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Abstract

We investigate minimization problems along a singular trajectory of a
single-input affine control system with constraint on the control, and then
as an application of a sub-Riemannian system of rank 2. Under generic
assumptions we get necessary and sufficient conditions for optimality of
such a singular trajectory. Moreover we describe precisely the contact of
the accessibility sets at time T with the singular direction. As a conse-
quence we obtain in sub-Riemannian geometry a new splitting-up of the
sphere near an abnormal minimizer v into two sectors, bordered by the
first Pontryagin’s cone along -, called the L™-sector and the I2-sector.

1 Introduction

1.1 Statement of the problems

Consider a control system on R™ :

& (t) = f(2(t),u(t), 2u(0) = 2o (1)

where f : R® x R™ — IRR" is smooth, 29 € IR", and the set of admissible
controls U is made of measurable bounded functions w : [0,T(u)] — @ C R™.
Let f© : R® x R™ — R be a smooth function, T > 0, and set Cp(u) =
fOT FO(@u(t),u(t))dt : it is called the cost of the trajectory x, associated to the
control » on [0,T].

Definition 1.1. Let T' > 0. The end-point mapping at time T of system (1) is
the mapping
U — R"

Er : u — z,(T)

where x, is the trajectory associated to w.



Definition 1.2. A control v on [0,T] (or the corresponding trajectory ) is
said to be singular if it is a singularity of the end-point mapping Er, that is if
there exists a non trivial vector ¢ in R™ such that ¢¥.dEr(u) = 0.

Definition 1.3. Let u be a singular control on [0, T]. The subspace Im dEr(u)
is called the first Pontryagin’s cone along u (or along z,,). The control u is said
to be of corank 1 if Im dET(u) has codimension 1 in R™, that is if ¢ is unique
up to a scalar.

1.1.1 Optimization problems
Let v be a solution of system (1) such that v(0) = zo, ¥(T) = 1. The problem
is the following :

Among all solutions of system (1) steering z¢ to 1, is ¥ minimizing

the cost ?

Here we consider a single-input affine system with constraint on the control :
i(t) = fo(z(t)) +u(t) fr(z(t), |u(®)]<n
z(0) = zo

Let v be a reference singular trajectory of this system, associated to a corank

1 control u, and let ¢ € R™\{0} such that ¢.dEr(u) = 0. We suppose that
u=0.

Definition 1.4. o If fo and [f1,[f1, fo]] are on the same side with respect
to the first Pontryagin’s cone along -y, then + is said to be elliptic.

(2)

e If they are on opposite sides, « is called hyperbolic.

e If fo € Im dE7(u) along v, then ~ is said to be exceptional.

Actually due to the well-known Legendre-Clebsh condition, elliptic trajecto-
ries are never time-minimizing.

The basic object we have to study is the so-called intrinsic second-order
derivative :

Definition 1.5. The intrinsic second-order derivative along vy is the real quadratic
form :

E;(v) = ¢.d* Br(u).(v,v)
where v € Ker dE7(u).

Roughly speaking, if the latter quadratic form is positive (or negative) def-
inite! then « is locally isolated and thus locally optimal. Conversely if v is
optimal then E!/ is positive (or negative), see [5]. Actually this reasoning works
for hyperbolic trajectories (see [16]). For exceptional trajectories the situa-
tion is a bit more complicated, and we have to study the intrinsic second-order
derivative on a larger domain (see the timexinput/state mapping in [5], reduced
operator in [7]).

LA real quadratic form g¢(z) is said positive definite if £ # 0 = q(z) > 0, and indefinite
if there exist z,y # 0 such that g(z)q(y) < 0.



1.1.2 Accessibility sets

Definition 1.6. Consider the general control system (1), and let 7" > 0. The
accessibility set at time T, denoted by Acc(T) is the set of points that can be
reached from z( in time T by solutions of system (1), i.e. this is the image of
the end-point mapping Er.

