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Abstract: In this article, we describe the analysis under generic assumptions of the
small tsme minimal syntheses for single input affine control systems in dimension
3, submitted to state constraints. We use geometric methods to evaluate the small
time reachable set and necessary optimality conditions. Our work is motivated
by the optimal control of the atmospheric arc for the re-entry of a space shuttle,
where the vehicle is subject to constraints on the thermal flux and on the normal

acceleration.
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of the atmospheric arc.

1. INTRODUCTION

The objective of this article! is to describe the
classification of the local closed loop time optimal
control for the single input affine systems:

¢=X(q) +u¥(q),
where R3, |u| < 1, with state constraints: ¢(q) < 0.

In classical calculus of variation, necessary condi-
tions concerning the optimality status of a bound-
ary arc and junction or reflection with the bound-
ary have been obtained as a consequence of Weier-
strass theory applied to Riemannian theory with
obstacles, see [1]. This approach was generalized
by Pontryagin and his co-authors [11] to obtain a

1 This work is partially supported by Centre National
d’Etude Spatiale

minemum principle under regularity assumptions
on the constraints. A general minimum principle
based on Kuhn-Tucker theorem and non smooth
analysis is presented in [7]. In these principles, the
adjoint vector p dual to the state vector ¢ can
suffer discontinuities at contact points with the
boundary of the domain or in the boundary. Fol-
lowing the works of [8] and [10], these discontinu-
ities can be specified if we assume that the system
is single input and if the order of the constraint is
constant, the order being by definition the first
integer such that the control w appears explicitly
in the time derivative of the constraint ¢t — ¢(q(t))
evaluated along a boundary arc of the system.

The evaluation of the small time reachable set
and its boundary which can be parametrized
by the minimum principle with application to



the optimal synthesis was a research program
initialized by Sussmann [12] for planar system
and pursued in dimension 3 by [9], see also [5]
for problems with a target of co-dimension one.
The objective of this article is mainly to outline
such an analysis in the case of optimal control
with state constraints in dimension 3, where the
constraint has order 2. Here the geometry is
different and we must classify up to changes of
coordinates triplets (X,Y, c) using the order of the
constraints. We make a direct evaluation of the
reachable set for the constrained system, using
normal forms. One of the main problems is to
characterize the optimality status of a boundary
arc. We get under suitable generic assumptions
necessary and sufficient conditions.

This classification has been initialized in [6,2] for
system in dimension 2 and 3. The planar case is
now clear. In this paper we complete our study in
dimension 3.

Our geometric work, completed by the prelimi-
nary study by [6], is finally applied to the re-entry
problem. A quasi-optimal trajectory, consisting
of concatenation of bang and boundary arcs, is
given, see also [3].

2. GENERALITIES
2.1 Definttions

We counsider the time optimal problem for a
smooth (C'* or C'¥) single input affine system

= X(q) +uY(q), (1)

with ju| < 1, ¢ € U C R™ with state constraint
¢(q) < 0 where ¢ : R” — R, and fixed boundary
conditions: ¢(0) = g0, ¢(T) = ¢1.

The generic order of the constraint is the integer
m such that:

Ye=YXc=...=YX" 2c=0, YX™ lc#£0
A boundary arc t — v(t) is an arc of the system,
not reduced to a point, contained in ¢ = 0. If
the order is m, a boundary arc and the associated
feedback control can be generically computed by
differentiating m times the mapping t — ¢(q(¢))
and solving with respect to u the linear equation:

M = xmg +uY X le=0

A boundary arc is contained in

c=¢=...=cm™ D =0,
and the constraint ¢ = 0 is called primary and
the constraints ¢ = ... = ¢{™~Y = 0 are called
secondary. The boundary feedback control is:
X™e
Up= ———— .
PT Ty xmle

2.2 Assumptions

Let t — ~;(t), t € [0,T] be a boundary arc asso-
ciated to u;. We need to introduce the following
assumptions:

C1. Ymelch,b # 0 where m is the order of the
constraint.

Cs. |up] < 1 for ¢t €]0,T[, i.e. the boundary
control is admissible.

Cs. |uy| < 1 for t € [0,T], i.e. the boundary

control is not saturating.

