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FROM LEFT MODULES TO ALGEBRAS OVER AN

OPERAD: APPLICATION TO COMBINATORIAL HOPF

ALGEBRAS

MURIEL LIVERNET

Abstract. The purpose of this paper is two fold: we study the be-
haviour of the forgetful functor from S-modules to graded vector spaces
in the context of algebras over an operad and derive from this theory the
construction of combinatorial Hopf algebras. As a byproduct we obtain
freeness and cofreeness results for these Hopf algebras.

Let O denote the forgetful functor from S-modules to graded vector
spaces. Left modules over an operad P are treated as P-algebras in the
category of S-modules. We generalize the results obtained by Patras and
Reutenauer in the associative case to any operad P : the functor O sends
P-algebras to P-algebras. If P is a Hopf operad the functor O sends
Hopf P-algebras to Hopf P-algebras. If the operad P is regular one gets
two different structures of Hopf P-algebras in the category of graded
vector spaces. We develop the notion of unital infinitesimal P-bialgebra
and prove freeness and cofreeness results for Hopf algebras built from
Hopf operads. Finally, we prove that many combinatorial Hopf algebras
arise from our theory, as Hopf algebras on the faces of the permutohedra
and associahedra.

Introduction

A S-module, also named symmetric sequence, is a graded vector space
(Vn)n≥0 together with a right action of the symmetric group Sn on Vn for
each n. The present paper is concerned with the study, in an operadic point
of view, of the forgetful functor O from S-modules to graded vector spaces
and its applications.

The category S-mod of S-modules is a tensor category. Motivated by the
study of homotopy invariants, Barratt introduced the notion of twisted Lie

algebras in [3], which are Lie algebras in the category of S-modules or – in
the operad context – left modules over the operad Lie. More precisely, a
twisted Lie algebra is a S-module (Ln)n≥0 together with a bilinear operation
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2 M. LIVERNET

[, ] satisfying, for any a ∈ Lp, b ∈ Lq and c ∈ Lr the relations

[b, a] · ζp,q = −[a, b],

[a, [b, c]] + [c, [a, b]] · ζp+q,r + [b, [c, a]] · ζp,q+r = 0,

where ζp,q is the permutation of Sp+q given by ζp,q(i) = q+ i if 1 ≤ i ≤ p and
ζp,q(i) = i− p if p+ 1 ≤ i ≤ p+ q. For instance the S-module (Lie(n))n≥0 is
a twisted Lie algebra for the bracket induced by the operadic composition

Lie(2) ⊗ Lie(n) ⊗ Lie(m) → Lie(n+m).

There exists also a notion of twisted associated algebras– associative algebras
in the tensor category S-mod– and a notion of twisted associated bialgebras

– associative bialgebras in the category S-mod. Stover proved in [24] that
a Cartier-Milnor-Moore theorem relates the categories of twisted associated
bialgebras and twisted Lie algebras. Following an idea lying in [24], Patras
and Reutenauer proved in [21] that two bialgebras arise naturally from a
twisted bialgebra (A,m,∆): the symmetrized bialgebra Ā = (A, m̂, ∆̄) and

the cosymmetrized bialgebra Â = (A, m̄, ∆̂). In [22] Patras and Schocker
derived from this construction some known combinatorial Hopf algebras.
The first part of this paper is the generalization of these constructions to
any operad P. This generalization is performed in two steps: the first step
focus on the algebra constructions and the second step on the coalgebra
constructions.

Given an operad P, the following notions are equivalent

Twisted P-algebras (see e.g. [12]),
Left modules over P (see e.g. [11]) and
P-algebras in the category of S-modules.

Our first question is the following one: given a P-algebra M in S-mod can
one endow the graded vector space O(M) with a P-algebra structure? This
question comes from the observation that ⊕nP(n) is a P-algebra in S-mod
but is not a priori a P-algebra in the category of graded vector spaces. To
convice the reader, one can look at the Lie case: if P = Lie then ⊕n Lie(n)
is a twisted Lie algebra, and the bracket is not anti-symmetric since the
action of the symmetric group is non trivial. Our first theorem 2.3.1 states
that if we apply a symmetrization to the twisted P-algebra structure on
M then O(M) is a P-algebra. If P = As we recover the definition of the
symmetrized product m̂ of Patras and Reutenauer. Our second theorem
2.4.3 states that another product can be defined if the operad P is regular

that is, if the action of the symmetric group is free. Then in case P = As
we recover the product m̄ defined by Patras and Reutenauer.

The second step of the construction deals with Hopf operads. We define
the notion of Hopf P-algebras in the category S-mod, so that in case P = As
we recover the notion of twisted associative bialgebras. We develop the
analogues of the constructions of Patras and Reutenauer: in theorem 3.2.2
we prove that given a Hopf P-algebra (M,µM ,∆M ) in S-mod one can endow
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M̄ = (O(M), µ̂O(M), ∆̄O(M)) with a Hopf P-algebra structure analogous to
the symmetrized bialgebra construction. This is the symmetrized Hopf P-
algebra associated toM . If P is regular then there is another Hopf P-algebra
structure on M̂ = (O(M), µ̄O(M), ∆̂O(M)), analogous to the cosymmetrized
bialgebra construction (see theorem 3.3.1): this is the cosymmetrized P-
Hopf algebra associated to M . In view of our theory, one can say that the
theory developped by Patras and Reutenauer works because the operad As
is regular.

The example of Hopf P-algebra in S-mod that we should have in mind
throughout all the article is the S-module P itself, if P is a connected Hopf
operad (see section 3.2.3).

The case P regular has another advantage: we can define the notion of uni-

tal infinitesimal P-bialgebra following the terminology of Loday and Ronco
in [16] when P = As. We prove in theorem 4.1.2 that (O(M), µ̄O(M), ∆̄O(M))
is a unital infinitesimal P-bialgebra if M is a Hopf P-algebra. We prove in
theorem 4.1.3 that the graded vector space ⊕nP(n)/Sn has also a structure
of unital infinitesimal P-bialgebra. These results combined with the theo-
rem of Loday and Ronco (see 4.2.1) yield the main theorems of our paper,
which has some importance in the study of combinatorial Hopf algebras.
First of all if P = As and (A,m,∆) is a twisted associative bialgebra, then
the algebra (A, m̄, ∆̄) is a unital infinitesimal bialgebra and consequently is
free and cofree (see theorem 4.2.2). Moreover, theorem 4.3.2 asserts that
in case P is a Hopf regular multiplicative operad that is, endowed with a
Hopf operad morphism As → P, then any unital infinitesimal P-bialgebra
is isomorphic as a unital infinitesimal P-bialgebra to the vector space T (V )
where V is the space of primitive elements.

Before going through the applications to combinatorial Hopf algebras, let
us summarize the results in a table.

Operad P S-module M graded vector space O(M) Thm
any P-alg (M,µ) P-alg (O(M), µ̂) 2.3.1
regular P-alg (M,µ) P-alg (O(M), µ̂)

P-alg (O(M), µ̄) 2.4.3

Hopf Hopf P-alg (M,µ,∆) Hopf P-alg (O(M), µ̂, ∆̄) 3.2.2

Hopf regu-
lar

Hopf P-alg (M,µ,∆) Hopf P-alg (O(M), µ̂, ∆̄)

Hopf P-alg (O(M), µ̄, ∆̂) 3.3.1
u.i. P-bialg (O(M), µ̄, ∆̄) 4.1.2

mult Hopf
regular

Hopf P-alg (M,µ,∆) (O(M), µ̄, ∆̄) ≃

T (Prim∆̄(O(M)) 4.3.2
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Given a graded vector space H, the question is: how does a Hopf algebra
structure arise on H? In the last section, we illustrate with examples that
many combinatorial Hopf algebras arise from our theory. We distinguish
two cases.

If P is a Hopf multiplicative operad then H = ⊕nP(n) has two struc-
tures of Hopf algebras: the symmetrized Hopf algebra H̄ is cofree and the
cosymmetrized algebra Ĥ is free. For instance, we prove that the Malvenuto
Reutenauer Hopf algebra arises as the symmetrized Hopf algebra of the op-
erad As and the cosymmetrized algebra of the operad Zin and then is free
and cofree. We prove that Hopf algebra structures on the faces of the per-
mutohedra given e.g. by Chapoton in [5], Bergeron and Zabrocky in [4]
and Patras and Schocker in [22], arise from the operad CTD of commuta-
tive tridendriform algebras defined by Loday in [14]. We deduce also some
freeness results from our theory. This case apply when Hn has an action of
the symmetric group.

In the second case, we assume that there exists a Hopf multiplicative
regular operad P such that H = ⊕nP(n)/Sn. Our theory implies that H
is a Hopf P-algebra hence a Hopf algebra and is also a unital infinitesimal
P-bialgebra. We prove that the Hopf algebra of planar trees described by
Chapoton in [5], and the one of planar binary trees described by Loday and
Ronco in [15] arise this way. As a byproduct we obtain freeness results for
these Hopf algebras.

The organization of the present paper is as follows. After some prelim-
inaries in section 1 we define in section 2 the notion of algebras over an
operad P in the category of S-modules and in the category of graded vector
spaces. We explore the structures of P-algebra on the underlying graded
vector space of a P-algebra in S-mod. We prove that such a structure al-
ways exists and when the operad is regular one has an additional structure.
We compare this result to the one obtained by Patras and Reutenauer [21]
in the case of twisted associative algebras. In section 3 we study Hopf oper-
ads and the consequences on the underlying graded vector space of a Hopf
P-algebra in S-mod. The section 4 is devoted to the unital infinititesimal
P-bialgebra notion and to the freeness theorems. We develop in section 5
the application to combinatorial Hopf algebras by way of examples.

Throughout the paper, the ground field is denoted by k and all vector
spaces are k-vector spaces.
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1. S-modules and related functors

1.1. The symmetric group. In this section we develop some material on
the symmetric group needed in the paper. The set {1, . . . , n} is written [n].
For any set of integers S, the set {p + s, s ∈ S} is denoted p + S. For any
sets S ⊂ [n] and T ⊂ [m] the set S × T is the subset S ∪ (T + n) of [n+m].

Any permutation σ ∈ Sn is written (σ1, . . . , σn) whith σi = σ(i). There
is a natural injection

Sn × Sm → Sn+m

(σ, τ) 7→ σ × τ = (σ1, . . . , σn, τ1 + n, . . . , τm + n).

The standardisation of a sequence of distinct integers (a1, . . . , ap) is the
unique permutation σ ∈ Sp following the conditions

σ(i) < σ(j) ⇔ ai < aj, ∀i, j.

For instance
st(2, 13, 9, 4) = (1, 4, 3, 2).

Any subset A = {a1 < . . . < ap} ⊂ [n] induces a map

Sn → Sp
σ 7→ σ|A = st(σ(a1), . . . , σ(ap)).



6 M. LIVERNET

For instance

(2, 6, 1, 3, 5, 4)|{1,2,4} = st(2, 6, 3) = (1, 3, 2).

If A is the empty set then σ|∅ = 10 ∈ S0.

A (p1, . . . , pr)-shuffle is a permutation of Sp1+...+pr of type

(τ1
1 , . . . , τ

1
p1
, . . . , τ r1 , . . . , τ

r
pr

)−1

with τk1 < . . . < τkpk
for all 1 ≤ k ≤ r. The set of all (p1, . . . , pr)-shuffles

is denoted by Shp1,...,pr . For simplicity, a (p1, . . . , pr)-shuffle is written as a
r-uple (A1, . . . , Ar) where A1⊔ . . .⊔Ar is a partition of the set [p1 + . . .+pr].
Some of the Ai’s may be empty.

