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QUASI-OPTIMAL ROBUST STABILIZATION OF CONTROL

SYSTEMS

CHRISTOPHE PRIEUR∗ AND EMMANUEL TRÉLAT†

Abstract. In this paper, we investigate the problem of semi-global minimal time robust sta-
bilization of analytic control systems with controls entering linearly, by means of a hybrid state
feedback law. It is shown that, in the absence of minimal time singular trajectories, the solutions of
the closed-loop system converge to the origin in quasi minimal time (for a given bound on the con-
troller) with a robustness property with respect to small measurement noise, external disturbances
and actuator noise.

Key words. Hybrid feedback, robust stabilization, measurement errors, actuator noise, external
disturbances, optimal control, singular trajectory, sub-Riemannian geometry.
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1. Introduction. Let m and n be two positive integers. Consider on IRn the
control system

ẋ(t) =

m
∑

i=1

ui(t)fi(x(t)), (1.1)

where f1, . . . , fm are analytic vector fields on IRn, and where the control function
u(·) = (u1(·), . . . , um(·)) satisfies the constraint

m
∑

i=1

ui(t)
2

6 1. (1.2)

All results of this paper still hold on a Riemannian analytic manifold of dimension
n, which is connected and complete. However, for the sake of simplicity, our results
are stated in IRn. Let x̄ ∈ IRn. The system (1.1), together with the constraint (1.2),
is said globally asymptotically stabilizable at the point x̄, if, for each point x ∈ IRn,
there exists a control law satisfying the constraint (1.2) such that the solution of (1.1)
associated to this control law and starting from x tends to x̄ as t tends to +∞.

This asymptotic stabilization problem has a long history and has been widely
investigated. Note that, due to Brockett’s condition [16, Theorem 1, (iii)], if m < n,
and if the vector fields f1, . . . , fm are independent, then there does not exist any
continuous stabilizing feedback law for (1.1). However several control laws have been
derived for such control systems (see for instance [8, 29] and references therein).

The robust asymptotic stabilization problem is under current and active research.
Many notions of controllers have been introduced to treat this problem, such as discon-
tinuous sampling feedbacks [19, 45], time varying control laws [20, 21, 33, 34], patchy
feedbacks (as in [5]), SRS feedbacks [43], ..., enjoying different robustness properties
depending on the errors under consideration.

In the present paper, we consider feedback laws having both discrete and con-
tinuous components, which generate closed-loop systems with hybrid terms (see for
instance [11, 49]). Such feedbacks appeared first in [37] to stabilize nonlinear systems
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2 C. PRIEUR AND E. TRELAT

having a priori no discrete state. They consist in defining a switching strategy between
several smooth control laws defined on a partition of the state space. Many results
on the stabilization problem of nonlinear systems by means of hybrid controllers have
been recently established (see for instance [14, 22, 25, 26, 30, 32, 35, 53]). The notion
of solution, connected with the robustness problem, is by now well defined in the
hybrid context (see [25, 39] among others). Specific conditions for the optimization
can be found in the literature (see e.g. [9, 24]).

The strategy of our paper is to combine a minimal time controller that is smooth
on a part of the state space, and other controllers defined on the complement of this
part, so as to provide a quasi minimal time hybrid controller by defining a switching
strategy between all control laws. The resulting hybrid law enjoys a quasi minimal
time property, and robustness with respect to (small) measurement noise, actuator
errors and external disturbances.

More precisely, in a first step, we consider the minimal time problem for the
system (1.1) with the constraint (1.2), of steering a point x ∈ IRn to the point x̄.
Note that this problem is solvable as soon as the Lie Algebra Rank Condition holds
for the m-tuple of vector fields (f1, . . . , fm). Of course, in general, it is impossible to
compute explicitly the minimal time feedback controllers for this problem. Moreover,
Brockett’s condition implies that such control laws are not smooth whenever m < n
and the vector fields f1, . . . , fm are independent. This raises the problem of the
regularity of optimal feedback laws. The literature on this subject is immense. In an
analytic setting, the problem of determining the analytic regularity of the minimal
time function has been, among others, investigated in [47]. For systems of the form
(1.1), it follows from [1, 2, 50] that the minimal time function to x̄ is subanalytic,
provided there does not exist any nontrivial singular minimal time trajectory starting
from x̄ (see [27, 28] for a general definition of subanalytic sets). This assumption
holds generically for systems (1.1), whenever m > 3 (see [18]). In particular, this
function is analytic outside a stratified submanifold S of IRn, of codimension greater
than or equal to 1 (see [48]). As a consequence, outside this submanifold it is possible
to provide an analytic minimal time feedback controller for the system (1.1), (1.2).
This optimal controller gives rise to trajectories never crossing again the singular set
S.

Note that the analytic context is used so as to ensure stratification properties,
which do not hold a priori if the system is smooth only. These properties are related
to the notion of o-minimal category (see [23]).

In a neighborhood of S, we prove the existence of a set of controllers steering the
system (1.1), (1.2) outside of this neighborhood in small time.

Then, in order to achieve a minimal time robust stabilization procedure, using
a hybrid feedback law, we define a suitable switching strategy (more precisely, a
hysteresis) between the minimal time feedback controller and other controllers defined
in a neighborhood of S. The resulting hybird system has the following property: if
the state is close to the singular submanifold S, the feedback controller will push the
state far enough from S, in small time; if the state is not too close to S, then the
feedback controller will steer the system to x̄ in minimal time. Hence, the stabilization
is quasi-optimal, and is proved to enjoy robustness properties.

Note that we thus give an alternative solution, in the context of hybrid systems
using hysteresis, to a conjecture of [15, Conj. 1, p. 101] concerning patchy feedbacks
for smooth control systems.1

1This conjecture on patchy feedbacks has been recently considered in [6]. In this preprint, written
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In a previous paper [41], this program was achieved on the so-called Brockett
system, for which n = 3, m = 2, and, denoting x = (x1, x2, x3),

f1 =
∂

∂x1
+ x2

∂

∂x3
, f2 =

∂

∂x2
− x1

∂

∂x3
.

In this case, there does not exist any nontrivial singular trajectory, and the manifold
S coincides with the axis (0x3). A simple explicit hybrid strategy was described. In
contrast, in the present paper, we derive a general result that requires a countable
number of components in the definition of the hysteresis hybrid feedback law.

The paper is organized as follows. In Section 2, we first recall some facts about
the minimal time problem for the system (1.1) with (1.2), and recall the definition of
a singular trajectory. Then, we give a notion of solution adapted to hybrid feedback
laws, and define the concept of stabilization via a minimal time hybrid feedback law.
The main result, Theorem 2.10 in Section 2.3, states that, if there does not exist any
nontrivial singular minimal time trajectory of (1.1), (1.2), starting from x̄, then there
exists a minimal time hybrid feedback law stabilizing semi-globally the point x̄ for
the system (1.1), (1.2). Section 2.4 describes the main ideas of the proof of the main
result, and in particular, contains two key lemmas. Section 3 is then devoted to the
detailed proof of Theorem 2.10, and gathers all technical aspects needed to deal with
hybrid systems: the components of the hybrid feedback law, and a switching strategy
between both components are defined, and properties of the closed-loop system are
investigated.

The results in this work were announced in [42].

2. Definitions and main result.

2.1. The minimal time problem. Consider the minimal time problem for the
system (1.1) with the constraint (1.2).

Throughout the paper, we assume that the Lie Algebra Rank Condition holds,
that is, the Lie algebra spanned by the vector fields f1, . . . , fm is equal to IRn, at
every point x of IRn.

It is well known that, under this condition, any two points of IRn can be joined
by a minimal time trajectory of (1.1), (1.2).

Let x̄ ∈ IRn be fixed. We denote by Tx̄(x) the minimal time needed to steer the
system (1.1) with the constraint (1.2) from a point x ∈ IRn to the point x̄.