2.3 A mazimum principle with state constraints

We recall the necessary conditions due to [8] and
[10] that we shall use in our study. Consider
the single input affine system (1), ¢ = X(q) +
wY(q), ¢ € U C R™ |u|] < 1, and consider the
time minimal problem to transfer ¢ to ¢;.

Assume that t — g¢(t), t € [0,T] is a piece-
wise smooth time minimal solution which hits
the boundary ¢(q) = 0 at times tg;,-1, @ =
1,2,... ,M and leaves the boundary at times
ty;y © = 1,2,..., M and moreover assume that
along each boundary arc , Assumptions C; and Cs
are satisfied at contact or junction times. Define
the Hamiltonian by

H(q,p,u,n) = (p, X +uY) +nc,

where (,) is the standard scalar product, p is the
adjoint vector and 7 is the Lagrange multiplier
of the constraint. The necessary optimality condi-
tions are:

(1) There exists t — 7n(t) < 0, such that the
adjoint vector satisfies:

. 50,4 + )4 Oc
=—pl—+u— 710 —n— a..
p p dq dq ﬁaq

(2) The mapping ¢t + n(t) is continuous along
the boundary arc and satisfies:

n(t)e(q(t)) =0,

(3) At a contact or a junction time t; with the

vVt e [0,T].

boundary, we have

H(t,—l—) = H(t,'—)
Oc
ptit) =p(ti—) —vig-(q(t:)), vi < 0
q
(4) The optimal control maximizes almost every-
where the Hamiltonian:

H(q(),p(),u()sn()) = ‘gllgH(q()sp()qvqn())

(5) H is constant and nonnegative along ¢(t).



2.4 Definttions

Definition 1. An extremal is a solution (q,p) of
the above equations. It is called exceptional if
H = 0. An extremal arc is called bang-bang
if it corresponds to a piecewise constant con-
trol u(t) = sign({p(¢),Y (¢(t)))); an extremal arc
of the unconstrained problem is called singular
if (p(t).Y(q(t))) = 0. We note & = (p,Y(q))
the switching function and X, the switching set
formed by points ¢ where the optimal control is
discontinuous.

2.5 Computation of singular controls
We have:

Lemma 2. Let ®(t) = (p(t),Y(q(t))) be the
switching function evaluated along a smooth ex-
tremal z(t) = (p(¢),q(t)) of the unconstrained
problem, then:

(p.[X.Y](q))
= (p. [X,[X,Y]](q)) + u(p,[Y,[X,Y]l(q))

Corollary 3. A singular extremal (p(t),q(t)) sat-
isfies almost every where :

$
p

(.Y () = (p,[X,Y](q)) =0
(p[X,[X, Y])(9)) + u(p, [V, [X, Y])(g)) = 0

2.6 Geometric computations of the multipliers
(n,v) and the junction conditions

One of the main contributions of [10] is to de-
termine the multipliers (7,1;) together with the
analysis of the junction conditions. This is based
on the concept of order and is related to the clas-
sification of extremals. We review these relations
when the order is m = 2. Also we make the
computation geometric, that is related to iterated
Lie brackets of (X,Y) acting on the constraint
mapping c.

Lemma 4. Assume that the constraint has order
m = 2 then:

(1) Along a boundary arc:

_ ([ X, [X,Y](q) + ws(p, [Y. [X, Y]](q))
([X,Y]e)(a)

(2) At a contact or entrance-exit point:
D(t;+) = D(t;—)
(3) At an entry point:

and at an exit point:

@(trl—)
([X.Y]e)(q(t:)

v = —

The remaining of this article is devoted to the
construction of the closed loop time optimal tra-
jectories under generic assumptions for a single
input affine control system in dimension 3 with
application to the space shuttle re-entry problem.

3. SMALL TIME MINIMAL SYNTHESIS FOR
SYSTEM IN DIMENSION 3 WITH STATE
CONSTRAINTS

3.1 The non constraint case

We consider a system of the form ¢ = X +
uY, ¢(q) <0, |u| < 1, with ¢ = (z,y,2) € R
The aim of this section is to give the classifica-
tion of the optimal syntheses near a point g,
identified to 0, on the boundary of the domain.
Consider first the unconstrained case and assume
that X, Y, [X,Y] are linearly independent at
qo. To construct optimal trajectories we must an-
alyze the boundary of the small time reachable
set for the time extended system. Its structure is
described in [9], under generic assumptions.

