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Abstract— In this paper we present two watermarking 

approaches that are robust to geometric distortions. The first 
approach is based on image normalization, in which both 
watermark embedding and extraction are carried out with 
respect to an image normalized to meet predefined moment 
criteria. We propose a new normalization procedure, which is 
invariant to affine transform attacks. The resulting 
watermarking scheme is suitable for public watermarking 
applications, where the original image is not available for 
watermark extraction. The second approach is based on a 
watermark resynchronization scheme aimed to alleviate the 
effects of random bending attacks. In this scheme, a deformable 
mesh is used to correct the distortion caused by the attack. The 
watermark is then extracted from the corrected image. In 
contrast to the first scheme, the latter is suitable for private 
watermarking applications, where the original image is needed 
during watermark detection. In both schemes we employ a 
direct-sequence code division multiple access (DS-CDMA) 
approach to embed a multi-bit watermark in the discrete cosine 
transform (DCT) domain of the image. Numerical experiments 
demonstrate that the proposed watermarking schemes are robust 
to a wide range of geometric attacks. 

 
 

Index Terms— Digital watermarking, image normalization, 
geometric attacks, mesh modeling, watermark resynchronization, 
code division multiple access watermarking. 
 

I. INTRODUCTION 
ith the ever-growing expansion of digital multimedia 
and the Internet the problem of ownership protection of 

digital information has become increasingly important. 
Although significant progress has been made in watermarking 
of digital images, many challenging problems still remain in 
practical applications. Among these problems is the resilience 
of watermarking to geometric attacks. Such attacks are easy to 
implement, but can make many of the existing watermarking 
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algorithms ineffective. Examples of geometric attacks include 
rotation, scaling, translation, shearing, random bending, or 
change of aspect ratio (e.g., [1], [2] and [3]).  Such attacks are 
effective in that they can destroy the synchronization in a 
watermarked bit-steam, which is vital for most of the 
watermarking techniques. This is problematic especially in 
applications where multi-bit public watermarking is used, 
where the original image is not available for watermark 
extraction. 

In the literature several approaches have been proposed to 
combat geometric attacks. Ruanaidh and Pun [4] proposed a 
scheme based on the invariant properties of Fourier-Mellin 
transform (FMT) to deal with such attacks as rotation, scaling 
and translation (RST). This approach was effective in theory, 
but difficult to implement. Aimed to alleviate the 
implementation difficulty of this approach, Lin et al [5] 
proposed to embed the watermark in a one-dimensional signal 
obtained by projecting the Fourier-Mellin transformed image 
onto the log-radius axis. This approach was intended to embed 
only one bit of information, i.e. presence or absence of the 
watermark. 

In [6] Pereira and Pun proposed another approach in which 
an additional template, known as a “pilot” signal in traditional 
communication systems, besides the watermark was 
embedded in the DFT domain of the image. This embedded 
template was used to estimate the affine geometric attacks in 
the image. The image was then corrected with the estimated 
distortion, and the detection of the watermark was performed 
afterwards. A theoretical analysis was provided in [7] on the 
bit error rate for this pilot-based approach under a number of 
geometric attacks. This approach requires the detection of 
both the synchronization pattern and the watermark. A 
potential problem arises when a common template is used for 
different watermarked images, making it susceptible to 
collusion-type detection of the template [8]. 

In [9] Bas et al proposed a watermarking approach that is 
adaptive to the image content. In this approach salient feature 
points, extracted from the image, were used to define a 
number of triangular regions. A one-bit watermark was then 
embedded inside each triangle using an additive spread 
spectrum scheme. This approach requires the robust detection 
of the salient points in the image in order to retrieve the 
watermark. 

In [11] a watermarking scheme was proposed using 
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moment based image normalization, a well-known technique 
in computer vision and pattern recognition applications [10]. 
In this approach both watermark embedding and extraction 
were performed using a normalized image having a standard 
size and orientation. Thus, it is suitable for public 
watermarking where the original image is not available. The 
approach in [11] was used to embed a one-bit watermark. 

In this paper, we propose two watermarking approaches to 
alleviate the problem of geometric distortions. The first is a 
multi-bit public watermarking scheme based on image 
normalization, aimed to be robust to general affine geometric 
attacks. Our scheme is different from the one in [11] in that: 
1) we address more general affine distortions, where shearing 
in the x and y directions are allowed rather than simple scaling 
and rotation attacks; 2) we propose a multi-bit watermarking 
system based on direct-sequence code division multiple access 
(DS-CDMA).  

The second watermarking approach is based on a 
watermark resynchronization scheme, aimed to be robust to 
random geometric distortions and to be used in the context of 
private watermarking where the original image is known. This 
scheme uses a deformable mesh model for correcting the 
distortion so that resynchronization is achieved. We present 
and compare two variations of this scheme, which were first 
reported in our previous work in [13] and [22], respectively.  

The rest of this paper is organized as follows. In Section II 
we present the public watermarking scheme based on image 
normalization. In Section III we describe the private 
watermarking scheme based on deformable mesh modeling. In 
Section IV we present numerical experiments to demonstrate 
the effectiveness of the proposed algorithms. Finally, we give 
our conclusions in Section V. 

 

II. WATERMARKING BASED ON IMAGE NORMALIZATION 
The key idea of this watermarking scheme is to use a 

normalized image for both watermark embedding and 
detection. The normalized image is obtained from a geometric 
transformation procedure that is invariant to any affine 
distortions of the image. This will ensure the integrity of the 
watermark in the normalized image even when the image 

undergoes affine geometric attacks. This watermarking 
scheme is illustrated in Fig. 1 using a functional diagram. It is 
noted that the cover image is not needed for the watermark 
extraction. Thus, this scheme is desirable for public 
watermarking applications. 