For instance ({2, 5}, {1, 3, 4}) denotes the (2, 3)-shuffle (3, 1, 4, 5, 2). Re-
call that Shp1,...,pr constitutes a set of right coset representatives for Sp1 ×
. . .× Spr ⊂ Sp1+...+pr , i.e. any σ ∈ Sp1+...+pr has a unique factorization

σ = (σ1 × . . .× σr)α,

where σi ∈ Spi
and where α is a (p1, . . . , pr)-shuffle. More precisely, if r = 2

σ = (σ|σ−1([p]) × σ|σ−1(p+[q]))(σ
−1([p]), σ−1(p+ [q])).

1.2. Graded vector spaces and S-modules.

1.2.1. Definition. A graded vector space A is a collection {An}n≥0 of k-
vector spaces An indexed by the non-negative integers. One can define also
A as A = ⊕nAn. A map A → B of graded vector spaces is a collection
of linear morphisms An → Bn. The category of graded vector spaces is
denoted grVect.

A S-module M is a graded vector space together with a right Sn-action
Mn ⊗ k[Sn] → Mn for each n ≥ 0. A map M → N of S-modules is a
collection Mn → Nn of morphisms of right Sn-modules. The category of
S-modules is denoted S-mod.

There is a forgetful functor

O : S-mod → grVect

which forgets the action of the symmetric group.

1.2.2. Tensor product.

The category grVect is a linear symmetric monoidal category with the
following tensor product:

(A⊗B)n =
⊕

p+q=n

Ap ⊗Bq.

The symmetry isomorphism τ : A⊗B → B ⊗A is given by

τ : Ap ⊗Bq → Bq ⊗Ap
a⊗ b 7→ b⊗ a
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The symmetry isomorphism τ induces a left action of the symmetric group
Sk on A⊗k, for A ∈ grVect.

The category S-mod is a linear symmetric monoidal category with the
following tensor product:

(M ⊗N)(n) =
⊕

p+q=n

(M(p) ⊗N(q)) ⊗Sp×Sq k[Sn]

=
⊕

p+q=n

(M(p) ⊗M(q)) ⊗ k[Shp,q].

Since a (p, q)-shuffle is uniquely detemined by an ordered partition I ⊔ J of
[p+ q], an element in (M ⊗N)(p+ q) can be written m⊗n⊗ (I, J). For the
sequel m⊗ n denotes the element m⊗ n⊗ ([p], p + [q]) of (M ⊗N)(p + q).
The right action of the symmetric group is given by

(m⊗ n⊗ (I, J)) · σ = m · σ|σ−1(I) ⊗ n · σ|σ−1(J) ⊗ (σ−1(I), σ−1(J)) (1)

The unit for the tensor product is the S-module 1 given by

1(n) =

{

k, if n = 0,

0, otherwise.

The symmetry isomorphism τ : M ⊗N → N ⊗M is given by

τ(m⊗ n⊗ (I, J)) = n⊗m⊗ (J, I).

For any σ ∈ Sk, the symmetry isomorphism induces an isomorphism τσ
of S-modules from M1 ⊗ . . .⊗Mk to Mσ−1(1) ⊗ . . . ⊗Mσ−1(k) given by

τσ(m1 ⊗ . . .⊗mk ⊗ (I1, . . . , Ik)) =

mσ−1(1) ⊗ . . .⊗mσ−1(k) ⊗ (Iσ−1(1), . . . , Iσ−1(k)). (2)

As a consequence τσ induces a left Sk-action on M⊗k.

When it is necessary to distinguish the tensor products, we write ⊗g for
the tensor product in grVect and ⊗S for the one in S-mod.

The forgetful functor O does not preserve the tensor product, but one
can define two maps

πOM,N , ι
O
M,N : O(M ⊗S N) → O(M) ⊗g O(N)

which are functorial in M and N by

πOM,N(m⊗ n⊗ (I, J)) =

{

m⊗ n, if (I, J) = Id,

0, otherwise,

ιOM,N (m⊗ n⊗ (I, J)) = m⊗ n.

In case a S-module M is concentrated in degree 0 one can consider M
in the category of vector spaces then of graded vector spaces. The tensor
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product of such two S-modules is the tensor product in the category of vector
spaces and in this case πOM,N and ιOM,N are the identity map.

1.3. Endofunctors induced by a S-module.

1.3.1. Endofunctors in S-mod. The category of S-modules is endowed with
another monoidal structure (which is not symmetric): the plethysm ◦.

(M ◦N)(n) :=
⊕

k≥0

M(k) ⊗Sk
(N⊗k)(n),

where Sk acts on the left on (N⊗k) by formula (2). The left and right unit
for the plethysm is the S-module I given by

I(n) =

{

k, if n = 1,

0, otherwise.

Hence any S-module M defines a functor

FM : S-mod → S-mod
N 7→ M ◦N

satisfying
{

FI = Id

FM◦M ′ = FMFM ′

1.3.2. Endofunctors in grVect. For M ∈ S-mod and A ∈ grVect, one can
use the same definition for the plethysm:

(M ◦ A)(n) :=
⊕

k≥0

M(k) ⊗Sk
(A⊗k)(n).

where the tensor product A⊗k is taken in grVect. Similarly any S-module
M defines a functor

F gM : grVect → grVect
A 7→ M ◦A

satisfying
{

F gI = Id

F gM◦M ′ = F gMF
g
M ′

1.3.3. Example. Here is an example that emphazises the fact that the two
functors are different even if evaluated at the same underlying vector space.
Consider the S-module Com(n) = k with the trivial Sn-action, and let V be a
vector space. The vector space V can be considered either as a graded vector
space concentrated in degree 1 or as a S-module concentrated in degree 1.
One has

F gCom(V ) = ⊕n≥0 k⊗SnV
⊗gn = S(V ),

FCom(V ) = ⊕n≥0 k⊗SnV
⊗Sn = T (V ).
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1.4. Proposition. Let M,N be two S-modules. The map

M ◦ O(N) → O(M ◦N)
m⊗ n1 ⊗ . . .⊗ nk 7→

∑

(T1,...Tk)m⊗ n1 ⊗ . . .⊗ nk ⊗ (T1, . . . , Tk),

where ni ∈ N(li) and (T1, . . . , Tk) is an ordered partition of [l1 + . . . + lk]
with |Ti| = li, defines a natural transformation

ψM : F gM O → O FM

functorial in M ∈ S-mod. Furthermore the following diagram commutes

F gM◦N O

F
g
M
ψN &&LLLLLLLLLL

ψM◦N // O FM◦N

F gM O FN

ψMFN

88rrrrrrrrrrr

Proof. The relation (2) implies that

m · σ ⊗ n1 ⊗ . . .⊗ nk ⊗ (T1, . . . , Tk) =

m⊗ nσ−1(1) ⊗ . . .⊗ nσ−1(k) ⊗ (Tσ−1(1), . . . , Tσ−1(k)).

Since the sum is taken over all ordered partitions (T1, . . . , Tk), the image of
m · σ ⊗ n1 ⊗ . . .⊗ nk is

∑

(U1,...Uk)

m⊗ nσ−1(1) ⊗ . . .⊗ nσ−1(k) ⊗ (U1, . . . , Uk)

with |Ui| = lσ−1(i), which is the image of m⊗ nσ−1(1) ⊗ . . . ⊗ nσ−1(k). As a
consequence the map is well defined.

The known formula

Sh
p11,...,p

l1
1 ,...,p

1
k
,...,p

lk
k

=

(Sh
p11,...,p

l1
1
× . . .× Sh

p1
k
,...,p

lk
k

) Sh
p11+...+p

l1
1 ,...,p

1
k
+...+p

lk
k

(3)

yields the commutativity of the diagram. �

2. Algebras over an operad

In this section we give the definitions of operads and algebras over an
operad and we refer to Fresse [11] for more general theory on operads. We
further state the main results of the section: the underlying graded vector
space of an algebra over an operad P in S-mod is always a P-algebra and
when P is regular there exists a second P-algebra structure.



10 M. LIVERNET

2.1. Operads. An operad is a monoid in the category of S-modules with
respect to the plethysm. Namely, an operad is a S-module P together with
a product µP : P ◦ P → P and a unit ηP : I → P satisfying

µP(P ◦ µP) =µP(µP ◦ P)

µP(P ◦ ηP) =µP(ηP ◦ P) = P.

As a consequence the functors FP and F gP are monads in the category S-mod
and grVect.

The product µP expresses as maps called compositions

P(n) ⊗ P(l1) ⊗ . . .⊗ P(ln) → P(l1 + . . . + ln)
µ⊗ ν1 ⊗ . . . ⊗ νn 7→ µ(ν1, . . . , νn)

which are morphisms of Sl1+...+ln-modules and which are Sn-equivariant.

The operad As is the S-module (k[Sn])n≥0. For σ ∈ Sn, τi ∈ Sli the
composition µAs(σ; τ1, . . . , τn) is the permutation of Sl1+...+ln obtained by
substituting the block τi + lσ−1(1) + lσ−1(2) . . . + lσ−1(σ(i)−1) for the integer
σi. For instance

µAs((3, 2, 1, 4); (2, 1), (1, 3, 2), (1), (2, 3, 1)) = ( 6, 5
︸︷︷︸

τ1+4

, 2, 4, 3
︸ ︷︷ ︸

τ2+1

, 1
︸︷︷︸

τ3

, 8, 9, 7
︸ ︷︷ ︸

τ4+6

).

2.2. Algebras over an operad. Let C denotes either the category of S-
modules or the category of graded vector spaces. For any S-module M , the
functor FC

M denotes the functor FM or F gM .

Let P be an operad. A P-algebra or an algebra over P is an algebra
over the monad FC

P , that is an object M of C together with a product
µM : FC

P (M) →M such that the following diagrams commute:

FC

P◦P (M)

FC
µP

(M)

��

FC

P (µM )
// FC

P (M)

µM

��
FC

P (M)
µM // M

FC

I (M)

FC
ηP

(M)

��

= // M

FC

P (M)

µM

<<
xxxxxxxxx

For p ∈ P(n) and m1, . . . ,mn ∈M the product µM (p⊗m1 ⊗ . . .⊗mn) is
usually written

p(m1, . . . ,mn) ∈M.

In the category of graded vector spaces one gets the usual definition of
an algebra over an operad. In the category of S-modules the notion of a
P-algebra is related to some other terminology:

• left module over P in the terminology of Fresse [11],

• if P = As or P = Lie, twisted associative or twisted Lie algebra in
the terminology of Barratt [3],
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• twisted P-algebra in the terminology of Livernet and Patras [12].

In the sequel we dedicate the word twisted to the only case P = As: a
twisted algebra is an algebra over the operad As in the category S-mod.

Any free P-algebra in the category C writes FC

P (M) for some M ∈ C. As
a consequence P is the free P-algebra in S-mod generated by the S-module
I.

2.3. Relating P-algebras in S-mod and in grVect.

2.3.1. Theorem. Let M ∈ S-mod be an algebra over an operad P. The

graded vector space O(M) is a P-algebra for the product µ̂O(M) given by the

composition

F gP O(M)
ψP (M)

// O FP(M)
O(µM )

// O(M) .

Concretely

µ̂O(M)(p⊗m1 ⊗ . . .⊗mn) = µM (p⊗m1 ⊗ . . .⊗mn) · ql1,...,ln (4)

with p ∈ P(n),mi ∈ M(li) and where ql1,...,ln is the sum of all (l1, . . . , ln)-
shuffles.

Proof. One has to prove the commutativity of the following two diagrams

F gP◦P O(M)

F
g
µP

O(M)

��

F
g
P µ̂O(M)

// F gP O(M)

µ̂O(M)

��
F gP O(M)

µ̂O(M)
// O(M)

F gI O(M)

F
g
ηP

O(M)

��

= // O(M)

F gP O(M)

µ̂O(M)

99ssssssssss

The second diagram is commutative because ψN is functorial in N , so

ψI = Id,

ψP(F gηP O) =(O FηP )ψI ,

and because µM (FηP (M)) = IdM .