Remark 2.1. Obviously, the control function u associated to a minimal time
trajectory of (1.1), (1.2), actually satisfies

∑m
i=1 u2

i = 1.

For T > 0, let UT denote the (open) subset of u(·) in L∞([0, T ], IRm) such that
the solution of (1.1), starting from x̄ and associated to a control u(·) ∈ UT , is well
defined on [0, T ]. The mapping

Ex̄,T : UT −→ IRn

u(·) 7−→ x(T ),

which to a control u(·) associates the end-point x(T ) of the corresponding solution
x(·) of (1.1) starting at x̄, is called end-point mapping at the point x̄, in time T ; it is

during the review process of the present work, the authors prove, using a penalization method, a
general result on stabilization by means of patchy feedbacks of nonlinear control systems in quasi-
minimal time.
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a smooth mapping.
Definition 2.2. A trajectory x(·) of (1.1), so that x(0) = x̄, is said singular on

[0, T ] if its associated control u(·) is a singular point of the end-point mapping Ex̄,T

(i.e., if the Fréchet derivative of Ex̄,T at u(·) is not onto). The control u(·) is said
singular.

Remark 2.3. If x(·) is singular on [0, T ], then it is singular on [t0, t1], for all
t0, t1 ∈ [0, T ] such that t0 < t1.

Remark 2.4. It is a standard fact that the minimal time control problem for the
system (1.1) with the constraint (1.2), is equivalent to the sub-Riemannian problem
associated to the m-tuple of vector fields (f1, . . . , fm) (see [10] for a general defini-
tion of a sub-Riemannian distance). In this context, there holds Tx̄(x) = dSR(x̄, x),
where dSR is the sub-Riemannian distance. This implies that the functions Tx̄(·) and
dSR(x̄, ·) share the same regularity properties. In particular, the function Tx̄(·) is
continuous.

2.2. Class of controllers and notion of hybrid solution. Let f : IRn ×
IRm → IRn be defined by f(x, u) =

∑m

i=1 uifi(x). The system (1.1) writes

ẋ(t) = f(x(t), u(t)). (2.1)

Let x̄ ∈ IRn be fixed.
The controllers under consideration in this paper depend on the continuous state

x ∈ IRn and also on a discrete variable sd ∈ N , where N is a nonempty subset of
IN. According to the concept of a hybrid system of [25], we introduce the following
definition.

Definition 2.5. A hybrid feedback is a 4-tuple (C, D, k, kd), where
• C and D are subsets of IRn ×N ;
• k : IRn ×N → IRm is a function;
• kd : IRn ×N → N is a function.

The sets C and D are respectively called the controlled continuous evolution set and
the controlled discrete evolution set.

We next recall the notion of robustness to small noise (see [46]). Consider two
functions e and d satisfying the following regularity assumptions:

e(·, ·), d(·, ·) ∈ L∞
loc(IR

n × [0, +∞); IRn),

e(·, t), d(·, t) ∈ C0(IRn, IRn), ∀t ∈ [0, +∞).
(2.2)

We introduce these functions as a measurement noise e and an external disturbance d.
Formally, the k-component of a hybrid feedback (k, kd, C, D) governs the differ-

ential equation

ẋ = f(x, k(x + e)) + d , ∀(x, sd) ∈ C,

whereas the kd-component governs the jump equation

s+
d = kd(x, sd) , ∀(x, sd) ∈ D.

The set C indicates where in the state space flow may occur while the set D indicates
where in the state space jumps may occur. The collection of this flow equation and
of this jump equation, under the perturbations e and d, is a perturbed hybrid system
H(e,d), as considered e.g. in [26]. We next provide a precise definition of the notion of
solutions considered here.
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This concept is well studied in the literature (see e.g. [11, 14, 31, 38, 39, 49]).
Here, we consider the notion of solution given in [25, 26].

Definition 2.6. Let S =
⋃J−1

j=0 [tj , tj+1] × {j}, where J ∈ IN ∪ {+∞} and
(x0, s0) ∈ IRn × N . The domain S is said to be a hybrid time domain. A map
(x, sd) : S → IRn × N is said to be a solution of H(e,d) with the initial condition
(x0, s0) if

• the map x is continuous on S;
• for every j, 0 6 j 6 J − 1, the map x : t ∈ (tj , tj+1) 7→ x(t, j) is absolutely

continuous;
• for every j, 0 6 j 6 J − 1 and almost every t > 0, (t, j) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ C, (2.3)

and

ẋ(t, j) = f(x(t), k(x(t, j) + e(x(t, j), t), sd(t, j))) + d(x(t, j), t), (2.4)

ṡd(t, j) = 0; (2.5)

(where the dot stands for the derivative with respect to the time variable t)
• for every (t, j) ∈ S, (t, j + 1) ∈ S, we have

(x(t, j) + e(x(t, j), t), sd(t, j)) ∈ D, (2.6)

and

x(t, j + 1) = x(t, j), (2.7)

sd(t, j + 1) = kd(x(t, j) + e(x(t, j), t), sd(t, j)); (2.8)

• (x(0, 0), sd(0, 0)) = (x0, s0).
In this context, we next define the concept of stabilization of (2.1) by a minimal

time hybrid feedback law sharing a robustness property with respect to measurement
noise and external disturbances. The usual Euclidean norm in IRn is denoted by
| · |, and the open ball centered at x̄ with radius R is denoted B(x̄, R). Recall that
a function of class K∞ is a function δ: [0, +∞) → [0, +∞) which is continuous,
increasing, satisfying δ(0) = 0 and limR→+∞ δ(R) = +∞.

As usual, the system is said complete if all solutions are maximally defined in
[0, +∞) (see e.g. [7]). More precisely, we have the following definition.

Definition 2.7. Let ρ : IRn → IR be a continuous function satisfying

ρ(x) > 0, ∀x 6= x̄. (2.9)

We say that the completeness assumption for ρ holds if, for all (e, d) satisfying the
regularity assumptions (2.2), and so that,

sup[0,+∞)|e(x, ·)| 6 ρ(x), esssup[0,+∞)|d(x, ·)| 6 ρ(x), ∀x ∈ IRn, (2.10)

for every (x0, s0) ∈ IRn × N , there exists a maximal solution on [0, +∞) of H(e,d)

starting from (x0, s0).
Roughly speaking, the finite time convergence property means that all solutions

reach x̄ within finite time. A precise definition of this concept follows.
Definition 2.8. We say that the uniform finite time convergence property holds

if there exists a continuous function ρ : IRn → IR satisfying (2.9), such that the



6 C. PRIEUR AND E. TRELAT

completeness assumption for ρ holds, and if there exists a function δ : [0, +∞) →
[0, +∞) of class K∞ such that, for every R > 0, there exists τ = τ(R) > 0, for all
functions e, d satisfying the regularity assumptions (2.2) and inequalities (2.10) for
this function ρ, for every x0 ∈ B(x̄, R), and every s0 ∈ N , the maximal solution
(x, sd) of H(e,d) starting from (x0, s0) satisfies

|x(t, j) − x̄| 6 δ(R), ∀t > 0, (t, j) ∈ S, (2.11)

and

x(t, j) = x̄, ∀t > τ, (t, j) ∈ S. (2.12)

We are now in position to introduce our main definition. It deals with closed-
loop systems whose trajectories converge to the equilibrium within quasi-minimal
time and with a robustness property with respect to measurement noise and external
disturbances.