Below we describe the components that define this scheme 
in details. We begin with some background on image 
moments and geometric affine transforms, which are the 
necessary tools for image normalization. 

 

A. Image Moments and Affine Transforms 
Let ( , )f x y  denote a digital image of size M N× . Its 

geometric moments pqm  and central moments pqμ , 

, 0,1,2,p q = L , are respectively defined as 
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An image ( , )g x y  is said to be an affine transform of 

( , )f x y  if there is a matrix 11 12

21 22

a a
a a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A  and vector 

1

2

d
d

⎛ ⎞
= ⎜ ⎟
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 a

a

x x
y y

⎛ ⎞ ⎛ ⎞
= ⋅ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
A d . (4) 

It is readily seen that rotation, scaling, and translation 
(RST) are all special cases of affine transforms. Other 
examples of affine transforms include: i) shearing in the x  

direction, which corresponds to 
1
0 1 x

β⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A A  in (4); ii) 

shearing in the y  direction, which corresponds 

to
1 0

1 yγ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A A ; and iii) scaling in both x  and y  

directions, which corresponds to
0

0 s

α
δ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A A . 

Moreover, it is straightforward to show that any affine 
transform A  can be decomposed as a composition of the 
aforementioned three transforms, e.g., s y x= ⋅ ⋅A A A A , 

provided that 11 0 and det( ) 0a ≠ ≠A . 
In addition, one can derive the following results (the 

derivation is omitted for brevity): 
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Fig. 1. Image normalization based watermarking system. 
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Lemma 1. If ( , )g x y  is an affine transformed image of 

( , )f x y  obtained with affine matrix 11 12

21 22

a a
a a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A  and 

=d 0 , then the following identities hold: 
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∑∑ , (5) 
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where pqm′ , pqm′  are the moments of ( , )g x y , and pqm , pqm  

are the moments of ( , )f x y .  
 

B. Image Normalization 
In this section, we describe a normalization procedure that 

achieves invariance under affine geometric distortions. The 
general concept of image normalization using moments is well 
known in pattern recognition problems (e.g., see [15], [16] 
and [17], where the idea is to extract image features that are 
invariant to affine transforms). In this application we apply a 
normalization procedure to the image so that it meets a set of 
predefined moment criteria.  

The normalization procedure consists of the following 
steps: for a given image ( , )f x y , 

1. Center the image ( , )f x y ; this is achieved by setting 

in (4) the matrix 
1 0
0 1

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A  and the vector 

1

2

d
d

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
d  with  

 10 01
1 2

00 00

,m md d
m m

= = , (7) 

where 10m , 01m  and 00m  are the moments of 
( , )f x y  as defined in (1). This step is aimed to 

achieve translation invariance. Let 1( , )f x y  denote the 
resulting centered image. 

2. Apply a shearing transform to 1( , )f x y  in the x  

direction with matrix 
1
0 1x

β⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A  so that the 

resulting image, denoted by 2 1( , ) [ ( , )]xf x y f x yA , 

achieves (2)
30 0μ = , where the superscript is used to 

denote 2 ( , )f x y . 
3. Apply a shearing transform to 2 ( , )f x y  in the y  

direction with matrix 
1 0

1y γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A  so that the 

resulting image, denoted by 3 2( , ) [ ( , )]yf x y f x yA , 

achieves (3)
11 0μ = . 

4. Scale 3( , )f x y  in both x  and y  directions with 

0
0s

α
δ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A  so that the resulting image, denoted 

by 4 3( , ) [ ( , )]sf x y f x yA , achieves: 1) a prescribed 

standard size, and 2) (4)
50 0μ > and (4)

05 0μ > . 
The final image 4 ( , )f x y  is the normalized image, based 

on which subsequent watermark embedding or extraction is 
performed.  Intuitively, the above normalization procedure 
can also be explained as follows: the discussion following 
equation (4) points to the fact that a general affine 
transformation attack can be decomposed as a composition of 
translation, shearing in both x and y directions, and scaling in 
both x and y directions. The four steps in the normalization 
procedure are designed to eliminate each of these distortion 
components. More specifically step 1 eliminates the 
translation of the affine attack by setting the center of the 
normalized image at the density center of the affine attacked 
image, step 2 and step 3 eliminate shearing in the x and y 
directions by forcing (2)

30 0μ =  and (3)
11 0μ = . Finally, step 4 

eliminates scaling distortion by forcing the normalized image 
to a standard size. It is important to note that each step in the 
normalization procedure is readily invertible. This will allow 
us to convert the normalized image back to its original size 
and orientation once the watermark is inserted. 

Of course, we need to determine in the above procedure the 
parameters associated with the transforms , ,  and x y sA A A . 

We will address this issue in the next subsection. In the 
following theorem we present the invariant property of the 
normalized image 4 ( , )f x y  to affine transforms. 

Theorem 1. An image ( , )f x y  and its affine transforms 
have the same normalized image. 

The proof of this result is deferred to the Appendix. 
To demonstrate this normalization procedure, we show in 

Fig. 2(a) an original image “Lena”; in (b) we show this image 
after an affine distortion; both of these images yield the same 
image, shown in Fig. 2(c), when the normalization procedure 
is applied. 

 

C. Determination of the Transform Parameters 
In this section we show how to determine the parameters 

associated with the transforms , ,  and x s yA A A  so that they 

achieve their respective normalization goals. 

1.  Sheering matrix
1
0 1x

β⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A .   