Since M is a P-algebra µM(FµPM) = µM(FPµM ).
The commutativity of the first diagram is a consequence of the computa-

tion

µ̂O(M)F
g
µP O(M)

= O(µM )ψP (M)(F gµP O(M)) by definition,
= O(µM )(O FµP )ψP◦P (M) by functoriality of ψ,
= O(µM )O(FPµM )ψP◦P (M) M is a P − algebra,
= O(µM )O(FPµM )(ψPFP )(F gPψP) by proposition 1.4,
= O(µM )ψP (M)(F gP O(µM ))(F gPψP) ψ is a natural transformation,
= µ̂O(M)(F

g
P µ̂O(M)) by definition. �
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As pointed out in section 2.2 any free P-algebra in S-mod is a P-algebra
and satisfies the conditions of the theorem. Hence any free P-algebra in
S-mod gives rise to a P-algebra in grVect. In particular the graded vector
space ⊕n≥0P(n) is a P-algebra.

2.3.2. Example. We apply formula (4) for the examples of the commutative
operad and the associative operad.

The commutative operad Com is the trivial Sn-module k for all n. Let en
be a generator of Com(n). The composition is

µCom(en ⊗ el1 ⊗ . . .⊗ eln) = el1+...+ln .

The graded vector space ⊕n Com(n) is isomorphic to k[X]. The commutative
product on k[X] induced by the composition µCom is

Xn ·̂Xm =

(
n+m

n

)

Xn+m, (5)

since the number of (n,m)-shuffles is
(
n+m
n

)
.

The associative operad was defined in section 2.1. The associative product
on the space ⊕n k[Sn] induced by the composition µAs is

σ∗̂τ =
∑

ξ∈Shp,q

(σ × τ) · ξ, (6)

where σ ∈ Sp and τ ∈ Sq. This is the product defined by Malvenuto and
Reutenauer in [18] (see also paragraphs 2.4.4 and 5.2).

2.3.3. Remark. Let P be an operad and M be a P-algebra in S-mod such
that the action of Sn onM(n) is trivial. There is another P-algebra structure
on O(M) given by

µt,gO(M)(p ⊗m1 ⊗ . . .⊗mn) = µM (p⊗m1 ⊗ . . .⊗mn), (7)

since the formula (2) together with the trivial action imply the Sn-invariance.
If P = Com then k[X] is a commutative algebra for the product

Xn ·Xm = Xn+m.

In characteristic 0 the two commutative products on k[X] are isomorphic
but it is no more the case in characteristic p.

2.4. Regular Operads. In this section we prove that any algebra over a
regular operad P gives rise to two structures of P-algebra on its underlying
graded vector space. This is the generalization to operads of the result
of Patras and Reutenauer in [21] in the associative case. Note that this
generalization holds only for regular operads.
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2.4.1. Definition. The forgetful functor O : S-mod → grVect has a left
adjoint, the symmetrization functor S : grVect → S-mod which associates
to a graded vector space (Vn)n the S-module (Vn⊗k[Sn])n, where the action
of the symmetric group is the right multiplication. A S-module M is regular

if there exists a graded vector space M̃ such that M = SM̃ . For instance,
the S-module I is regular, since I = SI. Let S-modr be the full subcategory
of S-mod of regular modules. A regular operad P = SP̃ is an operad in
the category S-modr, i.e. µ(ν1, . . . , νk) ∈ P̃ as soon as µ, νi ∈ P̃ .

Indeed, there is also a plethysm in the category grVect:

V ◦g W = ⊕kVk ⊗W⊗k.

Note that

SV ◦ SW = S(V ◦g W ).

A non-symmetric operad is a monoid in the category grVect with respect
to the plethysm ◦g. The operad SP̃ is regular if and only if P̃ is a non-
symmetric operad.

2.4.2. Proposition. Let M = SM̃ be a regular module and N be a S-module.

The map

M̃ ◦ O(N) → O(M ◦N)
m⊗ n1 ⊗ . . .⊗ nk 7→ m⊗ n1 ⊗ . . .⊗ nk

defines a natural transformation

ψrM : F gM O → O FM

functorial in M ∈ S-modr. Furthermore for M and N in S-modr the

following diagram commutes

F gM◦N O

F
g
M
ψr

N &&LLLLLLLLLL

ψr
M◦N // O FM◦N

F gM O FN

ψr
M
FN

88rrrrrrrrrrr

Proof. Since any element in M writes m · σ for m ∈ M̃ , define ψrM (m · σ ⊗
n1⊗ . . .⊗nk) to be m⊗nσ−1(1)⊗ . . .⊗nσ−1(k). It is straightforward to verify
the statement with this definition of ψrM . �

Adapting the proof of theorem 2.3.1 by using ψrP in place of ψP we prove
the following theorem.

2.4.3. Theorem. Let M ∈ S-mod be an algebra over a regular operad P.

The graded vector space O(M) is a P-algebra for the product µ̄O(M) given

by the composition

F gP O(M)
ψr
P (M)

// O FP(M)
O(µM )

// O(M) .

Hence µ̂O(M) and µ̄O(M) endow O(M) with two structures of P-algebra. �
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If M is a trivial S-module µ̄O(M) coincides with µt,gO(M).

Since any free P-algebra is a P-algebra, the theorem holds for any free P-
algebra FP(M). In particular the graded vector space ⊕n≥0P(n) is endowed
with two structures of P-algebra.

2.4.4. Example. Let (M,m) be a twisted algebra (see definition 2.2). Patras
and Reutenauer proved in [21] that O(M) is endowed with two structures
of associative algebra, which are exactly the ones described here. For a, b ∈
O(M), a ∈M(r) and b ∈M(s), one has

a∗̄b =m(a, b),

a∗̂b =m(a, b) · qr,s.

For M = ⊕nAs(n) = ⊕n k[Sn], σ ∈ Sp, τ ∈ Sq, the two associative products
are

σ∗̄τ = σ × τ,

σ∗̂τ =
∑

ξ∈Shp,q

(σ × τ) · ξ.

2.5. Multiplicative operads. An operad P is multiplicative if there exists
a morphism of operads As → P. Any algebra in S-mod over a multiplicative
operad P is a twisted algebra and thus its underlying graded vector space is
endowed with two associative products. It holds in particular for the graded
vector space ⊕nP(n). For instance Com is a multiplicative operad and we
recover the two associative (and commutative) structures found in example
2.3.2 and remark 2.3.3.

3. Hopf algebras over a Hopf operad

In this section, we generalize the results of Patras and Reutenauer in
[21] obtained in the associative case to any Hopf operad P. After defining
the notion of Hopf P-algebra when P is a Hopf operad, we prove that any
Hopf P-algebra in S-mod yields a Hopf P-algebra in grVect and two Hopf
P-algebras in grVect if P is regular.

3.1. Hopf operads. In [19], Moerdijk defined the notion of Hopf monad

in a tensor category (C,⊗, U). It is a monad (S, µ, η) equipped with maps
τX,Y : S(X ⊗ Y ) → S(X) ⊗ S(Y ) natural in X and Y and θ : S(U) → U
compatible with the tensor structure of C and with the monad structure of
S.

For now on C, is either the category grVect or the category S-mod and
U = 1.
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3.1.1. Definition. Let Coalg be the category of coassociative counital coal-
gebras, that is vector spaces V endowed with a coassociative coproduct
∆ : V → V ⊗ V and a counit ǫ : V → k. A Hopf operad P is an operad in
Coalg, i.e. µP and ηP are morphisms of coassociative counital coalgebras.

Assume P is a Hopf operad. There is a coproduct δ(n) : P(n) → P(n) ⊗
P(n) and a counit ǫ(n) : P(n) → k for each n. We use the Sweedler’s
notation that is to say

δ(µ) =
∑

(1),(2)

µ(1) ⊗ µ(2).

Define in the category S-mod the map

τM,N : FP (M ⊗N) → FP (M) ⊗ FP(N)

to be

τM,N(µ⊗m1 ⊗ n1 ⊗ · · · ⊗mk ⊗ nk ⊗ (A1, B1, . . . , Ak, Bk)) =
∑

(1),(2)

(µ(1) ⊗m1 . . .mk ⊗ st(A1, . . . , Ak))⊗ (µ(2) ⊗n1 . . . nk ⊗ st(B1, . . . , Bk))

⊗ (∪Ai,∪Bi). (8)

Define in the category grVect the map

τ gX,Y : F gP (X ⊗ Y ) → F gP (X) ⊗ F gP(Y )

to be

τ gX,Y (µ⊗ x1 ⊗ y1 ⊗ · · · ⊗ xk ⊗ yk) =
∑

(1),(2)

(µ(1) ⊗ x1 ⊗ . . . ⊗ xk) ⊗ (µ(2) ⊗ y1 ⊗ . . .⊗ yk). (9)

Define

θC : FC

P (1) = ⊕l≥0P(l)/Sl → 1

by θC(µ) = ǫ(µ).

The maps τC and θC endow FC

P with a structure of Hopf monad, as
pointed out in [19]. As a consequence if M and N are P-algebras in the
category C, then M ⊗N is a P-algebra for the following product

FC

P (M ⊗N)
τCM,N

// FC

P (M) ⊗ FC

P (N)
µM⊗µN// M ⊗N .

The object 1 is a P-algebra and then a unit for the tensor product of P-
algebras.

These results are summed up in the following proposition:
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3.1.2. Proposition. ([19]) Let P be a Hopf operad. The monads FP and F gP
are Hopf monads. As a consequence, the category of P-algebras is a tensor

category.

Note that a priori we are dealing with bi-monads instead of Hopf mon-
ads since we are not considering the antipode. Further we will consider
connected objects and it is known that in this context the two notions are
equivalent.

3.2. Hopf algebras over a Hopf operad. In this section a Hopf operad
P is given.

3.2.1. Definition. A P-algebra M is a Hopf P-algebra if M is endowed with
a coassociative coproduct and a counit

∆M : M →M ⊗M ǫM : M → 1

which are morphisms of P-algebras. If P = As then a Hopf P-algebra is a
twisted bialgebra.

3.2.2. Theorem. The underlying graded vector space of any Hopf P-algebra

M in S-mod is a Hopf P-algebra in grVect. More precisely, the P-algebra

product on O(M) is µ̂O(M) and the coproduct

∆̄O(M) : O(M)
O(∆M )

// O(M ⊗M)
πO

M,M
// O(M) ⊗O(M)

is a morphism of P-algebras. This Hopf P-algebra is denoted M̄ and named

the symmetrized Hopf P-algebra associated to M .

In particular if for m ∈M(p) one writes

∆(m) =
∑

(1),(2)
S⊔T=[p]

m
(S,T )
(1) ⊗m

(S,T )
(2) ⊗ (S, T )

then

∆̄(m) =
∑

(1),(2)

p
∑

i=0

m
([i],i+[p−i])
(1) ⊗m

([i],i+[p−i])
(2) (10)

Proof. One has to prove that the following diagram is commutative:

F gP O(M)

F
g
P∆̄O(M)

��

µ̂O(M)
// O(M)

∆̄O(M)

��

F gP (O(M) ⊗O(M))

τ
g

O(M),O(M)

��
F gP O(M) ⊗ F gP O(M)

µ̂O(M)⊗µ̂O(M)

// O(M) ⊗O(M)
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Recall that

∆̄O(M) =πOM,M O(∆M ),

µ̂O(M) =O(µM )ψP (M),

∆MµM =(µM ⊗ µM )τM,MFP∆M .

As a consequence using the functoriality and naturality of πO and ψP , one
has the following

∆̄O(M)µ̂O(M) = πOM,M O(∆M )O(µM )ψP (M)

= πOM,M O(µM ⊗ µM )O(τM,M )O(FP∆M )ψP(M)

= (O(µM ) ⊗O(µM ))πOFP (M),FP (M) O(τM,M)ψP (M ⊗M)F gP O(∆M ).