Definition 2.9. The point x̄ is said to be a semi-globally quasi-minimal time

robustly stabilizable equilibrium for the system (2.1) if, for every ε > 0 and every
compact subset K ⊂ IRn, there exists a hybrid feedback law (C, D, k, kd) satisfying
the constraint

‖k(x, sd)‖ 6 1, (2.13)

where ‖ · ‖ stands for the Euclidean norm in IRm, such that:
• the uniform finite time convergence property holds;
• there exists a continuous function ρε,K : IRn → IR satisfying (2.9) for ρ =

ρε,K , such that, for every (x0, s0) ∈ K × N , all functions e, d satisfying the
regularity assumptions (2.2) and inequalities (2.10) for ρ = ρε,K , the maximal
solution of H(e,d) starting from (x0, s0) reaches x̄ within time Tx̄(x0)+ε, where
Tx̄(x0) denotes the minimal time to steer the system (2.1) from x0 to x̄, under
the constraint ‖u‖ 6 1.

2.3. Main result. The main result of this article is the following.
Theorem 2.10. Let x̄ ∈ IRn. If there exists no nontrivial minimal time singular

trajectory of (1.1), (1.2), starting from x̄, then x̄ is a semi-globally quasi-minimal time
robustly stabilizable equilibrium for the system (1.1), under the constraint (1.2).

Remark 2.11. The problem of global quasi-minimal time robust stabilization
(i.e. K = IRn in Definition 2.9) cannot be achieved a priori because measurement
noise may then accumulate and slow down the solution reaching x̄ (compare with
[15]).

Remark 2.12. The assumption of the absence of nontrivial singular minimizing
trajectory is crucial. Notice the following facts, which show the relevance of this
assumption:

• if m > n and if the vector fields f1, . . . , fm, are everywhere linearly indepen-
dent, then there exists no singular trajectory. In this case, we are actually in
the framework of Riemannian geometry (see Remark 2.4).

• Let Fm be the set of m-tuples of linearly independent vector fields (f1, . . . , fm),
endowed with the C∞ Whitney topology. If m > 3, there exists an open dense
subset of Fm, such that any control system of the form (1.1), associated to
a m-tuple of this subset, admits no nontrivial singular minimizing trajectory
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(see [17, 18], see also [2] for the existence of a dense set only). Hence generi-
cally the conclusion of Theorem 2.10 holds without assuming the absence of
nontrivial singular minimizing trajectories.

• If there exist singular minimizing trajectories, then the conclusion on sub-
analyticity of the function T may fail (see [13, 50]), and we cannot a priori
prove that the set S of singularities of T is a stratifiable manifold, which is
the crucial fact in order to define a hybrid strategy.

2.4. Short description of the proof. The strategy of the proof of Theorem
2.10 is the following.

Under the assumption of the absence of nontrivial singular minimal time trajec-
tory, the minimal time function Tx̄ associated to the system (1.1), (1.2), is subanalytic,
and hence, is analytic outside a stratified submanifold S of IRn, of codimension greater
than or equal to one. Therefore, the corresponding minimal time feedback controller
(further precisely defined in Section 3.2.3) is continuous (even analytic) on IRn\S (see
Figure 2.1). In a neighborhood of S, it is therefore necessary to use other controllers,
and then to define an adequate switching strategy.

x̄

Ω′

Ω

first component

switching between both components

second component

S

Fig. 2.1. Switching strategy.

More precisely, the proof of Theorem 2.10 relies on both following key lemmas.

Lemma 2.13. For every ε > 0, there exists a neighborhood Ω of S such that, for
every stratum2 Mi of S, there exist a nonempty subset Ni of IN, a locally finite family
(Ωi,p)p∈Ni

of open subsets of Ω, a sequence of smooth controllers ui,p defined in a
neighborhood of Ωi,p, satisfying ‖ui,p‖ 6 1, and there exists a continuous function
ρi,p : IRn → [0, +∞) satisfying ρi,p(x) > 0 whenever x 6= x̄, such that every solution
of

ẋ(t) = f(x(t), ui,p(x(t) + e(x(t), t))) + d(x(t), t), (2.14)

2Since S is a stratified submanifold of IRn of codimension greater than or equal to one, there
exists a partition (Mi)i∈IN of S, where Mi is a stratum, i.e., a locally closed submanifold of IRn.
Recall that, if Mi ∩ ∂Mj 6= ∅, then Mi ⊂ Mj and dim(Mi) < dim(Mj).



8 C. PRIEUR AND E. TRELAT

where e, d : IRn × [0, +∞) → IRn are two functions satisfying the regularity assump-
tions (2.2) and

sup[0,+∞)|e(x, ·)| 6 ρi,p(x), esssup[0,+∞)|d(x, ·)| 6 ρi,p(x), (2.15)

starting from Ωi,p and maximally defined on [0, T ), leaves Ω within time ε; moreover,
there exists a function δi,p of class K∞ such that, for every R > 0, every such solution
starting from Ωi,p ∩ B(x̄, R) satisfies

|x(t) − x̄| 6 δi,p(R), ∀t ∈ [0, T ). (2.16)

According to this lemma, in a neighborhood Ω of S, there exist controllers steering
the system outside Ω. Moreover, since this neighborhood can be chosen arbitrarily
thin, the time ε needed for its traversing is arbitrarily small.

Outside Ω, the optimal controller is analytic. The following lemma shows that
this controller shares an invariance property; in brief, it gives rise to trajectories never
crossing again the singular set S.

Lemma 2.14. For every neighborhood Ω of S \ {x̄} in IRn, there exists a neigh-
borhood Ω′ of S \ {x̄} in IRn, satisfying

Ω′ ( clos(Ω′) ( Ω, (2.17)

such that every trajectory of the closed-loop system (1.1) with the optimal controller,
starting from any point x ∈ IRn \ Ω, reaches x̄ in minimal time, and is contained in
IRn \ Ω′.

Finally, our hybrid strategy is the following. For every ε > 0, there exists a
neighborhood Ω of the singular set S, and there exist controllers which steer the
system outside this neighborhood in time less than ε. Outside Ω, there exists a
continuous controller and giving rise to trajectories never crossing again S and joining
x̄ in minimal time.

It is therefore necessary to define an adequate switching strategy connecting both
controllers (see Figure 2.1). This is achieved in the context of hybrid systems, using
an hysteresis strategy. The first component consists of controllers which are defined
in Ω, and whose existence is stated in Lemma 2.13. The second component of the
hysteresis is defined by the optimal controller, outside Ω; Both components are united
using an hysteresis, by adding a dynamical discrete variable sd and using a hybrid
feedback law. With this resulting hybrid controller, the time needed to join x̄, from
any point x0 of IRn, is less than Tx̄(x0) + ε.

The next section, devoted to the detailed proof of Theorem 2.10, is organized as
follows.

The first component of the hysteresis is defined in Section 3.1, and Lemma 2.13
is proved.

Section 3.2 concerns the definition and properties of the second component of the
hysteresis, defined by the minimal time controller. In Section 3.2.1, we recall how to
compute minimal time trajectories of the system (1.1), (1.2), using the Pontryagin
Maximum Principle. We then provide in Section 3.2.2 a crucial result on the cut locus
(Proposition 3.6). The optimal feedback controller is defined in Section 3.2.3; basic
facts on subanalytic functions are recalled, permitting to define the singular set S.
Invariance properties of this optimal controller are then investigated: Lemma 2.14 is
proved in Section 3.2.4; robustness properties are given and proved in Section 3.2.5.
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The hybrid controller is then defined in Section 3.3. A definition of a hybrid
control system, and properties of solutions, are given in Sections 3.3.1 and 3.3.2. A
precise description of the switching strategy is provided in Section 3.3.3. Theorem
2.10 is proved in Section 3.4.

3. Proof of Theorem 2.10. In what follows, let x̄ ∈ IRn be fixed.

3.1. The first component of the hysteresis. The first component of the
hysteresis consists of a set of controllers, defined in a neighborhood of S, whose
existence is stated in Lemma 2.13. Hereafter, we provide a proof of this lemma.