From identity (6), we have 
 (2) (1) (1) 2 (1) 3 (1)

30 30 21 12 033 3 ,μ μ βμ β μ β μ= + + +  (8) 

where (1)
pqμ  are the central moments of 1( , )f x y .  

Setting (2)
30 0μ = , we obtain 
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 (1) (1) 2 (1) 3 (1)

30 21 12 033 3 0μ βμ β μ β μ+ + + = . (9) 
The parameter β  is then solved from (9).  
Note that equation (9) can have up to three roots in the case 

that (1)
03 0μ ≠  (which is generally true for most of the nature 

images). In particular, we may have the following two 
scenarios: 1) one of the three roots is real and the other two 
are complex; and 2) all three roots are real. In the former case, 
we simply set β  to be the real root; in the latter case, we pick 
β  to be the median of the three real roots. As demonstrated 
in the Appendix, such a choice of β  is to ensure the 
uniqueness of the resulting normalized image.  

Of course, under some very unusual conditions the number 
of roots of (9) may vary. For example, when all the moments 
involved in (9) are zero, it will have infinite number of 
solutions. This can happen when the image is rotationally 
symmetric, such as a disk or a ring. We refer to [16] and [17] 
for more details on general normalization procedures. 

2. Sheering matrix
1 0

1y γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A .  

From identity (6), we have 
 (3) (2) (2)

11 20 11μ γμ μ= + . (10) 

Setting (3)
11 0μ = , we obtain 

 
(2)
11
(2)
20

μγ
μ

= − . (11) 

Thus, the parameter γ  has a unique solution. 

3. Scaling matrix
0

0s

α
δ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
A .  

The magnitudes of scaling parameters and α δ  are 
determined by resizing the image 3( , )f x y  to a prescribed 
standard size in both horizontal and vertical directions. Their 
signs are determined so that both (4)

50μ  and (4)
05μ  are positive 

(which can be changed by flipping either horizontally or 
vertically).  

D. Effect of the Watermark 
It is noted that for watermark embedding, the normalization 

is applied with respect to the original image, while for 
watermark extraction it is applied with respect to the 
watermarked image. It is thus important to design the 
watermark signal so that it has minimal effect on the 
normalized image. 

Let ( , )w x y  denote the watermark signal added to the 

original image ( , )f x y . Let ( )w
pqm  denote the moments 

of ( , )w x y .  Then from (7) one can see that it is desirable to 

have ( ) ( ) ( )
00 10 01 0w w wm m m= = = , so that ( , )w x y  has no impact 

on the centering step of the normalization procedure. 
In addition, from Equations (8)-(11) it is desirable to have 
( ) 0w
pqm = for 2 and 3p q+ = , so that the watermark does not 

affect the rest of the normalization transforms. It is assume 
here that ( , )w x y  and ( , )f x y  are statistically independent, 
so their 2nd and 3rd order central moments are additive. 

As will be discussed later, the watermark ( , )w x y  is a 
CDMA signal generated from a zero-mean Gaussian or 
uniform source that is added to the mid-frequency DCT 
coefficients of the image. As will be seen from our numerical 
examples, such a watermark nearly satisfies all the desirable 
properties described above, and will have little impact on the 
normalized image. 

E. Alternative Normalization Procedures 
The normalization procedure described above consists of a 

sequence of elementary affine transforms (i.e., shearing and 
scaling operations). We point out that other transform 
procedures can also be constructed in a similar fashion to 
achieve affine-transform invariance in a normalized image. 
For example, one such procedure is the following 

 
cos sin 0 1
sin cos 0 0 1

φ φ α β
φ φ δ

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠

A , (12) 

which consists of 1) shearing in x-direction, 2) scaling in x 
and y directions, and 3) rotation by angleφ . The parameters 
in the procedure described in (12) can then be determined by 
enforcing a set of predefined moments for each step. 
Interested reader can refer to [15] for details.  

     
 (a)  (b)  (c) 

Fig. 2. (a) Original Lena image; (b) Lena image in (a) after distortion; (c) Normalized image from both (a) and (b). 
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F. Watermarking Algorithm 
The image normalization procedure described above yields 

a normalized image that is invariant to any affine geometric 
transforms. It is on this normalized image that we perform 
watermark embedding and detection. In this paper, we chose 
to use the spread spectrum based DS-CDMA watermarking 
scheme [19], which is well known for its robustness to 
common signal processing attacks, even though other 
watermarking schemes can be used as well. 

1) Watermark Embedding: The watermark embedding 
procedure is demonstrated in Fig. 3 and summarized as 
follows: To embed a watermark into an image, 

1. Apply the normalization procedure to obtain the 
normalized image. 

2. Create a 2D watermark with the same size as the 
normalized image. This is accomplished by the 
following steps: a) Generate M 1-D binary pseudo-
random sequences ,  1,...,i i M=p , as signature 
patterns using the private key as seed, where M is the 
number of bits in the watermark message. Each of 
these sequences has zero mean and takes values from a 
binary alphabet {-1,1}; b) Create a 1-D DS-CDMA 
watermark signature 1W  by modulating the 
watermark message with the patterns generated in a), 

i.e. 1
1

(2 1)
M

i i
i

m
=

= −∑W p , where im  is the ith bit (i.e., 

0 or 1) in the watermark message; c) Convert the 1-D 
signature 1W  into a 2-D signature 2W  in a zigzag 
scan order; d) Apply the inverse discrete cosine 
transform (IDCT) to the 2-D signature 2W  to 
produce 1w . 