Then the commutativity of the previous diagram is a consequence of the
commutativity of the following diagram

F gP O(M ⊗M)

F
g
P (πO

M,M
)

��

ψP (M⊗M)
// O FP (M ⊗M)

O τM,M

��
F gP (O(M) ⊗O(M))

τ
g

O(M),O(M)

��

O(FP (M) ⊗ FP(M))

πO
FP (M),FP (M)

��
F gP O(M) ⊗ F gP O(M)

ψP (M)⊗ψP (M)
// O F gP (M) ⊗O F gP (M)

Let us compute the composition R = πO
FP(M),FP (M) O τM,MψP(M ⊗M)

applied to

X = µ⊗ (m1 ⊗n1 ⊗ (A1, B1))⊗ . . .⊗ (mk⊗nk⊗ (Ak, Bk)) ∈ F
g
P O(M ⊗M),

where mi ∈ M(li) and ni ∈ M(ri) and Ai ⊔ Bi is an ordered partition of
[li + ri].

Y := ψP(M ⊗M)(X) =
∑

(T1,...,Tk)

X ⊗ (T1, . . . , Tk),

where the sum is taken over all ordered partitions of [l1 + r1 + . . .+ lk + rk]
such that |Ti| = li + ri. For Ui = Ti(Ai) and Vi = Ti(Bi) one has

((A1, B1) × . . .× (Ak, Bk))(T1, . . . , Tk) = (U1, V1, . . . , Uk, Vk).

As a consequence

Y =
∑

(U1,V1...,Uk,Vk)

µ⊗m1 ⊗ n1 ⊗ . . .⊗mk ⊗ nk ⊗ (U1, V1, . . . , Uk, Vk),

where the sum is taken over all ordered partitions of [l1 + r1 + . . .+ lk + rk]
such that |Ui| = li, |Vi| = ri and st(Ui) = Ai, st(Vi) = Bi. Denote by
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m̄ = m1 ⊗ . . .⊗mk and n̄ = n1 ⊗ . . .⊗ nk. By the definition of τ (see (8)),

Z := O τM,M(Y ) =
∑

(U1,V1...,Uk,Vk)

(µ(1) ⊗ m̄⊗ st(U1, . . . , Uk)) ⊗ (µ(2) ⊗ n̄⊗ st(V1, . . . , Vk)) ⊗ (∪Ui,∪Vi).

Furthermore πO
FP(M),FP (M)(Z) = 0 except in case (∪Ui,∪Vi) = Id. But

(∪Ui,∪Vi) = Id ⇔ (Ai, Bi) = Id,∀i.

This is due to the fact that if (∪Ui,∪Vi) = Id then Ti(Ai) < Ti(Bi) and
Ai < Bi which is equivalent to (Ai, Bi) = Id.

As a consequence if ∀i, (Ai, Bi) = Id, then

R(X) =
∑

(U1,...,Uk)

(V1,...,Vk)

(µ(1) ⊗ m̄⊗ (U1, . . . , Uk)) ⊗ (µ(2) ⊗ n̄⊗ (V1, . . . , Vk)),

where the sum is taken over all shuffles (U1, . . . , Uk) and (V1, . . . , Vk). If
there exists i such that (Ai, Bi) 6= Id, then R(X) = 0.

The composition L = (ψP(M) ⊗ ψP(M))τ gO(M),O(M)F
g
P(πOM,M ) is easier

to compute. First of all, if there exists i such that (Ai, Bi) 6= Id, then
L(X) = 0. Assume that (Ai, Bi) = Id,∀i. Then

W = τ gO(M),O(M)F
g
P(πOM,M )(X) =

∑

(1),(2)

(µ(1) ⊗ m̄) ⊗ (µ(2) ⊗ n̄)

and (ψP (M) ⊗ ψP(M))(W ) = R(X). Thus R(X) = L(X),∀X and the
diagram is commutative. �

3.2.3. Connected operads and connected Hopf operads. An operad is con-

nected if P(0) = k and P(1) = k. Let 10 denote the unit of k ∈ P(0). If P
is a connected operad, for any subset S of [n], there exists a map

P(n) → P(|S|)
µ 7→ µ|S = µ(x1, . . . , xn)

where
{

xi = 11 if i ∈ S,

xi = 10 if i 6∈ S.

For P = As one recovers the definition given in section 1.1 for the symmetric
group.

A connected Hopf operad is a Hopf operad which is connected and such
that ǫ(0) : k = P(0) → k is the identity isomorphism. As a consequence

ǫ(µ) = µ|∅.
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Recall from [12] that if P is a connected Hopf operad then P is a Hopf
P-algebra for the coproduct given by

∆(µ) =
∑

(1),(2)
S⊔T=[n]

µ(1)|S ⊗ µ(2)|T ⊗ (S, T )

=1 ⊗ µ+ µ⊗ 1 +
∑

S⊔T=[n]
S,T 6=∅

µ(1)|S ⊗ µ(2)|T ⊗ (S, T ).

This is a consequence of proposition 3.1.2 and the freeness of P as a P-
algebra in S-mod: the map ∆ is the unique P-algebra morphism such that
∆(11) = 10 ⊗ 11 + 11 ⊗ 10.

It happens in many examples that P is not connected and P(0) = 0.
Nevertheless it is sometimes possible to define a P-algebra structure on
(P+ ⊗ P+)− where
{

P+(0) = k

P+(n) = P(n), n > 0
and

{

(P+ ⊗ P+)−(0) = 0

(P+ ⊗ P+)−(n) = (P+ ⊗ P+)(n), n > 0.

(see for instance [13]). In that case, ∆ is defined as the unique P-algebra
map such that ∆(11) = 10 ⊗ 11 + 11 ⊗ 10. These kind of operads will be
treated as connected operads.

If P is connected, one has two examples of Hopf P-algebras in grVect:

• F gP (V ) for V in grVect where the product is given by F gµP (V ) and
the coproduct is given by F g∆(V ).

• For any S-module M the free P-algebra FP (M) is a Hopf P-algebra

in S-mod. The symmetrized Hopf P-algebra FP(M) is a Hopf P-
algebra in grVect by theorem 3.2.2.

3.3. Regular Hopf operads. Let P = SP̃ be a regular operad. Assume
(P, δ) is a Hopf operad. The operad P is a regular Hopf operad if δ(P̃) ⊂ P̃⊗
P̃. For instance As is a regular Hopf operad. We prove that for any regular
Hopf operad a Hopf P-algebra in the category S-mod gives rise to two
structures of Hopf P-algebra in the category grVect. This is a generalization
to regular operads of a theorem announced by Stover in [24] and proved by
Patras and Reutenauer in [21] in the context of twisted bialgebras. Note that
the hypothesis regular is needed to obtain two structures of Hopf P-algebras.

3.3.1. Theorem. Let P be a regular Hopf operad. Let (M,µM ,∆M ) be a

Hopf P-algebra in S-mod. The product µ̄O(M) together with the coproduct

∆̂O(M) defined as the composite

O(M)
O(∆M )

// O(M ⊗M)
ι
g
M,M

// O(M) ⊗O(M)
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endows O(M) with a structure of Hopf P-algebra which is cocommutative

if (M,∆M ) is. This Hopf P-algebra is denoted M̂ and named the cosym-

metrized Hopf P-algebra associated to M .

Note that the coproduct ∆̂O(M) is always defined: for m ∈ M(p), if the
coproduct in M writes

∆M (m) =
∑

(1),(2)
S⊔T=[p]

m
(S,T )
(1) ⊗m

(S,T )
(2) ⊗ (S, T ),

then the induced coproduct in O(M) writes

∆̂O(M)(m) =
∑

(1),(2)
S⊔T=[p]

m
(S,T )
(1) ⊗m

(S,T )
(2) . (11)

Proof. The proof is similar to the proof of theorem 3.2.2. The commutativity
of the diagram

F gP O(M)

F
g
P∆̂O(M)

��

µ̄O(M)
// O(M)

∆̂O(M)

��

F gP (O(M) ⊗O(M))

τ
g

O(M),O(M)

��
F gP O(M) ⊗ F gP O(M)

µ̄O(M)⊗µ̄O(M)

// O(M) ⊗O(M)

is a consequence of the commutativity of the diagram

F gP O(M ⊗M)

F
g
P (ιO

M,M
)

��

ψr
P (M⊗M)

// O FP(M ⊗M)

O τM,M

��
F gP (O(M) ⊗O(M))

τ
g

O(M),O(M)

��

O(FP (M) ⊗ FP(M))

ιO
FP (M),FP (M)

��
F gP O(M) ⊗ F gP O(M)

ψr
P (M)⊗ψr

P (M)
// O F gP(M) ⊗O F gP (M)

We first compute R = ιO
FP (M),FP (M) O τM,Mψ

r
P (M ⊗M) on an element

X = µ⊗ (m1 ⊗n1 ⊗ (A1, B1))⊗ . . .⊗ (mk⊗nk⊗ (Ak, Bk)) ∈ F
g
P O(M ⊗M),

where µ ∈ P̃(k),mi ∈M(li), ni ∈M(ri) and Ai ⊔Bi is an ordered partition
of [li + ri]. Let us write m̄ = m1 ⊗ . . . ⊗mk, n̄ = n1 ⊗ . . . ⊗ nk and

(A1, B1) × . . .× (Ak, Bk) = (U1, V1, . . . , Uk, Vk).
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Using the definitions one gets

R(X) =
∑

(1),(2)

(µ(1) ⊗ m̄⊗ st(U1, . . . , Uk)) ⊗ (µ(2) ⊗ n̄⊗ st(V1, . . . , Vk)),

and st(U1, . . . , Uk) = Id and st(V1, . . . , Vk) = Id .
Let L be the composition (ψrP(M) ⊗ ψrP(M))τ gO(M),O(M)F

g
P(ιOM,M ). Ap-

plying the definitions one gets

L(X) =
∑

(1),(2)

(µ(1) ⊗ m̄) ⊗ (µ(2) ⊗ n̄).

Thus R(X) = L(X),∀X and the diagram is commutative.

It is clear that if ∆M is cocommutative so is ∆̂O(M). �

As a consequence, if P is a regular Hopf operad then any Hopf P-algebra
M in S-mod gives rise to two structures of Hopf P-algebra in grVect. In
particular this result holds for ⊕nP(n) and for the underlying graded vector
space of any free P-algebra FP(M).

3.4. Application to multiplicative Hopf operads. In a first step we
establish that the corresponding Hopf structures in case P = As coincide
with the ones found by Stover [24] and proved by Patras and Reutenauer
in [21]. In a second step we apply the above results to multiplicative Hopf
operads.

3.4.1. The associative case. Recall that the operad As is a regular Hopf
operad. Hence the underlying graded vector space of a twisted bialgebra is
endowed with two structures of Hopf algebra. Let M be a twisted bialgebra
with product m and coproduct ∆.

The Hopf algebra M̄ = (O(M), m̂O(M), ∆̄O(M)) is described for a ∈
M(p), b ∈M(q) by

m̂O(M)(a, b) = m(a, b) · qa,b,

∆̄O(M)(a) =

p
∑

i=0

a
([i],i+[p−i])
(1) ⊗ a

([i],i+[p−i])
(2) ,

which is the symmetrized bialgebra associated to the twisted bialgebra M
as in [21, proposition 15].

