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Description of accessibility sets near an
abnormal trajectory and consequences

Emmanuel Trélat!

Université de Bourgogne
Laboratoire de Topologie, UFR Sciences et Techniques
BP47870, 21078 Dijon Cedex, France

Abstract. We describe precisely, under generic conditions, the contact of the ac-
cessibility set at time 7" with an abnormal direction, first for a single-input affine
control system with constraint on the control, and then as an application for a
sub-Riemannian system of rank 2. As a consequence we obtain in sub-Riemannian
geometry a new splitting-up of the sphere near an abnormal minimizer 4 into two
sectors, bordered by the first Pontryagin’s cone along -y, called the L*-sector and
the L2-sector. Moreover we find again necessary and sufficient conditions of opti-
mality of an abnormal trajectory for such systems, for any optimization problem.

1 Introduction

Consider a smooth control system on IR :

#(t) = f(z(t),u(t)), z(0) = zo (1)

where f : R™ x R™ — IR” is smooth, ¢ € R™, and the set of admissible
controls U is made of measurable bounded functions v : [0,T(u)] — 2 C
R™.

Definition 1. Let T > 0. The end-point mapping at time T of system (1) is
the mapping
Ep - U —R"

T ur— 3y, (T)

where z,, is the trajectory associated to u.
The application Er is smooth in the L* topology if & C L*([0,T7]).

Definition 2. A control u (or the corresponding trajectory z,,) is said to be
abnormal on [0,T] if it is a singular point of the mapping Er anf if moreover
the Hamiltonian of the system H =< p, f(z,u) > is equal to 0 along the
trajectory x,,.

Remark 1. If a control u is abnormal on [0,T] then it is abnormal on [0, ]
for any ¢ € [0,7].
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Definition 3. Let u be an abnormal control on [0,7], and z,, its associated
trajectory. The subspace Im dE;(u) is called the first Pontryagin’s cone at

Ty (1)-

Definition 4. Consider the control system (1), and let ' > 0. The acces-
sibility set at time T, denoted by Acc(T), is the set of points that can be
reached from z in time T' by solutions of system (1), i.e. this is the image of
the end-point mapping Er.

Let v be a reference abnormal trajectory on [0, T, solution of (1), associ-
ated to a control u. Our aim is to describe Acc(T') near (7).

2 Asymptotics of the accessibility sets

In this Section we describe precisely the boundary of accessibility sets for
a single-input affine system with constraint on the input near a reference
abnormal trajectory.

Consider a smooth single-input affine control system in R, n > 3 :

i(t) = X(z(t)) +u(t)Y (z(t)), z(0) =0 (2)
with the constraint on the control

lu(®)] < n 3)

Let Acc"(T') denote the accessibility set at time T for this affine system with
constraint 7 on the control. Let «y be a reference trajectory defined on [0, 7T7.
In the sequel we make the following assumptions along = :

(Hop) ~ is injective, associated to u =0 on [0,T].

(Hy) Vt € [0,T] K(t) = Vect {ad*X.Y(y(t)) / k € N} (first Pontryagin’s
cone along 7) has codimension 1, and is spanned by the first n— 1 vectors,
ie. :

K(t) = Vect {ad*X.Y (y(t)) / k=0...n -2}

(Hs) ¥t € [0,T] ad’Y.X(7(t)) ¢ K(2).
(Hs) Vt€[0,T] X(y(t)) ¢ Vect {ad*X.Y (4(t)) / k=0...n— 3}.
(Hy) Yt e [0,T] X(y(t) € K(t).

In these conditions v is abnormal and its first Pontryagin’s cone K (t) is an
hyperplane in R™. Actually assumptions (H; — Hs3) are generic along v, see
[4].

The following Theorem is founded on a very precise spectral analysis
of the intrinsic second-order derivative of the end-point mapping along the
abnormal direction 7 (initialised in [3]), which leads actually to a contact
theory of accessibility sets (see [7]).
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Theorem 1. Consider the affine system (2) with the constraint (3), and
suppose that assumptions (Ho— Hy) are fulfilled along the reference abnormal
trajectory v on [0, T]. Then there exist coordinates (1, ... ,zy) locally along
v such that in these coordinates :

1. ~v(t) = (¢,0,...,0), and the first Pontryagin’s cone along v is : K(t) =
Vect {32, .., 552} 1+-

2. If T is small enough then for any point (z1,...,z,) of Acc(T)\{v(T)}
close to v(T) we have : x, > 0 (see Fig. 1).

Tn

abnormal direction
1

Zq

Fig. 1. Shape of Acc(T), T small

3. There exist two times toc,t. such that 0 < t.. < t., called conjugate times
or bifurcation times along vy, and such that the following holds.
If T < t., then in the plane (x1,x,), near the point (T,0), the boundary
of Acc"(T) does not depend on n, is a curve of class C? tangent to the
abnormal direction, and its first term is :

tn = Ap(z; — T)? + o((x1 — T)?)

The function T — Ay is continuous and strictly decreasing on [0,t.[. It
is positive on [0,t..[ and negative on Jtcc,tc|.
4. If T > t. then Acc"(T) is open near v(T).

The evolution in function of T of the intersection of Acc(T') with the
plane (z,z,) is represented on Fig. 2. The contact with the abnormal di-
rection is of order 2 ; the coefficient Ay describes the concavity of the curve.
Beyond t. the accessibility set is open.