Proof. [Proof of Lemma 2.13] First of all, recall that, on the one hand, the minimal
time function coincides with the sub-Riemannian distance associated to the m-tuple
(f1, . . . , fm) (see Remark 2.4); on the other, since the Lie Algebra Rank Condition
holds, the topology defined by the sub-Riemannian distance dSR coincides with the
Euclidean topology of IRn, and, since IRn is complete, any two points of IRn can be
joined by a minimizing path (see [10]).

Let ε > 0 fixed. Since S is a stratified submanifold of IRn, there exists a neigh-
borhood Ω of S satisfying the following property: for every y ∈ S, there exists
z ∈ IRn \ clos(Ω) such that dSR(y, z) < ε.

Consider a stratum Mi of S. For every y ∈ Mi, let z ∈ IRn \ clos(Ω) such
that dSR(y, z) < ε. The Lie Algebra Rank Condition implies that there exists an
open-loop control t 7→ uy(t), defined on [0, T ) for a T > ε, satisfying the constraint
‖uy‖ 6 1, such that the associated trajectory xy(·) (which can be assumed to be
one-to-one), solution of (1.1), starting from y, reaches z (and thus, leaves clos(Ω))
within time ε. Using a density argument, the control uy can be moreover chosen as a
smooth function (see [10, Theorem 2.8 p. 21] for the proof of this statement). Since
the trajectory is one-to-one, the open-loop control t 7→ uy(t) can be considered as a
feedback t 7→ uy(xy(t)) along xy(·). Consider a smooth extension of uy on IRn, still
denoted uy, satisfying the constraint ‖uy(x)‖ 6 1, for every x ∈ IRn. By continuity,
there exists a neighborhood Ωy of y, and positive real numbers δy and ρy, such that
every solution of

ẋ(t) = f(x(t), uy(x(t) + e(x(t), t))) + d(x(t), t), (3.1)

where e, d : IRn × [0, +∞) → IRn are two functions satisfying the regularity assump-
tions (2.2) and

sup[0,+∞)|e(x, ·)| 6 ρy, esssup[0,+∞)|d(x, ·)| 6 ρy ,

starting from Ωy and maximally defined on [0, T ), leaves Ω within time ε; moreover,

|x(t) − x̄| 6 δy, ∀t ∈ [0, T ).

Repeat this construction for each y ∈ Mi.
Now, on the one hand, let (yp)p∈Ni

be a sequence of points of Mi such that the
family (Ωyp

)p∈Ni
is a locally finite covering of Mi, where Ni is a subset of IN. Define

Ωi,p = Ωyp
and ui,p = uyp

.
On the other hand, the existence of a continuous function ρi,p : IRn → [0, +∞),

satisfying ρi,p(x) > 0 whenever x 6= x, follows for the continuity of solutions with
respect to disturbances. The existence of a function δi,p of class K∞ such that (2.16)
holds is obvious.

Repeat this construction for every stratum Mi of S. Then, the statement of the
lemma follows.
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3.2. The second component of the hysteresis.

3.2.1. Computation of minimal time trajectories. Let x1 ∈ IRn, and x(·)
be a minimal time trajectory, associated to a control u(·), steering the system (1.1),
(1.2), from x̄ to x1, in time T = Tx̄(x1). According to Pontryagin’s maximum prin-
ciple (see [36]), the trajectory x(·) is the projection of an extremal, i.e., a triple
(x(·), p(·), u(·)) solution of the constrained Hamiltonian system

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)), ṗ(t) = −

∂H

∂x
(x(t), p(t), u(t)),

H(x(t), p(t), p0, u(t)) = max
‖v‖61

H(x(t), p(t), p0, v),

almost everywhere on [0, T ], where

H(x, p, u) =

m
∑

i=1

ui〈p, fi(x)〉

is the Hamiltonian of the optimal control problem, and p(·) (called adjoint vector) is
an absolutely continuous mapping on [0, T ] such that p(t) ∈ IRn \ {0}. Moreover, the
function t 7→ max‖v‖61 H(x(t), p(t), p0, v) is Lipschitzian, and everywhere constant on
[0, T ]. If this constant is not equal to zero, then the extremal is said normal ; otherwise
it is said abnormal.

Remark 3.1. Any singular trajectory is the projection of an abnormal extremal,
and conversely.

Controls associated to normal extremals can be computed as

ui(t) =
〈p(t), fi(x(t)〉

√

∑m

j=1〈p(t), fj(x(t)〉2
, i = 1, . . . , m. (3.2)

Indeed, note that, by definition of normal extremals, the denominator of (3.2) cannot
vanish. It follows that normal extremals are solutions of the Hamiltonian system

ẋ(t) =
∂H1

∂p
(x(t), p(t)), ṗ(t) = −

∂H1

∂x
(x(t), p(t)), (3.3)

where

H1(x, p) =

√

√

√

√

m
∑

i=1

〈p, fi(x)〉2.

Notice that H1(x(t), p(t)) is constant, nonzero, along each normal extremal. Since
p(0) is defined up to a multiplicative scalar, it is usual to normalize it so that
H1(x(t), p(t)) = 1. Hence, we introduce the set

X = {p0 ∈ IRn | H1(x̄, p0) = 0}.

It is a submanifold of IRn of codimension one, since ∂H1

∂p
(x̄, p0) = ẋ(0) 6= 0 (see [12]

for a similar construction in the general case). There exists a connected open subset
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U of [0, +∞) × X such that, for every (t∗, p0) ∈ X , the differential system (3.3) has
a well defined smooth solution on [0, t∗] such that x(0) = x̄ and p(0) = p0.

Definition 3.2. The smooth mapping

expx̄ : U −→ IRn

(t, p0) 7−→ x(t)

where (x(·), p(·)) is the solution of the system (3.3) such that x(0) = x̄ and p(0) =
p0 ∈ X , is called exponential mapping at the point x̄.

The exponential mapping parameterizes normal extremals. Note that the domain
of expx̄ is a subset of IR×X which is locally diffeomorphic to IRn (since we are in the
normal case).

Definition 3.3. A point x ∈ expx̄(U) is said to be conjugate to x̄ if it is a critical
value of the mapping expx̄, i.e., if there exists (tc, p0) ∈ U such that x = expx̄(tc, p0)
and the differential d expx̄(tc, p0) is not onto. The conjugate locus of x̄, denoted by
C(x̄), is defined as the set of all points conjugate to x̄.

With the previous notations, define Cmin(x̄) as the set of points x ∈ C(x̄) such
that the trajectory t 7→ expx̄(t, p0) is minimizing between x̄ and x.

3.2.2. The cut locus. A standard definition is the following.
Definition 3.4. A point x ∈ IRn is not a cut point with respect to x̄ if there

exists a minimal time trajectory of (1.1), (1.2), joining x̄ to x, which is the strict
restriction of a minimal time trajectory starting from x̄. The cut locus of x̄, denoted
by L(x̄), is defined as the set of all cut points with respect to x̄.

In other words, a cut point is a point at which a minimal time trajectory ceases
to be optimal.

Remark 3.5. In the analytic case, it follows from the theory of conjugate points
that every nonsingular minimal time trajectory ceases to be minimizing beyond its
first conjugate point (see for instance [3, 13]). Hence, if there exists no singular
minimal time trajectory starting from x̄, then Cmin(x̄) ⊂ L(x̄).

The following result on the cut locus is crucial for the proof of Theorem 2.10.
Proposition 3.6. Assume that the vector fields f1, . . . , fm are analytic, and

that there exists no singular minimal time trajectory starting from x̄. Then the set
of points of IRn where the function Tx̄(·) is not analytic is equal to the cut locus of x̄,
that is

Sing Tx̄(·) = L(x̄). (3.4)

Remark 3.7. Under the previous assumptions, one can prove that the set of
points of IRn where Tx̄(·) is analytic is equal to the set of points where Tx̄(·) is of class
C1.