The Hopf algebra M̂ = (O(M), m̄, ∆̂O(M)) is described for a ∈M(p), b ∈
M(q) by

m̄O(M)(a, b) = m(a, b),

∆̂O(M)(a) =
∑

S⊔T=[p]

a
(S,T )
(1) ⊗ a

(S,T )
(2) ,

which is the cosymmetrized bialgebra associated to the twisted bialgebra M
as in [21, definition 8].
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A multiplicative Hopf operad is a Hopf operad P together with an op-
erad morphism As → P which commutes with the Hopf structure. As a
consequence any Hopf P-algebra is a Hopf As-algebra. The result below is
a consequence of the previous sections.

3.4.2. Corollary. Let P be a multiplicative Hopf operad. The underlying

graded vector space of any Hopf P-algebra is endowed with two different

structures of Hopf algebra. �

4. Unital infinitesimal P-bialgebras

In this section we give some comparison between ∆̄ and µ̄ when the operad
is regular, in view of generalizing the theory of unital infinitesimal bialgebra

developped by Loday and Ronco in [17]. This yields the definition of unital
infinitesimal P-bialgebras. As a consequence we prove that any Hopf algebra
over a multiplicative Hopf operad is isomorphic to a cofree coassociative
algebra. Moreover, if P is regular then this isomorphism respects the P-
algebra structure. We study the associative case in detail.

From now on a connected Hopf operad P is given.

4.1. Unital infinitesimal P-bialgebras. After some definitions, we prove
that the underlying graded vector space of a Hopf P-algebra is a unital
infinitesimal P-bialgebra in theorem 4.1.2. We prove also in theorem 4.1.3
that the same result holds for F gP (V ) when V is a graded vector space such
that V (0) = 0.

A connected coalgebra M in S-mod or grVect is a coalgebra such that
M(0) = k and such that the counit ǫ : k = M(0) → k is the identity
isomorphism. Concretely for M ∈ S-mod the coproduct writes

∆(m) =1 ⊗m+m⊗ 1 +
∑

S⊔T=[p]
S,T 6=∅

m
(S,T )
(1) ⊗m

(S,T )
(2) ⊗ (S, T ),

and for V ∈ grVect it writes

∆(v) =1 ⊗ v + v ⊗ 1 +
∑

p+q=|v|
p,q>0

m(1),p ⊗m(2),q.

4.1.1. Definition. Assume P = SP̃ is a regular operad. A unital infinites-

imal P-bialgebra M is a P-algebra in grVect endowed with a connected
coalgebra structure ∆ : M →M ⊗M satisfying the infinitesimal relation:

∆µ(m1, . . . ,mk) =
k∑

j=1

µ(m1⊗1, . . . ,mj−1⊗1,∆(mj), 1⊗mj+1, . . . , 1⊗mk)

−
k−1∑

j=1

µ(m1 ⊗ 1, . . . ,mj ⊗ 1, 1 ⊗mj+1, . . . , 1 ⊗mk), (12)
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for µ ∈ P̃(k). Note that the operad needs to be regular since the infinitesimal
relation is not Sk-equivariant.

For instance if P = As, a unital infinitesimal As-bialgebra is the definition
of Loday and Ronco in [17] of a unital infinitesimal bialgebra since the
previous relation restricts to

∆(ab) = ∆(a)(1 ⊗ b) + (a⊗ 1)∆(b) − a⊗ b.

Let M be a Hopf P-algebra in S-mod with P regular. Theorems 3.2.2
and 3.3.1 assert that the underlying graded vector space of M is endowed
with two structures of Hopf P-algebras in grVect. One is given by (µ̂, ∆̄)

and the other one by (µ̄, ∆̂). The next theorem explores the relation between
µ̄ and ∆̄.

4.1.2. Theorem. Let P be a connected regular Hopf operad and M be a con-

nected Hopf P-algebra in S-mod. The product µ̄ := µ̄O(M) and coprod-

uct ∆̄ = ∆̄O(M) endow O(M) with a structure of unital infinitesimal P-

bialgebra.

Proof. Recall that

∆̄ =πOM,M O(∆)

µ̄ =O(µM )ψrP(M).

Following the proof of theorem 3.2.2 one has

∆̄µ̄ = (O µM ⊗O µM )πOFP (M),FP (M) O τM,Mψ
r
P(M ⊗M)F gP O∆.

Let X = µ⊗m1 ⊗ . . . ⊗mk ∈ F gP O(M) with mi ∈M(hi).

Y := ψrP(M ⊗M)F gP O∆(X) =
∑

µ⊗(m
(S1,T1)
1(1) ⊗m

(S1,T1)
1(2) ⊗(S1, T1))⊗. . .⊗(m

(Sk ,Tk)
k(1) ⊗m

(Sk,Tk)
k(2) ⊗(Sk, Tk)),

where the sum is taken over all ordered partitions Si ⊔ Ti of [hi] for all
i. In order to compute O τM,M(Y ), we write (S1, T1) × . . . × (Sk, Tk) as
(U1, V1, . . . , Uk, Vk) which is an ordered partition of [h1 + . . .+hk] and Ui =
|Si|, Vi = |Ti|. It is obvious that st(U1, . . . , Uk) = Id and that the same
equality holds for the sequence of Vi’s. Furthermore if S = ∪Ui and T = ∪Vi,
then S = S1 × . . .× Sk and T = T1 × . . . × Tk. As a consequence

O τM,M(Y ) =
∑

(S,T )

(µ(1)⊗(m
(S1,T1)
1(1) ⊗. . .⊗m

(Sk,Tk)
k(1) )⊗(µ(2)⊗(m

(S1,T1)
1(2) ⊗. . .⊗m

(Sk,Tk)
k(2) )⊗(S, T ),

where the sum is taken over all ordered partitions (S, T ) of [h1+. . .+hk] and
where S = S1 × . . .× Sk and T = T1 × . . .× Tk with Si, Ti ⊂ [hi]. The map
πO
FP(M),FP (M) is non zero on an ordered partition (S, T ) if and only if there

exists r such that S = [r]. For any such r there exists j such that Sk = [hk]
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for k < j and Sk = ∅ for k > j. Since M is connected m
∅,[h]
(1) ⊗m

∅,[h]
(2) = 1⊗m.

As a consequence

(O µM ⊗O µM )πOFP (M),FP (M) O τM,M(Y ) =

k∑

j=1

hj−1
∑

α=1

µ(1)(m1, . . . ,mj−1,m
([α],α+[hj−α])

j(1) , 1, . . . , 1)

⊗ µ(2)(1, . . . , 1,m
([α],α+[hj−α])

j(2) ,mj+1, . . . ,mk)

+
k∑

j=0

µ(1)(m1, . . . ,mj , 1, . . . , 1) ⊗ µ(2)(1, . . . , 1,mj+1, . . . ,mk).

On the other hand let us compute the right hand side of the equation (12):

k∑

j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1,∆(mj), 1 ⊗mj+1, . . . , 1 ⊗mk)

−
k−1∑

j=1

µ(m1 ⊗ 1, . . . ,mj ⊗ 1, 1 ⊗mj+1, . . . , 1 ⊗mk) =

k∑

j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1,∆′(mj), 1 ⊗mj+1, . . . , 1 ⊗mk)+

k∑

j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1, 1 ⊗mj +mj ⊗ 1, 1 ⊗mj+1, . . . , 1 ⊗mk)

−
k−1∑

j=1

µ(m1 ⊗ 1, . . . ,mj ⊗ 1, 1 ⊗mj+1, . . . , 1 ⊗mk)

where

∆′(mj) =

hj−1
∑

α=1

m
([α],α+[hj−α])

j(1) ⊗m
([α],α+[hj−α])

j(2) .

Thus the left and right hand sides of the equation (12) are equal and the
theorem is proved. �

4.1.3. Theorem. Let P = SP̃ be a connected regular Hopf operad. Let V be

a graded vector space with V (0) = 0. The free P-algebra in grVect F gP (V ) is

a unital infinitesimal P-bialgebra. The product is given by the usual product

on free P-algebras and the coproduct is given for x = µ⊗v1⊗. . .⊗vk ∈ F gP(V )

with µ ∈ P̃(k) by

∆̄(x) = 1⊗x+x⊗1+

k−1∑

i=1

(µ(1)|[i] ⊗ v1 . . .⊗ vi)⊗ (µ(2)|i+[k−i] ⊗ vi+1 . . .⊗ vk).
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Proof. When P is regular F gP(V ) = ⊕nP̃(n) ⊗ V ⊗gn, hence it is enough to
prove the formula (12) for

∆̄µ(ν1 ⊗ v̄1, . . . , νk ⊗ v̄k)

with µ, νi ∈ P̃ and v̄i ∈ V ⊗li . The computation is straightforward. �

4.2. Rigidity for twisted bialgebras. Loday and Ronco proved a the-
orem of rigidity for unital infinitesimal bialgebras. Recall from [17] that
the fundamental example of a unital infinitesimal bialgebra is given by
T fc(V ) = F gAs(V ) where V is a graded vector space concentrated in degree
1 and where the product is given by the concatenation and the coproduct
is given by the deconcatenation. Recall also that for a connected coalgebra
C, with a coproduct ∆ and a counit ǫ, the space of primitive elements is
defined by

Prim∆(C) = {x ∈ Ker ǫ|∆(x) = 1 ⊗ x+ x⊗ 1}.

Here is the statement of the theorem:

4.2.1. Theorem. [17] Any connected unital infinitesimal Hopf bialgebra H is

isomorphic to T fc(Prim(H)).

Let (A,m,∆) be a connected twisted bialgebra and Ā = (A, m̂, ∆̄) the

symmetrized bialgebra and Â = (A, m̄, ∆̂) the cosymmetrized bialgebra as in
paragraph 3.4.1. The triplet (A, m̄, ∆̄) is a unital infinitesimal bialgebra by
theorem 4.1.2 and then, by theorem 4.2.1 is isomorphic to T fc(Prim∆̄(A)).

Hence Â is a free associative algebra and Ā is a cofree coassociative coal-
gebra. Assume furthermore that k is of characteristic 0 and ∆ is cocom-
mutative. Then Â is a cocommutative Hopf algebra, and by the theorem of
Cartier-Milnor-Moore, it is the universal enveloping algebra of its primitive
elements. If each An is finite dimensional, since Â is free as an associative
algebra, by lemma 22 in [21] the space of primitive elements is a free Lie
algebra.

These results are summed up in the following theorem

4.2.2. Theorem. Let (A,m,∆) be a connected twisted bialgebra. The associ-

ated symmetrized bialgebra Ā is a cofree coassociative algebra. The associ-

ated cosymmetrized bialgebra Â is a free associative algebra.

If k is of characteristic 0, if ∆ is cocommutative and if An is finite di-

mensional for all n, there is an isomorphism of Lie algebras

Prim∆̂(A) = F gLie(Prim∆̄(A)).

This isomorphism is functorial in A. �

Using the results of Loday and Ronco we have improved the results of
Patras and Reutenauer. Furthermore, if P is a connected multiplicative
Hopf operad then it provides connected twisted bialgebras: indeed, any
Hopf P-algebra in S-mod is a twisted bialgebra. For instance P and more
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generally FP(M) with M a S-module such that M(0) = 0 are connected
twisted bialgebras.

4.2.3. Remark. If (A,m,∆) is a connected twisted bialgebra then
(A, m̂, m̄, ∆̄) is a connected 2-associative bialgebra in the terminology of
Loday and Ronco in [17], that is (A, m̂, ∆̄) is a Hopf algebra and (A, m̄, ∆̄)
is a unital infinitesimal bialgebra. By the structure theorem in [17], one gets
that Prim∆̄(A) is a B∞-algebra and A is the enveloping 2-as bialgebra of its
primitive elements.

Assume P and V satisfies the conditions of theorem 4.1.3. Assume P is
multiplicative and A = F gP (V ) is finite dimentional in each degree. Then
A2 = (A∗,t ∆,t ∆̄,tm) where m is the associative product induced by the
multiplicative structure of P is also a 2-associative bialgebra. If A2 is con-
nected then it is the enveloping 2-as bialgebra of its primitive elements.