Let v be a reference trajectory on [0,T], solution of (1), associated to a
singular control u. Using the formalism of [7] we are able to describe precisely
the boundary of Acc(T') along «y for the single-input affine system (2).

2 Optimality of singular trajectories
Consider the single-input affine control system with constraint on the control :
=X +uY(z), Jul<n 3)

Let 7 be a reference singular trajectory, defined on [0,T] and such that v(0) =
xg. If v is injective we may assume that it is associated to the control v = 0.
In the sequel we make the following assumptions along ~ :

(Hop) = is injective, associated to u = 0 on [0,T].

(Hy) Vt € [0,T] K(t) = Vect {ad*X.Y (y(t)) / k € IN} (first Pontryagin’s
cone along ) has codimension 1, and is spanned by the first n—1 vectors :

K(t) = Vect {ad*X.Y (y(t)) / k=0...n—2}

(Hy) Yt €[0,T] ad?Y.X(y(t)) ¢ K(%).

(Hs) f n = 2 then : Vt € [0,T] X(v(t)) and Y (y(¢)) are independant.
Ifn = 3then: Vt € [0,7] X(y(t)) ¢ Vect {ad*X.Y (y(t)) / k=0...n—

3}.

In these conditions vy is of corank 1, and moreover we get normal forms which al-
low to express easily the differential operator representating the intrinsic second-
order derivative and make easier the computation of conjugate times (see [7]).

We first investigate the time-optimal problem, and then the problem of min-
imizing some cost.

2.1 Time optimality

Definition 2.1. e The trajectory v is said C°-time-minimal on [0,T] if
there exists a C°-neighborhood of 7 such that T is the minimal time to
steer v(0) to v(T') among the solutions of the system (3) that are entirely
contained in this neighborhood.



e Recall that «y is associated to the control u = 0. Let § > 0. The trajectory
v is said L*°-time-minimal on [0,T] if there exists a neighborhood of 0
in L*°([0,T + 4]) such that T is the minimal time to steer v(0) to v(T')
among trajectories associated to controls of this neighborhood.

Obviously if v is C°-time-minimal then it is L>°-time-minimal.

We have to distinguish between hyperbolic and exceptional cases. The fol-
lowing results generalize those of [7] which concern an affine system (3) without
any constraint on the control.

2.1.1 Hyperbolic case

Lemma 2.1. [7] Suppose that v is hyperbolic and n > 2. Then the system (3)
is in a C°-neighborhood of v feedback-equivalent to :

o = o & d
fo= 6—.'171 + ;wi+16_$i +ijzz2aij($1)$i$’j6—$1 + R
0
fi %

where ann(t) <0 on [0,T] and R can be neglected in our work.

In these conditions, the controllable part of the system is (x2,... ,z,), the
singular reference trajectory is v(t) = (¢,0,... ,0), and the intrinsic second-order
derivative d? E{ (0) /ker a1 (0) along 7 is identified to :

/T En: a;j(t)&:(t)€;(t) dt , where :
0

i,j=2
5'2 =£37"' 757},—1 =€n7§n =v

Set y = &. Then it can be written as Q7 /g, where :

T n—2
@)= [ arwidt and ar) = Y buyPyV)
0 i,5=0
with b;_2 ;o = G”JZF#, and where G is the following space corresponding to
the kernel of the first derivative :

Integrating by parts we get :

Lemma 2.2 ([7]). The quadratic form Qr is represented on G by the operator
Dt so that :
Qr(y) = (Dry,y)r>



where (, )2 is the usual scalar product in L?([0,T]), and the operator Dy is :

192 . d dg = & d
Dr = 52(—1)1@W = Z (—1)Jwbw’@
=0 %,j=0
Our aim is to study the sign of Qr, thus we are lead to make a spectral
analysis of Dp. Unfortunately the spectrum of Dy on G is empty. Hence
we have to enlarge this space so that the spectrum is not trivial and that the
representation lemma 2.2 is still valid. That’s why we set :

F={y/y" > er’(o,T)), y?(0) =y(T) =0, i=0...n—3}

Definition 2.2. We call T a conjugate time of @) along ~ if there exists y € F’
such that y(»~2) € L2([0,T]) and Dy = 0.

