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A Stackelberg Game Approach to Mixed

H2 /H∞ Control

Marc Jungers, Emmanuel Trélat, and Hisham Abou-Kandil

Abstract

The H2 /H∞ robust control problem is formulated as a Stackelberg differential game where the

leader minimizes an H2 criterion while the follower deals with the H∞ constraint. For a closed loop

information structure in the game, the necessary conditions to solve such a constrained optimization

problem are derived for the finite time horizon case. It is shown that such an approach leads to a singular

control and the Stackelberg strategy degenerates due to the omnipotence of the leader. Using conjugate

times theory, we prove that the derived necessary conditions are also sufficient.

Index Terms

Mixed H2 /H∞ control, game theory, Stackelberg strategy, Riccati equation, robust control.

I. INTRODUCTION

Robust H2 /H∞ control problem has been treated extensively in recent years to achieve a

compromise between H2 and H∞ norm specifications [1]–[3]. In fact, a predefined level for the

H∞-norm cannot be guaranteed by a pure H2-control. Several approaches have been proposed

to solve the mixed H2 /H∞ control problem. This includes non-standard Riccati equations

[1], Youla parametrization [4], convex optimization [5], entropy interpretation [6]. . . The state

feedback case was treated in [7] while a compromise between H2 and H∞-regulators is proposed

in [8].

In this note, the mixed H2 /H∞ robust control problem is formulated as a Stackelberg differ-

ential game [9]–[14]. A gametheoretic approach has been already proposed to solve the H2 /H∞
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control problem [15]–[17] via a Nash strategy. However, due to the symmetry between players

in a Nash strategy, one player is minimizing the H2 norm and the second one is associated with

the worst case disturbance seen in terms of H∞ norm.

For the Stackelberg strategy, the hierarchy between the leader and the follower leads to

minimizing the H2-norm by the leader subject to the H∞-constraint dealt with by the follower.

The information bias in such a game is quite suitable to solve such a constraint optimization

problem. The model used here was introduced in [2], [3].

The paper is organized as follows. The problem is formulated in Section II. The main

contribution is given in Section III where the Stackelberg strategy and the associated necessary

conditions are derived under closed loop information structure condition. It is shown in Section

IV that the necessary conditions become sufficient using conjugate times theory. Concluding

remarks make up Section V.

II. PROBLEM STATEMENT

Consider the plant described by (Fig. 1)


































ẋ(t) = Ax(t) +B∞w∞(t) +B2w2(t) +Bu(t) = f(x,w∞, w2, u),

z∞(t) = C∞x(t) +D∞w∞(t) +D∞uu(t),

z2(t) = C2x(t) +D2uu(t),

z(t) = x(t),

(1)

with x(t) ∈ R
n, w2(t) ∈ R

r2 , w∞(t) ∈ R
r∞ , u(t) ∈ R

r, z2(t) ∈ R
m2 , and z∞(t) ∈ R

m∞ . The

matrices A, B∞, B2, B, C∞, C2, D∞, D∞u and D2u are constant matrices with appropriate

dimensions. B∞ is assumed of full rank.

−K

Σ

x

z∞

z2w2

w∞

u

Fig. 1. System structure.

The finite horizon [t0, tf ] case is studied here (initial time t0 and final time tf > t0). The

H2-norm of a signal, denoted ‖.‖2,[t0,tf ], allows to define the induced norms H2 and H∞ of the
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system. The input w2 (respectively w∞) and the output z2 (resp. z∞) define the channel for H2

norm ‖z2‖2,[t0,tf ] (resp. H∞ norm supw

‖z∞‖2,[t0,tf ]

‖w∞‖2,[t0,tf ]

). For simplicity, the feedback output z is

assumed to be equal to the state x.

The problem of mixed H2 /H∞-control design is to find a feedback control u(t) stabilizing

the system (1) and minimizing the H2-norm under the constraint that the H∞-norm is less than

a fixed level γ, i.e.

u(t) = −K(t)x(t) such that















inf
u∈U

‖z2‖2,[t0,tf ]

subject to sup
w∞∈W∞

‖z∞‖2,[t0,tf ]

‖w∞‖2,[t0,tf ]

< γ.