4.3. Rigidity for unital infinitesimal P-bialgebras. Let P be a con-
nected regular Hopf operad which is multiplicative. Any connected unital
infinitesimal P-bialgebra (M,µM , ∆̄) is a unital infinitesimal bialgebra. Ap-
plying the theorem 4.2.1 of Loday and Ronco, there is an isomorphism of
unital infinitesimal bialgebras between M and T fc(Prim∆̄M). We prove in
this section that for any vector space V , the space T fc(V ) is endowed with
a unique structure of unital infinitesimal P-bialgebra and that the latter
isomorphism is a morphism of unital infinitesimal P-bialgebras.

4.3.1. Proposition. Let P be a connected regular multiplicative Hopf operad

and let V be a vector space. There is a unique P-algebra structure

µ : F gP(T (V )) → T (V )

on T (V ) such that the composition with the natural transformation F gAs →
F gP applied at T (V ) gives the concatenation product and such that the decon-

catenation

∆c : T (V ) → T (V ) ⊗ T (V )

together with µ endow T (V ) with a structure of unital infinitesimal P-

bialgebra.

Proof. One has to build a unique map F gP (T (V )) → T (V ) which satisfies
the three conditions

i) The graded vector space T (V ) is a P-algebra.
ii) The map restricts to the concatenation product on As ⊂ P.
iii) The map together with the deconcatenation product satisfies the

infinitesimal condition.

In order to do so one needs to define x = µ(v̄1, . . . , v̄k) for any µ ∈ P̃(k)

and v̄i = v1
i ⊗ . . .⊗ vlii ∈ V ⊗gi. Note that v̄i is the concatenation

v̄i = Idli(v
1
i , . . . , v

li
i ).
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Condition i) and ii) impose that

x = µ(Idl1 , . . . , Idlk)(v1
1 , . . . , v

l1
1 , . . . , v

1
k, . . . , v

lk
k ).

Since P is regular µ(Idl1, . . . , Idlk) still lives in P̃. As a consequence it is

enough to prove the existence and unicity of µ(v1, . . . , vk) ∈ V ⊗k for vi ∈ V
satisfying the required conditions.

The coassociative coproduct δ of the Hopf operad P can be iterated. We
use Sweedler’s notation:

δk(n) : P(n) → P(n)⊗k

µ 7→
∑
µ(1) ⊗ . . . ⊗ µ(k).

Let us prove by induction on k that

µ(a1, . . . , ak) = (
k∏

i=1

µ(i)|{i})a1 ⊗ . . .⊗ ak.

Note that this formula makes sense because P(1) = k and µ|{i} ∈ k. If
k = 1, then the formula holds. Assume that the formula holds for any
1 ≤ l ≤ k − 1. ∆cµ(a1, . . . , ak) has to verify the infinitesimal relation (12),
that is

∆cµ(a1, . . . , ak) =

k∑

j=1

µ(a1 ⊗ 1, . . . , aj−1 ⊗ 1,∆c(aj), 1 ⊗ aj+1, . . . , 1 ⊗ ak)

−
k−1∑

j=1

µ(a1 ⊗ 1, . . . , aj ⊗ 1, 1 ⊗ aj+1, . . . , 1 ⊗ ak).

By definition of the deconcatenation coproduct ∆c(aj) = 1⊗ aj + aj ⊗ 1.
As a consequence, the inductive hypothesis implies

∆cµ(a1, . . . , ak) =
k∑

j=0

µ(1)(a1, . . . , aj , 1, . . . , 1)⊗µ(2)(1, . . . , 1, aj+1, . . . , ak)

= 1 ⊗ µ(a1, . . . , ak) + µ(a1, . . . , ak) ⊗ 1+

(

k∏

i=1

µ(i)|{i})
k∑

i=1

a1 . . . ai ⊗ ai+1 . . . ak.

The element µ(a1, . . . , ak) − (
∏k
i=1 µ(i)|{i})a1 ⊗ . . . ⊗ ak is primitive for the

deconcatenation and lies in V ⊗k, k > 1 so is null and the formula is proved.

It remains to prove that T (V ) is a P-algebra. Once again it is enough
to prove it for elements in V . Let µ ∈ P(k), νi ∈ P(li), 1 ≤ i ≤ k. Let
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r =
∑

i li, vj ∈ V and let v̄ = v1 ⊗ . . .⊗ vr ∈ V ⊗r. On the one hand,

µ(ν1, . . . , νk)(v1, . . . , vr) =

r∏

u=1

(µ(ν1, . . . , νk))(u)|{u}

︸ ︷︷ ︸

α

v̄,

and on the other hand

µ(ν1(v1, . . . , vl1), . . . , νk(vl1+...+lk−1+1, . . . , vr)) =

k∏

j=1

lj∏

u=1

(νj)(u)|{u}µ(Idl1 , . . . , Idlk)(v1, . . . , vr) =

k∏

j=1

lj∏

u=1

(νj)(u)|{u}

r∏

s=1

(µ(Idl1, . . . , Idlk)(s)|{s}

︸ ︷︷ ︸

β

v̄.

Since P is connected, using Sweedler’s notation one has
∑

µ(1) ⊗ . . .⊗ µ(i)|∅ ⊗ . . .⊗ µ(k) = µ(1) ⊗ . . .⊗ µ(k−1).

So

α =

k∏

j=1

lj∏

u=1

(νj)(u)|{u}µ(l1+...+lj−1+u)|{j} = β,

and T (V ) is a P-algebra satisfying the three conditions. �

As a consequence the following theorem holds.

4.3.2. Theorem. Let P be a connected regular multiplicative operad. Any

connected unital infinitesimal P-bialgebra (M,µM , ∆̄) is isomorphic as a

unital infinitesimal P-bialgebra to T fc(Prim∆̄M). �

5. Application to combinatorial Hopf algebras

In this section, we would like to apply our previous results to combina-
torial Hopf algebras. The idea is the following: given a graded vector space
H = ⊕nH(n), how does a Hopf algebra structure arise on H? We present
two cases coming from the two examples detailed in section 3.2.3.

Case 1. The space H(n) is endowed with a right Sn-action. We denote by
HS the associated S-module. Assume there exists a connected multiplicative
Hopf operad structure on PH = HS. From section 3.2.3, we obtain our first
result: there exists a PH -algebra product µ and a coalgebra product ∆ such
that (HS, µ,∆) is a Hopf PH-algebra. The graded vector space H has a

Hopf P-algebra structure which is the symmetrized Hopf P-algebra HS by
theorem 3.2.2.

The second result is a direct consequence of theorem 4.2.2: since the op-
erad PH is multiplicative, there is a twisted product m : HS ⊗ HS → HS.
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As a consequence (HS,m,∆) is a twisted bialgebra. The associated sym-
metrized Hopf algebra (H, m̂, ∆̄) is cofree and the associated cosymmetrized

Hopf algebra H̄ = (H, m̄, ∆̂) is free. In case ∆ is cocommutative, under the
hypothesis of theorem 4.2.2, H̄ is the enveloping algebra of the free Lie alge-
bra generated by Prim∆̄(H). Furthermore, by remark 4.2.3 the 2-associative
bialgebra (H, m̂, m̄, ∆̄) is the 2-associative enveloping bialgebra of its prim-
itive elements: Prim∆̄(A) is endowed with a B∞-structure.

The Case 1 applies also when H is a free P-algebra in S-mod generated
by a S-module M , with P a multiplicative Hopf operad and M(0) = 0.

Case 2. Assume Pr
H = SH is a connected regular Hopf operad. The graded

vector space H is the free graded Pr
H-algebra generated by the graded vector

space I. As a consequence, the graded vector space (H,µ,∆) is a Hopf Pr
H-

algebra, where µ is the Pr
H -product and where

∆(h) =
∑

S⊔T=[|h|]

h(1)|S ⊗ h(2)|T

comes from the regular Hopf operad Pr
H . Also (H,µ, ∆̄) with

∆̄(h) =

|h|
∑

i=0

h(1)|[i] ⊗ h(2)|i+[|h|−i]

is a unital infinitesimal Pr
H-bialgebra by theorem 4.1.3. If Pr

H is multiplica-
tive then (H,µ, ∆̄) is isomorphic as a unital infinitesimal Pr

H -bialgebra to

T fc(Prim∆̄(H)) by theorem 4.3.2.

Again, by remark 4.2.3, if Hn is finite dimensional then (H∗,t ∆,t ∆̄,tm)
where m is the associative product, is a 2-associative bialgebra, which is the
2-associative enveloping bialgebra of its primitive elements.

The Case 2 applies also when H is a free P-algebra in grVect generated
by a graded vector space V , with P a Hopf regular operad and V (0) = 0.

We illustrate by some examples that many combinatorial Hopf algebras
arise either from case 1 or from case 2.

5.1. The Hopf algebra T (V ). Let us apply Case 1 for H = FCom(V )
where V is considered as a S-module concentrated in degree 1. That is
H = T (V ). As a twisted bialgebra, T (V ) is endowed with the concatenation
product and with the following coproduct

∆(v1 ⊗ . . . ⊗ vk) =
∑

S⊔T=[k]

v̄|S ⊗ v̄|T ⊗ (S, T )

where v̄|S = vs1 ⊗ . . . ⊗ vsj
for S = {s1 < . . . < sj}. It is cocommutative.

The symmetrized Hopf algebra structure on T (V ) is the shuffle product
together with the deconcatenation, whereas the cosymmetrized Hopf algebra
structure on T (V ) is the dual structure: the product is the concatenation
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and the coproduct is the unshuffle coproduct. In characteristic 0 it is the
enveloping algebra of the free Lie algebra generated by V .

5.2. The Malvenuto-Reutenauer Hopf algebra. This Hopf algebra, de-
noted HMR has been extensively studied in [18], in [9] under the name of free
quasisymmetric functions or in [1]. The graded vector space considered is
A = ⊕n k[Sn]. It is the underlying graded vector space of the operad As and
Case 1 applies. Recall that the operad As gives rise to a cocommutative
twisted bialgebra:

m(σ, τ) =σ × τ,

∆(σ) =
∑

S⊔T=[n]

σ|S ⊗ σ|T ⊗ (S, T ).

The Hopf algebra HMR is the symmetrized Hopf algebra (A, m̂, ∆̄). Con-
cretely, for σ ∈ Sn, τ ∈ Sm

m̂(σ, τ) =
∑

ξ∈Shp,q

(σ × τ) · ξ,

∆̄(σ) =
n∑

i=0

st(σ1, . . . , σi) ⊗ st(σi+1, . . . , σn).

which is not commutative nor cocommutative.
The cosymmetrized Hopf algebra Â = (A, m̄, ∆̂) is given by

m̄(σ, τ) =σ × τ,

∆̂(σ) =
∑

S⊔T=[n]

σ|S ⊗ σ|T .

The latter Hopf algebra is different from the former one or its dual since it
is a cocommutative Hopf algebra.

From Case 1 we get thatHMR is cofree and that Â is free as an associative
algebra: it is generated by the connected permutations that is permutations
which don’t write σ× τ for σ ∈ Sn, τ ∈ Sm, n,m > 0. In characteristic 0, Â
is the enveloping algebra of the free Lie algebra generated by the connected
permutations (compare with theorems 20 and 21 in [21]). Furthermore,
HMR together with m̄ is a 2-associative bialgebra and it is the 2-associative
enveloping bialgebra generated by the connected permutations: in [9] and
in [1] a basis of the space of primitive elements of HMR, indexed by the
connected permutations is given.

In paragraph 5.3.4 we prove that HMR is free as an associative algebra,
without using the selfduality of HMR.
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5.3. Hopf algebra structures on the faces of the permutohedron.
Recall that Com is a Hopf operad. Let Com denote the kernel of the counit:
it coincides with the S-module Com except in degree 0 where Com(0) = 0.