3. Create a mask image, which is a binary image of the 
same size as the normalized image. This image has 1's 
within the support of the normalized image and 0's 
elsewhere. 

4. Generate the watermark signature w from 1w  using the 
mask image by masking off the boundary area. 
Signature w is the actual final watermark signature.  

5. Apply the inverse of the normalization procedure in 
Step 1 to the watermark signature w, so that it has the 
same size as the cover image.  

6. The final watermark signature is embedded into the 
original image additively with desired watermarking 
strength. This produces the watermarked image. 

The whole procedure is equivalent to embedding the 
watermark signature w into the DCT domain of the 
normalized image. A note is that in this procedure we choose 
to transform the watermark signature to fit the cover image 
instead of embedding the watermark into the normalized 
image. This has the advantage that it avoids any distortion 
which might otherwise have incurred to the cover image. 
Another remark is that the masking step (i.e., discarding the 
part of the watermark signature outside the support of the 
normalized image) is for the ease of implementation. It will 
not weaken the correlation property of the watermark 
signature, because the normalized image is simply zero 
outside its support.  

2) Watermark Extraction: The following steps are taken 
to decode the embedded watermark in an image, 

1. Apply the normalization procedure to obtain the 
normalized image. 

2. Decode the watermark message in the normalized 
image. This is accomplished in the following steps: a) 
Regenerate the watermark patterns ,  1,...,i i M=p , 
using the same key and following the same procedure 
as in step 2 of watermark embedding; b) Apply DCT 
to the normalized image from Step 1; c) Convert the 
DCT coefficients where the watermark signature is 
embedded into a 1-D vector, denoted as wc , through 
inverse zigzag scan; d) Decode the watermark message 
bit-by-bit using a correlation detector. That is, the ith 
bit of the watermark message is decoded as 

 w i1,     corr( , ) >0
ˆ

0,          otherwise,im ⎧
= ⎨

⎩

c p
 (13) 

where w icorr( , )c p is the correlation of the two 
vectors. 

 

III. WATERMARK RESYNCHRONIZATION THROUGH 
DEFORMABLE MESH MODELING 

In practice it may well happen that a watermarked image 
undergoes a geometric attack that cannot be simply described 
by RST or more general affine transforms. In such a case it is 
no longer feasible, if not impossible, to describe the actual 
image distortion by a global geometric transformation model. 
Such geometric attacks may cause hardly noticeable 
perceptual distortion, but can make many existing 
watermarking algorithms vulnerable.   

As an example, in Fig. 4(a) we show the Lena image 
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embedded with a watermark; in Fig. 4(b) we show this image
 

after attack with StirMark [12]. In Fig. 4(c) we show the 
difference between the two images. In Fig. 4(d) we show the 
effect of this same distortion on a rectangular grid 
corresponding to the image (dashed—before distortion; 
solid—after distortion). Indeed, the distortion in the image is 
barely visible, though the actual geometric distortion is rather 
severe. The actual attack in this case follows the pattern of an 
elastic sheet, which is deformed by forces of random 
magnitude and directions at different locations. Such 
distortions can easily destroy the synchronization 
(registration) between the watermark in the attacked image 
and the detector.  

A. Watermarking Scheme based on Mesh Modeling  
In this section, we propose to use a deformable mesh model 

to describe the complex geometric distortion in a watermarked 
image. The deformable mesh serves as a resynchronization 
tool between a distorted image and its original image for 
watermark detection. A functional block diagram of a 
watermarking system based on such a deformable mesh model 
is shown in Fig. 5. Unlike the scheme in Section II, this 
watermarking scheme requires the knowledge of the original 
image. Thus, it is suitable for private watermarking 
applications. 

 

B. Distortion Correction with a Mesh Model 
The concept of mesh modeling is rooted in the field of 

finite element methods. In a mesh model, the domain of an 
image is divided into a collection of non-overlapping 
polygonal patches, called mesh elements. In a deformable 
mesh, the mesh elements are allowed to deform between two 
image frames (e.g., one before distortion, and the other after 
distortion). The deformation of a mesh element is through the 
displacement of its vertices (called mesh nodes).  

Mesh modeling has recently found many important 
applications in image processing, including image 
compression, motion tracking and compensation, image 
processing through geometric manipulation, and medical 
image analysis, see for example [14],[23]. 

1) Mesh Model of the Image Distortion Field: In the 
following we assume that we have a pair of images: one is the 
original image denoted by ( ),f x y , and the other is ( ),f x y  

underwent a geometric distortion, denoted by ( )( ) ,df x y . We 
want to characterize the point-wise relative displacement 
between the two images. 

Let vector ( )d p  denote the relative displacement of a 

point ( , )x yp  in the original image. With a mesh model, 
we first partition the image domain D  is into M  non-
overlapping mesh elements, denoted by mD , 

with 1,2, ,m M= K . Over each element mD , we model the 

displacement ( )d p  as: 

     
 (a) (b) (c) 

     
 (d) (e)  (f) 

Fig. 4. Images to demonstrate the watermarking process. (a) Watermarked image with PSNR=38.4dB (b) Attacked watermarked 
image (c) Difference between (a) and (b) (d) Regular mesh and mesh generated from (b) (e) Deformation compensated watermarked 
image (g) Difference between (a) and (f). 
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 ( ) ( )
1

ˆ
N

n n
n

ϕ
=

= ∑d p p d  (14) 

where nd  is the displacement vector at the nth element node, 

and ( )nϕ p  is the interpolation basis function associated with 

node n, and N  is the total number of mesh nodes.  
In practice, polygonal elements (such as triangles or 

quadrangles) are usually used in mesh models because of the 
geometric simplicity and ease of manipulation of these shapes. 
In this paper triangular mesh elements with liner interpolation 
basis functions are used in (14). 

