e = <p5a)/?l>
\/<p€7Y1>2 +52<p87Y2>2

. N €<p67Y2>

sinp, =

\/<p57Y1>2 + 52<P57Y2>2

Let z = (gq,p) a reference bang-bang extremal of
the time optimal control problem (13) associated
to the control w and for all ¢ let z. = (ge,pe) be
the extremal of time minimal problem (14) such
that

4¢(0) = ¢(0), p(0) = p(0) .

Our conjecture is that there exists Y3 in general
position such that the first conjugate time t;., for
the regularized system tends to t;. as € tends to 0,
where t1. is the conjugate time associated to the
bang-bang extremal.

First of all we have to choose Y3, e.g equal to X,
such that z. avoids the switching surface and is a
regular perturbation of z and hence z, tends to z
uniformly as € tends to 0.

First conjugate points are points where a quadratic
approximation of the end-point mapping becomes
open which is a stable property.

3.2.8. Numerical testing In order to check our
conjecture, we consider a system in R3: § =
X(q) + w1Ya(q), |uil < 1. We recall briefly
the evaluation of the small time reachable set,
see [7] for details. We make the assumption that
X(q).Y1(q),[X,Y1](¢) form a frame in R®. we

write:
[[Yl,X],X + Yl] =ax: X +04Y1 + Ci[X.Yl]

We are in the parabolic case if aya_ > 0, in
the elliptic if ay > 0 and a— < 0, and in the
hyperbolic case if a_ > 0 and ay < 0. The
singular controls are given by:

<p*[[Y1wX]*X] + us[[YlﬂX]ﬂYID =0

We can restrict our analysis to the elliptic and
parabolic case. In the elliptic case, the singular
arcs are not optimal and the small time optimal
trajectory is bang-bang, with at most two switch-
ings. There exists an asymptotic conjugate locus
and cut locus similar in terms of singularity theory
to the generic SR-contact case in dimension 3.

In the parabolic case, a singular arc if existing is
not admissible and each small time optimal tra-
jectory is bang-bang with at most two switchings.
In this case, conjugate time does not exists for
small times, contrary to the elliptic case.
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