Remark 2. The coefficient Ar can be explicitely computed. It is an invari-
ant of the system, see [7]. Moreover the bifurcation times t.. and ¢, can be
computed using an algorithm, see [3].
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Tn

Z1

Fig. 2. Evolution of Acc"(T) in function of 7'

3 Applications

3.1 Application to the optimality status of an abnormal
trajectory

In this Section we apply our previous theory on accessibility sets to study-
ing optimality of abnormal trajectories ; this leads us to find again and to
improve slightly some well-known results. Consider the single-input affine sys-
tem (2) with constraint (3), and suppose assumptions (Ho — H,) are fulfilled
along a reference abnormal trajectory y. We first investigate the time-optimal
problem, and then the problem of minimizing any cost.

Time optimality The trajectory 7 is said C°-time-minimal on [0, T if there
exists a C%-neighborhood of «y such that T is the minimal time to steer v(0)
to v(T) among the solutions of the system (2) with the constraint (3) that
are entirely contained in this neighborhood.

We have the following result (compare with [1-3]) :

Theorem 2. Under assumptions of Theorem 1, the trajectory -y is CO-time-
minimal if and only if T < t...

Optimization of any cost Let us now consider the problem of minimizing
some cost C(T,u), also denoted by Cr(u), where C' is a smooth function
satisfying the following additional assumption along the reference abnormal
trajectory -y :

(Hs) VT rank (dE7(0),dCr(0)) =n
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We distinguish between two optimization problems.

1. Final time not fixed The trajectory 7 is said to be C°-cost-minimal on
[0, if there exists a C%-neighborhood of v such that for any trajectory gq
contained in this neighborhood, with ¢(0) = v(0) and ¢(¢) = ¥(T'), we have :
C(t,v) = C(T,0), where v is the control associated to q.

We have the following (compare with [2]) :

Theorem 3. Under assumptions (Hy — Hs), the trajectory v is C°-cost-
minimal if and only if it is CO-time-minimal, i.e. if and only if T < t,..

2. Final time fixed The trajectory v is said to be C°-cost-minimal on
[0,7] if there exists a C%-neighborhood of v such that for any trajectory g
contained in this neighborhood, with ¢(0) = v(0) and ¢(T') = (T'), we have :
Cr(v) > Cr(0), where v is the control associated to g.

Theorem 4. The trajectory v is C°-cost-minimal if and only if T < t..

Hence in this case the time-optimal problem is not equivalent to the prob-
lem of minimizing some cost. The trajectory v ceases to be C°-time-optimal
before it ceases to be C?-cost-optimal (since t.. < t.).

3.2 Application to the sub-Riemannian case

Consider a smooth sub-Riemannian structure (M, A, g) where M is a Rie-
mannian n-dimensional manifold, n > 3, A is a rank 2 distribution on M,
and g is a metric on A. Let 29 € M ; our point of view is local and we can
assume that M = R™ and zy = 0. Suppose there exists a smooth injective
abnormal trajectory v passing through 0. Up to changing coordinates and
reparametrizing we can assume that :

e 7(t) = (£,0,...,0),
e A =Span {X,Y} where X,Y are g-orthonormal,
e 7 is the integral curve of X passing through 0.

Under these assumptions, the sub-Riemannian problem is equivalent to the
time-optimal problem for the system :

z=vX(z)+uY(z), z(0)=0 (4)
where the controls v, u satisfy the constraint :
v? +u? <1 (5)

The reference abnormal trajectory -y corresponds to the control : v = 1,4 = 0.
The following result is a consequence of Theorem 1 and of a general state-
ment proved in [6].
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Theorem 5. Consider the sub-Riemannian problem for the system & = vX (z)+
uY (z). Let v be an abnormal reference trajectory. Suppose assumptions (Ho—
H,) hold along . Then there exist coordinates (x1,... ,%,) locally along ~
in which, if T is small enough :

e 7(t) =(t,0,...,0),

e the first Pontryagin’s cone along vy is K, (t) = (z, = 0),

o The sub-Riemannian sphere S(0,T) splits into two sectors near y(T) :

1. the L*®-sector : (x, > 0)NS(0,T), made of end-points of minimizing

trajectories associated to controls which are close to the abnormal ref-
erence control in L*°-topology. Hence minimizing trajectories steering
0 to these points are close to vy in C-topology. Moreover in the plane
(z1,2n), its graph is :

1 2 T, Tp ~ AT.(:cl - T)2

where T +— At is continuous, positive and decreasing.

2. the L?-sector : (z, < 0) N S(0,T), made of end-points associated to
minimizing controls which are close to the abnormal reference control
in L%-topology, but not in L>-topology. Hence trajectories steering 0
to these points are close to y in C°-topology, but not in C*-topology.
This sector is tangent to the abnormal direction.

These two sectors are separated by the first Pontryagin’s cone x, = 0

along v (see Fig. 3).

Tn
L*°-sector @

Ty >0

L2-sector
Ty <0

Fig. 3.

Remark 3. The abnormal trajectory < is optimal for the sub-Riemannian
problem if and only if T' < t..
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Typical example : the Martinet case.
Consider the two following vector fields in IR? :

o 2o 0
X=—+=—,Y=—
Ox T 0z’ Oy
and endow the distribution spanned by these vector fields with an analytic
metric g of the type :
g = adz? + cdy?

where a = (1+ay)? and ¢ = (1+8z+7y)?. The abnormal reference control for
the sub-Riemannian system & = vX (z)+uY (x) with constraint v +u? < 11is
v =1,u = 0, and corresponds to the trajectory v : z(t) = t,y(t) = 2(t) = 0.
We have, see [5] :

Lemma 1. Assumptions (Ho— Hy4) are fulfilled along v if and only if a # 0.
In this case branches 1 and 2 (see Fig. 3 with x1 = x,x, = z) have the
following contacts with the abnormal direction :

e branch 1 :x 2T, 2= gps(z—T)? + o((x — T)?)
o branch2 : x < T, z~ 5(1+ O(T))(z — T)?
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