Lemma 2.3. For any f € L*([0,T)), if T is not a conjugate time, there exists
y € F unique such that y*("=2) ¢ L2([0,T]) and Dry = f. Let L denote the
operator f — y considered as an operator from L%([0,T)) into L%([0,T)) ; it is
selfadjoint and compact.

Let t. be the first conjugate time of the operator D. It is known (see for
instance [7], [16], [4]) that t. > 0 or ¢, = +00. We have the following result :

Theorem 2.4. The trajectory v is C°-time-minimal if and only if T < t..
Moreover v is not L™ -time-minimal if T > t..

The shape of accessibility sets at time T is represented on fig. 1.

Figure 1: Hyperbolic case

Remark 2.1. In dimension 2, the operator D is equal to bgId, and thus t, = 400
(provided assumptions (Ho — H3) are fulfilled on RT), i.e. 7 is C°-time-minimal
on RT.



2.1.2 Exceptional case

Lemma 2.5. [7] Consider the affine system ¢ = X +wY, ¢(0) = 0 under the as-
sumptions (Hy — H3 ), and suppose v is exceptional. Then in a C°-neighborhood
of v the system (X,Y") is feedback-equivalent to :

0
0 6.’1)1 + Z$Z+l + Z az] T -Z'zmja +R
= = )
0

61}”,1

fi=

where ap—1,n—1(t) >0 on [0,T] and R can be neglected in our work.

Set x1 = t + £ The controllable part of the system is (&, 22,... ,%n—1),
the reference singular trajectory is v(t) = (¢,0, ... ,0), and the intrinsic second-
order derivative d” By} (0)ker apT(0) along v is identified to :

T n—1
/0 Z a;; ()& (t)€;(t) dt , where :

i,j=2

G=6,...,bn2=6r1,6n1=v, and &(0)=&(T)=0,i=1...,n—1

Contrarily to the hyperbolic case where only one differential operator is in a
natural way associated to the intrinsic second-order derivative, here in the ex-
ceptional case we get two natural operators in a natural way :

1. If § =z — t, it can be written as @/, where :

T n—2
QO = [ a©dt and q©) = Y by
0 i,j=1
with b;_1 ;-1 = M, and where G is the following space corresponding
to the kernel of the first derivative :

G={¢/ P e L2([0,T]), £9(0) = €9(T) =0, i=0...n 2}
Let D be the operator representing ). We have :

Q&) = (&, Dg) e

where

— i n—2 . .
1 ; o d? d
_ - —1)J iy
22 a0 = 2V g ®)

3,j=1



2. It can be expressed in function of z2 as Q1 ,g,, where :
T n—3 ) ]
Qi(m2) = / @(@2)dt and q(@2) = Y biraal vy
0 i,j=0

and where G is the space corresponding to the kernel of the first deriva-
tive :

Gy = {z | o5 € 12((0, 7)), 25 (0) = 257 (T) =0, i =0...n - 3,

T
and / T2 dt=0}
0

Let D; be the operator representing (1. We have :

Q1(z2) = (2, D172) 12

where

n—3 ; n—3 . .
1 ;4" Oq . dt
Dy = 5 > (1) = > (=1 25 bir g g (6)

=0 di’ oy 4,§=0
Note that Q(§) = Q1(€) and D = _EDIE' As previously the spectral study

of these operators has to be made on larger spaces :
o F={¢/&D e L2[0,T)), £€9(0) = ¢€9(T) =0, i =0...n — 3} for
the operator D.
o By ={zy / 2{" " € 12(10,T)), 25’(0) =25 (T) =0, i =0...n — 4} for
D, if n > 4 (if n = 3, no condition is imposed).