The system (1) being linear, the admissible set for the inputs u, w2 and w∞ are respectively

U = L∞([t0, tf ] × R
n,Rr), W2 = L∞([t0, tf ],R

r2), and W∞ = L∞([t0, tf ] × R
n,Rr∞).

III. STACKELBERG STRATEGY

A. Definition

Let

J2(w∞, w2) =
1

2

∫ tf

t0

[

zT
2 (t)z2(t) + α2wT

∞(t)Rγw∞(t)
]

dt =

∫ tf

t0

L2(x, u, w∞, w2)dt, (2)

with

L2 =
1

2

(

xT (t)CT
2 C2x(t) + 2xT (t)CT

2 D2uu(t) + uT (t)DT
2uD2uu(t) + α2wT

∞(t)Rγw∞(t)
)

, (3)

Rγ = γ2I −DT
∞D∞ > 0, for γ > σ(D∞), the largest singular value of D∞,

and

J∞(u,w∞) =
1

2

∫ tf

t0

[

−zT
∞(t)z∞(t) + γ2wT

∞(t)w∞(t)
]

dt =

∫ tf

t0

L∞(x, u, w∞)dt, (4)

with
L∞ =

1

2

(

− xTCT
∞C∞x+ wT

∞(γ2I −DT
∞D∞)w∞ − uTDT

∞uD∞uu
)

−xTCT
∞D∞w∞ − xTCT

∞D∞uu− wT
∞D

T
∞D∞uu,

(5)

where x(·), z∞(·) and z2(·) are solutions of (1).

The criterion J2 defined by (2) is associated with the H2-norm of system (1). For α 6= 0, J2

is convex with respect to w∞. The criterion J∞ defined by (4) is associated with the H∞-norm

of system (1). Note that, if J∞ > 0, for any input w∞ ∈ W∞, then supw∞∈W∞

‖z∞‖2,[t0,tf ]

‖w∞‖2,[t0,tf ]

< γ.
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The infinimum of J∞ over w∞ ∈ W∞ is either finite (and attained) or equal to −∞, depending

on the values of γ and of the final time tf .

In fact, denoting tc the first conjugate time of the system (see Section IV), then inf J∞ ≥ 0

whenever tf < tc, and inf J∞ = −∞ whenever tf > tc.

The optimal control u = u∗ minimizes the H2-norm when w∞ = w∗
∞, the worst case input

according to the H∞-norm, is applied.

Stackelberg strategy is well adapted to deal with this kind of constrained minimization problem.

The leader acts by choosing the control u and the follower by choosing the input w∞.

For a control ũ of the leader, the rational reaction set R∞ (ũ) of the follower is defined by

the set of the admissible input w∞ which leads to the infinimum of J∞(ũ, w∞).

A Stackelberg equilibrium (u∗, w∗
∞) is defined by











w∗
∞ ∈ R∞(u∗),

max
w∞∈R∞(u∗)

J2 (u∗, w∞) 6 max
w∞∈R∞(u)

J2 (u,w∞) , ∀u ∈ L∞([t0, tf ],R
r),

(6)

(see [13], [14]).

There are three inputs in the system u, w2 and w∞. u and w∞ are considered as the two players

of this non-zero sum game. The input w2 is not a player and is considered as a disturbance.

The framework corresponds to a closed-loop information structure, u∗ = u∗(x, t) ∈ U and

w∗
∞ = w∗

∞(x, t) ∈ W∞ are implicit functions of the time t and the state x (see [18]).

B. Necessary conditions for the follower

Solving the problem from the point of view of the follower corresponds to determine its rational

reaction set R∞(·). This is a standard optimization problem that could be solved by applying

Pontryagin’s Minimum Principle. We define the Hamiltonian (see [19]) H∞ = ψ◦
∞L∞ + ψ∞f ,

where the line vector ψ∞ ∈ R
n is the costate vector associated with the dynamic constraint (1)

and the scalar ψ◦
∞ ≥ 0 with L∞. The necessary conditions to be satisfied by the follower could

be written along the solution as

∂H∞

∂w∞

(t) = ψ◦

∞

∂L∞

∂w∞

(t) + ψ∞(t)
∂f

∂w∞

(t) = 0, (7)

ψ̇∞(t) = −ψ◦

∞

(

∂L∞

∂x
(t) +

∂L∞

∂u
(t)
∂u∗

∂x
(t)

)

− ψ∞(t)

(

∂f

∂x
(t) +

∂f

∂u
(t)
∂u∗

∂x
(t)

)

. (8)

(9)

June 9, 2006 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 5

In addition, since the final state is free, the transversality condition leads to ψ∞(tf ) = 0.