Proof. Let x ∈ IRn so that Tx̄(·) is analytic at x. Then there exists a neighborhood
V of x in IRn such that Tx̄(·) is analytic on V . Let us prove that x /∈ L(x̄). It follows
from the maximum principle and the Hamilton-Jacobi theory (see [36]) that, for every
y ∈ V , there exists a unique minimal time trajectory joining x̄ to y, having moreover
a normal extremal lift (x(·), p(·), u(·)) satisfying

p(Tx̄(y)) = ∇Tx̄(y)

(compare with [44, Proposition 2.3]). Set U1 = exp−1
x̄ (V ). It follows easily from

Cauchy-Lipschitz Theorem that the mapping expx̄ is an analytic diffeomorphism from
U1 into V . Hence, obviously, the point x is not in the cut locus of x̄.



12 C. PRIEUR AND E. TRELAT

Conversely, let x /∈ L(x̄). To prove that Tx̄(·) is analytic at x, we need the two
following lemmas.

Lemma 3.8. The point x is not conjugate to x̄, and is joined from x̄ by a unique
minimal time trajectory.

Proof. [Proof of Lemma 3.8.] From the assumption of the absence of singular
minimal time trajectory, there exists a nonsingular minimal time trajectory joining x̄
to x. From Remark 3.5, the point x is not conjugate to x̄.

By contradiction, suppose that x is joined from x̄ by at least two minimal time
trajectories. By assumption, these two trajectories must admit normal extremal lifts.
Since the structure is analytic, their junction at the point x is necessarily not smooth.
This implies that both trajectories loose their optimality at the point x (indeed if not,
there would exist a nonsmooth normal extremal, which is absurd), and thus x ∈ L(x̄).
This is a contradiction.

Lemma 3.9. There exists a neighborhood V of x in IRn such that every point
y ∈ V is not conjugate to x̄, and there exists a unique (nonsingular) minimal time
trajectory joining x̄ to y.

Proof. [Proof of Lemma 3.9] Let p0 ∈ X so that x = expx̄(Tx̄(x), p0). Since
x is not conjugate to x̄, the exponential mapping expx̄ is a diffeomorphism from a
neighborhood U1 of (Tx̄(x), p0) in U into a neighborhood V of x in IRn. Set U2 =
exp−1

x̄ (V ).

Let us prove that expx̄ is proper from U2 into V . We argue by contradiction, and
suppose that there exists a sequence (xn)n∈IN of points of V converging towards x,
such that for each integer n there exists pn ∈ X , satisfying (Tx̄(xn), pn) ∈ U2 and
xn = expx̄(Tx̄(xn), pn), such that (pn)n∈IN is not bounded. It then follows from [51,
Lemmas 4.8 and 4.9] (see also [52, Fact 1 p. 378]) that x is joined from x̄ by a singular
control u. In particular, x is conjugate to x̄; this is a contradiction.

Therefore, the set {p | expx̄(Tx̄(x), p) = x} is compact in U2. Moreover, since x is
not conjugate to x̄, this set has no cluster point, and thus is finite. As a consequence,
up to reducing V , we assume that V is a connected open subset of expx̄(U2), and that
U2 is a finite union of disjoint connected open sets, all of which being diffeomorphic to
V by the mapping expx̄. We infer that every point y ∈ V is not conjugate to x̄. Hence,
the mapping expx̄ is a proper submersion from U2 into V , and thus is a fibration with
finite degree. Since, from Lemma 3.8, there exists a unique minimal time trajectory
joining x̄ to x, this degree is equal to one, that is, expx̄ is a diffeomorphism from U2

into V . The conclusion follows.

It follows from the previous lemma that (Tx̄(y), p0) = exp−1
x̄ (y), for every y ∈ V ,

and hence Tx̄(·) is analytic on V .

3.2.3. Definition of the optimal controller. By assumption, there does not
exist any nontrivial singular minimal time trajectory starting from x̄. Under these
assumptions, the function Tx̄(·) is subanalytic outside x̄ (see [1, 2, 50], combined with
Remark 2.4).

For the sake of completeness, we recall below the definition of a subanalytic
function (see [27, 28]), and some properties that are used in a crucial way in the
present paper (see [48]).

Let M be a real analytic finite dimensional manifold. A subset A of M is said to
be semi-analytic if and only if, for every x ∈ M , there exists a neighborhood U of x
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in M and 2pq analytic functions gij , hij (1 6 i 6 p and 1 6 j 6 q), such that

A ∩ U =

p
⋃

i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1 . . . q}.

Let SEM(M) denote the set of semi-analytic subsets of M . The image of a semi-
analytic subset by a proper analytic mapping is not in general semi-analytic, and
thus this class has to be enlarged.

A subset A of M is said to be subanalytic if and only if, for every x ∈ M , there
exist a neighborhood U of x in M and 2p couples (Φδ

i , A
δ
i ) (1 6 i 6 p and δ = 1, 2),

where Aδ
i ∈ SEM(M δ

i ), and where the mappings Φδ
i : M δ

i → M are proper analytic,
for real analytic manifolds M δ

i , such that

A ∩ U =

p
⋃

i=1

(Φ1
i (A

1
i )\Φ

2
i (A

2
i )).

Let SUB(M) denote the set of subanalytic subsets of M .
The subanalytic class is closed by union, intersection, complementary, inverse

image by an analytic mapping, image by a proper analytic mapping. In brief, the
subanalytic class is o-minimal (see [23]). Moreover subanalytic sets are stratifiable

in the following sense. A stratum of a differentiable manifold M is a locally closed
sub-manifold of M . A locally finite partition S of M is a stratification of M if any
S ∈ S is a stratum such that

∀T ∈ S T ∩ ∂S 6= ∅ ⇒ T ⊂ ∂S and dim T < dim S.

Finally, a mapping f : M → N between two analytic manifolds is said to be
subanalytic if its graph is a subanalytic subset of M × N .

Let M be an analytic manifold, and f be a subanalytic function on M . The
analytic singular support of f is defined as the complement of the set of points x in
M such that the restriction of f to some neighborhood of x is analytic. The following
property is of great interest in the present paper (see [48]): the analytic singular
support of f is subanalytic (and thus, in particular, is stratifiable). If f is moreover
locally bounded on M , then it is moreover of codimension greater than or equal to
one.

Turn back to our problem. The function Tx̄(·) is subanalytic outside x̄, and
hence, its singular set S = Sing Tx̄(·) (i.e., the analytic singular support of Tx̄(·)) is
a stratified submanifold of IRn, of codimension greater than or equal to 1.

Remark 3.10. Note that the point x̄ belongs to the adherence of S (see [1]).
Outside the singular set S, it follows from the dynamic programming principle

(see [36]) that the minimal time controllers steering a point x ∈ IRn \S to x̄ are given
by the closed-loop formula

ui(x) = −
〈∇Tx̄(x), fi(x)〉

√

∑m
j=1〈∇Tx̄(x), fj(x)〉2

, i = 1, . . . , m. (3.5)

The objective is to construct neighborhoods of S \{x̄} in IRn whose complements
share invariance properties for the optimal flow. This is the contents of Lemma 2.14,
proved next.
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3.2.4. Proof of Lemma 2.14. It suffices to prove that, for every compact subset
K of IRn, for every neighborhood Ω of S \ {x̄} in IRn, there exists a neighborhood
Ω′ of S \ {x̄} in IRn, satisfying (2.17), such that every trajectory of the closed-loop
system (1.1) with the optimal controller, joining a point x ∈ (IRn \ Ω) ∩ K to x̄, is
contained in IRn \ Ω′.