The following lemma is an improvement of [7], where only a non strict in-
equality is proved :

Lemma 2.6. Let t. (resp. t..) denote the first conjugate time of Q on F (resp.
Ql on Fl). Then : 0 < tee < te.

We have the following result :

Theorem 2.7. The trajectory «y is C°-time-minimal if and only if T < tc.
Moreover v is not L -time-minimal if T > tcc.

The shape of accessibility sets in function of T is represented on fig. 2.

Remark 2.2. If n = 3, we have t.. = +00 provided assumptions (Hy — H3) are
fulfilled on RT. Hence in this case vy is C°-time-minimal on R*.

Remark 2.3. In both hyperbolic and exceptional cases, the notion of conjugate
time and the optimality of v do not depend on the constraint on the control. It
comes from the fact that singular reference control belongs to the interior of
the domain of constraints.



Figure 2: Exceptional case

2.2 Optimality for some cost

Let us now investigate the problem of minimizing some cost C(T,u), also de-
noted by Cr(u), where C' is a smooth function satisfying the following additional
assumption along the reference singular trajectory =y :

(Hi) VT rank (dE7(0),dCr(0)) =n

i.e. the singularity of the end-point mapping of the extended system has codi-
mension 1, and in particular the cost is independant from the end-point mapping
along v. We investigate several optimization problems :

1. final time not fixed : the aim is to steer the system from z¢ to z; in some
time T (not preassigned) and minimizing the cost C.

2. final time fixed : let T' > 0 ; the aim is to steer the system from o to
in time 7' and minimizing the cost Cr.

2.2.1 Final time not fixed

Definition 2.3. e The trajectory 7 is said to be C°-cost-minimal on [0, T
if there exists a C°-neighborhood of «y such that for any trajectory ¢ con-
tained in this neighborhood, with ¢(0) = v(0) and ¢(t) = (T), we have :
C(t,v) = C(T,0), where v is the control associated to g.

e Let § > 0. The trajectory 7 is said to be L>-cost-minimal on [0, T if there
exists a neighborhood of 0 in L>([0,T + 4]) such that, for any trajectory
q associated to a control v of this neighborhood, with ¢(0) = v(0) and
q(t) =~(T), we have : C(t,v) > C(T,0).

Obviously the C9-cost-minimality implies the L*-cost-minimality.



We have the following result (compare with [5]) :
Theorem 2.8. 1. If v is hyperbolic, v is never L>-cost-minimal.

2. If v is exceptional, then vy is CO-cost-minimal if and only if it is CO-time-
minimal. Actually, v is C°-cost-minimal if T < t.., and is not L™ -cost-
minimal if T > t...

Hence in the exceptional case, both problems of cost-minimization and time-
minimization are equivalent.

2.2.2 Final time fixed

Definition 2.4. e The trajectory = is said to be C°-cost-minimal on [0, T
if there exists a C%-neighborhood of v such that for any trajectory ¢ con-
tained in this neighborhood, with ¢(0) = v(0) and ¢(T') = v(T'), we have :
Cr(v) > Cr(0), where v is the control associated to ¢.

e The trajectory + is said to be L>-cost-minimal on [0,T] if there exists a
neighborhood of 0 in L*([0,T]) such that, for any trajectory q associated
to a control v of this neighborhood, with ¢(0) = «(0) and ¢(T") = ~(T),
we have : Cr(v) > Cr(0).

We have the following :

Theorem 2.9. 1. If v is hyperbolic, then v is C°-cost-minimal if and only
if it is CO-time-minimal. Actually, v is C°-cost-minimal if T < t., and is
not L -cost-minimal if T > t., where t. denotes the first conjugate time
of v (see theorem 2.4).

2. If v is exceptional, then v is C°-cost-minimal if and only if T < t.. More-
over, v is not L™ -cost-minimal if T > t. (whereas vy is C°-time-minimal
if and only if T < to.), where t.. and t. denote the two types of first
conjugate times of vy (see lemma 2.6).