This implies that ψ◦
∞ 6= 0. Without loss of generality and for the sake of normalization we

assume that ψ◦
∞ = 1.

It follows from (7) and from γ > σ̄(D∞), that Rγ is invertible and that the optimal input w∗
∞

(the worst input in sense of H∞-norm for an input u) is given by

w∗

∞(t) = −R−1
γ

[

−DT
∞C∞x(t) −DT

∞D∞uu(t) +BT
∞ψ

T
∞(t)

]

= S(x, u, ψ∞). (10)

We introduce the following notations

Wγ = I +D∞R
−1
γ DT

∞, U = DT
2uD2u + α2DT

∞uD∞R
−1
γ DT

∞D∞u,

N = Rγ + α2DT
∞D∞uU

−1DT
∞uD∞, B = B +B∞R

−1
γ DT

∞D∞u,

B̃ = B∞ + α2BU−1DT
∞uD∞, Cu = DT

2uC2 + α2DT
∞uD∞R

−1
γ DT

∞C∞,

C∞ =
(

DT
∞D∞uU

−1Cu −DT
∞C∞

)

,

Ŝλ = BU−1B
T
, Ŝ∞ = S∞ + α2BU−1DT

∞uD∞R
−1
γ BT

∞,

S∞ = B∞R
−1
γ BT

∞, S∞ = S∞ + α2B∞R
−1
γ DT

∞D∞uU
−1DT

∞uD∞R
−1
γ BT

∞,

S̃ = Ŝλ +
1

α2
B̃N−1B̃T , Q = CT

2 C2 + α2CT
∞D∞R

−1
γ DT

∞C∞ − C
T

uU
−1Cu,

Q̃ = Q− α2C
T

∞N
−1C∞, A = A+B∞R

−1
γ DT

∞C∞,

Â = A−BU−1Cu, Ã = Â− Ŝ∞S
−1

∞ B∞R
−1
γ C∞,

and

F 1
∞(x, u, ψ∞) = xTCT

∞WγC∞ + uTDT
∞uWγC∞ − ψ∞A,

F 2
∞(x, u, ψ∞) = xTCT

∞WγD∞u + uTDT
∞uWγD∞u − ψ∞B.

Then

ẋ(t) = f̃(x(t), u(t), ψ∞(t), w2(t))

= Ax(t) +Bu(t) − S∞ψ
T
∞(t) +B2w2(t), x(t0) = x0, (11)

ψ̇T
∞ =

(

F 1
∞(x, u, ψ∞) + F 2

∞(x, u, ψ∞)
∂u∗

∂x

)T

, ψ∞(tf ) = 0, (12)

and

L̃∞(x, u, ψ∞) = −
1

2
(C∞x+D∞uu)

T Wγ (C∞x+D∞uu) +
1

2
ψ∞S∞ψ

T
∞,

L̃2(x, u, ψ∞, w2) = L2(x, u, S(x, u, ψ∞), w2).
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C. Pontryagin Minimum Principle for a particular case

The minimization of J2 subject to (11) and (12) is not a standard optimization problem.

For the sake of clarity, we denote in the sequel
∂u∗

∂x
, the Jacobian of u(t, y) w.r.t. the second

variable, by uy. To solve this problem from the point of view of the leader, the extended state

X is introduced. X includes the state x, the costate vector ψT
∞, and the instantaneous cost x◦

(verifying ẋ◦ = L̃2)

X =











x

ψT
∞

x◦











∈ R
2n+1, Ẋ = F (t,X, u, uT

y ) =











f̃

F 1T
∞ + uT

y F
2T
∞

L̃2











, (13)

with boundary conditions

x(0) = x0, ψ∞(tf ) = 0, x◦(0) = 0, (14)

where u = u(t, h(X)) = u(t, x), with h(X) = h
(

xT ψ∞ x◦T
)T

= x.