The S-module Comp = As ◦Com has for linear basis the faces of the n-
permutohedra. Indeed

As ◦Com(n) = ⊕k≥0 As(k) ⊗Sk
(Com)⊗k(n)

=
∑

(I1,...,Ik)=[n]

k

where the sum is taken over all set compositions (or ordered set partitions)
(I1, . . . , Ik) of [n] such that Ij 6= ∅,∀1 ≤ j ≤ k. The action of the symmetric
group is given, for σ ∈ Sn, by

(I1, . . . , Ik) · σ = (σ−1(I1), . . . , σ
−1(Ik)).

Chapoton described Hopf algebra structures on the graded vector space
O(Comp) in [5] and in [6], whereas Patras and Schocker described a twisted
bialgebra structure on Comp in [22]. Chapoton described a (differential
graded) operad structure on Comp in [8] and Loday described a (filtered)
one in [14].

The aim of this section is to apply our operadic point of view Case 1 in
order to relate these structures.

A set composition of [n] is written as a word in the alphabet {, }∪{i, 1 ≤
i ≤ n}. For instance (14, 2, 35) is the set composition ({1, 4}, {2}, {3, 5}) of
[5].

5.3.1. Operad structures on the faces of the permutohedron. Both operads
built by Loday in [14] and Chapoton in [8] are quadratic binary operads.
They are generated by the commutative operation represented by the set
composition (12) and by the operation represented by the set composition
(1, 2) in Comp(2). Let wf = (12)+(1, 2)+(2, 1) and wg = (1, 2)+(2, 1). The
composition in the operad CTD described by Loday is given by the following
inductive formula

(12)(∅, P ) = 0, (12)(P, ∅) = 0,
(1, 2)(∅, P ) = 0, (1, 2)(P, ∅) = P,

(12)(P,Q) =(P1 ∪Q1, wf ((P2, . . . , Pk), (Q2, . . . , Ql))),

(1, 2)(P,Q) =(P1, wf ((P2, . . . , Pk), Q)),

where P = (P1, . . . , Pk) is a set composition of [n] and Q = (Q1, . . . , Ql) is
a set composition of [m] considered as a set composition of n + [m]. The
degree of the set composition P is n − k. Set compositions of degree 0 are
in 1-to-1 correspondance with permutations.

The operad CTD is filtered by the degree of set compositions but not
graded. It is not regular and algebras (in the category of vector spaces) over
this operad are named commutative tridendriform algebras by Loday, that
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is vector spaces endowed with a product ≺ and a commutative product ·
satisfying the relations

(x ≺ y) ≺ z =x ≺ (y ≺ z + z ≺ y + y · z),

(x · y) ≺ z =x · (y ≺ z),

(x · y) · z =x · (y · z).

The composition in the operad Π described by Chapoton has the same
definition when using wf in place of wg. It is graded by the degree of set
compositions. Algebras (in the category of graded vector spaces) over Π are
described in [8].

These operads are not connected in the strict sense, since the composi-
tion with ∅ ∈ Comp(0) is not always defined. The equalities involving the
emptyset above, are needed for an inductive definition and are needed in
order to build a coproduct Comp → Comp⊗Comp, as was explained in the
paragraph 3.2.3 on connected operads.

5.3.2. Proposition. The S-module Comp is a CTD-Hopf algebra for the co-

product

∆(P1, . . . , Pk) =

k∑

l=0

st(P1, . . . , Pl)⊗st(Pl+1, . . . , Pk)⊗(∪1≤j≤lPj ,∪l+1≤h≤kPh).

The S-module Comp is a Π-Hopf algebra for the same coproduct.

Proof. Let X denotes either the operad CTD or the operad Π. Let w denote
either wf ∈ CTD(2) or wg ∈ Π(2). Note that for any set composition P

w(P, ∅) = w(∅, P ) = P. (13)

One needs first to define the X -algebra structure on Comp⊗Comp. This
trick is due to Loday and Ronco: for x ∈ X (2),

x(P1 ⊗ P2, Q1 ⊗Q2) =
{

∅ ⊗ x(P2, Q2), if P1 = Q1 = ∅,

x(P1, Q1) ⊗ w(P2, Q2) ⊗ (P1 ∪Q1, P2 ∪Q2), otherwise.
(14)

The coproduct ∆ : Comp → Comp⊗Comp is the unique X -algebra mor-
phism mapping (1) to (1) ⊗ ∅ + ∅ ⊗ (1).

Let (Il1 , . . . , Ilk) be the set composition of [l1 + . . .+ lk] defined by

Ilj = l1 + . . .+ lj−1 + [lj ],∀1 ≤ j ≤ k.

Let n = l1 + . . . + lk. We prove the formula for such a set composition by
induction on k. If k = 1, the set composition is just (n). For n = 1 the
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formula is proved. If n > 1 then (n) = (12)((1), (n − 1)). By induction one
has

∆(n) = (12)(∆(1),∆(n − 1)) =

(12)((1) ⊗ ∅ + ∅ ⊗ (1), (n − 1) ⊗ ∅ + ∅ ⊗ (n− 1)) = (n) ⊗ ∅ + ∅ ⊗ (n),

because (12)(P,Q) = 0 if P or Q is empty and because of relation (14) and
(13).

If k > 1, then X = (Il1 , . . . , Ilk) = (1, 2)((Il1), (Il2 , . . . , Ilk)). By induction

∆(X) = (1, 2)(∆(Il1),∆(Il2 , . . . , Ilk)) =

(1, 2)(Il1 ⊗ ∅ + ∅ ⊗ Il1 ,
k∑

j=1

(Il2 , . . . , Ilj ) ⊗ (Ilj+1
, . . . , Ilk)) =

∅ ⊗X +
k∑

j=1

(Il1 , Il2 , . . . , Ilj ) ⊗ (Ilj+1
, . . . , Ilk)),

because (1, 2)(P, ∅) = P and (1, 2)(∅, P ) = 0 and because of relations (14)
and (13).

For any set composition P = (P1, . . . , Pk) of [n], there exists σ ∈ Sn such
that

(P1, . . . , Pk) = (Il1 , . . . , Ilk) · σ.

One can choose for σ the shuffle associated to the set composition P. The
coproduct ∆ is a morphism of S-modules and applying the formula (1) we
get the result. �

In [12] we proved that the space of primitive elements with respect to ∆ is
a suboperad of the initial operad. The space of primitive elements is clearly
the vector space generated by the set compositions (n), for n > 0. Then
Prim∆(CTD) is the operad Com (compare with [14]).

5.3.3. Twisted bialgebras associated to the faces of the permutohedron. The
operation wf (resp. wg) is associative and commutative. As a conse-
quence, the operads CTD and Π are Hopf multiplicative operads and give rise
to twisted connected commutative (non cocommutative) bialgebras Hf =
(Comp, wf ,∆) and Hg = (Comp, wg,∆).

i) The twisted bialgebra Hf . Patras and Schocker [22] defined a
twisted bialgebra structure on Comp denoted T = (Comp, ∗, δ) which is the
following. The product ∗ is the concatenation of set compositions and the
coproduct δ is defined for a set composition P of [n] by

δ(P ) =
∑

S⊔T=[n]

st(P ∩ S) ⊗ st(P ∩ T ) ⊗ (S, T ),

where (P1, . . . , Pk) ∩ S = (P1 ∩ S, . . . , Pk ∩ S) and if Pi ∩ S = ∅ the i-th
term is omitted. For instance (14, 2, 35) ∩ {1, 3, 5} = (1, 35). It is clear that
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∗ is the dual of ∆ and one can check that δ is the dual of wf . It gives an
operadic interpretation of their structure:

The dual of the twisted bialgebra defined by Patras and Schocker is the free

commutative tridendriform algebra on one generator in the category S-mod.

Applying Case 1 one gets that the symmetrized Hopf algebra T̄ associ-
ated to T is cofree, and that the associated cosymmetrized Hopf algebra T̂
is free generated by reduced set compositions: a set composition which is
non reduced is the concatenation of two non trivial set compositions. For
instance (13, 24, 6, 5) is non reduced since it is the concatenation of (13, 24)

and (2, 1). Moreover if the field k is of characteristic 0, then T̂ is the envelop-
ing algebra of the free Lie algebra generated by reduced set compositions.
(Compare with proposition 10 and corollary 13 in [22]). Applying remark
4.2.3 one gets that (T , ⋆̄, ⋆̂, ∆̄) is the 2-associative enveloping bialgebra on
its primitive elements.

The Hopf algebra structure given by Chapoton in [5] is (Comp, w̄f , ∆̂)
which is the dual of the symmetrized Hopf algebra (T , ⋆̂, δ̄). It is also the
Hopf algebra NCQSym of Bergeron et Zabrocky in [4] and we recover that
it is a free algebra.

ii) The twisted bialgebra Hg. This twisted bialgebra gives rise

to two Hopf algebras, which are (Comp, ŵg, ∆̄) and (Comp, w̄g, ∆̂). One
can check that the latter Hopf algebra is the one described by Chapoton in
[6]. Again it is a free associative algebra because (Comp, w̄g, ∆̄) is a unital
infinitesimal bialgebra. The space of primitive elements Prim∆̄(Comp) is
generated by reduced set compositions. One can check by an inductive
argument, that the Hopf algebra described by Chapoton is a free associative
algebra generated by reduced set compositions.

5.3.4. From set compositions to permutations. Let Comp0 be the sub S-
module of Comp of set compositions of degree 0. The vector space Comp0(n)
is isomorphic to Sn but the right Sn-action is given by σ · τ = τ−1σ. The
S-module Comp0 is a sub-operad of Π, it is, as noticed by Chapoton in [8],
the operad Zin: An algebra (in the category of vector spaces) over Zin is a
Zinbiel algebra that is a vector space Z together with a product ≺ satisfying
the relation

(x ≺ y) ≺ z = x ≺ (y ≺ z + z ≺ y), ∀x, y, z ∈ Z.

As a consequence there are surjective morphisms of Hopf operads

CTD → Zin, Π → Zin .

The operad Zin is consequently a multiplicative operad and Comp0 is a
commutative twisted bialgebra. The product and coproduct are given, for
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σ ∈ Comp0(p) and τ ∈ Comp0(q) by

mZ(σ, τ) =
∑

x∈Shp,q

(σ × τ)x

∆Z(σ) =

p
∑

i=0

σ|[i] ⊗ σ|i+[p−i] · (∪1≤j≤i{σ(j)},∪i+1≤k≤p{σ(k)})

The morphisms above induce surjective morphisms of twisted bialgebras

Hf → Comp0, Hg → Comp0 .

The cosymmetrized Hopf algebra associated to Comp0 is clearly HMR, and
since it is a cosymmetrized algebra associated to a twisted bialgebra it is free
on Prim∆̄Z

(Comp0). But ∆̄Z(σ) =
∑

ρ×τ=σ ρ⊗ τ. As a consequence, HMR

is free generated by the connected permutations and cofree (see section5.2).
We recover the results obtained in e.g. [23], [9] and [1].

Considering the graded linear duals, one has an embedding of cocommu-
tative twisted bialgebras

(Comp0)
∗ →֒ (Hf )

∗ = T .

The symmetrized Hopf algebra associated to (Comp0)
∗ is the dual of the

Malvenuto-Reutenauer Hopf algebra H∗
MR (which is isomorphic to HMR).

By functoriality in theorem 4.2.2, we obtain in characteristic 0 an embedding
of enveloping algebras at the level of associated cosymmetrized algebras
(compare with Theorem 17 in [22]).