If (p(t),[Y.[X,Y]](q(?))) is not vanishing we can
solve ®(t) = 0 to compute the singular control:

(p,[X,[X,Y]l(q))
<P, [Yv [Xv YH(Q)>

We have two cases, see [4].

o Cuase 1:If X and [[X,Y],Y] are on the oppo-

site side with respect to the plane generated

Ug = —

by Y,[X,Y], then the singular arc is locally
time optimal if « € R.

e Case 2: On the opposite, if X and [[X,Y],Y]
are in the same side, the singular arc is locally
time maximal.

In the two cases, the constraint |us|] < 1 is not
taken into account and the singular control can
be strictly admissible if' |us| < 1, saturating if
|lus| = 1 at go, or non admissible if |us| > 1. We
have 3 generic cases:

e parabolic case: &+ have the same sign.
e elliptic case: &1 > 0 and ®_ < 0.
e hyperbolic case: ¢ < 0 and &_ > 0.

In both hyperbolic and parabolic cases, the lo-
cal time optimal syntheses are obtained by using
only the first order conditions from the minimum
principle and hence from extremality, together
with Legendre-Clebsch condition in the hyper-
bolic case. More precisely we have:



Lemma 5. In the hyperbolic or parabolic cases,
each extremal policy is locally time optimal. In
the hyperbolic case each optimal policy is of
the form ~yi17sy+, where v4 (resp. y—, resp. 7s)
denotes a solution of the system associated to
the control v = 1 (resp. v = —1, resp. v =
us). In the parabolic case each optimal policy is
bang-bang with at most two switchings and has
the form ~y_~v;1vy_ or v4+v_7v4+ depending on the
configuration of the Lie Brackets.

In the elliptic case, the situation is more intricate
because there exist a cut-locus, i.e. a set of points
which can be reached by at least two optimal
trajectories.

Lemma 6. In the elliptic case, each optimal pol-
icy has the form ~v_~vyyvy_ and y4vy_7v4. More-
over there exists a cut locus where two optimal
trajectories of the previous form have the same
duration.

We shall now analyze the constrained case for a
constraint of order 2, for the above three generic
cases. Notice that both parabolic and hyperbolic
cases have been already treated in [2]. Let us also
underline that our application to the space shuttle
re-entry problem, corresponds to the parabolic
case.

3.2 The constrained parabolic case

For the unconstrained problem the situation is
clear in the parabolic case. Indeed X, Y, [X,Y]
form a frame near ¢y and writing:

(X £V, [X,Y])] = as X + b2V + c4[X,Y],

with ax # 0, the synthesis depends only upon
the sign of § = aja_ at qy. The small time
reachable set is bounded by the surfaces formed by
arcs 7_v4 and y4v_. Each interior point can be
reached by an arc y_vy4~v_ and an arc y4y_v4. If
d < 0 the time minimal policy is y_vy4~v_ and the
time maximal policy is y4vy_7v4 and the opposite
if § > 0. To construct the optimal synthesis one
can use a nilpotent model where all Lie brackets
of length greater than 4 are 0. In particular the
existence of singular direction is irrelevant in the
analysis and a model where [Y,[X,Y]] is zero can
be taken. This situation is called the geometric
model. A similar model is constructed next taking
into account the constraints, which are assumed
of order 2. Moreover we shall first suppose that
C1, Cs are satisfied along a boundary arc v;, that
is YXc # 0 along «, and the boundary control
is admissible and not saturating. We have the
following:

Lemma 7. Under our assumptions, a local geo-
metric model in the parabolic case is:

T =ai1x+ azz
y:1+b1w+bgz

z=(c+u)+crz+ coy + c3z, lu] <1

with ag > 0, where the constraint is z < 0 and
the boundary arc is identified to ~; : ¢ — (0,¢,0).

If the boundary arc is admissible and not saturat-
ing we have |c| < 1.