It is shown below that every optimal control u∗ for the optimization problem of the leader

(minimizing J2 subject to the constraints (11) and (12)) is a singular control for the system

(13). This crucial fact permits to derive a Pontryagin Minimum Principle adapted to this type

of problem (13).

A similar approach is provided for the LQ case in [18]. However the used arguments are not

complete, even though the final result is correct.

We next recall the definition of the end-point mapping and of a singular control (see [20]–[22]).

Definition 1: The end-point mapping at time tf of system (13) with initial state X0 is the

mapping

EX0,tf : U = L∞ ([0, tf ] × R
n,Rr) −→ R

2n+1

u 7−→ Xu(tf ),
(15)

where Xu(·) denotes the trajectory solution of (13) associated with the control u such that

Xu(t0) = X0.

If the function F in (13) is of class Cp, p ≥ 1, then the end-point mapping EX0,tf is also of

class Cp.

June 9, 2006 DRAFT
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To determine the Fréchet derivative of EX0,tf , consider a control δu such that u+ δu ∈ U and

let X be the trajectory associated with u and X + δX with u+ δu. By definition, we obtain

d(X + δX)

dt
= F

(

t,X + δX, u(t, h(X + δX)) + δu(t, h(X + δX)),

uy(t, h(X + δX))T + δuy(t, h(X + δX))T
)

. (16)

A Taylor series expansion leads to

d(δX)

dt
= ÃδX + B̃δu+ C̃δuT

y , (17)

where Ã =
(

FX + FuuyhX + Fuy
uyyhX

)

, B̃ = Fu and C̃ = Fuy
.

Let M(t) be the transition matrix associated with Ã(t), i.e. the solution of the Cauchy problem

Ṁ(t) = Ã(t)M(t), M(0) = I. (18)

Then,

δX(tf ) = M(tf )

∫ tf

0

M−1(s)
(

B̃(s)δu(s) + C̃(s)δuT
y (s)

)

ds, (19)

and the next result follows.

Lemma 1: The Fréchet derivative of EX0,tf at a point u ∈ U is given by

dEX0,tf (u) · δu = M(tf )

∫ tf

0

M−1(s)
(

B̃(s)δu(s) + C̃(s)δuT
y (s)

)

ds. (20)

Definition 2: Let u be in U , the control u is said to be singular on [0, tf ] if the Fréchet

derivative dEX0,tf (u) is not surjective.

If the control u is singular, then there exists a line vector ϕ ∈ R
2n+1/{0} such that

ϕ · dEX0,tf (u) = 0. (21)

The line vector p(t) = ϕM(tf )M
−1(t) verifies

ṗ(t) = −p(t)Ã(t), p(tf ) = ϕ. (22)

It follows from (20), (21) and (22) that
∫ tf

0

p(t)
(

B̃(t)δu(t, h(X)) + C̃(t)δuT
y (t, h(X))

)

dt = 0, (23)

for every δu(t, h(X)). In particular, considering first controls δu(t), (23) yields

p(t)B̃(t) = 0, and p(t)C̃(t) = 0, a.e. on [t0, tf ].

June 9, 2006 DRAFT
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Define the Hamiltonian H2(t,X, u, uy, p) = pF (t,X, u, uy). Then a singular control u(t, h(X))

is characterized by

Ẋ =
∂H2

∂p
, ṗ = −pÃ = −

dH2

dX
,

∂H2

∂u
= p(t)B̃(t) = 0,

∂H2

∂uy

= p(t)C̃(t) = 0.
(24)

This Hamiltonian characterization is next used to derive necessary conditions for the leader.

D. Necessary conditions for the leader

Lemma 2: If the control u∗ is optimal for the problem defined by (11) - (12) and (2), then it

is singular on [0, tf ] for the extended system (13).

Proof of Lemma 2: Let X be the trajectory solution of the system (13), associated with a

control u issued from X0 = (xT
0 , ψ

T
∞,0, 0)

T . If u is optimal for J2, the final state X(tf ) lies at

the boundary of EX0,tf (U). Hence the end-point mapping EX0,tf is not open at u, and it follows

from the Implicit Functions Theorem that the control u is singular for system (13) on [0, tf ].