2) Determination of the Mesh Deformation: The nodal 
vectors nd  in the mesh model in (14) are unknown, and have 
to be determined from the image data. The basic idea is to 
displace the mesh nodes so that the two images achieve the 
best match in terms of their intensity on an element-by-
element basis. As a matching criterion the following objective 
function is used: 

 ( )( ) ( )( )2
( )

1

1 ˆ ,
2

m

M
d

d
m D

J f f d Eρ
=

⎡ ⎤
= + − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫ p d p p p  (15) 

where the first term is the matching error accumulated over all 
M mesh elements between the two images, the same as the one 
proposed by Wang and Lee [14]. The second term dE  is used 
to prevent the mesh from being overly deformed. In this paper 
we consider two forms of definition for dE : one is defined on 
mesh regularity as in [14], which is defined as 

 
2

1

1 ,
2

N

d n
n

E
=

= ∑ t  (16) 

where ( )
n

n n l
l T∈

= −∑t p p , and nT  is the set of all the 

neighboring nodes of node np ; the other is defined on 
deformation regularity, which is defined as 

 
2

1

1 ,
2

N

d n n
n

E
=

= −∑ d d  (17) 

where N  is the total number of mesh nodes in the image, and 

nd  is the average of the displacement vectors of all the 
neighboring mesh nodes connected to node n. This term is 
used to enforce the local smoothness in the distortion field. In 

what follows we will refer to these two different forms of dE  
as variation I and II, respectively.  

In (15) ρ  is a regularization parameter used to control the 
trade-off between matching accuracy and deformation 
regularity. The nodal vectors nd  are determined by numerical 
minimization of the objective function in (15).  In our 
experiments, a gradient descent algorithm with a line search 
was used [18]. 

Once the nodal vectors nd  are found, the distortion can be 
computed for each point in the image according to the 
deformation model in (14). The distorted image can then be 
corrected as: 
 ( ) ( )( )( )ˆ .df f= +p p d p  (18) 

Afterward watermark detection is performed with respect to 
this corrected image. 

As an example, we show in Fig. 4(e) the corrected image 
from the distorted image in Fig. 4(b) using the procedure 
described above. As in Fig. 4(c), the difference between this 
correct image and the pre-distortion image in Fig. 4(a) is 
shown in Fig. 4(f). One can see that the geometric distortion 
has been corrected effectively in Fig. 4(e). The regular mesh 
structure shown in Fig. 4(d) was used, in which mesh nodes 
were placed regularly every 64 pixels along both dimensions. 
In addition, the distorted image was extended at the 
boundaries using the mean image value to avoid the boundary 
effect during the gradient search step. 

IV. EXPERIMENTAL RESULTS  

A. Image Normalization Based Watermarking 
We present two separate experiments to demonstrate the 

performance of the proposed watermarking scheme: one on 
multi-bit watermarking, and the other on 1-bit watermarking. 
In the first experiment, a 50-bit watermark was embedded into 
a set of test images (10 of them in total, including “Airplane”, 
“Boat”, “House”, “Peppers”, “Splash”, “Baboon”, “Couple”, 
“Lena”, “Elaine” and “Lake”) using the proposed algorithm. 
The watermarked images were then distorted by a variety of 
geometric and common signal processing attacks (listed later 
in detail). The proposed algorithm was applied afterwards to 
decode the embedded watermark messages in these distorted 
images. The decoding bit-error rate (BER), defined as the 
ratio between the number of incorrectly decoded bits and the 
total number of embedded bits, was then computed and 
averaged over all the test images.  

The second experiment was designed to test the proposed 
watermarking scheme for detection of the presence or absence 
of a watermark under geometric attacks: 1) aspect ratio 
changes of (1.1,1.0), which is test case 3(c) in the distortion 
list given later; 2) shearing of (5%, 5%), test case 5(f) of the 
list; 3) general affine transform, test case 6(a) of the list. In 
this experiment, 20 different watermarks were generated, and 
embedded into each of the test images separately, resulting in 
a total of 200 watermarked images; in addition, 20 different 

Watermark
embedding

Watermark
message

Private
Key

Watermark
extraction

Mesh model
based correction

possible
geometric attacks

Watermark
message

Original
Image

Private
Key

Original
Image  

Fig. 5. Mesh model based watermarking system
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white noise patterns were created and added into each of the 
test images, resulting in a total of 200 invalid watermarked 
images. These images were then distorted under the 3 
geometric attacks. The proposed algorithm was then applied to 
detect the presence of watermarks in these 600 images.  

For comparison, the commercial watermarking software 
Digimarc ImageBridge 2.0 (a plug-in in Photoshop) was 
tested using the same images with the same distortions in the 
second experiment. Intermediate results, such as decoding 
error rates or test statistic values are not available from this 
software. However, we can collect overall detection results 
regarding whether a watermark message as a whole exists or 
not. A remark here is that Digimarc can still detect the 
presence of a watermark even when the actual watermark 
message is no longer decodable. Although the power level that 
was used in the experiment was the same for both algorithms, 
the obtained detection results from Digimarc's algorithm may 
change substantially if the payload is decreased to a single bit 
to match that of the proposed algorithm. In our experiment, 
the watermarking strength was adjusted so that the same 
signal-to-noise ratio (SNR) was achieved by the two 
algorithms in the watermarked images for the same test image.  