By definition of the cut locus, and using Proposition 3.6, every optimal trajectory
joining a point x ∈ (IRn \ Ω) ∩ K to x̄ does not intersect S, and thus has a positive
distance to the set S. Using the assumption of the absence of nontrivial singular
minimizing trajectories starting from x̄, a reasoning similar to the proof of Lemma
3.9 proves that the optimal flow joining points of the compact set (IRn \ Ω) ∩ K to x̄
is parameterized by a compact set. Hence, there exists a positive real number δ > 0
so that every optimal trajectory joining a point x ∈ (IRn \Ω)∩K to x̄ has a distance
to the set S which is greater than or equal to δ. The existence of Ω′ follows.

3.2.5. Robustness properties of the optimal controller. In this section, we
prove robustness properties of the Carathéodory solutions of system (2.1) in closed-
loop with this feedback optimal controller. Given e, d : IRn × [0, +∞) → IRn, the
perturbed system in closed-loop with the optimal controller (denoted uopt) writes

ẋ(t) = f(x(t), uopt(x(t) + e(x(t), t))) + d(x(t), t). (3.6)

Since the optimal controller is continuous outside the singular set S, it enjoys a natural
robustness property, stated below. In the next result, the notation d(x,S) stands for
the Euclidean distance from x to S.

Lemma 3.11. There exist a continuous function ρopt : IR → IR satisfying

ρopt(ξ) > 0, ∀ξ 6= 0, (3.7)

and a continuous function δopt : [0, +∞) → [0, +∞) of class K∞ such that the follow-
ing three properties hold:

• Robust Stability

For every neighborhood Ω of S, there exists a neighborhood Ω′ ⊂ Ω of S, such
that, for all e, d : IRn × [0, +∞) → IRn satisfying the regularity assumptions
(2.2) and, for every x ∈ IRn,

sup[0,+∞)|e(x, ·)| 6 ρopt(d(x,S)), esssup[0,+∞)|d(x, ·)| 6 ρopt(d(x,S)), (3.8)

and for every x0 ∈ IRn \ Ω, there exists a unique Carathéodory solution
x(·) of (3.6) starting from x0, maximally defined on [0, +∞), and satisfying
x(t) ∈ IRn \ Ω′, for every t > 0.

• Finite time convergence

For every R > 0, there exists τopt = τopt(R) > 0 such that, for all e, d :
IRn× [0, +∞) → IRn satisfying the regularity assumptions (2.2) and (3.8), for
every x0 ∈ IRn with |x0 − x̄| 6 R, and every maximal solution x(·) of (3.6)
starting from x0, one has

|x(t) − x̄| 6 δopt(R), ∀t > 0, (3.9)

x(t) = x̄, ∀t > τopt, (3.10)

and

‖uopt(x(t))‖ 6 1, ∀t > 0. (3.11)
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• Optimality

For every neighborhood Ω of S, every ε > 0, and every compact subset K of
IRn, there exists a continuous function ρε,K : IRn → IR satisfying (2.9) such
that, for all e, d : IRn × [0, +∞) → IRn satisfying the regularity assumptions
(2.2) and

sup[0,+∞)|e(x, ·)| 6 min(ρopt(d(x,S)), ρε,K (x)),

esssup[0,+∞)|d(x, ·)| 6 min(ρopt(d(x,S), ρε,K(x)), ∀x ∈ IRn,
(3.12)

and for every x0 ∈ K ∩ (IRn \ Ω), the solution of (3.6), starting from x0,
reaches x̄ within time Tx̄(x0) + ε.

Proof. Since Carathéodory conditions hold for the system (3.6), the existence
of a unique Carathéodory solution of (3.6), for every initial condition, is ensured.
The inequality (3.11) follows from the constraint (1.2). Since the optimal controller
uopt defined by (3.5) is continuous on IRn \ S, Lemma 2.14 implies the existence of
ρopt : IRn → [0, +∞) so that the robust stability and the finite time convergence

properties hold.
The so-called optimality property follows from the definition of uopt, from the

continuity of solutions with respect to disturbances, and from the compactness of the
set of all solutions starting from K ∪ (IRn \ Ω).

3.3. Definition of the hybrid feedback law. A switching strategy must be
defined in order to connect the first component (optimal controller), and the second
component (consisting a a set of controllers, stated in Lemma 2.13). The switching
strategy is achieved by adding a dynamical discrete variable sd and using a hybrid
feedback law, described next.

3.3.1. Definitions. Let F = {1, . . . , 7}, and N be a countable set. In the sequel,
greek letters refer to elements of N . Fix ω an element of N . We emphasize that we do
not introduce any order in N . However, intuitively, we consider that ω is the largest

element of N , i.e., ω is greater than any other element of N (see in particular Remark
3.15 below).

Given a set-valued map F : IRn
⇉ IRn, we define the solutions x(·) of the differen-

tial inclusion ẋ ∈ F (x) as all absolutely continuous functions satisfying ẋ(t) ∈ F (x(t))
almost everywhere.

Definition 3.12. The family (IRn \ {x̄}, ((Ωα,l)l∈F , gα)α∈N ) is said to satisfy
the property (P) if:

1. for every (α, l) ∈ N × F , the set Ωα,l is an open subset of IRn;
2. for every α ∈ N , and every m > l ∈ F ,

Ωα,l ( clos(Ωα,l) ( Ωα,m; (3.13)

3. for every α in N , gα is a smooth vector field, defined in a neighborhood of
clos(Ωα,7), taking values in IRn;

4. for every (α, l) ∈ N ×F , l 6 6, there exists a continuous function ρα,l : IRn →
[0, +∞) satisfying ρα,l(x) 6= 0 whenever x 6= x̄ such that every maximal
solution x(·) of

ẋ ∈ gα(x) + B(0, ρα,l(x)); (3.14)

defined on [0, T ) and starting from ∂Ωα,l, is such that

x(t) ∈ clos(Ωα,l+1), ∀t ∈ [0, T );
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5. for every l ∈ F , the sets (Ωα,l)α∈N form a locally finite covering of IRn \ {x̄}.
Remark 3.13. Some observations are in order.
• First note that this notion is close to the notion of a family of nested patchy

vector fields defined in [38]. However note that, in general, the sets (Ωα,l, gα)
may not be a patch as defined in [4, 38]. Indeed, due to the property 4, the
set Ωα,l may not be invariant for the system (3.14). Since the notion of a
patch is one of the main ingredients of the proofs of [40], we cannot apply [40]
directly, even though some notions are however in common (see in particular
Definition 3.14 below).

• On the one hand, the function ρα,l allows to get robustness with respect
to external disturbances. On the other hand, the gap between the different
patches given by (3.13) allow to get robustness with respect to measurement
noise (see Definition 3.16 below for a precise statement of an admissible radius
of measurement noise and external disturbances).

• To state our main result, we need consider a family of three nested patchy
vector fields. The patches 1, 2, 3, 4 and 6 define the dynamics of the discrete
component of our hybrid controller (see Definition 3.14 below). The patch 5
is used for technical reasons to handle the measurement noise.

We next define a class of hybrid controllers as those considered in Section 2 (see
also [40]).

Definition 3.14. Let (IRn \ {x̄}, ((Ωα,l)l∈F , gα)α∈N ) satisfy the property (P) as
in Definition 3.12. Assume that, for every α in N , there exists a smooth function kα

defined in a neighborhood of Ωα,7 and taking values in IRm, such that, for every x in
a neighborhood of Ωα,7,

gα(x) = f(x, kα(x)). (3.15)

Set

D1 = Ωω,2, (3.16)

Dα,2 = IRn \ Ωα,6. (3.17)

Let (C, D, k, kd) be the hybrid feedback defined by

C =
{

(x, α) | x ∈
(

clos(Ωα,4) \ Ωω,1

)}

, (3.18)

D = {(x, α) | x ∈ D1 ∪ Dα,2}, (3.19)

k : IRn ×N → IRm

(x, α) 7→ kα(x) if x ∈ Ωα,7,
0 else,

(3.20)

and

kd : IRn ×N ⇉ N
(x, α) 7→ ω, if x ∈ clos(Ωω,1 ∩ D1) and if x 6∈ Dα,2,

α′, if x ∈ clos(Ωα′,1 ∩ Dα,2).
(3.21)

The 4-tuple (C, D, k, kd) is a hybrid feedback law on IRn as considered in Section
2.2. We denote by H(e,d) the system (2.1) in closed-loop with such a feedback with the
perturbations e and d as measurement noise and external disturbance respectively.