The Hamiltonian H2 associated with J2 subject to the constraint (13) can be rewritten as

H2 = λ1f̃ + λ2

(

F 1
∞ + F 2

∞ux

)T
+ λ◦L̃2, (25)

by setting p(t) = (λ1(t), λ2(t), λ
◦(t)), with λ1(t) ∈ R

n, λ2(t) ∈ R
n (line vectors) and λ◦(t) ∈ R.

The Hamiltonian characterization of a singular control leads to

∂H2

∂u
= λ1

∂f̃

∂u
+ λ2

(

∂F 1
∞

∂u
+
∂F 2

∞

∂u
uy

)T

+ λ◦
∂L̃2

∂u
= 0, (26)

∂H2

∂uy

= λT
2 F

2
∞ = 0, (27)

λ̇1 = −λ1
∂f̃

∂x
− λ2

(

∂F 1
∞

∂x
+
∂F 2

∞

∂x
uy

)T

− λ◦
∂L̃2

∂x
, (28)

λ̇2 = −λ1
∂f̃

∂ψ∞

− λ2

(

∂F 1
∞

∂ψ∞

+
∂F 2

∞

∂ψ∞

uy

)T

− λ◦
∂L̃2

∂ψ∞

, (29)

λ̇◦ = 0. (30)

From (30), λ◦(t) = λ◦ is constant. According to the Pontryagin Minimum Principle, we

assume that λ◦ ≥ 0.

June 9, 2006 DRAFT
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E. Transversality conditions

Since the initial state x(0) = x0 and the final costate line vector ψ∞(tf ) = 0 are fixed, the

extended costate line vector (λ1, λ2, λ
◦) must verify the transversality conditions

λ2(0) = 0, λ1(tf ) = 0. (31)

(see for example [21, page 104] for more details)

F. Degenerate Stackelberg strategy

From (27), we infer that λ2 ≡ 0 or F 2
∞ ≡ 0 (or both).

Proposition 1: If the matrix

∂F 2
∞

∂u
= DT

∞u

(

I +D∞R
−1
γ DT

∞

)

D∞u = DT
∞uWγD∞u (32)

is invertible, then λ2 ≡ 0. In this case, the Stackelberg strategy degenerates, due to the omnipo-

tence of the leader.

Proof of Proposition 1: By contradiction, assume that λ2 6= 0. Then, F 2
∞ ≡ 0. Since

∂F 2
∞

∂u
invertible, it follows from the Implicit Functions Theorem that, locally around the trajectory

u = u(t, x, ψ∞).

Hence, system (11) - (12) writes

ẋ = f̃(x, ψ∞, u(t, x, ψ∞)), ψ̇∞ = F 1
∞(x, ψ∞, u(t, x, ψ∞)). (33)

The dynamics and the criterion J2 are both independent of uy. Hence, every control uy is

optimal, which contradicts (26).

The fact that λ2 ≡ 0 means that the leader does not take into account the rational response of

the follower represented by the evolution of the costate vector ψ∞ to minimize his own criterion

J2. The Stackelberg strategy with a closed-loop information structure seems to lose globally its

hierarchical structure. In fact the condition (32) indicates that, if the criterion of the follower

depends on u, then the leader is able to impose to the follower a desired control. Even though

the hierarchy seems to disappear, the leader is omnipotent with respect to the follower. To a

certain extent, this could justify using Nash strategy in [15] for a mixed H2 /H∞ problems.

June 9, 2006 DRAFT
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G. Computation of the optimal control

Since the costate vector (λ1(tf ), λ2(tf ), λ
◦) = (0, 0, λ◦) must be nontrivial, up to normalizing,

we next assume λ◦ = 1.

From (26), we deduce the expression of the optimal control

u∗ = −U−1Cux− U−1B
T
λT

1 + α2U−1DT
∞uD∞R

−1
γ BT

∞ψ
T
∞. (34)

Plugging this expression into the dynamics (11) yields

f̃ = Âx− Ŝλλ
T
1 − Ŝ∞ψ

T
∞ +B2w2. (35)

According to (28), we obtain

λ̇T
1 = −ÂTλT

1 −Qx− α2C
T

∞R
−1
γ BT

∞ψ
T
∞ = gT (x, λ1, ψ∞). (36)

The evolution of ψ∞ (12) reads now

ψ̇∞ = F̃ 1
∞(x, λ1, ψ∞) + F̃ 2

∞(x, λ1, ψ∞)uy, (37)

with F̃ 1
∞(x, λ1, ψ∞) = F 1

∞(x, u∗(x, λ1, ψ∞), ψ∞), and F̃ 2
∞(x, λ1, ψ∞) = F 2

∞(x, u∗(x, λ1, ψ∞), ψ∞).