The following is a list of attacks used to distort the images 
in the experiments (note that not all of them are affine 
transforms): 

1. Line and column removal: (a) (1, 1), (b) (1, 5), (c) (5, 
1), (d) (5, 17), and (e) (17, 5), where each pair of 
numbers indicate the number of columns and rows 
removed, respectively. The removed columns/rows were 
equidistant.  

2. Scaling by different factors: (a) 0.5, (b) 0.75, (c) 0.9, (d) 
1.1, (e) 1.5, and (f) 2. 

3. Aspect ratio change: (a) (0.8,1.0), (b) (0.9,1.0), (c) 
(1.1,1.0), (d) (1.2,1.0), (e) (1.0,0.8), (f) (1.0,0.9), (g) 
(1.0,1.1), and (h) (1.0,1.2), where each pair of numbers 

indicate the amount of scaling in the x and y directions, 
respectively. 

4. Rotation with different angles: (a) -15 o , (b) -10 o , (c) 
5 o , (d) 25 o , (e) 35 o , (f) 45 o , and (g) 80 o . 

5. Shearing: (a) (0, 1%), (b) (0, 5%), (c) (1%, 0), (d) (5%, 
0), (e) (1%, 1%) and (f) (5%, 5%), where each pair of 
numbers indicate the amount of shearing in the x and y 
directions, respectively. 

6. General geometric affine transformation with matrix: 

(a)
1.1 0.2
0.1 0.9

⎛ ⎞
⎜ ⎟−⎝ ⎠

, (b)
0.9 0.2
0.1 1.2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

, and 

(c)
1.01 0.2
0.2 0.8

− −⎛ ⎞
⎜ ⎟−⎝ ⎠

. 

7. Horizontal and vertical flipping:  (a) horizontal, and (b) 
vertical. 

8. StirMark random bending attack (RBA) [12]. 
9. Common signal processing attacks:  (a) median 

filtering 2x2, (b) median filtering 3x3, (c) median 
filtering 4x4, (d) sharpening by 

kernel

0 1 0
1 5 1

0 1 0

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟−⎝ ⎠

, (e) Gaussian filtering by 

kernel

1 2 1
1 2 4 2

16
1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, and (f) frequency mode 

Laplacian removal (FMLR) attack. 
10. JPEG compression with different quality factors: (a) 

10, (b) 15, (c) 20, (d) 25, (e) 30, (f) 35, (g) 40, and (h) 
50. 

The test results from the first experiment are summarized in 
Tables 1. We see from these results that the proposed 
algorithm achieves very low decoding BER for all the 
geometric attacks except StirMark random bending attack (test 
case 8). It is also robust to filtering attacks (test case 9(b) and 
9(c)) except for median filtering.  

For the second experiment, the histograms of the values of 
the test statistic (correlation) used for detection from the 200 
watermarked and 200 unwatermarked images are plotted in 
Figs. 6(a), (b) and (c), respectively, for the 3 different 
geometric attacks detailed above. We notice that the proposed 
algorithm results in perfect detection for all testing images; the 
histograms for the watermarked and unwatermarked cases do 
not overlap. In contrast, Digimarc failed to detect the 
watermark in all 200 watermarked images and there was no 
false alarm for the 200 unwatermarked images either after the 
3 geometric attacks. 

We want to mention that the proposed algorithm is not 
robust to overcropping, which is a common problem for the 
moment-based watermarking algorithms. Thus the cropping 
related attacks implemented in StirMark are not included in 
the experiments. 

TABLE 1 
DECODING PERFORMANCE OF THE PROPOSED ALGORITHM (IN BER) 

Attacks\Cases (a) (b) (c) (d) (e) (f) (g) (h) 

1. Removal 0 
0.00

4 0 
0.00

4 0    

2. Scaling 0 0 0 0 0 
0.04

8   
3. Aspect 

ratio 0 0 0 0 0 0 0 0 
4. Rotation 0 0 0 0 0 0 0  

5. Shearing 0 0 0 0 
0.00

2 0   
6. Linear 

transform. 0 0 0      
7. Flip 0 0       
8. StirMark 

RBA 0.50
6        

9. Common 

signal 

processing 0.06
6 0.23 

0.23
2 

0.06
4 0 

0.01
8   

10. JPEG 0.05
2

0.05
2

0.00
4

0.00
6

0.00
4

0.00
4 0 0
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B. Mesh Model Based Watermarking 
As test images the Lena and Boat images, respectively, 

were used. A watermark message with 200 bits was embedded 
into the mid-frequency DCT coefficients of these images 
using the CDMA algorithm. The watermarked images were 
then distorted using the StirMark random bending attack [12]. 
A  

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Histogram of the values of the test statistic (Normalized cross 
correlation) used for detection (a) under aspect ratio change (b) under shearing 
geometric (c) under general affine transformation attacks for 200 watermarked 
images (left) and 200 unwatermarked images (right).  

 
series of experiments were performed to test the proposed 
watermarking system. In all experiments, the original non-
watermarked image was used as a reference for the distortion 
correction; the following different sizes were used for the 

mesh elements: 32 32× pixels, 64 64× pixels, and 
128 128×  pixels, respectively. Furthermore, both variations 
of the penalty  
term in (16) and (17) were tested; the value of the 
regularization parameter was chosen empirically for each test.  

1) BER vs. Bending Strength: In this experiment, the 
watermark strength is fixed at λ=0.5. The test results are 
shown in Figs. 7(a) and (b). From these results we can see, for 
both tested images, as expected that as the bending strength of 
the attack increases, the BER increase too and that the BER is 
rather insensitive to the number of mesh elements used.  In 
Figs. 7(a) and (b) we observe that detection performance is 
rather robust, for small amounts of bending, to the number of 
mesh nodes used. Furthermore, detection performance is more 
sensitive to the number of mesh nodes used for large amounts 
of bending. However, this is not a very serious concern in 
most practical applications because large amounts of bending 
are visible and are not used for attacks.  