Remark 3.15. In this definition, we do not use any order in N . However, in
light of [40], we consider that ω is greater than any other element of N . This element
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ω has a particular role in the sequel, since it will refer to the optimal controller in the
hybrid feedback law.

This hybrid controller takes advantage of the existence of regions where different
controllers kα exist and, roughly speaking, allows the hybrid variable to choose be-
tween the different controllers. This is the main idea of the hysteresis as done in [37]
to unit two controllers.

Note that the concept of a hybrid feedback law of Definition 3.14 is similar to
the one of [40]. However, in [40], the hybrid feedback laws are derived from a family
of patchy vector fields, whereas they are here derived from a family satisfying the
property (P) as considered in Definition 3.12.

3.3.2. Properties of solutions. In this section, we investigate some properties
of the solutions of the system in closed-loop with the hybrid feedback law defined
above.

Definition 3.16. Let χ : IRn → IR be a continuous map such that χ(x) > 0, for
every x 6= x̄.

• We say that χ is an admissible radius for the measurement noise, if, for every
x ∈ IRn and every α ∈ N , such that x ∈ Ωα,7,

χ(x) <
1

2
min

l∈{1,...,6}
d(IRn \ Ωα,l+1, Ωα,l). (3.22)

• We say that χ is an admissible radius for the external disturbances if, for
every x ∈ IRn, we have

χ(x) 6 max
(α,l), x∈Ωα,l

ρα,l(x).

There exists an admissible radius for the measurement noise and for the external
disturbances (note that, from (3.13), the right-hand side of the inequality (3.22) is
positive).

Consider an admissible radius χ for the measurement noise and the external
disturbances. Let e and d be a measurement noise and an external disturbance re-
spectively, such that, for all (x, t) ∈ IRn × [0, +∞),

e(x, t) 6 χ(x), d(x, t) 6 χ(x). (3.23)

The properties of the solutions of the system in closed-loop with the hybrid feed-
back law defined in Definition 3.14 are similar to the ones of [40]. Hence, we skip the
proof of the following three lemmas which do not use Statement 4 of Definition 3.12,
but only the definition of the hybrid feedback law.

Lemma 3.17. For all (x0, s0) ∈ IRn ×N , there exists a solution of H(e,d) starting
from (x0, s0).

Recall that a Zeno solution is a complete solution whose domain of definition is
bounded in the t-direction. A solution (x, sd), defined on a hybrid domain S, is an
instantaneous Zeno solution, if there exist t > 0 and an infinite number of j ∈ IN such
that (t, j) ∈ S.

The Zeno solutions do not require a special treatment.
Lemma 3.18. There do not exist instantaneous Zeno solutions, although a finite

number of switches may occur at the same time.
We note, as usual, that maximal solutions of H(e,d) blow up if their domain of

definition is bounded. Since Zeno solutions are avoided, the blow-up phenomenon
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only concerns the t-direction of the domain of definition, and we get the following
result (see also [25, Prop. 2.1]).

Lemma 3.19. Let (x, sd) be a maximal solution of H(e,d) defined on a hybrid
time S. Suppose that the supremum T of S in the t-direction is finite. Then,

lim sup
t→T,(t,l)∈S

|x(t, l)| = +∞.

We conclude this series of technical lemmas by studying the behavior of solutions
between two jumps. For every α ∈ N , set

τα = sup
{

T | x is a Carathéodory solution of ẋ = f(x, kα) + B(0, χ(x))
with x(t) ∈ Ωα,7, ∀t ∈ [0, T )

}

.
(3.24)

Note that there may exist α ∈ N such that τα = +∞.
Lemma 3.20. Let (x, sd) be a solution of H(e,d) defined on a hybrid time domain

S and starting in (IRn \ {x̄}) × N . Let T be the supremum in the t-direction of S.
Then, one of the two following cases may occur:

• either there exists no positive jump time, more precisely there exists α ∈ N
such that,

1. for almost every t ∈ (0, T ) and for every l such that (t, l) ∈ S, one has
k(sd(t, l)) = kα;

2. the map x is a Carathéodory solution of ẋ = f(x, kα) + d on (0, T, );
3. for every t ∈ (0, T ), and every l such that (t, l) ∈ S, one has x(t, l) +

e(x(t, l), t) ∈ clos(Ωα,4) \ Ωω,1;
4. for all (t, l) ∈ S, t > 0, one has x(t, l) + e(x(t, l), t) 6∈ D, where D is

defined by (3.19);
5. the inequality T < τα holds.

• or there exists a unique positive jump time, more precisely there exist α ∈
N \ {ω} and t1 ∈ (0, T ) such that, letting t0 = 0, t2 = T , α0 = α, α1 = ω,
for every j = 0, 1, the following properties hold:

6. for almost every t ∈ (tj , tj+1) and for every l such that (t, l) ∈ S, one
has k(sd(t, l)) = kαj

;
7. the map x is a Carathéodory solution of ẋ = f(x, kαj

) + d on (tj , tj+1);
8. for every t ∈ (t0, t1), and every l such that (t, l) ∈ S, one has x(t, l) +

e(x(t, l), t) ∈ clos(Ωα,4) \ Ωω,1;
9. for every t in (tj , tj+1), and every l such that (t, l) ∈ S, one has x(t, l)+

e(x(t, l), t) 6∈ Dαj,2, where Dαj ,2 is defined by (3.17);
10. the inequality t1 < ταj

holds.
Proof. Consider the sequence (tj)j∈m of jump times, i.e., the times such that

t0 = 0 and, for every j ∈ m, j 6 m − 1,

tj 6 tj+1 , (3.25)

(x(tj+1 , j) + e(x(tj+1, j), tj+1), sd(tj+1, j)) ∈ D , (3.26)

and

(x(tj+1, j + nj) + e(x(tj+1, j), tj+1), sd(tj+1, j + nj)) ∈ C , (3.27)

where nj is the finite number of instantaneous switches (see Lemma 3.18). Let σ :
IN → IN be an increasing function such that tσ(j) < tσ(j+1).
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Between two jumps, sd(t) is constant, and thus, there exists a sequence (αj) in
N such that, for every t ∈ (tσ(j), tσ(j+1)), except for a finite number of t, we have

sd(t, σ(j)) = αj , (3.28)

x is a Carathéodory solution of ẋ = f(x, kαj
) + d on (tσ(j), tσ(j+1)), (3.29)

and

k(sd(t, σ(j))) = kαj
. (3.30)

From (3.18), (3.27) and (3.28), we have, for every t ∈ [tσ(j), tσ(j+1)],

x(t, j) + e(x(t, j), t) ∈ clos(Ωqj ,4) \ Ωω,1. (3.31)

Note that, from (3.30), (3.31), and Statement 4 of Definition 3.12, for every t > 0
such that t ∈ [tσ(j), tσ(j+1)], one has

x(t, σ(j)) 6∈ Dαj ,2. (3.32)

Therefore, the positive jump time may occur only at time tj where the point x(tj , l)+
e(x(tj , l), tj) belongs to D1. Thus, there exists at most one positive jump time. From
(3.29) and (3.30), Statements 1, 2, 6, 7 hold. Statements 3 and 8 are deduced from
(3.31). Equation (3.32) implies Statements 4 and 9. Finally, Statements 5 and 10 are
a consequence of (3.24) and (3.29).