Since λ2 = 0, the relation (29) yields the constraint

ŜT
∞λ

T
1 − α2S∞ψ

T
∞ − α2B∞R

−1
γ C∞x = 0. (38)

Remark 1: If α = 0, then the necessary condition (38) becomes λ1Ŝ∞ = 0. In particular,

taking into account the transversality condition (31), the first and second derivatives of this

relation at t = tf yield

xT (tf )QŜ∞ = 0, and xT (tf )(QÂ− ÂQŜ∞) = wT
2 (tf )B2QŜ∞. (39)

These conditions are additional constraints.

The relation (39) is a relation at time tf between the exogeneous input w2 and the state x. This

necessary condition is not generally verified all the more so since w2 is in general considered

as a disturbance. In conclusion, the case α = 0 does not lead to a relevant solution for the

mixed H2 /H∞ problem. This result justifies the additional term α2wT
∞Rγw∞ in the criterion

J2 associated with the H2-norm, which yields convexity with respect to the control u whenever

α 6= 0. In the sequel, we assume that α 6= 0.
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Differentiating (38) with respect to t, it is clear that (38) is equivalent to the following relations

xT (tf )C∞ = 0, (40)

F̃ 2
∞

∂u∗

∂x
B∞R

−1
γ NR−1

γ BT
∞ = v =

( 1

α2
gŜ∞ − F̃ 1

∞ − f̃TC
T

∞

)

. (41)

The relation (40) implies that every x0 is not necessarily the starting point of an optimal

trajectory. The initial state x0 of an optimal trajectory must belong to a r∞-codim subspace of

R
n, where r∞ = rank C∞. The constraint (41) leads to

F̃ 2
∞

∂u∗

∂x
B∞ = vB∞

(

BT
∞B∞

)−1
RγN

−1Rγ, (42)

and hence

F̃ 2
∞

∂u∗

∂x
∈ vB∞

(

BT
∞B∞

)−1
RγN

−1Rγ

(

BT
∞B∞

)−1
BT

∞ +
(

KerBT
∞

)T
. (43)

Even though the optimal trajectory is unique, the expression for
∂u∗

∂x
in not unique.

Remark 2: w2 is not the action of one player, but a disturbance. Contrary to
∂u∗

∂x
and f̃ , the

control u∗(t, x) does not depend on this input w2.

Remark 3: To facilitate the research of the optimal control, a restricted class of u∗(t, y) can

be imposed. By choosing an affine representation (see [18]) of u∗(t, y)

u∗(t, y) = uy

(

y − x(t)
)

+ u(t), (44)

it is possible to avoid the exact computation of
∂u∗

∂x
on the optimal trajectory x(t).

H. Solving by Riccati equation

From (38), and by assuming that B∞ is of full rank,

ψ∞ =
( 1

α2
λ1B̃ − xTC

T

∞

)

N−1Rγ(B
T
∞B∞)−1BT

∞. (45)

Plugging this relation into (35) and (36), we obtain

ẋ(t) = Ã(t)x(t) − S̃(t)λT
1 (t) +B2w2(t), λ̇T

1 (t) = −Q̃(t)x(t) − ÃT (t)λT
1 (t). (46)

Similarly to LQ problems, it is possible to express λ1(t) in the form

λT
1 (t) = K1(t)x(t) + h1(t). (47)
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Indeed, it is clear that if the matrix K1(t) ∈ R
n×n and the column vector h1(t) ∈ R

n verify

K̇1(t) = −K1(t)Ã(t) − Ã(t)TK1(t) − Q̃(t) +K1(t)S̃(t)K1(t), (48)

ḣ1(t) = −K1(t)S̃(t)h1(t) + ÃT (t)h1(t) +K1(t)B2w2(t), (49)

with boundary conditions

K1(tf ) = 0, h1(tf ) = 0, (50)

then λ1(t) defined by (47) solves the differential equation (46) and the boundary condition (31).