Hence in the hyperbolic case, the times at which 7y ceases to be minimizing
are the same in both time-optimal and cost-optimal problems. At the contrary
in the exceptional case they are different : 7 ceases to be C°-time-optimal before
it ceases to be C%-cost-optimal (since t.. < t., see lemma 2.6).

2.3 Application to the sub-Riemannian case

Consider a smooth sub-Riemannian structure (M, A, g) where M is a Rieman-
nian n-dimensional manifold, n > 3, A is a rank 2 distribution on M, and ¢
is a metric on A. Let go € M ; our point of view is local and we can assume
that M = IR™ and g9 = 0. Suppose there exists a smooth injective abnormal
(or singular) trajectory ~ passing through 0. Up to changing coordinates and
reparametrizing we can assume that :

e y(t) = (¢,0,...,0),



e A =Span {X,Y} where X,Y are g-orthonormal,
e 7 is the integral curve of X passing through 0.

Under these assumptions, the sub-Riemannian problem is equivalent to the time-
optimal problem for the system with constraint :

g=vX +uY, ¢q0)=0
vP4+u? <1

(7)

and the trajectory v corresponds to the control : v = 1,u = 0.

Definition 2.5. We call affine system associated to the sub-Riemannian system
(7) the following system :

z = X(z) +wY () (8)
where the control w satisfies a constraint of the form : |w| < 7.

In order to investigate the optimality of the trajectory - for the sub-Riemannian
system (7), we compare this system with its associated affine system (8). The
fact that the optimality of v for the affine system does not depend on the con-
straint is crucial. We obtain the following result :

Theorem 2.10. Suppose that assumptions (Hy — Hs) are fulfilled along v for
the system (X,Y). Then vy is C°-optimal for the sub-Riemannian system (7) if
and only if it is CO-time-minimal for its associated affine system (8). Moreover
v is exceptional for this affine system ; actually v is C°-optimal if T < t.. and
is not L™ -optimal if T > t...

In particular conjugate times are the same along v for both systems. There-
fore the whole formalism that was introduced for affine systems (the differential
operator D;) is still valid in sub-Riemannian geometry. Hence the conjugate
time of the sub-Riemannian problem can be computed using an algorithm. This
result makes a link between works of [7] and [3], [4].

Example 2.1. The Martinet case (see section 3.2.2) is in dimension 3, hence
tec = +00 (see remark 2.2). The abnormal trajectory is optimal on R*.

Remark 2.4. As proved in [2] the C%-optimality is in sub-Riemannian geometry
equivalent to the optimality in the sense of L2 on controls.

Remark 2.5. If T is small enough (depending on the choice of the Riemannian
structure, and lower than t..), then as first noted by [3] «y is moreover globally
optimal among all sub-Riemannian trajectories steering 0 to (7).

Remark 2.6. It should be noted that the loss of optimality is in L*°. Hence
controls L?-close to the reference abnormal control have no influence on the
optimality of the abnormal trajectory (see splitting-up in sectors, section 3.2.2).
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3 Asymptotics of the accessibility sets

In this section we describe very precisely the boundary of accessibility sets for a
single-input affine system near a reference singular trajectory. These boundaries
are the level sets of the value function associated to the time-optimal problem.
Then we apply our results to the sub-Riemannian case of rank 2, where we
describe precisely the contact of the sphere with the abnormal direction. As
a consequence we obtain a splitting-up of the sphere into two sectors near the
abnormal minimizer.

3.1 Single-input affine control systems

3.1.1 Hyperbolic case

In this case the shape of the accessibility set depends on the constraint, as shown
in the following example :

T = 1492

y = u where |u| < 5

The accessibility set Acc(T) is represented on fig. 3.