3.3.3. Definition of the hybrid feedback law, and switching strategy.

We next define our hybrid feedback law. Let ε > 0 and K be a compact subset of
IRn. Let Ω be the neighborhood of S given by Lemma 2.13. For this neighborhood
Ω, let Ω′ ⊂ Ω be the neighborhood of S yielded by Lemma 2.14.

Let N be the countable set defined by

N = {(i, p), i ∈ IN, p ∈ Ni} ∪ {ω},

where ω is an element of IN × IN, distinct from every (i, p), i ∈ IN, p ∈ Ni.
We proceed in two steps. We first define kα and Ωα,l, where α ∈ N \ {ω} and

l ∈ F . Then, we define kω and Ωω,l, where l ∈ F .
1. Let i ∈ IN. Lemma 2.13, applied with the stratum Mi, implies the existence

of a family of smooth controllers (ki,p)p∈Ni
satisfying the constraint (1.2),

and of a family of neighborhoods (Ωi,p,7)p∈Ni
. The existence of the families

(Ωi,p,1)p∈Ni
, . . . , (Ωi,p,6)p∈Ni

, satisfying

Ωi,p,l ( clos(Ωi,p,l) ( Ωi,p,m,

for every m > l ∈ F , follows from a finite induction argument, using Lemma
2.13.
We have thus defined ki,p and Ωi,p,l, where (i, p) ∈ N \ {ω} and l ∈ F .
Remark 3.21. It follows from [1] that, near the point x̄, the cut locus S is
contained in a conic neighborhood C centered at x̄ (as shaped on Figure 2.1),
the axis of the cone being transversal to the subspace Span{f1(x̄), . . . , fm(x̄)}.
Hence, up to modifying slightly the previous construction, we assume that,
near x̄, the set

⋃

α∈N\{ω}, l∈F Ωα,l is contained in this conic neighborhood.
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2. It remains to define the sets Ωω,l, where l ∈ F , and the controller kω. Let
Ωω,1 be an open set of IRn containing IRn \

⋃

α∈N\{ω} Ωα,1 and contained in

IRn \S. From the previous remark, the point x̄ belongs to clos(Ωω,1). Lemma
2.14, applied with Ω = IRn \ clos(Ωω,1), allows to define kω as kopt, and Ω′ a
closed subset of IRn such that

Ω′ ( Ω, (3.33)

and such that Ω′ is a neighborhood of S. Set Ωω,2 = IRn \ Ω′; it is an open
subset of IRn, contained in IRn \ S. Moreover, from (3.33),

Ωω,1 ( clos(Ωω,1) ( Ωω,2.

The existence of the sets Ωω,3, . . . , Ωω,7 follows from a finite induction ar-
gument, using Lemma 2.14. Moreover, from Lemma 3.11, we have the fol-
lowing property: for every l ∈ {1, . . . , 6}, for every x0 ∈ Ωω,l, the unique
Carathéodory solution x(·) of (3.6), with x(0) = x0, satisfies x(t) ∈ Ωω,l+1,
for every t > 0.

Therefore, (IRn \ {x̄}, ((Ωα,l)l∈F , gα)α∈N ) is a family satisfying the property (P) as
in Definition 3.12, where gα is a function defined in a neighborhood of Ωα,7 by

gα(x) = f(x, kα).

The hybrid feedback law (C, D, k, kd) is then defined according to Definition 3.14.

3.4. Proof of Theorem 2.10. Let ε > 0, and K be a compact subset of IRn.
Consider the hybrid feedback law (C, D, k, kd) defined previously. Let χ be an admis-
sible radius for the external disturbances and the measurement noise (see Definition
3.16). Up to reduce this function, we assume that, for every α ∈ N \ {ω},

χ(x) 6 ρopt(d(x,S)), ∀x ∈ Ωω,7, (3.34)

χ(x) 6 ρα(x), ∀x ∈ Ωα,7. (3.35)

Note that, from the choice of the components of the hybrid feedback law, and from
Lemmas 2.13 and 3.20, for every α ∈ N \ {ω}, the constant τα defined by (3.24) is
such that τα < ε.

Let us prove that the point x̄ is a semi-global quasi-minimal time robust sta-
ble equilibrium for the system H(e,d) in closed-loop with the hybrid feedback law
(C, D, k, kd) as stated in Theorem 2.10.

Step 1: Completeness and global stability

Let R > 0 and δ : [0, +∞) → [0, +∞) of class K∞ be such that, for every α ∈ N \{ω},

δ(x) 6 δopt(R), ∀x ∈ Ωω,7, (3.36)

δ(x) 6 δα(R), ∀x ∈ Ωα,7, (3.37)

where the functions δα are defined in Lemma 2.13. Let e, d be two functions satisfying
the regularity assumptions and (3.23). Let (x, sd) be a maximal solution of H(e,d) on
a hybrid domain S starting from (x0, s0), with |x0| < R. From Lemmas 3.11, 2.13
and 3.20, we have, for every (t, l) ∈ S,

|x(t, l) − x̄| 6 δ(R). (3.38)
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Therefore, the conclusion of Lemma 3.19 cannot hold (since lim supt→T,(t,l)∈S |x(t, l)| 6=
+∞), and thus, the supremum T of S in the t-direction is infinite, and the maximality
property follows. The stability property follows from (3.38).

Step 2: Uniform finite time convergence property

Let x0 ∈ B(x̄, R), and s0 ∈ N . Let (x, sd) denote the solution of H(e,d) starting from
(x0, s0). If x0 = x̄, then, using (3.20) and the fact that χ(x̄) = 0, the solution remains
at the point x̄. We next assume that x0 6= x̄. Let α0 ∈ N such that x(·) is a solution
of ẋ = f(x, kα0

(x)) + d on (0, t1) for a t1 > 0 given by Lemma 3.20.

If α0 = ω, then the feedback law under consideration coincides with the optimal
controller and, from Statement 4 of Lemma 3.20, there does not exist any switching
time t > 0. Then, from Lemma 3.11, x(·) reaches x̄ within time Tx̄(x0) + ε.

If α0 6= ω, then, from Lemmas 2.13 and 3.20, the solution x(·) leaves Ωα0,7 within
time ε and then enters the set Ωω,7. Therefore, since τα < ε, x(·) reaches x̄ within
time Tx̄(x1) + ε, where x1 denotes the point of x(·) when entering Ωω,7.

Let τ(R) = maxx∈δ(R) T (x)+ε. With (3.38), we get (2.12) and the uniform finite
time property. Note that, from Lemma 2.13, the constraint (2.13) is satisfied.

Step 3: Quasi-optimality

Let K be a compact subset of IRn, and (x0, s0) ∈ K × N . Let R > 0 such that
K ⊂ B(0, R). From the previous arguments, two cases occur:

• the solution starting from (x0, s0) reaches x̄ within time Tx̄(x0)+ ε whenever
α0 = ω;

• the solution starting from (x0, s0) reaches x̄ within time Tx̄(x1)+ε, whenever
α0 6= ω, where x1 denotes the point of x(·) when entering Ωω,7. Up to reducing
the neighborhoods Ωα,l, one has |Tx̄(x0)−Tx̄(x1)| 6 ε. Indeed, from Remark
2.4, the function Tx̄(·) is uniformly continuous on the compact K.

Hence, the maximal solution starting from (x0, s0) reaches x̄ within time Tx̄(x0)+2ε.
This is the quasi-optimality property.

Theorem 2.10 is proved.

Acknowledgments. The authors are grateful to Ludovic Rifford for constructive
comments and suggestions.
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[41] C. Prieur and E. Trélat, Robust optimal stabilization of the Brockett integrator via a hybrid

feedback, Math. Control Signals Syst., 17, (2005), no. 3, pp. 201–216.
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