Equation (48) is a standard Riccati equation, which can be linearized using Radon’s Lemma

(see [23]). For a given input w2, both equations (48) and (49) can be solved by backward

integrating from final conditions (50).

IV. SUFFICIENT CONDITIONS

In order to obtain sufficient conditions for this problem, some well known facts of conjugate

times theory are next recalled (see for example [24, chapter 9] for more details).

Definition 3: The variational system

d

dt





δx

δλ1
T



 =





Ã −S̃

−Q̃ −ÃT









δx

δλ1
T



 (51)

is called Jacobi’s equation. The Jacobi’s field J(t) = (δxT (t), δλ1(t)) is a nontrivial solution of

(51).

The transition matrix associated with (51) is denoted φ(t), and




δx(t)

δλT
1 (t)



 = φ(t)





δx(0)

δλT
1 (0)



 =





φ1(t) φ2(t)

φ3(t) φ4(t)









δx(0)

δλT
1 (0)



 . (52)

Definition 4: The first conjugate time tc is the first positive time for which there exists a

Jacobi field such that δx(0) = δx(tc) = 0.

This is equivalent to rank φ2(tc) < n.

The following results are standard in LQ theory (see [24, chapter 9]).

Proposition 2: The first conjugate time tc corresponds to the first finite escape time of the

Riccati equation (48).

Proof of Proposition 2: The solution of the Riccati equation (48) is given by

K1(t) = φ4(t)φ
−1
2 (t). (53)
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The first conjugate time tc is the first time at which φ2(tc) is not invertible, that is, ‖K1(t)‖ →

+∞, when t→ tc.

Proposition 3: The solutions of Pontryagin Minimum Principle are optimal before their first

conjugate time. The control (34) with λ1(t) given by the Riccati equation (48) is optimal if and

only if this equation admits a well defined solution on [0, tf ].

Thanks to these results the necessary conditions are also sufficient. Before the first conjugate

time, the optimal control -if it exists- is unique.

Actually, if Q̃ is nonnegative, then the following additional properties hold.

Proposition 4: If Q̃ ≥ 0, then the solution K1(t) of (48) is symmetric and nonnegative.

Proof of Proposition 4: See [23, Theorem 4.1.6], observing that K1(tf ) = 0, S̃ ≥ 0 and

Q̃ ≥ 0.

Proposition 5: If Q̃ ≥ 0, then tc = +∞.

Proof of Proposition 5: It is sufficient to apply [23, Corollary 3.6.7, Example 3.6.8], observing

K1(tf ) = 0, Q̃ ≥ 0 and S̃ ≥ 0.

Proposition 6: If Q̃ ≥ 0, and if K1(t) converges to a limit K∞
1 when t → +∞, then

(

Ã− S̃K∞
1

)

is stable.

Proof of Proposition 6: Taking the limit in (48) leads to the Lyapunov equation

K∞

1 (Ã− S̃K∞

1 ) + (Ã− S̃K∞

1 )TK∞

1 = −Q̃−K∞

1 S̃K
∞

1 < 0. (54)

The result follows because K∞
1 is symmetric and nonnegative.

In general, we do not know whether Q̃ is nonnegative or not. In the scalar case however we

are able to prove the following result.

Proposition 7: In the scalar case, r = n = 1, m∞ = m2 = 1 and r∞ = r2 = 1, Q̃ is

nonnegative.

Proof of Proposition 7: Let β = DT
∞uD∞ and η = D2u, the matrix Q̃ writes

Q̃ =
[

CT
2 CT

∞D∞R
−1
γ

]

M





C2

R−1
γ DT

∞C∞



 , (55)

where M =
2α4β2

(

η2 +
α2β2

Rγ

)(

η2 + 2
α2β2

Rγ

)







β

Rγ

−η







[

β

Rγ

−η

]

.
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V. CONCLUSION

This paper analyzes the mixed H2 /H∞ control for a multi-channel system. The framework

used is the Stackelberg strategy with a closed loop information structure. This strategy is well

adapted to manage several criteria with different hierarchical roles. Necessary conditions are

provided and lead to a differential Riccati equation. It is emphasized that the Stackelberg

strategy globally degenerates, due to the omnipotence of the leader. Using conjugate times

theory, sufficient conditions are given in terms of finite escape time for the solution of the

Riccati equation.
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