?fﬁﬁ:;ggg(*f)::;

n =400 lu| << 400
Figure 3: Hyperbolic case

3.1.2 Exceptional case

Contrarily to the previous case, in the exceptional case the boundary of Acc™(T')
does not depend on the constraint near v(T'). Precisely we have the following :

Theorem 3.1. Consider the affine system with constraint (3) and suppose that
assumptions (Hy — Hs) are fulfilled along the reference singular trajectory v on

11



[0,T]. We suppose that vy is exceptional. Lett.. and t. denote the first conjugate
times associated to vy, see section 2.1.2. Then :

1. There exist coordinates (xy,... ,x,) locally along v such that in these co-
ordinates : v(t) = (¢,0,...,0), and the first Pontryagin’s cone along vy is :
K(t) = Vect {%, ceey %}h

2. IfT is small enough then for any point (1, ... ,z,) of Acc"(T)\{(T,0,...,0)}
close to v(T) we have : ©, > 0 (see fig. 4).

3. If T < t., then in the plane (x1,xy,), near the point (T,0), the boundary
of Acc™(T) does not depend on m, is a curve of class C? tangent to the
singular direction, and its first term is :

Tp = Ar(z —T)* + o((z1 — T)?)

The function T — Ar is continuous and strictly decreasing on [0,t.[. It
is positive on [0,t..] and negative on [tec,te|.

Moreover, if n depends on x1 — T then the result is still valid providing :
z1—T=o0(n) aszy > T.

Tn

.771‘ abnormal direction

Z;

Figure 4: Shape of Acc™(T'), T small

The evolution of Acc”(T') in function of T in the plane (z1, z,,) is represented
on fig. 5. The contact with the singular direction is of order 2 ; the coefficient
Ar describes the concavity of the curve. Beyond t. the accessibility set is open.

Remark 3.1. The coefficient A1 can be computed in the following way (see [7],
[18]). Let D denote the operator (5) introduced in section 2.1.2 and @ the
quadratic form associated to D, representing the intrinsic second-order deriva-
tive along 7. There exists a function J of class C*"~2) on [0,T] such that
DJ = 0 and satisfying the limit conditions :

Vk € {0,...,n—3} J®©O) =0, JOT) = gk

Then :



Tn

X1

Figure 5:

3.2 Application to the sub-Riemannian case

3.2.1 Asymptotics of the sub-Riemannian sphere along an abnormal
direction

Let us consider the framework introduced in section 2.3, and let us now define
a notion of constrained accessibility set :

Definition 3.1. Let 0 < a < 1. We denote by Accgr(T) the accessibility set
at time T for the sub-Riemannian system (7) with the additional constraint on
the control :

v+u?<l, 1—agv<l, u<a

(see fig. 6)

Figure 6:

Note that controls steering 0 to points of Accg g (T') are in a L -neighborhood
of the abnormal reference control v = 1,u = 0.

13



Consider the associated affine system :
z =X (z) + wY (w) (10)

and denote by Acc’l (T') the accessibility set at time T for this system with the
constraint : |w| < n. The reference singular trajectory - corresponds to w = 0,
and is exceptional for this affine system.

Theorem 3.2. Suppose assumptions (Ho — Hs) are fulfilled along the reference
abnormal trajectory v for the system (X,Y). Let t.. and t. denote the first
conjugate times of vy for the associated affine system. Let o €]0,1[. Then :

1. There exist coordinates (x1,... ,xy) locally along v such that in these co-
ordinates : v(t) = (¢,0,...,0), and the first Pontryagin’s cone along vy is :
d d
K(t) = Vect {3_z1’ ey m}h
2. If T is small enough then for any point (z1,... ,2,) of Accgg(T) close to
¥(T) we have x, > 0 (see fig. 4).

3. If T < tee, then in the plane (x1,xy), close to the point (T, 0), the boundary
of Accgr(T) does not depend on a, is a curve of class C? outside (T,0),
tangent to the abnormal direction, whose first term is :

o ifxy < T then x, = 0.
o ifzy > T then z, = Ar(z1 — T)% + o((z1 — T)?).
The function T — A is the same as in theorem 3.1.