Theorem 8. Counsider the time minimization prob-
lem for the system: ¢ = X(q) + vY(q), q €
R3, |u| < 1 with the constraint c¢(q) < 0. Let
go € {c = 0} and assume the following;:

(1) At go, X, Y and [X,Y] form a frame and
[X+Y,[X,Y]]=axX +01Y + c4[X,Y]

with aya_ < 0.
(2) The constraint is of order 2 and Assumptions
C1 and Cj are satisfied at qp.

Then the boundary arc through ¢o is small time
optimal if and only if the arc y_ is contained in
the non admissible domain ¢ > 0. In this case the
local time minimal synthesis with a boundary arc
is of the form fy_fyffyb’y}:'y_, where v4 (resp. v,
resp. ;) denotes solution of the system associated
to the control w = 1 (resp. u = —1, resp. u = uy)
and 'yI are arcs tangent to the boundary arc.

3.8 Connecting two constraints of order 2 in the
parabolic case

If there are two constraints in a small neighbor-
hood of a point ¢y, one needs to describe the
transition between the two constraints. Hence we
give a geometric normal form to analyze such a
transition together with the optimal strategy.

Lemma 9. Consider the control system ¢ = X +
uY, |u| <1, ¢ € R® with two distinct constraints
¢i(q) <0, ¢ = 1,2. Take a small neighborhood
U of 0 containing subarcs of both 4; and 47, and
assume that +; hits the boundary c; = 0. Assume
also that Lie Brackets conditions of Lemma 7 are
satisfied. Then there exists a geometric model of
the form:

T =aix + agz
1—1—1)113—{—632
Z=cHu+ciz+chy+cyz

where the constraints are given by ¢1(q) = = and
c2(q) = = + ey, with ¢ small.

Theorem 10. If assumptions of Lemma 9, and
assumptions (1) and (2) of Theorem 8 for both
constrained system are satisfied, denote ~i, 7



the respective boundary arcs. Assume that the
boundary arcs are optimal. Then each optimal
policy near go = 0 with boundary arcs is of the
form fy_fyIfybl'yI'ygfyIfy_ where the intermediate
arc ’yI is the only arc tangent to both constraints.

3.4 The constrained hyperbolic case

In the hyperbolic constrained case, we first de-
scribe the small time optimal synthesis starting
from a point ¢, identified to 0, on the constraint.
For sake of simplicity, we adopt the point of view
of [9] and we focus on the so called "free” nilpotent

case, where [X,[X,Y]] =0, i.e.
b=z, 0=1-2cx — 2% .2 =cHu (2)

with |¢| < 1 and the constraint given by = < 0.
Then the singular control is us = 0 and is strictly
admissible. The boundary arcis ¢ — (0,¢,0) and is
associated with the control uy = —c. The singular
arc is not tangent to the boundary arc and we
assume that 79 is admissible, which means ¢ < 0.

Lemma 11. Under our assumptions:

e The boundary arc is the optimal trajectory
that joins two points A = (0,a,0) and
B(0,b,0) of the boundary.

e Each small time optimal trajectory starting
from 0 is of the form v3yTy+ or 7% y,v+.

We can make the same reasoning backward in
time and finally we obtain :

Theorem 12. Consider the hyperbolic case and
assume that the singular arc 49 through ¢ = 0 is
not tangent to the boundary arc. If 49 is contained
in the non admissible domain, the boundary arc
is not optimal. If 4 is contained in the admissible
domain, the boundary arc is locally optimal and
the local optimal trajectories with boundary arcs
are of the form y1yTvy,yTyL.

3.5 The constrained elliptic case

Again for sake of simplicity, we focus on the so-
called “free” nilpotent systems, which means that
all the Lie brackets of order more than three are
equal to 0 and that [X,[X,Y]] is identically 0.

Therefore we study the following model:
i;:z,g):1—|—2cw—|—z2,z':c+u (3)

with |¢] < 1 and the constraint is given by z < 0.
The singular control is u; = 0 and is strictly
admissible. The boundary arc is ¢t — (0,%,0) and
is associated with the boundary control u, = —c.
Let us first study the optimal synthesis to join
two points of the boundary arc A = (0,0,0) and
B =(0,b,0):

Lemma 13. For system (3), the boundary arc is

optimal if and only if ¢ > % Ife< %, the optimal

policy to join two points of the boundary arc is
T T

YU+ =-

Remark 14. The local model can not be used to
compare arc v, to arc yLy4yT when ¢ = % In
this case we have to add higher order terms in
system (3).