5.4. Hopf algebra structures on the faces of the associahedron.
In his thesis, Chapoton considers Hopf algebra structures on the faces of
the associahedra, or Stasheff polytopes, filtered in [5], graded in [6]. He
considered also filtered and graded operad structures on these objects in
[7]. The filtered operadic structure coincides with the one defined by Loday
and Ronco in [16], under the name of tridendriform operad. In this section,
we apply Case 2 to obtain Hopf algebra structures on the faces of the
associahedra.

5.4.1. Planar trees. The set of planar trees with n + 1 vertices is denoted
by Tn. The set Tn = ∪n−1

k=0Tn,k is graded by k where n − k is the number
of internal vertices. For instance Tn,0 is the set of planar binary trees. The
Stasheff polytope of dimension n−1 has its faces of dimension 0 ≤ k ≤ n−1
indexed by Tn,k. The aim of this section is to provide the vector space
⊕k[Tn] with Hopf structures.

Given some planar trees t1, . . . , tk the planar tree ∨(t1, . . . , tk) is the one
obtained by joining the roots of the trees t1, . . . , tk to an extra root, from left
to right. If ti has degree li then ∨(t1, . . . , tk) has degree l1 + . . .+ lk + k− 1.

One can label the n sectors delimited by a tree t in Tn from left to right
as in the following example:
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t =

1
2 5 6

3 4

= ∨( , , ).

5.4.2. The operad of tridendriform algebras. ([16], [7]) The operad T riDend
is a regular operad whose underlying S-module is T riDend(n) = S k[Tn]. It
is a quadratic binary operad generated by 3 operations

≺:= ,

≻:= ,

· := ,

satisfying the relations






(x ≺ y) ≺ z = x ≺ (y ∗ z) = + + ,

(x ≻ y) ≺ z = x ≻ (y ≺ z) = ,

(x ∗ y) ≻ z = x ≻ (y ≻ z) = + + ,






(x ≻ y) · z = x ≻ (y · z) = ,

(x ≺ z) · z = x · (y ≻ z) = ,

(x · y) ≺ z = x · (y ≺ z) = ,
{

(x · y) · z = x · (y · z) = ,

where

x ∗ y =x · y + x ≺ y + x ≻ y (15)

is associative.
One can also give an inductive formula for the composition in T riDend

by the following

(|, y) = y, (x, |) = 0,

(|, y) = 0, (x, |) = 0,

(|, y) = 0, (x, |) = x,

(∨(x1, . . . , xk), y) = ∨ (x1, . . . , xk−1, xk ∗ y),

(∨(x1, . . . , xk),∨(y1, . . . , yl)) = ∨ (x1, . . . , xk−1, xk ∗ y1, y2, . . . , yl),

(x,∨(y1, . . . , yl)) = ∨ (x ∗ y1, y2, . . . , yl).
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In [7], Chapoton describes the composition x ◦i y for trees x and y:

x ◦i y =
∑

(fl,fr)

x ◦
(fl,fr)
i y,

where y is inserted in the sector i of x following the maps (fl, fr): the left
(right) edge of the sector i of x is a set of edges and vertices ordered from
bottom to top and denoted by xil, (xir). The left (right) most edge of y has
several vertices: the ordered set of these vertices is denoted by yl (yr). The
map fl (fr) is an increasing map from yl (yr) to xil (xir). For instance

a

c

b
1

2

◦1

α

=
︸︷︷︸

f1

+
︸︷︷︸

f2

+
︸︷︷︸

f3

,

where

x1
l = yl = ∅,

x1
r = {a < b < c}, yr = {α},

f1 = (Id, α 7→ a), f2 = (Id, α 7→ c) and f3 = (Id, α 7→ b).

Moreover one can define a Hopf structure on this operad by the same
technics as developped in proposition 5.3.2: for x ∈ T riDend(2),

x(t1 ⊗ t2, s1 ⊗ s2) =

{

| ⊗ x(t2, s2), if t1 = s1 = |,

x(t1, s1) ⊗ t2 ∗ s2, otherwise.

By induction on the degree of a tree t one can prove that

5.4.3. Proposition. The S-module (k[Tn] ⊗ k[Sn])n is a tridendriform Hopf

algebra for the coproduct

∆(∨(t1, . . . , tk)) = | ⊗ ∨(t1, . . . , tk)+
∑

Si⊔Ti=[li]

∨(tS1

1(1), . . . , t
Sk

k(1)) ⊗ tT1

1(2) ∗ . . . ∗ t
Tk

k(2) ⊗ (S1×̄ . . . ×̄Sk, T1×̄ . . . ×̄Tk)

where |ti| = li,

∆(ti) =
∑

Si⊔Ti=[li]

tSi

i(1) ⊗ tTi

i(2) ⊗ (Si, Ti)

and for any Ui ⊂ [li],

U1×̄ . . . ×̄Uk = {l1+. . .+li+i, 1 ≤ i ≤ k−1}∪1≤i≤kUi+l1+. . .+li−1+i−1. �
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5.4.4. Hopf structures. Let us apply Case 2 to the connected Hopf operad
T riDend which is multiplicative with the product ∗ introduced in equation
(15).

The graded vector space T ree = ⊕n k[Tn] is the free graded tridendri-
form algebra over one generator, hence it is a Hopf tridendriform algebra
in grVect. Let µ be the tridendriform product and ∆ be the coproduct.
By theorem 4.1.3, (T ree, µ, ∆̄) is a unital tridendriform bialgebra and it is
isomorphic as a unital tridendriform bialgebra to T fc(Prim∆̄(T ree)). The
description of ∆ gives the description of ∆̄: if ∆̄(tk) =

∑
tk(a) ⊗ tk(b), then

∆̄(∨(t1, . . . , tk)) = | ⊗ ∨(t1, . . . , tk) +
∑

∨(t1, . . . , tk−1, tk(a)) ⊗ tk(b).

As a consequence a basis of Prim∆̄(T ree) is given by the planar trees of type
∨(t1, . . . , tk−1, |).

The Hopf algebra (T ree, ∗,∆) is the free associative algebra spanned by

the set of trees of the form ∨(t1, . . . , tk−1, |).

Recall that the product ∗ is defined by induction: for x = ∨(x1, . . . , xk)
and y = ∨(y1, . . . , yl)

x ∗ y = ∨(x1, . . . , xk−1, xk ∗ y) + ∨(x ∗ y1, y2, . . . , yl)+

∨ (x1, . . . , xk−1, xk ∗ y1, y2, . . . , yl).

and
∆(t) = | ⊗ t+

∑

∨(t1(1), . . . , tk(1)) ⊗ t1(2) ∗ . . . ∗ tk(2).

The Hopf structure defined by Chapoton in [5] is essentially the same: the
product is the same and the coproduct is τ∆, where τ is the symmetry
isomorphism. Hence is is a free associative algebra spanned by the set of
trees of the form ∨(|, t2, . . . , tk).

The graded linear dual of T ree is a 2-associative bialgebra: it is free as
an associative algebra for the product t∆̄, cofree as a coalgebra for t∗ and
it is the enveloping 2-as bialgebra of its primitive elements (with respect to
t∗). The product of two trees t∆̄(t, s) is the tree obtained by gluing the tree
s on the right most leave of t. it is usually denoted t\s. For instance

\ = .

5.4.5. Some operad morphisms. There are morphisms of Hopf operads

T riDend

πT riDend

��

ψ
// CTD

πCTD

��
Dend

ψ0
// Zin

(16)

The vertical maps are projection onto cells of degree 0. The map πCTD has
been explained in paragraph 5.3.4. The map πT riDend is the projection onto
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the dendriform operad, which is a regular operad generated by planar binary
trees (see e.g. [15]). The morphism ψ sends ≺ to the set composition (1, 2),
≻ to the set composition (2, 1) and · to the set composition (12). Indeed we
can describe ψ at the level of trees. There is a map φ from set compositions
to trees, described by induction as follows. Let P = (P1, . . . , Pk) be a set
composition of [n]. If P1 = {l1 < . . . < lj} then it shares [n] into j + 1
intervals Is possibly empty: for 0 ≤ s ≤ j, Is = [ls, ls+1] with l0 = 1 and
lj+1 = n. The map φ is defined by

{

φ(∅) = |,

φ(P ) = ∨(φ(P ∩ I0), . . . , φ(P ∩ Ij)).

For instance if P = (34, 1, 56, 2) then I0 = {1, 2}, I1 = ∅ and I2 = {5, 6}
and

φ(34, 1, 56, 2) = ∨(φ(1, 2), φ(∅), φ(12)) = .

Note that the function θ from the permutohedra to associahedra defined by
Tonks in [25] (see also [5] and [22]) satisfies

θ(P1, . . . , Pk) = φ(Pk, Pk−1, . . . , P2, P1).

The morphism ψ is the transpose of φ. It is an operad morphism, whereas
the transpose of θ is not an operad morphism.

The morphism ψ0 is the transpose of φ0 which is an operad morphism.
Loday and Ronco defined in [15] a function from k[Yn] (the vector space
generated by planar binary trees with n vertices) to k[Sn] in order to embed
k[Yn] as a Hopf subalgebra of the (graded linear dual of the) Malvenuto-
Reutenauer Hopf algebra. It is also a transpose of a set morphism Sn → Yn.
If α : Sn → Sn is the involution defined by

α(σ1, . . . , σn) = (σn, . . . , σ1)
−1,

then the set morphism defined by Loday and Ronco is φ0α.

5.4.6. Consequences on Hopf algebra morphisms.

The operad T riDend is a regular operad. A tridendriform 2-bialgebra is
a 4-uple (H,µ,∆, δ) where (H,µ,∆) is a Hopf tridendriform bialgebra in
grVect and (H,µ, δ) is a unital infinitesimal tridendriform bialgebra. The
diagram (16) is a diagram of tridendriform 2-bialgebras:

• The operad T riDend induces the tridendriform 2-bialgebra (T ree :=
⊕n k[Tn], µT ,∆T , ∆̄T ) explained in paragraph 5.4.4.

• Using the surjective operad morphism ΠT riDend : T riDend → Dend
one gets the tridendriform 2-bialgebra structure on the vector space
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spanned by planar binary trees denoted by

(PBT := ⊕n k[Yn], µY ,∆Y , ∆̄Y ),

where Yn is the set of planar binary trees with n+1 leaves as in [15].
• The underlying S-modules of the operads CTD and Zin are triden-

driform algebras in S-mod then by theorems 3.2.2 and 4.1.2 one gets
tridendriform 2-bialgebras on the underlying graded vector spaces.
These structures are denoted respectively (Comp, µC ,∆C , ∆̄C) and
(⊕n k[Sn], µS ,∆S , ∆̄S).

As a consequence we obtain a diagram of Hopf algebras (and unital infini-
tesimal bialgebras as well):

(⊕n k[Tn], ∗T ,∆T )

πT riDend

��

ψ
// (Comp, ∗C ,∆C) = NCQSym

πCTD

��
(⊕n k[Yn], ∗Y ,∆Y )

ψ0
// (⊕n k[Sn], ∗S ,∆S) = HMR

where the horizontal arrows are injective morphisms of Hopf algebras and
vertical arrows are surjective morphisms of Hopf algebras. Note that the
Hopf algebra structure on the planar binary tree (⊕n k[Yn], ∗Y , τ∆Y ) where
τ is the symmetry isomorphism is the one described by Loday and Ronco
in [15]. Note also that the graded linear dual of this diagram is a diagram
of 2-associative bialgebras.

5.4.7. Conclusion. For the last decade, many results of freeness and cofree-
ness of combinatorial Hopf algebras have appeared in the litterature (see
the references cited throughtout the paper and recently [2], [10], [20]). The
present paper illustrates that these freeness results are a consequence of an
operadic structure on the Hopf algebra H itself or its symmetrization SH.
Namely, either the Hopf algebra H is a S-module and one can find an op-
erad structure on H in order to apply Case 1; or the Hopf algebra is not
a S-module and one can find an operad structure on SH in order to apply
Case 2.
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