2) BER vs. Watermarking Strength: The bending strength 
is fixed at 5 in the current experiment, and watermarking 
strength λ is changed from 0.1 to 1.0. The test results are 
shown in Figs. 8(a) and (b). With the proposed correction, 
zero error decoding can be achieved when the watermarking 
strength λ is close to 1.0 for both images.  From Fig. 8 it is 
appears that detection performance is very sable to the number 
of mesh nodes used as the power of the watermark changes. 
These results indicate that the best performance was obtained 
with mesh elements of 64 64×  pixels. 

The minimization algorithm requires about 10 seconds per 
iteration on Pentium 4 at 1.7GHz. This is for image size of 
512x512 and regular mesh structure at 64 pixel nodal 
separation. A typical run takes about 10-20 iterations before 
useful results are produced. 

 

V. CONCLUSIONS 
In the first part of this paper we propose a new public 

watermarking algorithm, which is robust to general affine 
geometric transformation attacks. The proposed algorithm 
achieves its robustness by both embedding and detecting the 
watermark message in the normalized images. The main result 
in this part of the paper is Theorem 1 in pp. 7 where we show 
that the normalized image if properly chosen is invariant to 
affine transforms. By numerical experiments we demonstrate 
that the proposed algorithm has very low decoding BER when 
used with multi-bit watermarks and perfect detection of the 
presence or absence of the watermark when used with single 
bit watermarks under various affine attacks. We also propose 
watermark resynchronization scheme based on a mesh model 
to combat nonlinear geometric attacks. The original image and 
the potentially attacked watermarked image are used to 
estimate a mesh model of the unknown geometric distortion. 
This approach can be only used for private watermarking were 
the original image is known. Watermark detection is 
performed using the distorted watermarked images after it has 
been compensated for the geometric attack. In this paper we 
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tested this approach only against random bending attacks 
generated by StirMark. Using numerical experiments we 
demonstrate that the proposed methodology works extremely 
well. However, the proposed methodology is general can be 
used for other difficult to correct geometric attacks. 

(a) 
(b) 

Fig. 7. BER vs. random bending strength (a) Lena (b) Boat.  Note: gridstep of 
64 means the mesh nodes are placed 64 pixels apart uniformly. 
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 (b) 
Fig. 8. BER vs. watermark strength (a) Lena (b) Boat 

 

APPENDIX 

Proof of Theorem 1 
As pointed out in Section II.A, an affine transform can be 

decomposed into a composition of the following elementary 
transforms: 1) translation, 2) shearing in the x  direction, 3) 
shearing in the y  direction, and 4) scaling in both x  and y  
directions. Therefore, it is sufficient to demonstrate only that 
the normalization procedure is invariant to these elementary 
transforms, i.e., it will yield the same normalized image for a 
given ( , )f x y  undergoing each of these elementary 
transforms. 

It is readily seen that the normalization procedure is 
invariant to the translation transform. This is because any 
translation in ( , )f x y  is removed by first centering the image 
in the normalization procedure.  

Next, we demonstrate the normalized image of ( , )f x y  is 
invariant for each of the other three elementary transforms. 
Without loss of generality, we will assume that ( , )f x y  is 
already centered. We will use ( , )g x y  to denote the distorted 
image from ( , )f x y  after an affine transform. In addition, we 

will use ( )a
pqμ  and pqμ  to denote the moments of ( , )g x y  

and ( , )f x y , respectively.  
From the normalization procedure described in Section 

II.B, the normalized image of ( , )g x y  can be written 

as ( , )n ng x y , where 
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   n a
s y x

n a

x x
y y

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A A A . (A.1) 

The parameter β  in the matrix xA  in (A.1) is solved from 
the normalization condition in (8), i.e., 
 ( ) ( ) 2 ( ) 3 ( )

30 21 12 033 3 0.a a a aμ βμ β μ β μ+ + + =  (A.2) 

Also, the parameter γ  in the matrix yA  in (A.1) is solved 

from the normalization condition in (11), i.e., it is determined 
as 

 
(2) (1) (1)
11 11 02
(2) (1) (1) 2 (1)
20 20 11 022

μ μ βμγ
μ μ βμ β μ

+
= − = −

+ +
. (A.3) 

1.  Shearing in the x  direction 
In this case, ( , ) ( , )a ag x y f x y= , where 

 01
0 1

a

a

x x x
y y y

β⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
A .  (A.4) 

Based on this relation we can write the moments ( )a
pqμ  in 

the normalization condition in (A.2) in terms of pqμ  using (6)

, and, after some algebra, we can rewrite (A.2) as 
2 3

30 0 21 0 12 0 033( ) 3( ) ( ) 0μ β β μ β β μ β β μ+ + + + + + = .   
 (A.5) 

Let 1 2β β β′ + . One can see that β ′  satisfies the 
equation of the shearing parameter β  for normalizing the 

original image ( , )f x y . Let x′A  denote the corresponding 

shearing transform, that is,
1
0 1x

β ′⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

A .  

Observe that 

 0 01 1 1
0 1 0 1 0 1x x

β β β β+⎛ ⎞⎛ ⎞ ⎛ ⎞ ′= = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

A A A . (A.6) 

Thus, the shearing normalization on ( , )g x y  using will 
yield the same image as the shearing normalization transform 
on ( , )f x y .  