Proposition 15. For system (3), assume that the
boundary arc is optimal (¢ > 1/3), then we have
for the constrained problem:

(1) if ¢ > 1/2, each optimal trajectory starting
from 0 is of the form ~vpy_7y4+.

(2) if ¢ < 1/2, each optimal trajectory starting
from 0 is of the form ~yyy_7vy4, vpy—y4+7- or

V=V+7--

As in the hyperbolic case, the reasoning can also
be made backwards in time and we can infer the
local optimal synthesis.

4. CONTROL OF THE ATMOSPHERIC ARC
4.1 The optimal control problem

We consider the dynamic model of a space shuttle
in the atmosphere submitted to gravitational force

and aerodynamic forces which split into the
and the lift force I :

j=K+D+T.

Choosing a system of coordinates this system lies
in RS and writes :

q¢=X(q) +cospYi(q) +sinpYs(q)  (4)

The problem is to steer the vehicle from an initial

drag force

manifold to a terminal manifold without violating
constraints, ¢;(¢) < 0 for ¢ = 1,2,3, correspond-
ing to constraints on the thermal flux, the normal
acceleration and the dynamic pressure. The op-
timal control problem consists in minimizing the
total amount of the thermal flux ¢ accumulated

during the flight :

i
T = [ etade g
0
If we introduce the new time parameter
ds = pdt (6)

our optimal problem is a time minimal problem.

4.2 Properties and structure of the system

The problem is to minimize time for a system of
the form:
dq B

dt—Xm%HmﬂMI+wEM%



where w1 = cos p, uy = sin . We can decompose
the previous system into 2 subsystems (see [3]) as
follow :

41 = Fl(ql,’u,]) + O(Q)v (1'2 = F?(Qv“'?) .

where Q is the modulus of the Earth angular
velocity. The first subsystem governs the long:-
tudinal motion and the second system governs
the lateral motion. Neglecting the influence of the
Earth rotation, we can restrict our attention to
the first subsystem which is a scalar input affine
system of the form

i=X+uY, |[u| <1, ¢g=(r,v,y) €eR®, (7)

where 7 is the distance between the shuttle and
the center of the Earth, v is the modulus of the
relative velocity and « is the path inclination. The
vector fields X and Y are:

v sin-'y , 0
X = | —gsiny —kpv y=1lo ,
g v ’
cosy (—— + —) k'pv
vooT

where p(r) is the density of the atmosphere and
k, k' are aerodynamics coefficients. The state
constraints are of the form ¢;(q) < 0, ¢ = 1,2,3
and the boundary conditions are given in Table 1.

Initial conditions | Terminal conditions
altitude h 119.82 km 15 km
velocity v 7404.95 m.s ! 445 m.s~1
flight angle v —1.84 deg free

Table 1. Boundary conditions

The following results, coming from computations,
are crucial:

Lemma 16. In the flight domain where cosvy #£ 0,
we have:

(1) X, Y, [X,Y] are linearly independent.

(2) [Y,[X,Y]] € span{Y, [X,Y]}.

(3) [X,[X.Y][(q9) = a(g)X(q) + b(a)Y(q) +
¢(¢)[X.Y](q) with a < 0.

Hence the longitudinal subsystem is parabolic
according to our previous classification.

4.8 Application of the classification to the space
shuttle problem

Applying Theorems 8 and 10 actually leads to the
following result, see [3] for details:

Corollary 17. The optimal trajectory for the prob-
lem of the space shuttle has the form:

T T T
¥— ’Y_{_ ’Yﬂux’)/+ ’Yacc7+

where yux (resp. Yace) is an iso-flux (resp. iso-
normal acceleration) boundary arc, the constraint

on the dynamic pressure being not active during
the flight.

This is actually the optimal synthesis for the sub-
system (7) which governs the longitudinal motion.
As to the complete system in dimension 6, it may
be proved that for certain boundary conditions,
trajectories given in Corollary 17 are still quasi
optimal, see [2] for more details.
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