Figure 7 represents the evolution of Accgy(T) in function of T in the plane
(z1,2y,). It is open in a neighborhood of v(T) if T > t.., contrarily to the affine
case where it becomes open only beyond t..

Tn 4

1

Figure 7:
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Remark 3.2. To compare the system (7) with its associated affine system (10)
we need the following reparametrizing :

ds

it~ °
which only holds if v does not vanish. This condition is satisfied when the
control (v,u) is in a L*®-neighborhood of the abnormal reference control (1,0),
for in this case v is close to 1 in the L* sense. Hence using this method it is only
possible to describe a constrained accessibility set, i.e. in a L*°-neighborhood
of the reference abnormal control.

3.2.2 Splitting-up of the sphere near an abnormal direction

Let T > 0 small enough so that properties 2 and 3 of theorem 3.2 are satisfied.
In particular the reference abnormal trajectory «y is minimizing. Then A = (7))
belongs to the sub-Riemannian sphere S(0,7T) with radius T'. If controls steering
0 to points of the boundary of Accg,(T) in , > 0 (that are L*°-optimal) are
actually globally optimal, then this boundary is included in the sphere S(0,T).
In this case the sphere splits into two sectors near v(T'), bordered by the first
Pontryagin’s cone z,, =0 :

e sector z, > 0 corresponding to the previous description,
e sector z,, < 0.

According to the previous results, final points at time T associated to controls
which are L*°-close to the reference abnormal control are in the first sector :
T, > 0. Obviously due to controllability of the system the sector z,, < 0 is
accessible. In fact a basic calculus shows :

Lemma 3.3. For any neighborhood V' of the point A in IR™ we have :
S0, )NV N (z, <0)#0

These points in (z, < 0) are reached by controls which are close to the
reference control in the L? sense but not in the L™ sense. More precisely :

Lemma 3.4. Let M,, = Er(u,) € S(0,T) whose last coordinate z,, is strictly
negative. Let u denote the abnormal reference control. We suppose that M,

converges to A = E(u) in IR™. Then u, converges to u in L*([0,T]) but not in
L>=([0,T]).

Hence near the abnormal direction the sphere is made of two sectors : a
L>-sector (z, > 0) described by theorem 3.2, and a L2-sector (z, < 0). The
contact of the first sector is known, but not the second one a priori. Anyway
according to the tangency theorem (see [17]), under some nice stratification

assumptions, this sector ramifies tangently to the Pontryagin cone z, = 0, see
fig. 8.
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Figure 8:

Typical example : the Martinet case. Consider the two following vector
fields in R3 : 5 2 5 5
Yy
X=—+=—,Y=—

or 2 0z Oy
and endow the distribution spanned by these vector fields with an analytic
metric g of the type :

g = adx® + cdy?®

where a = (1 + ay)? and ¢ = (1 + Bz + yy)2. The abnormal reference control
for the sub-Riemannian system & = vX (z) + uY (x) with constraint v +u? < 1
is v = 1,u = 0, and corresponds to the trajectory v : z(t) = t,y(t) = z(t) = 0.
We have, see [9] :

Lemma 3.5. Assumptions (Ho — Hs) are fulfilled along v if and only if a # 0.
In this case branches 1 et 2 (see fig. 8 with x1 = x,x, = z) have the following
contacts with the abnormal direction :

e branch 1 : x> T, 2= 57—z —T)*+ o((z — T)?)
e branch2 : < T, 2z~ £(1+ O(T))(z —T)?

Remark 3.8. The coefficient A of the first branch can be computed directly or
using formula (9) (see remark 3.1).

As we are in dimension 3, results of theorem 3.2 are in fact available on R,
see remark 2.2. The L*-sector is z > 0 and corresponds to controls that are
globally minimizing.
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