2.  Shearing in the y  direction 

In this case, ( , ) ( , )a ag x y f x y= , where 

 
0

1 0
1

a

a

x x x
y y yγ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
A . (A.7) 

As above, we write the moments ( )a
pqμ  in (A.2) in terms 

of pqμ , and rewrite the normalization condition as  

 
2 3

30 21 12 03
0 0 0

3 3 0
1 1 1

β β βμ μ μ μ
βγ βγ βγ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 (A.8) 

Let
01

ββ
βγ

′
+

. One can see that β ′  satisfies the 

equation of the shearing parameter β  for normalizing the 

original image ( , )f x y .    

Next, we write the moments ( )a
pqμ  in the normalization 

condition in (A.3) in terms of pqμ , and obtain  

 0 0 20 0 11 02
2 2

0 20 0 11 02

(1 ) (1 2 )
(1 ) 2 (1 )
γ βγ μ βγ μ βμγ

βγ μ β βγ μ β μ
+ + + +

= −
+ + + +

. (A.9) 

Hence, 

 0

0

0

1 01 0 1
11 0 1

1 0
             = .

(1 ) 1

y x

β
γγ

βγ
γ γ βγ βγ

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
+⎛ ⎞

⎜ ⎟+ + +⎝ ⎠

A A A
  (A.10) 

Upon some algebraic manipulation, (A.10) can be rewritten 
as 

0

0
2 2

0 20 0 11 02

11 02 20 11

1 0
10

(1 ) 2 (1 )

1
                .

y x

βγ
βγ

βγ μ β βγ μ β μ

β
μ β μ μ β μ

+⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟+ + + +⎝ ⎠

′⎛ ⎞
⎜ ⎟′ ′− − +⎝ ⎠

A A A
 

  (A.11) 
Observe the following: 1) the second matrix term in (A.11) 

corresponds to an affine transform that is independent of the 
parameter 0γ ; and 2) the first matrix term in (A.11) 
corresponding to a scaling transform, which will be later 
absorbed into the scaling matrix sA  in (A.1) to achieve a 
standard size.  Therefore, the resulting normalized image of 

( , )g x y  is invariant to the affine transformation A  which is 

parameterized by 2γ . 
3.  Scaling in both x  and y  directions 

In this case, ( , ) ( , )a ag x y f x y= , where 

 0

0

0
0

a

a

x x x
y y y

α
δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
A . (A.12) 

Again, we write the moments ( )a
pqμ  in terms of pqμ , and 

rewrite the normalization condition (A.2) as  

 
2 3

0 0 0
30 21 12 03

0 0 0

3 3 0.δ δ δμ β μ β μ β μ
α α α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  

 (A.13) 

Let 0

0

δβ β
α

′ . One can see that β ′  satisfies the equation 

of the shearing parameter β  for normalizing the original 
image ( , )f x y .    

Next, we write the moments ( )a
pqμ  in the normalization 

condition (A.3) in terms of pqμ , and obtain 

 
2

0 0 11 0 02
2 2 2
0 20 0 0 11 0 022

α δ μ βδ μγ
α μ βα δ μ β δ μ

+
= −

+ +
. (A.14) 
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Hence, 

 0 0 0

0 0 0

01 0 1
0 (1 )1 0 1y x

α α βδβ
δ α γ δ βγγ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

A A A . 

  (A.15) 
Upon some algebraic manipulation, (A.15) can be rewritten 

as 

 

2
0

2 2 2
0 20 0 0 11 0 02

11 02 20 11

0

0
2

1
                .

y x

α
α δ

α μ βα δ μ β δ μ

β
μ β μ μ β μ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟+ +⎝ ⎠

′⎛ ⎞
⎜ ⎟′ ′− − +⎝ ⎠

A A A
 (A.16) 

Again, the second matrix term in (A.16) corresponds to an 
affine transform that is independent of the parameters 0 0,α δ ; 
and 2) the first matrix term in (A.16) corresponding to a 
scaling transform.  Therefore, the resulting normalized image 
of ( , )g x y  is invariant to the affine transformation A  which 

is parameterized by 0 0,α δ . 
4.  Uniqueness under a general affine transforms 
Finally, consider the case that the image ( , )f x y  

undergoing a general affine transformation. We decompose 
the transform matrix A  as  

 0 0

0 0

0 1 0 1
0 1 0 1

α β
δ γ

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
A . (A.17) 

Similar to (A.5), (A.8) and (A.13), we can derive, 

0
0

0
0

1'β βα γ
δ β

= +
+

, where β ′  is a root of the normalization 

condition (A.2) that corresponds to the original 
image ( , )f x y , and β  is roots corresponds to the affine 
transformed image. Therefore, 

 

0

0

0
0

1

α
δβ

γ
β β

=
−

′ −

. (A.18) 

From (A.18) we see that β  is real if and only if β ′  is real. 
Thus, if (A.2) has only one real root (or three real roots) for 
the original image ( , )f x y , then it also has only one real root 
(or three real roots) for any of its affine transforms.   

Furthermore, β is a monotonic function of β ′  

for 0
0

1β β
γ

′ < + . In such a case, if β ′  has three real roots, 

then its median will correspond to the median of β .  

We note that the condition that 0
0

1β β
γ

′ < +  is not 

restrictive in practice. For example, for meaningful 

distortions, we will likely have 0 0.2β < , and 0 0.2γ <  (less 
than 20% shearing in the x-direction or y-direction). In such a 

case, 0
0

1 4.8β
γ

+ > . This, of course, leaves enough room for 

the shearing parameter β ′ . 
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